R. & M. No. 3609

AERONAUTICAL RESEARCH COUNCIL
REPORTS AND MEMORANDA

The Equations of Motion of a Viscous Compressible
Gas Referred to an Arbitrarily Moving Co-ordinate
System

by F. WALKDEN

Salford University

LONDON: HER MAJESTY'S STATIONERY OFFICE
1969
PRICE 13s. 0d. NeT (65p)



The Equations of Motion of a Viscous Compressible
Gas Referred to an Arbitrarily Moving Co-ordinate
System

by F. WALKDEN
Salford University

Reports and Memoranda No. 3609*
April, 1966

Summary.

The equations of motion of a viscous, compressible, heat conducting fluid are formulated in general
co-ordinates (£°, &', £2, £3) where &° represents time and &', £2, £3 are arbitrary functions of time and the
space co-ordinates in some fixed system. A tensor form for the equations of motion in a fixed cartesian -
system is derived and the methods of tensor analysis are used to obtain the appropriate representation of
the equations of motion in a general co-ordinate system. Two examples are considered to show how the
analysis presented may be used to obtain equations of motion appropriate to each case.
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1. Introduction.

In this Report the equations of motion of a viscous, compressible, heat conducting fluid are formulated

in general co-ordinates (£°, &%, £2, £3), where, if x!, x2, x* are cartesian co-ordinates and x° represents
time then,

{:O=XO

(1.1)

60: éa(xo’ Xl, X2, xS)
where the functions &(x°, x*, x2, x3), for « = 1,2, 3, are arbitrary functions of x°, x*, x* and x°.

McVittie! has considered the problem of formulating the equations of motion of a fluid in general
co-ordinates like those defined by equation (1.1). Since he was interested in meteorological phenomena he
included heat conduction effects but neglected viscosity. More recent contributions to the problem of
obtaining suitable tensor representations of expressmns containing time and space derivatives are papers
by Prager?, Sedov®, and Koppe and Zimmerman®. Here we shall use the method developed by McVittie®.

Our interest in thls problem is in the possibility of using a general formulation of the equations of
motion to improve methods of obtaining numerical solutions of certain problems. The notion of working
with a general representation of the equations of motion has been found useful in obtaining numerical
solutions of a number of steady flow problems®®"-® and it is to be expected that similar applications of
the general form of the unsteady flow equations will be useful.

The problem of deriving equations of motion with &°, &%, £2 and ¢ as independent variables is not
trivial because the relations

&= &(x% x*, x% x?) a=123

will depend upon time (x°) in general. Then the functions & = &%(x°, x', x?, x*) represent surfaces moving
in space. Fluid particles may overtake or be overtaken by these surfaces. In these circumstances, it is
clear that the problem of expressing the laws of conservation of mass momentum and energy in terms of
the co-ordinates &1, £2, &% and time (£°) cannot be solved simply by following the procedure used when
&1 £2 £3 = constant are surfaces fixed in space—that is, the equations cannot be formulated easily by
considering forces acting on the fluid in an elementary region of space and equating these forces to the rate
of change of momentum of the fluid in the elementary region.

The representation of systems of partial differential equations in different co-ordinate spaces is the
concern of tensor analysis. If a tensor representation of the equations of motion of a viscous, heat con-
ducting, compressible fluid can be found then the problem is solved. A relatively simple tensor represent-

ation of the equations of motion is available. This representation is obtained by adding terms of 0 —2>
c

to the equations of motion in a fixed cartesian space. The momentum equations and the continuity
equation are combined in a single tensor equation. The energy equation yields a single scalar equation.
Elementary tensor analysis is used to obtain the representation of these equations in {-space and the
limiting form of the equations in é-space as ¢ — oo represent the equations of motion of a viscous, com-
pressible, heat conducting gas in general co- -ordinates. These processes are described in detail in sections
3,4 and 5. In sections 6 and 7 two examples are given to show how the analysis presented in this Report can
be used to derive appropriate equations of motion in special cases. Section 6 contains a formulation of the
Lagrangian equations of motion of a viscous fluid and a simple numerical scheme for integrating these
equations is proposed. In 7 the equations of motion of an inviscid fluid referred to a rotating co-ordinate
system are derived as a special casc of the general theory.

2. Metric and Associated Tensors.

We shall define three co-ordinate systems: an x-system, an #-system and a £-system. We shall regard
x!, x%, x? as space co-ordinates in a cartesian system and 7, #, 7> as space co-ordinates in some orth-



ogonal system which is fixed relative to x-space. For time we shall write x°, #° or £° depending on the
space we are working in. We shall require that all transformations leave invariant the space time metric

—(ds)? = (dx*)? +(dx?)? +(dx?) — c*(dx)*. (2.1)

We shall consider transformations of the type

éo — xO
2.2)
f“ = éa(xo, xl, x2, x3) ’/}

and we shall suppose that
7° = x° :

and } (2.3)
n" = nfx', x% x7)

are given functions such that the surfaces ' = constant, 7% = constant,n® = constant are fixed, mutually
orthogonal, families of surfaces in x-spacet. It follows that & and  ¢o-ordinates are related by equations

of the form
& =1
} - (2.4

&= &m°n', 0.

Equations (2.4) are introduced because in some applications of the theory it is useful to consider trans-
formations between #- and £-space rather than transformations between x- and £-space. Now if

i axvi

and
o O
Ciar

a transformation matrix % and its inverse & ~ ! can be defined :(—
1 t3 t2 ]

. 0 1 g
F =(t)= , (2.5)

tGreek indices take values 1, 2, 3.
Roman indices take values 0, 1, 2, 3.



0
Fl=(H=
0 !
2
*
: O t31

(2.6)

In general the transformation elements will be finite except, perhaps, at isolated points or along certain

Cuff"/lfs .requirement that —(ds)* be invariant leads us to define the following metric tensor which has the
form
-2 0 0
v 1 0 (
(ag) = 0 0 1 0 2.7)
0 0 0 1
in x-space, the form
o O 0 0
0 Y11 0 0
(yad = 0 0 - 0 (28)
0 0 0 Y33
in #-space, and the form
9oo Jo1 Jo2 Jo3
J10 911 912 913
(gw) = 29)
920 921 922 923
930 931 g3z 933
in &-space.
Now 74 = —c? and
1y 2 2\ 2 3N\ 2
e () ()3
doo = _cz<1_(t(1))2+(2<2)2)2+(t8)2> 211
G0 = Goa = Lo Iz HIF L2 +E3 13 (2.12)



Gop = Gpa = Lo G+ GG +13 55 . (2.13)

Alternatively equations (2.11) to (2.13) may be expressed in the form:

1,2 242 332
oo = _0261_?11('50) +Yzzc(zo) +733(70) ) (2.14)
9eo = Gox = V1116 Ta + 722 T8 To+ V33 T T2 (2.15)
Jup = Iz = V11 Ta T;}'H’zz 1275 +Y33 2 T/? (2.16)
where
. oy
Ty = i
o&

Associated with the tensors ay, 74, and gy, are the tensors a*, y*, and g™ defined so that g;; a’*, y;; 7%,
and g;; g’* are all equal to &¥.
It follows that

1
-~ 0 0 0
0 1 0 0

(@) = ' 2.17)

. and

01 02 03

10 11 12 13

(2.19)

20 21 22 23

1
—z 0 0 0
0 —1— 0 0
) V11
0" = L (218)
0 0 — 0
V22 _
0 0 0 —1— :
' P33

30 31 32 33



where

t
1 R % _0
g g o2
(2.20)
g =gl =ttt + t’;“t
Alternatively equations (2.20) can be ei;pressed in the form
a0 . Ox _ __T_y
g g 2
(2.21)
by ok ’y * 1
g = g = L@+ @ i+ — (3P)
11 Y22 V33
where 7} = 6—171
The determinant of the transformation matrix & defined in equation (2.5)is
a(xt, x2, x3
J = ( ) (2.22)

o, &%, &%)

and this determinant can be expressed in the form

J = /711722733 "Eél——’%z%; (2.23)

In the following Section we shall introduce a contravariant first order tensor (v') such that v° = 1.

1 . .
Neglecting terms of 0( >compared with those of 0(1) it follows that the associated co-variant tensor
c?
is (—c2, vy, vy, v3) Where

Uy = Gum V" - (2.24)

The co-variant derivative of the vector (v;) is

ov;
Vjm = e ij N
— gv_j_lgkl aglm+§~g_g_agjm i
og™ 2 o0& T aEm o
oy 1, Oim , 0915 _ 09 jm
oem 27\ a¢ ogm o (2.25)
The velocity magnitude is (4; = cartesian velocity components)
q* = uu'+c?. (2.26)



In &-space this equation becomes
q* = v; v’ +c?

= (t85)2 + (13 +(13)* + 200 1"+ gup " VF . (2.27)

3. Equations of Motion of a Viscous Compressible Fluid in x-Space.

We shall suppose that the fluid is an ideal gas so that the equations of motion can be represented in
the form:

0 0
ot ) = Gh
4 4 B 2 B By
W(P%H‘w(ﬂ“au +(P+§HA) 0y —udey,) =0 (3.2)
dT dp 0 oT
pcpm— (D'I‘W-f'ﬁ(ké;&) (33)
where
p=pRT,
ul = uy,
1 f=u
B=<
0 Bfa
1 f=ua
5 =
0 B+a
Ou, Ou
€y = T éx—z‘ 3.4
ouf
A= 7 (3.5)
and
1 ag SBy 2 2
(D=-2—u5 ] ewea,}-é—,LgA . (3.6

If we define a contravariant vector

W) = (L, u',u? )



and neglect quantities of 0(1/c?) compared with quantities of 0(1) then equations (3.1) and (3.2) can be
represented in the form

oT*
Tk = 0 3.7
where
2 ou; 0
T = pu b+ (p+5 pA) S —pam S Tm (3.8)
: ‘ 3 ax™  oxt
because
2 Ju, Ou
0 __ 0 m
To=puou +(p+ pAy—pa® (a +5x>
5 1
= —c*{ p+0(3) (39)
du,,

TS = puou"—ua’"”a?

ou, Ou
0 __ 0 mO o m
T, =pu,u +ua <6x'" _ax“)
1
o= pua+0(_02> (311)
ou, Ou
B _ ] By gP Gl
TS = pu,u +(p+ UA)ok—pa (6x +8x°‘>
2 ou, Ou
- ] “ B, 58 e ) )
P Uy U +(p+3uA)5a ud (6 : 6x"‘> (3.12)

On substituting in equation (3.7) the expression for T} defined in equations (3.9) to (3.12) we recover
equations (3.1) and (3.2) to within terms of 0(1/c*) which are to be neglected. The methods of tensor analysis
can be used to generalize the tensor equations (3.7) to arbitrary systems of co-ordinates. This operation is
carried out in Section 4. The treatment of the energy equation (3.3) is similar and is considered in detail
in Section 5.

4. Equations of Motion Referred to Arbitrary Co-ordinate Systems.
In a general system equation (3.7) becomes

Té =0 4.1)



and equation (3.8) becomes

T = 0005+ (o5 1 8) D5 1 0 5 “2)
Where
10,
A=7zald). (4.3)

It is convenient to introduce here
T* = g T*,

From equation (4.2)
fk f .k 2 jk mk ijf
T = pr' "+ (p+3 1 ) g% — g™ g7 (Vi + 0. (4.4)

Now v* = £ u™ and v, = g, v™, therefore, if () is defined as in Section 3 then ¢° = 1 and
vo = —c*(1+0(1/c?)). It should be noted that %3 and aggf are both 0(1). The quantity go, is defined in
equation (2.11).

The generalized form of the energy equation, considered in detail in Section 5, is

dT _ dp 1 ¢ ” oT
C"df" (D+d€° 7 aém(kJ 55”) 4.5)
where
1 2,
O =5ug"g" e, Cop—3 1A @.7
Cay = Uyt 0, 4.8)
and
oJ
( 5°+ fﬂ J v”)) 4.9

If quantities of 0(1/c?) in equations (4.1) and (4.5) are neglected we obtain the equations that govern the
motion of a viscous compressible gas in &-space, where x and 5 co-ordinates are defined relative to &
co-ordinates by equations of the form (2.2) and (2.3) respectively.



Now

Similarly

2
TS = pvo 1+ (p+§uA> — 1 g™ Vo, + Vm,0)

c2<1+0(513)>

Tg = pU, 00— H g0m (va,m + Um,a)

TG = pvo v — g™ (Vo m+ Um,o)

1
= _puﬂc‘-’-<1+0(;2-))

T"=pv v+ p+3 uA>5" HG™ Wt U )

Wl o

1
U )55_#gaﬂ(va,s+vs,a)+0(——2_>
[4

(
(

aglu aglrz 6939;)

a,e aég 6&5"‘ aél

2 .
T = p®ov®+ <p+§,uA>g°°~ﬂg"° G Wi+ Vi)

= p(1+0(;1-2-')>

. ) '
T = T = p % "4 <p+§uA>g°“—,ug"'° G Vgt Vi)

. 1
= pv +0<E§)

2 .
T = TF = po*oP+ <p+§uA>g““—ug"’“g”' Vs Vm,0)

o 2 a, 3 1
= pv* o+ <p+§uA)g f—pgg” (vy.£+ve.y)+0(zz>~

10

(4.10)

4.11)

(4.12)

(4.13)

@.14)

(4.15)

(4.16)



Now equation (4.1) may be expanded to obtain:

17 ¢ 0
T§k=j(‘3?(-] T?)'f-a—éﬁ(-] Tﬂ)) " TF

L2 G192 ey} L gm( %im , m_ 005
J(ago(JTi)+5¢ﬁ(JT) 59 (ag’”’ae aem T}

1 6 a p agzm agkm agzk m

1/ 0 0 14
=j(—3£—o(JT?)+a—¢—p(JT.")) . ;’g"w- @17)

On putting i = 0in equation (4.17), and substituting appropriate expressions for T3, T8, T™—defined in
equations (4.10), (4.12) and (4.14) to (4.16), and if terms of 0(1/c?) are negligible compared with terms of
0(1), then we obtain

fo(J;O)+ ,,(Jpv)— (4.18)

0¢
the generalized equation of continuity.

The remaining equations are more complicated. For thecasei = a, & = 1, 2, 3, we obtain from equation
4.17) ’

W2 sy +2 (1) ) L mk g _
J(aéo(JT,,)+aéﬂ(JTa})) 3 78 I =0.

Taking the terms in this equation singly we see that
1 (JT?) += (J7%)
66° 6{”

1
[aéo(Jpv ) +a§ﬂ( X +(p+ B O~ g™ (Vget0e) ))]
1
+0(c—2)
and, similarly,

1 g,y mk _ 1 agoo 00 5905 1 og
— Zm om 0 YdeB ep
208 29l ‘o Ity am T

0 6 10
goo+ gop_l_ ep

1 2 y
—— e .0 = e __ WE 98
2p af“ pv 5{” afa <pU v +(p+3ﬂA)g “Hag-g (vy,w+vw,r)>

“(2)

11



Therefore, neglecting terms of 0(1/c?) the generalized momentum equations are:

[ o G 2 .'
i[a_r:‘J(Jpva) +6_¢"(J (prco+ 4380 H=kg* (vactons) ) )J

1 agoo pagOﬂ lagap B B we 7B —
55“ —pv o8 2 o pvv+(p+ pA g —pg>g”® (v,0t+v.,) |=0 (419

Equations (4.5), (4.18) and the three equations (4.19) together with the equation of state p = pR T
represent the equations of motion of an ideal, viscous, compressible gas referred to an arbitrary system of
moving co-ordinates.

5. The Energy Equation.

In x-space the energy equation can be expressed in the form of equation (3.3) and we shall show that to
within terms of 0(1/c?) equation (3.3) is equal to the following equation :

0T ,0p 0 oT e
pCou = e (I>1+ 5_‘+6_< k6x1> . (5.1
where
1 . 2
q)l = Eualk a™ €km ein—§“A2 (52)
5ui ou,
ey = 6xk (5.3)
and
ot
A= El (5.4)

The four dimensional vector (i) is defined so that u® = 1. The remaining three components are the
contravariant velocity components in x-space.

Now

a_T 00T 0T

Yo T a0 ot ox°
_ar
T dx®
and similarly
iOp _ dp
Yox T dxd

12



Further

0 0T ] . 0T 0 . oT
_ L S 0j il T i O
axi’(a kaxf> 6x°<a kax’)+6x“<a kaxf)

where
a% = 0ifj + 0
1
00 __ __
a’? = po
{1 j=ua
a¥ =
0 j$ua
hence
0 oT 0 oT 1
Ul ) e —
d ‘<a k(’) J) ax“(kax“> +0<02>
Now
1 .- 2
(I)l = E.ua'k am €rm ein__3':u'A2
where
o
A= El
0 auo .
Because u° = 1, and 5—0 = 0, it follows that
X",
T oxP
whilst

1 ik mn 1 £ 1
E:uaka ekmein::E:ué 5pryeeﬁeay+0<zj‘>.

o, =q>+0(515)

1
® = —2-;45_“ M epe,,.

It follows that

where

13



The generalized form of (5.1) is

0T Jop 10 oT
pC,,va—g—(D U S afi(Jg ka€,> (5.5)
where
6T dT
66‘ dé"
1 2
o, = zug g™ Cion €in— uA
and

Cm = Ut Vim -

Neglecting quantities of 0(1/c?) compared with quantities of 0(1), equation (5.5) becomes :

dT dp 1 0 oT
pCpEEG—(D'i'dGO‘Fj EEE(JQ k@é”) (56)
where
1 2
(D=§ﬂgaegpyeeﬂeuy_§”A2
aJ

4= <5€°+66”U ))

and

oy = Ug,ytUyq

6. Lagrangian Form of Equations of Motion.

In this section the Langrangian equations of motion of a viscous, compressible, heat conducting fluid
are derived from the general expression in Section 4, and, for an ideal gas, a simple minded scheme for the
numerical solution of these equations is considered.

Let F(&°, &1, £2, £%) be any scalar function of £°, £, £2 and £3. It follows that

dF _ OF
e~ oE
oF  OF
=55+ 5 (6.1)

Now

d_F oF df” oF
aE° " 38 aE o

14



Since these relations are true for all scalar functions F it follows that

dct
vf = d_fo . (62)
dek
The surface & = constant, § = 1,2,3, is generated by curves which are particle paths if — a0 =0,

ie. if v# = 0. Thus if »* = v? = v® = 0 and if the quantities x! = x!(£°, &1, £2, £3), x2 = x3(&9, &1, &2, &3)
and x? = x3(&°, &, &2, £3) are calculated for constant values of &1, &2, &3 then, as £° varies, the point
(x!, x%,x?) traces out a particle path. The quantities (£, £2, %) are the Lagrangian co-ordinates of a
particle.

On substituting v' = v2 = v = 0 in the continuity equation we obtain

op) _ o
0 =0 (6.3)

The momentum equations (x = 1, 2, 3) are:

l[a:o (Jpo,) +5§7’(J(f(l’+§“” Bope? (vuct o) )ﬂ

1 8goo , 1 agsﬁ 2 8 we 98 (.
2p o + 2 0 (p+§ﬂA) g —ug—g (Ly,w+vw,y) (6.4)
where, in this case,
1 0J
A=Fw 6.5)
- 6001 6g08 agOzx agaa
Uae = aéa ( 66“ Ry 668 +6f° (6~6)
Vs = Goq« 6.7)

The energy equation is

oT dgp 1 @ B oT
pC"afo D+ 6&0 Ja§a<k‘] 66”) (6.8)
where
d = _;_,ugas gﬂv Cay eeﬁ_% u A2 (6.9)
and
Cuy = Uyt Uy (6.10)

Equations (6.3), (6.4) and (6.8) are the Lagrangian equations of motion of a viscous, heat conducting,
compressible fluid.

15






If x1, X2, X3, go1, Joz» o3, p and T are known on a surface £° = constant then the derivatives of these
quantities with respect to £° can be evaluated on the surface £° = constant in the following way. Equation
(6.14) can be used to eliminate p from equation (6.8):

aT dp 1 0 0T
pc,,a—é()——q)+RTa£0+J aéa(k.]g aéﬂ) (6.15)

Since x', x%, x>, go1, Jo2, Jo3 p and T are known on £° = constant functions of these quantities and
their derivatives with respect to &, €2 and &* can be evaluated at points on £° = constant. Hence the
transformation elements 3 (, § = 1, 2, 3) may be evaluated on £° = constant. Then the equations

st +2 24363 = 4o (6.16)
th s+ 241383 = goa 6.17)
B+ B+ 8 = gos 6.18)

can be solved simultaneously to obtain

ox!

Ox?
t3 = 7 (6.20)
and
ox3
B =55 (6.21)

Equation (6.3) states that Jp is independent of £° so, in view of equation (6.7), eqliations (6.4) yield values
for

9901 9902 0903
360 80" and 280 "

All the coefficients and the remaining partial derivatives in equation (6.4) can be evaluated at points on
£° = constant. Pressure is given in terms of p and T by equation (6.14). Now

gd11 912 Y913
J? = g21 922 923 (6.22)

"g31 932 Y33

and differentiating this expression with respect to £° leads to an equation which can be solved to yield

o7 | ’
_6.?0 at points on £° = constant. This value for g—é{, can be substituted in equation (6.3) to obtain ggﬁ.

The quantity g—;; follows from equation (6.15).

17



This procedure could form the basis of a simple numerical scheme for solving an initial value problem
in which the quantities x', x%, x3, go1, 902, go3, p and T are given on a surface £ = constant, and the
equations of motion are to be integrated to obtain the values of these quantities for all values of £° greater
than this constant. Usually, however, the values of the cartesian velocity components t}, 12, t3 would be
given on the initial surface rather than g4, go, and g,3—the co-variant velocity components. The basic

0x* 0gq, op oT

procedure described for finding partial derivatives of —— PRy JJora=1,23 = 560 and — 3 50 can still be
used even in this case because the quantities go,, & = 1, 2, 3, are easily obtained in terms of t§, t2, 3 and the
partial derivatives of x*, x* and x* with respect to £, 2 and &* from equations (6.16) to (6.18).

It should be noted that complications arise except in cases such that neighbouring particles at time
t = 0 remain neighbouring particles for all time—in such cases a uniform mesh of points set up at time
t = 0 is not subsequently severely distorted. If an initial mesh is distorted by large amounts the finite
difference equations constructed from the equations described here, with such an initial mesh as basis,
are not valid approximations to the Lagrangian equations of motion for all time—they are valid only
whilst the distortion of the initial mesh is small. In such cases it would be necessary either to create new
Lagrangian meshes at suitable intervals of time or to rearrange the calculation so that in order to predict
the motion of a given particle only conditions at neighbouring particles are used.

7. Equations of Motion Referred to Rotating Co-ordinates.
We shall suppose that x!, x, x* are cartesian co-ordinates and that &', &2, &3 are cartesian co-ordinates

in a system rotating with angular velocity Q about the x*-axis of the x-system. It follows that
xO — ‘50
= flcoos QE0—E25in Q E°

= £ sin Q 0+ E2 cos Q £°

X3 = &3
Hence
=1
th=—0¢&sinQE—Q 2 cos Q &°
12 =08 cosQE—QE2sin Q EO
t3=0
t9=0
t! = cosQ¢&°
th = —sinQ &0
ti=0
9=0
13 = sinQ &°
13 = cos Q¢&°
=0
B=t3=13=0
and =1

18



If follows that

and

_ 2<1_92((£1)2+(62)2)>
Joo = —¢C 2

gor = —Q¢&*
Jo2 = Qe
goz =0

3% =gz =9g33=1

gi2=g13=g23=0.

. . . . . agt . .
Since £1, £2 and &° are co-ordinates in a cartesian system it follows that v# = ;l%ﬁ is the velocity along

the &# axis. In the following analysis we shall suppose that u = 0. The continuity and momentum equations
are:

a(Jp)
v, ov dp 1 Og 6g
B 1___ 2 £l 1 01 02
pa€0+pu 2% £1+ p 20 ¢ +pv —_5él+p F
p 2 £1
a£1+pQ Eltpv? Q (1.2)
0 ov op 1 0 0
p——azz+pv 652_ ————g+ p-2Q* 4 pot a‘qul+p vz—agg; (7.3)
ov; 5003 _ dp (7.4)

Pop TP eE = TaE
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Now

— 1
Uy = go1+gu?
V; = goat 2
2 = fgo21g22?
and
U3 = U3.

Therefore equations (7.1) to (7.4) become

) 0

ag°+a£’* (o) =0 7
a_"l__l_ PLCRNY 2N Q2 E 42012 Q 76

paéo pvaéﬂ_ aél P pv (')

aw? ov? op

B — 2 £2 1
p6€0+pv PI aézﬂ)Q E-200"Q 7.7
o’ ov’ op
8 = ——
pa€0+pv Y P (7.8)

Equations (7.6) to (7.8) should be compared with the following equations for motion in a rotating co-
ordinate frame:

p;—é‘; = —2p(w X v)—p{w X & x r)—Vp 7.9

where v = (v, v?,0%)
o = (0,0,Q)
and r=(¢,&4,8).

When v, @ and r take the above form equations (7.9) and (7.6) to (7.8) are identical.

8. Concluding Remarks.

The equations of motion of a viscous, compressible, heat conducting gas in a general co-ordinate
system have been derived. An obvious possible application of the theory is to unsteady flow problems in
which one or more boundary conditions have to be satisfied on an arbitrary surface. The analysis presented
here can be used to ensure that this surface is a co-ordinate surface. This remark applies even if the shape
of the surface is unknown in the first place (as in the case of a free vortex sheet) and depends upon the
solution of the governing partial differential equations.
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Lk, I,m
o By, &w
(x')

(")

(&)

ds

LIST OF SYMBOLS

Indices which take values 0, 1, 2, 3

Indices which take values 1, 2, 3

Point in x-space, x° represents time

Point in #-space, n° represents time

Point in £-space, £° represents time
Measures separation of events in space time

Speed of light

A 4 x 4 matrix

Inverse matrix to &
Metric tensor in x-space
Metric tensor in #-space
Metric tensor in &-space
or

o&l

i

on’

Tensors associated with the tensors (ay), (y;) and (g;,) respectively

a(xt, x2, x3)
&, &2, &%)

Contravariant vector in &-space

|7 =

Co-variant vector in ¢-space associated with (/) v; = g;; v/

Christoffel symbol of the 2nd kind
Contravariant vector in x-space
Co-variant vector in x-space, u, = u*
Velocity magnitude

Density

Coefficient of viscosity

Dilation

Thermal conductivity

Rate of strain tensor
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F@,8, 8,8
Q

LIST OF SYMBOLS—continued

Unity when # = «, zero when f + o
Temperature

Universal gas constant

Specific heat at constant volume
Specific heat at constant pressure
Dissipation function

Pressure

Stress tensors

1
0+0 (C_)
A scalar function of &°, £, €2 and &3

Angular velocity
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