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Summary. 

The equations of motion of a viscous, compressible, heat conducting fluid are formulated in general 
co-ordinates (4 °-, 4 ~, 4 2, 4 a) where 4 ° represents time and 4 ~, 4 2, 4 a are arbitrary functions of time and the 
space co-ordinates in some fixed system. A tensor form for the equations of motion in a fixed cartesian 
system is derived and the methods of tensor analysis are used to obtain the appropriate representation of 
the equations of motion in a general co-ordinate system. Two examples are considered to show how the 
analysis presented may be used to obtain equations of motion appropriate to each case. 
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1. In troduct ion.  

In this Report the equations of motion of a viscous, compressible, heat conducting fluid are formulated 
in general co-ordinates (~0, 41, 32, ~3), where, if x 1, x z, x 3 are cartesian co-ordinates and x ° represents 
time then, 

4 0 ~ X O 

4 ~ = 4~(X 0,x 1,x 2,x 3) 
(1.1) 

where the functions 4"(x °, x 1, X 2, X3), for ~ = 1, 2, 3, are arbitrary functions ofx  °, X 1, X 2 and X 3. 
McVittie 1 has considered the problem of formulating the equations of motion of a fluid in general 

co-ordinates like those defined by equation (1.1). Since he was interested in meteorological phenomena he 
included heat conduction effects but neglected viscosity. More recent contributions to the problem of 
obtaining suitable tensor representations of expressions containing time and space derivatives are papers 
by Prager 2, Sedov 3, and Koppe and Zimmerman 4. Here we shall use the method developed by McVittie ~. 

Our interest in this problem is in the possibility of using a general formulation of the equations of 
motion to improve methods of obtaining numerical solutions of certain problems. The notion of working 
with a general representation of the equations of motion has been found useful in obtaining numerical 
solutions of a number of steady flow problems s'6'7's and it is to be expected that similar applications of 
the general form of the unsteady flow equations will be useful. 

The problem of deriving equations of motion with 4 °, 41, 42 and 43 as independent variables is not 
trivial because the relations 

4 a = 4°¢(X O,x I ,X  2,X 3) = 1,2,3 

will depend upon time (x °) in general. Then the functions 4 ~ = 4~(x °, X 1, X 2, X 3) represent surfaces moving 
in space. Fluid particles may overtake or be overtaken by these surfaces. In these circumstances, it is 
clear that the problem of expressing the laws of conservation of mass momentum and energy in terms of 
the co-ordinates 41, 4 z, 4 3 and time (4 °) cannot be solved simply by following the procedure used when 
41, 4 2, 4 3 = constant are surfaces fixed in space--that is, the equations cannot be formulated easily by 
considering forces acting on the fluid in an elementary region of space and equating these forces to the rate 
of change of momentum of the fluid in the elementary region. 

The representation of systems of partial differential equations in different co-ordinate spaces is the 
concern of tensor analysis. If a tensor representation of the equations of motion of a viscous, heat con- 
ducting, compressible fluid can be found then the problem is solved. A relatively simple tensor represent- 

ation of the equations of motion is available. This representation is obtained bY adding terms of 0 ( ~ )  

to the equations of motion in a fixed cartesian space. The momentum equations and the continuity 
equation are combined in a single tensor equation. The energy equation yields a single scalar equation. 
Elementary tensor analysis is used to obtain the representation of these equations in 4-space and the 
limiting form of the equations in 4-space as c ~ oo represent the equations of motion of a viscous, com- 
pressible, heat conducting gas in general co-ordinates. These processes are described in detail in sections 
3, 4 and 5. In sections 6 and 7 two examples are given to show how the analysis presented in this Report can 
be used to derive appropriate equations of motion in special cases. Section 6 contains a formulation of the 
Lagrangian equations of motion of a viscous fluid and a simple numerical scheme for integrating these 
equations is proposed. In 7 the equations of motion of an inviscid fluid referred to a rotating co-ordinate 
system are derived as a special ca3c of the general theory. 

2. M e t r i c  and Assoc ia ted  Tensors .  

We shall define three co-ordinate systems: an x-system, an ~/-system and a 4-system. We shall regard 
x 1, x 2, x 3 as space co-ordinates in a cartesian system and ~/1, r/2, ~/3 as space co-ordinates in some orth- 



ogonal system which is fixed relative to x-space. For  time we shall write x °, r/° or 4 ° depending on the 
space we are working in. We shall require that all transformations leave invariant the space time metric 

- (ds)  2 = ( d x l )  z + ( d x 2 )  2 + ( d x S )  2 - c 2 ( d x ° )  2. (2.2) 

We shall consider transformations of the type 

4 0 = X 0 "1 

4 e = 4~(X O,x 1,x 2,X 3) 
(2.2) 

and we shall suppose that 

t/° = x° } (2.3) 
and r/~ = t/=( xl, x 2, x a) 

are given functions such that the surfaces ql = constant,  ~/2 = constant, ~/a = constant are fixed, mutually 
orthogonal, families of surfaces in x-spaceL It follows that 4 and ,/~o-ordinates are related by equations 
of the form 

~ 0 ~ 0  t 
• ( 2 . 4 )  

Equations (2.4) are introduced because in some appl~ations of the theory it is useful to consider trans- 
formations between 11- and 4-space rather than transformations between x- and 4-spac e. Now if 

~ x  i 
i t j  = ~ - j  

and 

O¢ 

a transformation matrix ~- and its inverse ~ - -  1 can be defined :--  

1 t~ t~ t~ t 
o tl 

g = (t}) = (2.5) 
0 t~ t~ t~ 

0 t~ t~ t~ 

tGreek  indices take values 1, 2, 3. 
Roman indices take values 0, 1, 2, 3. 



, = (t 7) = 

i l t~' t~ z t~ ~ 
*3 0 t] 1 t ?  t ,  

0 t~' t? t~ 3 

0 t;  1 t ;  2 t ;  3 

(2.6) 

In general the transformation elements will be finite except, perhaps, at isolated points or along certain 
curves. 

The requirement that - ( d s )  2 be invariant leads us to define the following metric tensor which has the 
form 

(aik) 

=c 2 0 0 

0 1 0 r 

0 O. 1 O~  

/ 0 0 0 1 

(2.7) 

in x-space, the form 

(Yik) = 

f Yoo 0 0 0 k 

0 711 0 0 

0 0 Y22 0 

0 0 0 ya3 / . 

(2.8) 

in q-space, and the form 

(gik) ~-- 

t goo go, 902 903 t 
g,o 911 912 9,3 

920 g21 gz2 g23 

930 031 g32 933 

(2.9) 

in i-space. 
Now 70o = - c  2 and 

lax,)2 (0x2)2 (0 3)2 

900 = - c2 (1  (t~)2+(t~)2+(t~)2)c2 

(2.10) 

(2.11) 

g ,o  = 9o~ = t ~ t ~ + t ~ t ~ + t ~ t ~  (2.12) 



1 2 3 3 g,~ = O~  = t~ tp + t~ t~ + t~ t~ . (2.13) 

Alternatively equations (2.11) to (2.13) may be expressed in the form: 

g00 = - - c 2 t l  ~ll(~l)2"~22('g2)2"~?33('~g)2)C2 (2.14) 

1 1 3 3 g~0 = 0o~ = ? ~  % "c~ +722 T~ ~2+733 % z~ (2.15) 

~v~.+Y22 2 2 3 (2.16) 

where 

= 01/~ 

Associated with the tensors aik , 7ik, and gik are the tensors a ik, ?ik, and gik defined so that a u a jk, ?u ?J~, 
and gu gik are all equal to 6~. 

It follows that 

1 

0 1 0 0 
( d  k) = (2.17) 

0 0 1 0 

0 0 0 1 

and 

(gi~) = 

I 
C2 o o o 

i 
0 0 'Y11 

1 
0 0 

722 
1 

0 0 
~33 

1 go1 o02 go3! 
C2 

I 910 911 ga2 g13 
J 

g20 g21 g22 g23 

930 g31 g32 033 . 

(2.18) 

(2.19) 



where 

} g~O go~ _ to ~ 
C 2 

g~a g/~ tt ta -}-t2 t2 q-t3 t3 • 

Alternatively equations (2.20) can be expressed in the form 

where z~ i - - -  
&fl" 

g~o = go~ = Zo 
c 2 

Y•2 , ~ 1 ,~ , ~ 
= l~(z*~t*l~)+ ( z*]z2" )+- - ( z3 -z3  ~) gaff = 9ta  ~11 ~33 

The determinant of the transformation matrix ~- defined in equation (2.5) is 

O(x 1, x 2, x ~) 
J -  

O(~ 1, U,  4 3 ) 

and this determinant can be expressed in the form 

0(r/i, r/2, ~/3) 
Y = N/711 ~22'~33 0(~i ' ~2,~3)- 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

In the following Section we shall introduce a contravariant first order tensor (v i) such that v ° = 1. 

Neglecting terms of 0 ( ; )  compared with those of 0(1) it follows that the associated co-variant tensor 

is ( - c  2, vl, v2, v3) where 

v~ = 9,m vm- (2.24) 

The co-variant derivative of the vector (vj) is 

OVj k Fjm vk 

~3Vj l gk~ ~ _ ~  Ogtj Oaj,, 
-- 0~" 2 ( g 0~" a~' ) vk 

&Jj 1 ( ~  09tj 39j,,)  
--~m ~d -~0~" 0~ z (2.25) 

The velocity magnitude is (ui = cartesian velocity components) 

q2 ~. bl i bli _1_ C2 . (2.26) 



In i-space this equation becomes 

q2  = Vi Vi -t- C 2 

= (t~) ~ + (to~) ~ + (to~) ~ + 2go~ v ~ + g ~  ~ v~.  (2.27) 

3. Equations of Motion of a Viscous Compressible Fluid in x-Space.. 
w e  shall suppose that the fluid is an ideal gas so that the equations of motion can be represented in 

the form : 

where 

and 

Op 
t-~--~(pu ~) = 0 (3.1) Ox o o x  ~ 

3xo(PU~)+ (pu~u~ +(p+-~l.tA)6~-I.t6~ e~) = 0 (3.2) 

dT 69 dp 0 f OT ) pC, p -  +~o+~kg-~ (3.3) 

p = p R T ,  

U # = U#, 

1 3 = ~  

o p + ~  

6 ~ = {  1 f i = ~  

o ~+~ 

3u~ ~u t (3.4) ear = ff~x~ 4 0x ~ 

au/7 

A = Ox--- ? (3.5) 

1 2 2 0 = 5 # 6,, fiat ear e ,p -  5 ~ A . 

If we define a contravariant vector 

(d) = (i ,  u 1, u 2, u 3) 

(3.6) 



and neglect quantities of 0(1/¢ 2) compared with quantities of 0(1) then equations (3.1) and (3.2) can be 
represented in the form 

where 

because 

c3Tk -- 0 (3.7) 
~X k 

k 2 k am k ( ~3u~ OUm "~ 
T~ = pu ,  u + ( p + 5 # A ) a l - / x  ~-~+-~-~-rxi ) (3.8) 

o 2 mO/' dUo (gUm 
T o = puo  u + ( p + ~ # A ) - / . t a  ~k~--~x~+~--6xOJ 

m ~ OUm 
TPo = p Uo UP- lx a ~ ~x o 

= - - c 2 ( p u # - t - O ( - ~ ) )  

(&,, OUm) 
T ° = p u~, u ° + # a "° ~x~+-~x~ 

(') = pu~+O j 

m~ / ~U~ OU,.'~ 

2 . ~- / Ou, due "~ 
= p u ,  u t J + ( p + - z l x A ) 6 ~ - # 6  ~[~:S..~+~-7~ • 

\ OX OX g 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

On substituting in equation (3.7) the expression for T k defined in equations (3.9) to (3.12) we recover 
equations (3.1) and (3.2) to within terms of 0(1/c 2) which are to be neglected. The methods of tensor analysis 
can be used to generalize the tensor equations (3.7) to arbitrary systems of co-ordinates. This operation is 
carried out in Section 4. The treatment of the energy equation (3.3) is similar and is considered in detail 
in Section 5. 

4. Equations o f  Motion Referred to Arbitrary Co-ordinate Systems. 

In a general system equation (3.7) becomes 

T k = 0 (4.1) i,k 



and equation (3.8) becomes 

where 

It is convenient to introduce here 

From equation (4.2) 

Now Vk= t~ u ~ and 

k " 2 k mk 
T~ = pvlv + ( p + - ~ # A ) g i - g g  (Vi,m-~Om,i) (4.2) 

1 3 
A = -y - ~  (Jr'). (4.3) 

TJk = gij T~. 

T~k = PVJ vk + (P + 3 # A) gjk_ pgmk O~j (V~,m + Vz,i). 

Vk = Okz vm, therefore, if (u i) is defined as in Section 3 

(4.4) 

then v ° =  1 and 
3Vo 30oo 

Vo = -cZ(1 +0(1/cZ)). It should be noted that - ~  and ~ are both 0(1). The quantity goo is defined in 

equation (2.11). 

The generalized form of the energy equation, considered in detail in Section 5, is 

= (I) + ~ - 6 + y  k J g " - ~  . 

where 

and 

(4.5) 

dT 3T ~ aT 
d~ o = ~-~+ v" ~-~ (4.6) 

1 g~ 2 A2 • = -~I~ gP~e,~e~p-~tt (4.7) 

1 / O J  O ) 
a = j (  . 

(4.8) 

(4.9) 

If quantities of 0(1/c 2) in equations (4.1) and (4.5) are neglected we obtain the equations that govern the 
motion of a viscous compressible gas in f-space, where x and q co-ordinates are defined relative to 
co-ordinates by equations of the form (2.2) and (2.3) respectively. 

9 



Now 

T° = pvov°+ ( p + ] l ~ A  ) -pO"°(Vo.m+Vm.o) 

=-pcZ(l+O(-~) ' )  

T o = p v, v ° - # 9 0" (v~.., + I)m,a) 

T~o = p Vo v ~ - # O mp (1)O, m -t- Din,O) 

T~ = pv,  vP+ p+~pA 6~-1~9"t~(v,.,,+vm.~) 

c~v, 1 z f Ogz, Ogz~ Og~, ) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Similarly 

(2 )  
T OO = p v ° v ° +  p+-~pA g°°-yg"°g~°(vi,.,+v,..i ) 

T ~ = T p~ = pv~'vl~+ p+-~pA g~P-ktg"~giP(vi.m+v,,,,i) 

= P v ~ v~ + ( ,2 

(4.14) 

(4.15) 

(4.16) 

10 



Now equation (4.1) may be expanded to obtain: 

I ~ T~) ) - £',k T k T k _~(_~(j o a i,k = Ti ) + ~~ (J 

1( ~ 0 ~ ) 1  im { Oaim_ Ogkm Ogik ~ T k j ~-~(J r~) 

= .~(_~(j\ TO, 0 1 
0¢' a¢ ~) 

1 (  0 0 0 ) lOgmkTmk (4.17) = ff -~6(J T,)+-~(J T~) 2 ~i • 

On putting i = 0 in equation (4.17), and substituting appropriate expressions for T °, TPo, T'~k---defined in 
equations (4.10), (4.12) and (4.14) to (4.16), and if terms of 0(1/c 2) are negligible compared with terms of 
0(1), then we obtain 

a 0 
oCo (J p) + ~  (J p vP) = o, (4.18) 

the generalized equation of continuity. 

The remaining equations are more complicated. For the case i = a, c¢ = 1, 2, 3, we obta!n from equation 
(4.17) 

1( 0 o t~ ) 1 agmk Tmk = O. ~ '~6 ( s r~ ) +-~  ( J T ~ ) 2 0 ¢ ~ 

Taking the terms in this equation singly we see that 

+-~,(JT~') ) 

= ~ L ~ 6  Jpv,)  + Sl(pv, va+(p+5~A)6~-t~g~(v,,,+v~,,) 

and, similarly, 

1 1 63gmkTmk_ ~ o T o o + ~  o Iag~p 
2 0~ ~ 2 T 0+~ ~ T ~o 

i Ogoo p~gop I ~ g ~ (  ~ - 2 -~ ~(v~co+v~)) 
= -2P--~-d-+PV -~ -~ -+~  - ~ p v  v"+(p+5#A)gO-~ug~"g, ,  , , 

/ 

11 



Therefore, neglecting terms of 0(1/c 2) the generalized momentum equations are: 

1 ~ ve.C~go, 1 Og~( vi~+(p+2#A)g"-,ug<"~g:" (v.e.,,,+v<<>.~,)) 0 (4.19) - i V  - P  ~ 2 ~¢= pv: = 

Equations (4.5), (4.18) and the three equations (4.19) together with the equation of state p = p R T 
represent the equations of motion of an ideal, viscous, compressible gas referred to an arbitrary system of 
moving co-ordinates. 

5. The Energy Equation. 
In x-space the energy equation can be expressed in the form of equation (3.3) and we shall show that to 

within terms of 0(1/c z) equation (3.3) is equal to the following equation: 

where 

and 

lOT Op 0 [" ~.k OT'~ 
p Cp u - ~  = @, + ui-~-~+-ff-~ t a ' -ff-~xj / (5.1) 

1 2 
01 = ~ # d k a m" ekm ei,---j tx A 2 (5.2) 

Oui OUk (5.3) 
eik= -~-~xk-~ OX i 

A = Ox-- ~ . (5.4) 

The four dimensional vector (u ~) is defined so that u ° = 1. The remaining three components are the 
contravariant velocity components in x-space. 

Now 

i 3 T  o aT  ~ 8T 
= U ~ x o + U  

dT 
dx o 

Op dp 
u ~ = d x  o . 

and similarly 

12 



Further  

0 / ,j o r )  o / oj or'~+O_~_(a,~kOr" ] 
8x---~t a k~xj = ~xOt a k~xj ) ctx'\ ~xJ/l 

where 

a °j = 0 if j  + 0 

1 a oo = _ _ _  
c 2 

• f ' l  j = a  a~J : 

0 j:~o: 
hence 

~ ( ~ )  ~(~) (~) aUk~x J =~x ~ k~x ~ +0 i 

N o w  

1 i k  ' m n  2 2 01 =-~#a a ekmei,---~#A 

where 

¢~u i 

A = b--2x~. 

Because u ° = 1, and Ou° = O, it follows that  
Ox °. 

Ou ¢ 
A = - -  

Ox p 

whilst 

p a ekm ein = -~ fl (~P)' e.p e ~  + 0 

It follows that  

o~ o+o(~) 
where 

13 



The generalized form of (5.1) is 

where 

and 

OT . iOp. 1 0 ( c~r) so' k  

.OT dT 
v ' - ~  = d~ o 

1 ik mn 2 2 ~1 = ~l~# # ekmel.--~#A 

e k m  = 1)m, k "~ l)k, m • 

Neglecting quantities of 0(1/c 2) compared with quantities of 0(1), equation (5.5) becomes: 

where 

and 

1 = 2 A2 

1 /  OJ 0 "~ ) 

e ~  = V~,y-{-/)~,,a. 

(5.5) 

(5.6) 

6. Lagrangian Form of Equations of Motion. 
In this section the Langrangian equations of motion of a viscous, compressible, heat conducting fluid 

are derived from the general expression in Section 4, and, for an ideal gas, a simple minded scheme for the 
numerical solution of these equations is considered. 

Let F(~ °, ~1, 42, 43) be any scalar function of ~o, 41, 42 and 43. It follows that 

dF 3F 
t) i 

d4O - 04i 

aF aF 
= ~--~,, + v p (6.1) 

0~P" 

dF aF d~ ~ OF 
.d~O = ~6+  d~O , ~ .  

Now 

14 



Since these relations are true for all scalar functions F it follows that  

vt~ _- dC a 
dC o • (6.2) 

d~ a 
The surface C a = constant, fl = 1, 2, 3, is generated by curves which are particle paths if ~ = 0, 

i.e. i fv  a = 0. Thus i fv 1 = v 2 = v 3 = 0 and if the quantities x ~ = x~(~ °, C 1, C 2, C3), x 2 = x2(C °, C ~, C 2, C 3) 
and x 3 = x3(C °, ~1, C2, C3) are calculated for constant  values of ~1, C2, C3 then, as C ° varies, the point 
(x ~, x 2, x 3) traces out a particle path. The quantities (~ ,  C 2, ~3) are the Lagrangian co-ordinates of a 
particle. 

On substituting v ~ = v 2 = v 3 = 0 in the continuity equation we obtain 

0(JP) O. (6.3) 
0Co = 

The momentum equations (~ = 1, 2, 3) are: 

1 agoo 1 0 g ~ p ( ( p + ~ p A )  O"a-#g°"9 ,a (v,z,~,+vo,,,)) 
=  P-SU+  oC" \ (6.4) 

where, in this case, 

A = _ m 1 0 J  
j OCo (6.5) 

Ov, l l" Ogo, Ogo, Og~'~ 
v,,,~ = OC ~ 2 ~, - ~ - + - ~ - + ~ - 6  ) (6.6) 

v, = go, (6.7) 

The energy equation is 

a T = o  0p 1 + (  ~ac3T~ pCp  kJo (6.8) 

where 

1 ~ , ~ 2 2 
0 = ~ t t g  g"~'eo~,e"---j#A (6.9) 

and 

e~r = v~,~+vv,~. (6.10) 

Equations (6.3), (6.4) and (6.8) are the Lagrangian equations of motion of a viscous, heat conducting, 
compressible fluid. 

15 



It is instructive to consider the momentum equation for an inviscid fluid. When/~ = 0 equation (6.4) 
becomes 

1 [  8 0 ] 1 c')goo 1 8 g ~ # .  
-J -~6(JPg°~)+O-~ (Jp6~) - 2 P  8~ ~ 2 - ~ g ~  v = 0 "  (6.11) 

Now 

1 a 
8~o (Jp) = o J 

(~ // 12 22 

go, tg ' z 2+t3  3 = t~ + t o t~ t~ 

and 

1 89~#g~= 8 
~ ~-~ (log J) 

therefore (6.11) can be expressed in the form 

8go.. 8p 1 80oo p - ~ 6 - - t - - ~ - ~  p - - ~ -  = O 

i.e. 

i.e. 

at~ z 8t~ sSt3o'~ Op (6.12) 



I fx  1, x 2, x 3, go1,002, goa, P and T are known on a surface 4 ° = constant then the derivatives of these 
quantities with respect to G ° can be evaluated on the surface G ° = constant in the following way. Equation 
(6.14) can be used to eliminate p from equation (6.8): 

OT Op . 1 k J o t~_~ p C. - ~  = @ + R T - ~  -t- i (6.15) 

Since x 1, x 2, x 3, 0ol, 902, goa, P and T are known on G ° = constant functions of these quantities and 
their derivatives with respect to ~1, ~2 and ~3 can be evaluated at points on 4 ° = constant. Hence the 
transformation elements t~ (~, fl = 1, 2, 3) may be evaluated on G ° = constant. Then the equations 

t~ t~ + t~ t~ + t~ t~ = 0ol (6.16) 

1 1 2 t 2_F.tO 3 t 3 002 to t2 + to = (6.17) 

t~ 1 2 2 3 t3+to t s+ to  t a = 003 (6.18) 

can be solved simultaneously to obtain 

t ~ = 0 ~  o (6.19) 

Ox 2 

t~ = 0~o (6.20) 

and 

Ox 3 

to 3 = 040 . (6.21) 

Equation (6.3) states that Jp is independent of G ° so, in view of equation (6.7), equations (6.4) yield values 
for 

6001 6qg02 a n d  ag°3 
04o ,  a g o ,  ago" 

All the coefficients and the remaining partial derivatives in equation (6.4) can be evaluated at points on 
G ° = constant. Pressure is given in terms of p and T by equation (6.14). Now 

gl l  012 

j2  = g21 #22 

#31 ~32 

g13 

g23 

g33 

(6.22) 

and differentiating this expression with respect to G ° leads to an equation which can be solved to yield 

aJ  points on 4 ° = g J  can ~ equation 0p at constant. This value for ~-6 be substituted in (6.3) to obtain 
aG o 

a T  
The quantity ~ follows from equation (6.15). 

17 



This procedure could form the basis of a simple numerical scheme for solving an initial value problem 
in which the quantities x 1, x 2, x a, 901,002, 003, P and T are given on a surface C ° = constant, and the 
equations of motion are to be integrated to obtain the values of these quantities for all values of ~0 greater 
than this constant. Usually, however, the values of the cartesian velocity components t~, 2 3 to, to would be 
given on the initial surface rather than go1,902 and 903--the co-variant velocity components. The basic 

f Ox ~ Ogo~ ap OT procedure described for finding partial derivatives o ~ 6 ,  0C o , for ~ = 1, 2, 3, ~-~ and ~ 6  can still be 

used even in this case because the quantities g0,, • = 1, 2, 3, are easily obtained in terms of to ~, t~, to 3 and the 
partial derivatives o fx  1, x 2 and x 3 with respect to C 1, C 2 and C 3 from equations (6.16) to (6.18). 

It should be noted that complications arise except in cases such that neighbouring particles at time 
t -- 0 remain neighbouring particles for all t ime--in such cases a uniform mesh of points set up at time 
t -- 0 is not subsequently severely distorted. If an initial mesh is distorted by large amounts the finite 
difference equations constructed from the equations described here, with such an initial mesh as basis, 
are not valid approximations to the Lagrangian equations of motion for all t ime--they are valid only 
whilst the distortion of the initial mesh is small. In such cases it would be necessary either to create new 
Lagrangian meshes at suitable intervals of time or to rearrange the calculation so that in order to predict 
the motion of a given particle only conditions at neighbouring particles are used. 

7. Equations of Motion Referred to Rotating Co-ordinates. 

We shall suppose that x 1, x 2, x 3 are cartesian co-ordinates and that ~1, ~2, 43 are cartesian co-ordinates 
in a system rotating with angular velocity f] about the x3-axis of the x-system. It follows that 

X 0 ~_~ ~0 

x 1 = C 1 cos fl ~o_ C2 sin fl  ~0 

x 2 = ~ l s i n ~ O + ~ Z c o s ~ C O  

Hence 

and 

X 3 = ~ 3 .  

t o =  1 

t~ = - f ~  ~1 sin f~ ~o _f~ ~2 cos f~ ~o 

t~ = ~ ~1 cos g2 ~o_f~ #2 sin f~ ~o 

to  = o 

t o = o 

t~ = cos g2 ~o 

t I = - sin ~ ~o 

t~ = 0 

t o - -  0 

t21 = sin g2 ~o 

= c o s  

t 2 = 0 

t o = = = 0 

t~= 1. 
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If follows that 

J = 

1 to 1 to 2 0 

0 t~ t~ 0 

0 t~ t~ 0 

0 0 0 1 

1 

and 

i..)2((41)2..}.(42)2)) 
000 = - -C  2 1 ~-~ 

go1 = _~ ' )  ~2 

002 = ~ ~1 

go3 = 0 

g l l  ~'~ ~22 = 033 = 1 

012 = 013 = 023 = O.  

Since 41, 42 and ~3 are co-ordinates in a cartesian system it follows that v a d4a =d~-6 is the velocity along 

the ~a axis. In the following analysis we shall suppose that/x = 0. The continuity and momentum equations 
a r e  : 

1 (O(Jp) 0 . .  ) 
= o 

P - ~ 6 + P V " - ~  - -  ~-~ ~"~P'2E~24t+P 

(7.1) 

_ Op ~ _ p ~ 2 ~ 1 + p v 2 ~  (7.2) 

2 0 g 0 2  (7.3) OV 2 . t~V 2 Op 4_~ p . 2f12 ~2 + p Vl + p v 0~2 
- 

&Ja ° Or3 Op (7.4) 
P~- (6+PVP-~  = 043" 
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N o w  

and 

1)1 = 9o1+011 1)1 

v2 = goz +922 1)2 

i) 3 ~ i )3 .  

Therefore equations (7.1) to (7.4) become 

8p 8 
q--~ (p v~) = o 84 o 

av 1 °By 1 oU+po" 
8v z ° 8v 2 

81) 3 . 8 0 3  

(7.5) 

8p ~'~2 41 +2p  I) 2 ~'~ (7.6) 
841 ~-P 

ap f~2 42 _ 2p v x f) 
0~2 ~-P 

~p 

a4 3 

(7.7) 

(7.8) 

Equations (7.6) to (7.8) should be compared with the following equations for motion in a rotating co- 
ordinate frame : 

d v -2p(oJ x v ) - p ( ¢ o  x a~ x r ) - V p  (7.9) P ~ 6  = 

where v = (v 1, v z, v 3) 

= (0, 0 ,  ~) 

and r = (41, 42, 43). 

When v, to and r take the above form equations (7.9) and (7.6) to (7.8) are identical. 

8. Concluding Remarks .  
The equations of motion of a viscous, compressible, heat conducting gas in a general co-ordinate 

system have been derived. An obvious possible application of the theory is to unsteady flow problems in 
which one or more boundary conditions have to be satisfied on an arbitrary surface. The analysis presented 
here can be used to ensure that this surface is a co-ordinate surface. This remark applies even if the shape 
of the surface is unknown in the first place (as in the case of a free vortex sheet) and depends upon the 
solution of the governing partial differential equations. 
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LIST OF SYMBOLS 

Cj, k , l , m  

o~, r, ~, e., co 

(x') 

(~) 

ds 

c 

(3x i 
t~. = - ~  

= (t~) 

.,~- ~ = (t?) 
(%) 

(~'ik) 

i zj 

(a% (rik), (gik) 

J 

(v i) 

F k. j m  

(U ~) 

(Ui) 

q 

P 

A 

k 

eta 

Indices which take values 0, 1, 2, 3 

Indices which take values 1, 2, 3 

Point in x-space, x ° represents time 

Point in q-space, qo represents time 

Point in i-space, 4 ° represents time 

Measures separation of events in space time 

Speed of light 

A 4 x 4 matrix 

Inverse matrix to ~- 

Metric tensor in x-space 

Metric tensor in q-space 

Metric tensor in i-space 

&fl 

Tensors associated with the tensors (aik), (Yik) and (gik) respectively 

~ ( x  1, x 2 , x 3) 
I ~ l  = ~(¢1, ¢5, ¢,) 

Contravariant vector in f-space 

Co-variant vector in i-space associated with (v i) vi = g~j v ~ 

Christoffel symbol of the 2nd kind 

Contravariant vector in x-space 

Co-variant vector in x-space, u~ = u ~ 

Velocity magnitude 

Density 

Coefficient of viscosity 

Dilation 

Thermal conductivity 

Rate of strain tensor 
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LIST OF SYMBOLS--continued 

T 

R 

Co 

Cp 

P 
T i j, Ti 

F(4o, 41, ¢2, 43) 

f~ 

Unity when fl = ~, zero when fl ~ c~ 

Temperature 

Universal gas constant 

Specific heat at constant volume 

Specific heat at constant pressure 

Dissipation function 

Pressure 

Stress tensors 

A scalar function of ¢0, 41, 42 and 43 

Angular velocity 
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