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Summary. 

Pressures have been measured on a wing in the form ofa rhombic cone at two cross-sections and along 
a single generator. The wing had an aspect ratio of one and a leading-edge angle of 60 °. Measurements 
were made at M = 0.4, 0.6, 0.82, 0.9, 1.0 and 1.1, at angles of incidence up to 20 ° and at a Reynolds number 
of 6 million, based on model length. At the lowest Mach number the tests were repeated at higher Reynolds 
number. 

The measured pressure distributions are typical of flow with leading-edge vortices. Two different types 
of suction peaks were observed and associated, on indirect evidence, with the state of the boundary layer 
at secondary separation. Within each type, increasing Mach number reduced the magnitude of the peak 
suction, but had little effect on its spanwise location. At transonic and high subsonic speeds an increase 
in incidence above 8 ° changed the shape of the suction peak from the type associated with a turbulent 
secondary separation to that associated with a laminar one. 

Section 
1. 

LIST OF CONTENTS 

Introduction 

2. Experimental Details 

2.1. The model 

2.2. Range of investigation 

2.3. Transition fixing 

2.4. Incidence correction 

2.5. Blockage correction 

2.6. Reduction of pressure to coefficient form 

3. Results 

3.1. Earlier work on the effect of the state of the secondary boundary layer 

3.2. Variation of Reynolds number 

*Replaces R.A.E. Technical Report 68 171--A.R.C. 30 735 



LIST OF CONTENTS--cont inued  

Variation of incidence 

Conicality of the flow and the effect of roughness 

Variation with Mach number 

3.3. 

3.4. 

3.5. 

4. Conclusions 

List of Symbols 

References 

Appendix A 

Appendix B 

Appendix C 

The 'lifting pressure field' for a symmetrical slender body 

Blockage correction for solid walls at low speeds 

Calculation of velocity components from pressure coefficient 

Table 1 Summary of suction peak shape, Re = 2 x 106 

Table 2 Positions of static-pressure holes 

Illustrations 

Detachable Abstract Cards 

1. Introduction. 

It is well known (see KiJchemann ~, for example) that the peak suction on the upper surface of a slender 
wing under a leading-edge vortex is much lower at supersonic speeds that at low subsonic speeds, for the 
same incidence. At higher supersonic speeds the peak suction is still lower. It is also familiar (Squire and 
Capps 2, Squire 3) that both the linear part of the lift and the non-linear part of the lift, which is associated 
with the presence of leading-edge vortices, increase as the Mach number rises towards one and then fall 
off with further increase in Mach number. However, the variation with Mach number of the pressure 
distribution in the presence of leading-edge vortices at subsonic and transonic speeds has not previously 
been examined. 

Apart from its intrinsic interest, the transonic flow past a slender wing is relevant to any discussion of 
the attempts that have been made to calculate the flow with leading-edge separation, because many of 
these, including the currently most sophisticated (Smith4), make use of slender-body theory, and this 
theory is expected to be most accurate in its prediction of lifting effects at transonic speeds. Since there are 
significant differences between theory and observations made at low speeds, there is interest in whether 
these differences are reduced at transonic speeds or whether the deficiency lies in the vortex-sheet model 
rather than in the use of slender-body theory to calculate its properties. 

To provide some information on the development of the separated flow with Mach number, an existing 
model used by Britton 5 in the 8 ft × 8 ft supersonic tunnel at R.A.E. Bedford was tested in the 8 ft x 6 ft 
transonic tunnel at R.A.E. Farnborough. This was a delta wing of aspect ratio one. in the form of a cone 
of rhombic cross-section, the interior angle of the cross-section at the leading-edge being 60 ° (see Fig. 1). 
A comprehensive set of pressure measurements was made on a cross-section 33.6 per cent of the model 
length from the apex and along a generator at 59.7 per cent of the local semi-span from the centreline. The 
measurements at these positions raised additional questions which were lal~gely resolved by supplementary 



measurements on a cross-section at 60.1 per cent of the length from the apex, and by repeating a few critical 
cases with roughness bands to promote transition in the boundary layer flowing outboard under the 
vortex. 

It is possible to regard this boundary layer as originating at an attachment line on the upper surface of 
the wing, somewhat inboard of the vortex. From this line the boundary layer is swept outboard under the 
vortex, initially in a region of rapidly falling pressure ; then, passing beneath the vortex, it encounters a 
rising pressure and eventually separates. With a turbulent boundary layer this separation occurs closer 
to the leading edge than with a laminar layer. This behaviour is clearly shown in photographs of surface 
oil-flow by Hummel 6 and measurements of surface pressure by Gregory and Love ~. The suction peak 
associated with turbulent secondary separation is typically sharper, higher, and somewhat further 
outboard, than that measured when the boundary layer is still laminar at separation. (See, for instance, 
the results collected by Smith4.) There is also a substantial recompression between the vortex and the 
leading edge in the turbulent case. 

Suction peaks of both types were observed at the forward measuring station in the present experiments. 
The broad, inboard peak associated with laminar separation was found only at low incidence (a ~< 4 °) 
and when both the Mach number and the incidence were high; M ~> 0.82 and a ~> 12 °. In the supple- 
mentary tests, at high Mach number and incidence, no peaks of this kind were observed at the aft station. 
When the model was roughened with carborundum grains on the apex and along part of a generator 
between the attachment line and the suction peak, no peaks of the laminar type were observed at either 
cross-section at high Mach number and incidence. 

At subsonic speeds even the inviscid flow over a conical body is not conical, that is to say the velocity 
is not constant along rays through the apex. However, much of the deviation from conicality, particularly 
towards the apex of the body, arises from the displacement flow. If the pressures measured at zero incidence 
are subtracted from those measured at a given non-zero incidence, the 'lifting pressure field' which results 
is more nearly conical, although the loading must still fall to zero at the trailing edge. This procedure is 
discussed in the context of slender-body theory in Appendix A and shown to be meaningful, except for 
large incidences at transonic speeds. The present measurements show that, when the suction peak at the 
forward measuring station is of the turbulent type, substantially the same lifting pressure field is found 
at the forward and aft stations, and the lifting pressure is constant over the middle part of the body length 
along the generator on which measurements were made. When the Mach number and incidence were 
high, and transition was not artificially induced, the lifting pressure field was markedly non-conical. 

The interpretation of the variation of the magnitude and position of the suction peak with Mach 
number and incidence is complicated by the change in character of the peak. In general the peak suction 
for a given incidence falls with increasing Mach number, the values for 0.4 ~< M ~< 1.1 from the present 
tests joining more or less continuously to those of Britton 5 for M/> 1-3. The fall through the transonic 
range, 0.9 ~< 3I ~< 1.1, is very rapid at high incidence, but at :~ = 4 ° the variation is insignificant. Such a 
reduction in peak suction is not, of course, inconsistent with the observed increase in overall lift as the 
Mach number rises towards one. Not only is there some increase in lower surface pressure noticeable at 
the forward station, but the loading is carried progressively closer to the trailing edge as the Mach number 
rises subsonically. The changes in position of the suction peak with Mach number are very small, unless 
the peak changes character. Such changes as there are within each family of peaks are consistent with a 
slight inboard movement of the vortex as the Mach number rises. This is the direction of the change 
which has been noted by Gandet and Winter 8 between low speed and supersonic observations. The 
variation with incidence at each Mach number is similar to that familiar from low speed experiments, 
provided the character of the peak is unchanged. As the incidence increases, the peak intensifies, widens 
and moves inboard. 

The most surprising outcome of the experiment is in relation to the variation with incidence of the 
Reynolds number for transition in the boundary layer under the vortex. Although no direct observations 
of the boundary layer were made. the circumstantial evidence associating the observed types of suction 
peak with different states of the boundary layer is strong. If this is accepted, then the results show that at 
high subsonic and transonic Mach numbers an increase in incidence produces an increases in this tran- 
sition Reynolds number. This is the opposite trend to that observed at low subsonic speeds. 



It is possible to suggest how this might come about, though in the absence of observations of either the 
flow field or the boundary layer such an explanation must be tentative in the extreme. There is some 
evidence (see Gaudet and Winter 8) that, at a fixed angle of incidence, the leading-edge vortex moves 
closer to the plane of the wing as Mach number increases. This may well mean that the secondary boundary 
layer under the vortex is thinner and more strongly accelerated at the high Mach numbers, so that trans- 
ition is delayed to a higher Reynolds number. If the movement noted by Gandet and Winter between low 
speeds and supersonic speeds is already occurring at the subsonic and transonic speeds of the present 
tests, this would explain the rise in transition Reynolds number with Mach number at high incidence 
which is implied by the present measurements. 

2. Experimental Details. 
2.1. The Model. 

The model, shown in Figs. 1 and 2, was a delta wing of aspect ratio one in the form of conical body with 
a rhombic cross-section. The interior angle of the rhombus at the leading edge was 60 °. The model was 
33 inches long and 16.5 inches in span. 

Static-pressure holes were situated in three rows (see Fig. 1). One row lay along a generator of the 
conical body at 59"7 per cent of the semi-span from the centreline, on the port upper surface. The other 
two rows were at lengthwise stations of 33.6 and 60"1 per cent of the length from the apex on the upper and 
lower surfaces of the starboard side, respectively. The locations of the holes in the rows are given in Table 2. 

2.2. Range of Investigation. 
Pressure measurements were made in the R.A.E. 8 ft x 6 ft transonic wind tunnel, with the model 

supported from its base by a sting, as shown in Fig. 2. For  the main series of tests, before the aft station 
was instrumented, the incidence range was from - 4 ° by 2 ° to 8 ° and then by 4 ° to 20 ° at Mach numbers 
of 0.40, 0.60, 0.82, 0.90, 1.00 and 1.10. At the lowest Mach number, measurements were made at Reynolds 
numbers of 2, 4 and 6 million per foot ; at the higher Mach numbers measurements were confined to the 
lowest Reynolds number. Since the model was instrumented on one surface only at each of the measuring 
stations, pressure readings appropriate to the opposite surface were obtained by repeating each run with 
the model rolled through 180 °. The aft row of pressure holes was fitted for supplementary tests at e = 0 °, 
8 ° and 16 ° at particular Mach numbers. 

2.3. Transition Fixing. 
Some runs were repeated with the model surface roughened locally with carborundum particles. The 

grain size was 60-52, meaning that the particles passed through a sieve with 0.0110 inch holes, but were 
retained in a sieve with 0"0099 inch holes. The particles were applied uniformly over the first 5 per cent 
of the model length, except that the leading edges were kept clean. In addition, strips of a width equal to 
5 per cent of the local semi-span were applied between suitably chosen generators, starting from the 
roughened nose and stopping short of the spanwise rows of pressure holes. For  the measurements at an 
incidence of 8 ° (M = 0.40, 0.60 and 0.82), the strips lay between 67.5 and 72.5 per cent of the semi-span 
and stopped 0.5 inch short of the holes. At an incidence of 16 ° (M = 0"82 and 0"90), the strips lay between 
50 and 55 per cent of the semi-span and stopped 1 inch short of the forward holes and 2 inches short 
of the rearward holes. In each case, the position of the roughness strip was chosen to lie outboard of the 
main attachment line on the upper surface and inboard of the secondary separation line. 

2.4. Incidence Correction. 
No incidence correction has been applied. There are two possible sources of error : the deflection of the 

model and its support under load, and the interference of the tunnel walls. 
The model and its support are massive, as can be seen in Fig. 2. At the lowest Mach number of the 

tests (M = 0.4), the Reynolds number was increased by a factor of 3, corresponding to threefold increase 
in the aerodynamic loading. As discussed in Section 3.2, there was no effect on the surface pressure 
coefficient which could be attributed to a change in the incidence of the model. The dynamic pressure 



in the remaining tests at constant Reynolds number was proportional to the Mach number and so in- 
creased rather less than threefold over the range 0-4 ~ M ~< 1.1. It is unlikely that significant deflection 
occurred. 

The calculation of wall interference for transonic flow in a tunnel with slotted walls is difficult. To 
estimate the order of the incidence correction, the method of Berndt 9 has been applied to calculate the 
correction which would be appropriate for incompressible flow in a tunnel with solid walls. According 
to this method, the incidence correction varies along the length of the model. At the forward station we 
find 

Aa = 0.0035 C L . 

For  a delta wing of unit aspect ratio at low speeds, Earnshaw and Lawford 1° find CL = 0'67 for the mean 
lift coefficient of their slightly cambered model at a = _ 20 °. With the formula above this gives Aa < 0.14 °, 
which can be ignored for the present investigation. As the Mach number increases towards unity the 
incidence correction for a solid-wall tunnel tends to infinity. On the other hand, for an ideal ratio of the 
areas of slot and solid wall, the interference in a slotted-wall tunnel can be zero. In these circumstances 
it did not appear worthwhile to try to correct for wall interference. 

2.5. Blockage Correction. 

No blockage correction has been applied, partly because of uncertainty about how it should be calcu- 
lated and partly because of indications that blockage effects do not affect the interpretation of the results. 

For  bluff-based slender models of this kind in rectangular, solid-wall tunnels in essentially incompress- 
ible flow, Kirkpatrick 11 has proposed a method of calculating the blockage correction directly from the 
model shape. His method is summarised in Appendix B. For  the present case we find proportional 
increases in streamwise velocity, AU/U, of 0.0047 at the forward measuring station and 0"0055 at the aft 
station. These are so small that we feel justified in neglecting blockage corrections at the lower Mach 
numbers. 

As an indication of the magnitude of the blockage effect in a slotted-wall tunnel at transonic speeds, 
we quote a result derived by Berndt 12. This assumes disturbances much smaller than those of the present 
tests, treats a body of revolution in a circular workirtg section and involves a number of approximations. 
The result is that to reproduce sonic speed in the working section the upstream Mach number is 1 - AMo, 
where 

Here g = 0-292 for an optimised slot geometry, z is the thickness ratio, I is the body length and R is the 
radius of the test section. Writing z2 _- B/zrl 2, where B is the base area of the model, and 7rR 2 = 2b 2, 
where b is the tunnel breadth and 2b the tunnel height, we find AM o ----- 0.02. This is certainly not negligible; 
but the applicability of Berndt's analysis to the present case is so uncertain and the conclusions drawn 
from the present tests depend so little on precise values of Mach number that no advantage is seen in 
applying the correction. 

2.6. Reduction of Pressure to Coefficient Form. 

The pressures, measured on self-balancing capsule manometers, were reduced to pressure coefficient 
form by the standard method used in the 8 ft x 6 ft transonic tunnel. 

Briefly, the tunnel speed and total pressure are monitored from pressures measured in the settling 
chamber and in the plenum chamber surrounding the slotted working section. Corrections to these 
pressures, to obtain those appropriate to an empty working section, are obtained from a tunnel calibration 
and fed into a computer programme which calculates pressure coefficients from the pressures measured 
on the model. 



3. Results. 
3.1. Earlier Work on the Effect of the State of the Secondary Boundary Layer. 

The air flowing outboard over the upper surface of the wing. beneath the vortex which springs from the 
leading edge, forms a boundary layer which we can call the secondary boundary layer. As this flow passes 
beneath the vortex, it encounters a rising pressure and the secondary boundary layer separates. The 
lateral position of this secondary separation line depends on whether the boundary layer is laminar or 
turbulent, as shown by Lawford 13. The influence of this on the position of the primary vortex, the pressure 
distribution on the wing and the overall lift were discussed by Smith 4. Briefly, measurements by Gregory 
and Love 7 show a change in the character of the main suction peak on the upper surface: when the 
secondary boundary layer is turbulent at separation the peak is higher, sharper and slightly further 
outboard than when the boundary layer remains laminar up to separation. 

At low speeds, on a wing of a particular aspect ratio, Hummel 6 showed that the Reynolds number 
based on the distance from the apex of the wing to the lengthwise station at which transition occurs in the 
secondary boundary layer depended only on incidence. The dependence which he found is shown in 
Fig. 3. Gregory and Love 7 found a much slower variation with incidence, the curve shown in Fig. 3 
representing the maximum variation found in their experiments. As would be expected, in a different 
tunnel the level of Reynolds number is different. Lemaire14 presented a large number of pressure measure- 
ments, again on a delta wing of aspect ratio one, at various Reynolds numbers. She did not relate the 
change in suction peak shape to a change in the state of the secondary boundary layer, but a classification 
of the peak shapes she observed on the qualitative basis mentioned above leads to the curve shown in 
Fig. 3. The resemblance between this curve and that of Hummel supports the belief that the shape of the 
suction peak can be a useful guide to the state of the secondary boundary layer. .. 

3.2. Variation of Reynolds Number. 
At the lowest Mach number of the tests (M -- 0.4) it was possible to increase the Reynolds number from 

the standard 2 million per foot to 4 and 6 million per foot. The distribution of pressure coefficient at the 
forward station at these three Reynolds numbers, with free transition, is shown in Figs. 4a and 4b for 8 ° 
and 16 ° incidence. The increase in Reynolds number is accompanied by an increase in tunnel pressure, so 
that, in addition to aerodynamic effects, it increases the manometer deflections, making the determination 
of Cp more accurate, and it may produce distortion of the model or its support. 

The first point to be made about Fig. 4 is that the shapes of the suction peaks are substantially un- 
affected by the change of Reynolds number. Since the secondary separation at the highest Reynolds 
number would undoubtedly by turbulent according to Fig. 3, we conclude that it is also turbulent at the 
lowest Reynolds number, at which the remainder of the measurements were made. A turbulent secondary 
separation at Reynolds numbers of 2 million and above, at incidences of 8 ° and above, is consistent with 
Fig. 3, if the turbulence level in the present tunnel is rather higher than that of the N.P.L. tunnel used 
by Gregory and Love 6. The suction peaks shown in Fig. 4, with substantial recompression between the 
position of minimum pressure and the leading edge, are typical of turbulent secondary separation. 

Considering now the small differences between the results for different Reynolds numbers, we find it 
convenient to examine separately the lower surface, the inboard part of the upper surface, the main 
suction peak and the region of secondary separation. On the lower surface there is apparently a small 
increase in pressure coefficient with Reynolds number, except close to the leading edge. When the pressure 
coefficient at zero incidence is subtracted to give the 'lifting pressure field' (see Appendix A), no systematic 
effect of Reynolds number remains, except that near the leading edge the lifting pressure coefficient goes 
down slightly as Reynolds number rises. Since the primary attachment line moves from the leading edge 
to the lower surface at positive incidence, the boundary layer near the leading edge may well be thinner 
at positive incidence than at zero incidence. This suggests that the effect of Reynolds number on the 
lower-surface pressures may be a boundary-layer effect, but no quantitative estimate is possible in the 
absence of transition observations. Most of the results are presented in terms of lifting pressures, where 
the variation with Reynolds number is much smaller. 

On the inboard part of the upper surface there is no systematic effect of Reynolds number noticeable 



in Fig. 4. Near the peak suction, the pressure gradients are large and it appears that small changes in the 
position of the vortex have given rise to quite marked differences in pressure coefficient between one 
Reynolds number and another. No importance is attached to these, since slight variations in vortex position, 
up to about 2 per cent semi-span, may arise from the non-conicality of the flow with free transition in the 
secondary boundary layer. In the region of secondary separation, the increase in Reynolds number seems 
to result in an increased suction. At the higher incidence, Fig. 4b, this produces a well-defined secondary 
peak. 

In view of the above discussion, it is concluded that there is no evidence of significant distortion of the 
model or its support at the highest Reynolds number of the tests. Fig. 4 shows that, as expected, the 
scatter between measurements at adjacent holes is reduced as the Reynolds number increases. The scatter 
is still significant at 6 million and disturbingly large at 2 million, since this is the Reynolds number of the 
remaining tests. However, at the higher Mach numbers the dynamic pressure is higher and smoother 
curves are obtained. Some further alleviation occurs when the lifting pressure is calculated, because some 
errors seem to be associated, more or less permanently, with particular static holes or the manometers to 
which they are connected. Similar 'bumps'  can be seen in the upper and lower surface distributions in 
Fig. 4 and they appear also in the zero incidence distributions (see Fig. 5). Indirect evidence suggesting 
the static holes are at fault comes from Fig. 7, where measurements at the newly-fitted holes at the aft 
station are smoother than those at the forward station. 

3.3. Variation of Incidence. 
In Fig. 5, the distribution of pressure coefficient across the semi-span is shown for ~ -- 0 °, 4 °, 8 °, 12 °, 16 ° 

and 20 ° at M -- 0.6, 0-82 and 1. In general terms, the development with incidence is that familiar from 
earlier tests at lower and higher Mach numbers. On the eentreline, increasing incidence causes roughly 
proportional increases in suction on the upper surface and pressure on the lower surface. Outboard on the 
upper surface the suction peak under the vortex grows in height and breadth and moves inboard, leaving 
an increasing area of roughly constant pressure between it and the leading edge. The lower surface 
pressures near the leading edge are reduced towards the low pressure on the upper surface. 

Looking more closely at the development of the suction peak with incidence we see changes in its char- 
acter. The results shown in Fig. 5 were obtained with free transition, at a Reynolds number based on the 
distance to the measuring station of 2 million, so examples of both laminar and turbulent secondary 
separation may be expected. In Fig. 5a, for M = 0-6, the peak at ~ -- 4 ° appears to correspond to a 
laminar separation, while those at the higher incidences are typical of turbulent separation. Transition 
between ~ = 4 ° and 8 ° at Re -- 2 x 106 is consistent with Fig. 3, which was constructed for Mach numbers 
less than 0-2. In Fig. 5b, for M = 0"82, it again appears that the peak at ~ = 4 ° correponds to a laminar 
separation and that at ct -- 8 ° to a turbulent one. However, at the higher incidences the position is not so 
clear. At ~ = 16 ° the shape of the suction peak is typical of laminar secondary separation, while those at 

= 12 ° and 20 ° may be intermediate in character, perhaps associated with a non-conical flow due to the 
proximity of the transition region. In Fig. 5c, for M -- 1, the peaks at ~ = 4 ° and 16 ° are again of the laminar 
type. The pressure recoveries between the vortex and the leading edge at the other incidences are smaller 
than at the lower Mach number, so that ~ = 12 ° and 20 ° also seem to be laminar, though ~ = 8 ° is possibly 
still turbulent. This discussion will be resumed later in relation to the other figures, but it already seems 
likely that the variation of Reynolds number for transition in the secondary boundary layer becomes 
more complex at the higher Mach numbers. 

The critical level of Cp, at which the speed becomes sonic, is shown in Fig. 5b. It is of no particular 
significance in this nearly conical flow; the more significant quantity, the Mach number of the component 
of velocity normal to the conical ray, can only be determined when the flow direction is known. This 
question is discussed towards the end of Section 3.5. 

At the two highest incidences in Figs. 5b and 5c there are three separate humps on the suction peak. 
It would be reasonable to associate these with the primary, secondary and tertiary vortices were it not 
that the smallest hump disappears when the zero incidence pressures are subtracted, as is apparent in 
Figs. 8a and 8b. 



3.4. Conicality of the Flow and the Effect of Roughness. 
The subsonic and transonic flow past a slender conical body is not conical, that is to say the velocity 

and pressure vary along rays through the apex of the body. However, if the displacement flow of the body 
is subtracted, the resulting flow field due to lift is more nearly conical. Appendix A shows that, in particular, 
the lifting pressure as calculated by slender body theory is conical. In practice the lifting pressure field 
will depart from conicality near the apex, where the disturbances are not small, and near the trailing edge, 
where the Kutta condition must be satisfied. 

In the present series of measurements two tests of the conicality of the lifting pressures are possible. 
We can examine the variation of lifting pressure along the ray at 60 per cent of the local semi-span and 
we can compare the measurements at the forward (34 per cent) and aft (60 per cent) stations for those 
cases for which the aft station was instrumented. The pressures along the ray are a particularly sensitive 
indication of the conicality of the flow when the suction peak lies over the ray. 

At 4 ° and 8 ° incidence the suction peak is outboard of the 60 per cent ray at all Mach numbers. There 
is no significant variation of lifting pressure between 10 and 90 per cent of the model length for e -- 4 ° 
and between 10 and 80 per cent for e -- 8 °. Further forward the lifting pressure on the upper surface is a 
little more negative, and further aft it increases towards zero if M < 1. For  M/>  1 there is ~ significant 
loss of lifting pressure towards the trailing edge up to 90 per cent of the model length at any incidence. 
At 12 ° incidence the 60 per cent ray lies on the inboard slope of the suction peak at all Mach numbers 
and, for M < 1, the lifting pressure on the upper surface rises towards zero along the ray from 5 to 90 
per cent of the length. The rise is steepest near the apex and the trailing edge, but amounts to about 
ACpL = 0"15 between 20 and 80 per cent of the length. These results are not reproduced in detail in the 
Report. 

Fig. 6a shows the distribution of lifting pressure coefficient at ~ = 16 ° along the 60 per cent ray on the 
upper surface. At this incidence the suction peak is over the ray and we have a sensitive test of the conicality 
of the flow. Ignoring what happens very close to the apex, we see that at each Mach number the lifting 
pressure becomes more negative as we go aft, and then the lifting pressure rises towards zero at the 
subsonic Mach numbers. The lengthwise stations at which the suction intensifies is further aft the higher 
the Mach number and the suction is maintained closer to the trailing edge the higher the subsonic Mach 
number. 

The relation between this behaviour and the state of the secondary boundary layer is brought out in 
Fig. 6b. One of the broken lines is taken from Fig. 6a for M = 0.82, the other is the corresponding curve 
for M = 0"9. These are similar over the forward part of the model but reach different levels over the aft 
part. They are to be compared with the full lines, which represent measurements made with the model 
roughened as described in 2.3. Very near the apex the measurements seem to have been adversely affected 
by the proximity of the roughness grains, but it is clear that the roughness has moved the station at which 
the suction intensifies forward by some 20 per cent of the model length. The close agreement between the 
free and fixed transition curves further aft is striking. It is concluded that the increase in intensity of the 
suction peak is due to transition in the secondary boundary layer. We note that, at the forward station 
at ~ = 16 °, the secondary separation is already turbulent at M = 0.4 and 0.6 on the smooth model, but 
it is still laminar at M = 0.82, 0.9 and 1.0, in agreement with the comments made in Section 3.3 on Figs. 
4 and 5. 

The other evidence on conicality comes from a comparison of results at the forward and aft measuring 
stations, and again the effect of roughness is relevant. In Fig. 7a the lifting pressure coefficient for ~ = 8 °, 
M = 0.6 is shown at the forward and aft stations, with and without roughness. Because the distributions 
are so similar, the curves have been separated by an interval ACpL = 0"025. There is no significant effect 
of roughness and the character of the suction peak is clearly the same at the forward and aft stations, 
confirming the previous association of this peak with a turbulent secondary separation. Two differences 
between the forward and aft stations can be seen: the suction peak under the secondary vortex is only 
evident at the forward station and the position of the minimum pressure under the primary vortex is 
about 2 per cent of the semi-span further outboard at the aft station. This last feature is also apparent in 
Fig. 7b, comparing the two curves for the rough model. It is also consistent with the rise in pressure 



along the 60 per cent ray mentioned above for a = 12 °. Such an outward movement of the suction peak 
between 30 per cent and 60 per cent of the length is not incompatible with an inboard movement of the 
vortex nearer the trailing edge of the wing, such as has frequently been observed at low speeds. 

The principal feature of Fig. 7b, for 0~ = 16 ° at M = 0-9, is the non-conicality of the flow on the smooth 
model and the close approach to conicality when roughness is added. The curves have been separated by 
ACpL = 0"05 for clarity. There is very little effect of roughness at the aft station, which extends the con- 
clusion drawn from Fig. 6b to the whole span and confirms the association of this peak with a turbulent 
boundary layer. The peak at the forward station is quite different from that at the aft station on the smooth 
model, but remarkably similar when roughness is added. This also expands the comparison of Fig. 6b and 
confirms that such broad peaks with little recompression correspond to laminar separation. 

The two parts of Fig. 7 are taken to demonstrate conclusively that free transition of the secondary 
boundary layer occurs further forward at e = 8 °, M = 0.6 than at c~ = 16 °, M -- 0.9. 

3.5. Variation with Math Number. 

The discussion of the results so far has been devoted to establishing the significance of the bulk of the 
measurements, which were taken on the smooth model at the forward station, and to the indirect eluci- 
dation of the pattern of transition in the secondary boundary layer. It is clear from this discussion that, 
at incidences above 8 °, the effect of Mach number on the surface pressure distribution is confused by the 
effect of transition. Nonetheless, it is possible to draw some conclusions from the results, which have been 
plotted to bring out the effects of Mach number in Fig. 8. 

It is convenient to begin with the highest incidence, at which the main features of the lifting pressure 
distribution are most apparent. Fig. 8a shows the results for e = 20 °, with the upper and lower-surface 
distributions on different axes. The lower-surface pressure increases appreciably with Mach number, 
but the shape of the distribution is unchanged. On the centreline of the upper surface the lifting pressure 
is unchanged between Mach number 0.4 and 1.0, but then rises between 1-0 and 1.1. The suction peak 
is plainly of the type associated with a turbulent secondary separation at M = 0.4 and 0.6 and plainly of 
the laminar type at M = 1.1. The peaks at the intermediate Math  numbers have intermediate forms. 
This is not surprising, since the flow is likely to be unsteady in the neighbourhood of the transition region 
and neither the average of the unsteady pressures nor steady pressures if they occur are likely to be even 
approximately conical. There is already an appreciable reduction in peak suction between M = 0-4 and 
0.6, where both peaks are turbulent. Moreover, it seems likely that the sustained reduction in peak suction 
between M = 0.82 and 1.1 is due more to the increase in Mach number than to the gradual downstream 
progress of the transition front. The lateral position of the maximum suction, which indicates the lateral 
position of the vortex, moves inboard with increase in Mach number. Most of this seems to occur between 
M = 0-6 and 0.82, so it is more likely to be a result of the forward movement of the transition than a 
direct effect of Mach number on the flow outside the boundary layer. This view is supported by Fig. 7b, 
in which, at the forward station, an outboard shift of the suction peak is shown to correspond to artificially 
induced turbulence. 

At e = 16 °, Fig. 8b, the variation with Mach number of the lifting pressure on the lower surface and the 
inboard part of the upper surface are the same as at e = 20 °. However, it is now possible to associate 
the suction peaks at M ~> 0.9 with laminar secondary separation, leaving only M = 0-82 as an intermediate 
case between these and the peaks of turbulent type at M = 0.4 and 0.6. It is now clear that the peak 
suction decreases within each family of suction peaks as the Mach number increases. Results from 
Britton 5 are included in Figs. 8b. 8d, 8e and 8f. These were obtained ~m the same model at a station 
further aft, at 66 per cent 0fthe model length, in the 8 ft x 8 ft tunnel at R.A.E.Bedford. The upper-surface 
distribution shown in Fig. 8b looks entirely consistent with the trend of the present results; the lower- 
surface pressure show a slightly different trend near the leading edge. The position of the maximum 
suction is remarkably constant over the range 0.9 ~< M < 2 for which the secondary separation is laminar. 

At c~ -- 12 °, Fig. 8c, there is an indication that the lifting pressure on the lower surface and the suction 
on the inboard part of the upper surface both increase with M up to 0"9 or 1.0 and then fall off. This is 
the trend that linear theory would predict. The two suction peaks of turbulent type at M = 0.4 and 0"6 
are more nearly the same. As at the higher incidences, there is a marked drop in peak suction between 



M = 0.6 and 0.82, at which Mach number  the suction peak takes an intermediate form. The peaks at 
M = 1.0 and 1.1 probably correspond to conical flow with a laminar secondary separation. The main 
shift in the position of the maximum suction is again associated with the change in the shape of the peak. 

At e = 8 °, Fig. 8d, there is again an indication that the pressure on the lower surface and the suction 
on the inboard part of the upper surface reach maximum values near M = 0.9 to 1.0. The suction peaks 
are now all of the type associated with turbulent separation. There is a marked reduction in peak suction 
from M = 0.4 to M = 2"0, proceeding steadily through the results taken from Britton s, but the reduction 
is halted and possibly reversed between M = 0"82 and 1-0. The inboard movement  of the peak is less than 
3 per cent of the semi-span. 

At c~ = 6 ° and 4 °, Figs. 8e and 8f, the variations in lifting pressure are so small that attention has been 
concentrated on the suction peak and many curves for intermediate Mach numbers have been omitted. 
At 6 ° the suction peaks are of the turbulent type, except perhaps at M -- 2. At c~ = 4 ° the secondary 
separation is probably laminar at all Mach numbers. At both incidences the consistency of the results 
over a substantial range of subsonic and supersonic Mach numbers is remarkable. 

The descriptions of the suction peaks can now be summarised conveniently in Table 1. We use letters 
T, L and I to denote suction peaks corresponding to secondary separations which are turbulent or 
laminar or peaks of an intermediate shape. 

TABLE 1 

Summary of Suction-Peak Shape, Re = 2 x 10 6 

0"4 

0'6 

0'82 

0"9 

1'0 

1'1 

4 ° 6 ° 8 ° 12 ° 16 ° 20 ° 

L T T T T T 

L T T T T T 

L T T I I I 

L T T I L I 

L T T L L L 

L T T L L L 

Comparison of Figs. 8a to 8e shows that the overall variation of peak suction for given incidence 
between M = 0.4 and 1.1 decreases as the incidence decreases, both absolutely and in relation to the value 
of the peak suction. This is brought out in Fig. 9, which presents the peak lifting suctions from Fig. 8 as 
functions of Mach number. Points for intermediate Mach numbers are given where these were measured 
and some additional values are taken from Britton s. Against each point a letter T, L or I appears, on the 
basis of Table 1. This is certainly helpful in explaining the variation at ~ = 12 °, the point at M = 1.3 being 
obtained from Britton's measurements at a Reynolds number  of 8 million. 

At the lowest incidence (4 ° ) the variation in peak lifting suction is small and there is no significant 
variation through the transonic range, 0.82 ~< M ~< 1.1. This is what would be expected from slender- 
body theory, as described in Appendix A. At higher incidences, the peak lifting suction falls as 
Mach number increases, and the fall is steeper the higher the incidence. The fall is not only in the transonic 
range, where Heaslet and Spreiter is have warned us that slender-body theory is limited to incidences 
of the size of the thickness ratio, but also between M = 0.4 and 0.6. At e = 8 °, where there is already a 
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significant fall, the local Mach number at the peak is just above 0.7 for M = 0.6, but it has risen to 0-91 
for ~ = 20 ° at M = 0.6. As an indication of where compressibility effects can be expected to be large, the 
'critical lifting pressure coefficient' is shown in Fig. 9. This is defined by 

c.l==o (1) 

where 

Cp[eritleal = 1 - (1  - M  2 7 - 1 _  1 , y-+-~ 
as usual, (2) 

and 

Cp[,=.o = 0.024+0.117 M .  (3) 

The last relation roughly represents the variation with Mach number of the pressure coefficient at zero 
incidence over that part of the wing surface where the suction peak occured in the present tests. 

The other curves shown on Fig. 9 are straight lines drawn through the measured peak suction forM = 1 
with the slopes 

dCpL = _ 2 CpL[ for~ = 1"4. ' (4) 
d M  y + l  ~=i 

This is the variation of lifting pressure coefficient with free-stream Mach number which would make the 
rate of change of local Mach number with free-stream Mach number vanish for a sonic free-stream, in 
other words, the variation of lifting pressure coefficient corresponding to the 'Mach number freeze'. Al- 
though wrong in detail, the predictions of this semi-empirical rule are surprisingly close. 

The substantial reductions in the peak suction shown in Fig. 9 as M increases from 0.4 to 1.0 are not 
in conflict with the observations of Squire and Capps 2 and Squire 3 that both the linear and non-linear 
parts of the lift on slender wings at given incidence increase as the Mach number rises towards one. 
Two effects evident in the present results counteract the reduction in peak suction. In Fig. 8 an increase 
in lower-surface pressure with Mach number can be seen, particularly at the higher incidences, and Fig. 
6 shows how, at the higher Mach numbers, the suction is carried closer to the trailing edge. 

In any consideration of conical compressible flow, it is important to know whether the flow is conically 
supersonic anywhere, since it is only in regions of conically supersonic flow that conical shock waves can 
occur. The appropriate condition is that the component of the velocity normal to a ray through the apex 
should be supersonic. Since, in the present experiments, the flow was not strictly conical, measurements 
were confined to the wing and only the static pressure was measured, no more than a tentative 
answer can be given. Fortunately, what evidence there is suggests that in flows with leading-edge vortices 
the velocity component normal to the ray is largest just outside the boundary layer on the wing. For 
instance, Fig. 20 of Ref. 4 shows cross-flow velocities calculated for a flat-plate delta wing at an incidence 
just less than one-half of its apex angle. There, although the addition of the free-stream component of 
U(y2+ Z2)l/2/,,Y directed towards the origin increases the normal component above the vortex and de- 
creases it below, the maximum still seems to lie on the wing surface. Fig. 10 of Ref. 17 shows cross-flow 
velocities measured at low speed on a thin wing at an incidence equal to one-half the apex angle. Again 
the maximum velocity normal to the rays occurs near the wing surface. The measurements reported in 
Ref. 8 on a thicker wing in a supersonic flow are not at close enough intervals to provide information on 
the maximum of the normal velocity, but they suggest it is still roughly the same above and below the 
vortex. Hence, we suppose that if the flow is not conically supersonic at the edge of the wing boundary 
layer, then it is not conically supersonic elsewhere (except ahead of the bow shock when Moo > 1). 

It is shown in Appendix C that the separate velocity components can be derived from the measured 
static pressure provided the flow is attached. For conical flow with lateral symmetry the problem reduces 
to the integration of an ordinary differential equation outwards from the plane of symmetry and the 
method is valid inboard of the secondary separation line. Since secondary separation occurs somewhat 
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outboard of the suction peak and velocity maximum, this approach is adequate to determine whether the 
flow on the wing is conically supersonic. 

Since the measured pressure distributions are less conical than the lifting pressure distributions, in 
terms of which the results have been discussed so far, it is arguable that the lifting pressure distribution 
forms a more appropriate basis for calculating the flow direction on the wing. Fortunately it is not 
necessary to resolve this point. Since the zero-lift pressure coefficient is positive, the lifting pressure is 
lower than the measured and the corresponding velocities are higher. Using the lifting pressure distribution 
to perform the calculation described in Appendix C, we find that the maximum Mach number normal to 
a ray is always less than one for the present tests. Since it would be lower still if the measured pressures 
were used, we can conclude that, as far as the concept is meaningful for flows only approximately conical, 
the flow fields in the present experiments were nowhere conically supersonic (except ahead of the bow 
shock for Moo > 1). 

The largest Mach numbers normal to the rays naturally occurred at the largest incidence. For the 
upper-surface distributions of lifting pressure shown in Fig. 8a for ~ = 20 ° we found : 

Free-stream Mach number 0.4 0.6 0.82 0.9 1.0 1-1 
Max. Machnumber  normal to ray 0.41 0.58 0.75 0.83 0.89 0.94 

For the lifting pressure distribution derived from Britton's results 5 at e = 16 °, M = 2 (Fig. 8b), the Mach 
number normal to the ray was as high as 2.8. For  the measured pressure distribution the corresponding 
value was only 1.4, but it is clear that conically supersonic conditions do occur at higher Mach numbers. 
It is also possible that conically supersonic conditions might have occurred in the present tests if the 
secondary separation at M = 1.1, e = 20 ° had been turbulent instead of laminar (cf. Fig. 7b for the 
marked effect of transition on peak suction). 

4. Conclusions. 

(a) The investigation of the effect of Mach number on the lifting pressure on a slender sharp-edged conical 
body was complicated by an unexpected change in the Reynolds number based on the station at which 
transition occurred in the secondary boundary layer under the leading-edge vortex. At the lower Mach 
numbers, the results were consistent with previous low-speed observations, in that the secondary separ- 
ation was turbulent for incidences above 4 °. At higher subsonic and transonic Mach numbers laminar 
secondary separations were found at incidences above 8 ° . 
(b) In spite of this effect, which produced changes in the shape of the suction peaks at the principal 
lengthwise measuring station, it was possible to show a steady reduction in the magnitude of the peak 
suction as the Mach number increased, both in the separate families which correspond to laminar and 
turbulent separation and also overall. It has not been possible to explain the variation in the peak suction 
with Mach number. However, the variation appears to be continuous and no regions of conically super- 
sonic flow, in which conical shocks would be possible, are found. The flow is therefore of the same type as 
that postulated in treatments of the vortex sheet model of leading-edge separation by slender-body 
theory, such as Ref. 4. 
(c) The reduction in peak suction measured at the principal measuring station, which lay forward, where 
the lifting pressure field was almost conical, was counteracted in its effect on lift by two other features. As 
the Mach number increased subsonically, the lifting pressure field was maintained in its almost conical 
form further back towards the trailing edge. Also, increases in pressure on the lower surface and suction 
on the inboard part of the upper surface were found. 
(d) The lateral position of the peak suction, which has previously been found to correlate with the lateral 
position of the vortex, moves slightly inboard as Mach number increases, but most of this movement is 
associated with the change from turbulent to laminar secondary separation. 
(e) Since it is the lateral position of the vortex which is most in error in the calculations by Smith ¢ for 
flat-plate wings, and the calculated positions are further outboard than the low-speed observations on 
thin wings, it is unlikely that better agreement with these slender-body theory calculations will be found 
at transonic speeds than at low speeds. 
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LIST OF SYMBOLS 

Aspect ratio 

Tunnel breadth 

See Appendix A 

Base area of model 

Wing length 

Lift coefficient 

Pressure coefficient 

Lifting pressure coefficient (= Cp - Cp[~ = o) 

Parameter depending on slot configuration 

Indicates an intermediate form of suction peak 

Body length 

Indicates a 'laminar' suction peak 

Mach number 

Radius of tunnel section 

Reynolds number 

Local semi-span of wing 

Local cross-sectional area of body 

Indicates a 'turbulent' suction peak 

Free-stream speed 

Right-handed Cartesian axes, origin at wing apex, Ox downstream, Oy to starboard 

Incidence 

Adiabatic index 

See Appendix B 

Height to breadth ratio of tunnel 

Thickness ratio of model 

Velocity potential 
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APPENDIX A 

The 'Lifting Pressure Field' for a Symmetrical Slender Body. 

In the analysis of pressure measurements on symmetrical thin wings at small incidences, when the 
pressure is expected to be linearly related to the inclination of the surface of the wing to the fl0w, it is 
usual to subtract the pressure measured at zero incidence from the results, to obtain a pressure distribution 
due to lift. In the present tests no such linear relation could be expected; but there is a possibility that 
the pressure distribution may be calculable by slender-body theory, with some representation of the lead- 
ing-edge vortices. In this theory, the boundary condition is applied on the actual body surface; the first 
approximation to the pressure coefficient involves the square of the cross-flow velocity; and, at transonic 
speeds, the governing differential equation is non-linear. It would be dangerous therefore to carry over 
ideas based on fully linearised theories to the present measurements; but this Appendix shows that, 
according to slender-body theory, the 'lifting pressure field' obtained by subtracting the pressures at 
zero incidence is independent of Mach number and, for a conical body is conical. At transonic speeds, the 
independence of Mach number is restricted to small incidences, typically less than the thickness-to-chord 
ratio of the body. (Heaslet and Spreiter 15.) 

With a system of right-handed axes Oxyz, in which 0 is the apex of the body and Ox is parallel to the 
undisturbed stream, the velocity potential, 4,, in the slender-body approximation for subsonic and 
supersonic speeds can be written (see Ward 16 pp 194-200) as: 

4, = V(x+4,o) ,  (5) 

where 

1 
Oo = ~ S'(x) log r +  bo(x ) + 4,1- (6) 

Here S(x) is the cross-sectional area of the body; r 2 = y2 +z2 ; q~l is a solution of Laplace's equation in the 
cross-flow plane 

~2 4,1 2 0 4,, 
ay 2 ~---~5-z2 = 0, (7) 

such that V4,1 ~ 0 as r ~ oo ; and bo(x) is a function which takes different forms for subsonic and super- 
sonic speeds. For subsonic flow, with f12 = 1 - M  2, 

1 

2n bo(x) = S'(x) log(fl/2) + 1/2 f S"(t) log(t - x) dt 
x 

- 1/2 i S"( t )  log(x - t) dt. 
0 

(8) 

For supersonic flow, with B 2 = M 2 -  1, 

2 ~  bo(x) = S'(x) log (B/2)- i S"( t )  log(x - t) dt. 
0 

(9) 
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For transonic flow a similar expression can be given for ~b o, provided the incidence is small, typically less 
than the thickness ratio of the body, as shown by Heaslet and Spreiter is. No explicit representation of 
bo(x) is possible, though. 

For a slender body, Odpo/OX < < 1 almost everywhere on the body. Consequently, the boundary 
condition that the velocity component normal to the body surface vanishes becomes a condition which 
relates the component of velocity lying in the cross-flow plane and normal to the body cross-section to the 
body shape, the incidence and the free-stream velocity. The body boundary condition does not, therefore, 
involve bo(x). If the flow field contains a vortex sheet, an additional boundary condition must be satisfied 
on it, namely that the pressure is continuous across it. This condition can also be formulated in terms of 
differences in ~ at the same value ofx and derivatives of ~b in the cross-flow plane. Hence ~bl is independent 
of bo(x) and so, in particular, independent of Math number. 

For a conical body with conical vortex sheets, the boundary conditions will be satisfied by velocities 
in the cross-flow plane which are constant along rays through the apex. Such velocities derive from a 
potential which is a homogeneous function of the first order and since S'(x) is proportional to x, 4~1 will 
be such a homogeneous function. 
The pressure coefficient is given, in the slender-body approximation, by 

ay ) \ 8= ) (10) 

In this, effects of Mach number enter only through O(o/Ox, since ~bl has been shown to be independent of 
Mach number. But this term in Cp is linear, and the term in ~b depending on Math number is independent 
of incidence, so the dependence on Mach number disappears when Cv at zero incidence is subtracted to 
give the 'lifting pressure field'. Moreover, for a conical slender body, Odpo/?.x is the only term in Cp which 
is not constant on conical rays, and the only term in Oq~o/OX which is not constant on conical rays is b'o(X). 
Hence for a conical body the 'lifting pressure field' is conical. 
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A P P E N D I X  B 

Blockage Correction for Solid Walls at Low Speeds. 

The method used by Kirkpatrick 11 supposes that the displacement effect of the model and its wake 
can be represented by a linear source distribution along the centreline of the tunnel, with a point sink of 
the same total strength at infinity downstream. The strength of the source distribution is proportional  
to the rate of change of cross-sectional area of the model and the wall boundary conditions are satisfied 
by introducing a doubly-infinite array of images. 

He expresses the blockage correction e in the form 

,~,(' t '  = r, = e2+e~ (x/c) ' (11) 

where e~ is the contribution from the linear source distribution and depends on the streamwise station, 
x/c, and e2 is the contribution from the sink at infinity. He finds 

oO (x b 'm2 2+n2) el = ~ kl c '  c 
m , n =  - o o  

(12) 

and 

where 

e 2 = B/22 b 2 (13) 

(y) k, x = c log (14) 
C'  \ / (X -- C) 2 -~ y2 X -- C + x/(X " C) 2 + y 2 '  

-~jdenotes sum excluding m = n = 0, c = length, B = model base area, b = tunnel the double model 

breadth, 2 = tunnel height to breadth ratio and each pair of integers (m, n) refers to one of the doubly- 
infinite set of images of the tunnel centreline in the tunnel walls. 

For the present purpose the double sum has been evaluated in the form 

~ r 

m, n = lim s , 
r ' - *  o8 ~ . , , d  

m , n =  - o o  s =  1 

(15) 

where 

s - 1  

F(s) = 2f(0, s) + 2f(s, O) + 4f(s, s)+ 4 ~ - ? f  (m, s)÷f(s ,  m)); 

n l = l  

(i6) 

that is to say, all the images lying on a rectangle similar in shape to the tunnel section are taken together 
and the final sum is over all such rectangles. The convergence as r ~ ~ is not very fast. We find 
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and  so, 

kl  c '  ~ A1 f o r y / c l a r g e ,  

(!)2 
F(s) ~ A2 for s large.  

This suggests how the convergence can be accelerated. We write 

F(s) = F(s)+ --~-, 

s = l  s = l  s = r + l  

(17) 

where a(s) is nearly cons tant  for s > r, if r is large enough.  

Therefore, 

2 2 ( 2 )  7r 2 i 
a(s) 1 = r2 F(r) -~ - -  a(r) -~ ~ - -  

smr+  1 s=r+ 1 S= I 

therefore, 

F(s) lim a F(s) r z F(r) nz - - - -  + - - r 2  F(r) ; 
S2 t "  

s = l  r ~  ~ ~" ~--'~I " 

(18) 

The convergence of the term in braces is now rapid. In  Ki rkpa t r ick ' s  case, for x = 0, F(10) = -0 .0124 ,  but  

the difference between the term in braces for r = 9 and r = 10 is only - 0.0002. 
In  the present case, c = 2.75 feet, B = 0.546 square feet, b = 8 feet and  ~ = 0.75, so that  52 = 0.0057. 

At the forward stat ion x/c = 0.336, E '  = -0 .087 ,  el = - 0 . 0 0 1 0  and  so ~ = 0.0047. At the aft station, 

x/c = 0"601, Y.' = -0 .019 ,  ~1 = -0"0002 and  so e = 0.0055. 
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APPENDIX C 

Calculation of Velocity Components from Pressure Coefficient. 

From the values of the pressure coefficient, Cp, obtained from the measured pressures, Bernoulfi's 
equation expresses the speed, v, of the flow external to the boundary layer in terms of the free-stream 
Mach number, Moo, and the free-stream speed, voo : 

= 1-(~,_ 1) ML 1 4 ~  - I  (191 

The velocity, v, at a point at the edge of the body boundary layer is tangential to the body surface (or, 
more precisely, the displacement surface), so 

v. n = 0, (20) 

where n is a vector normal to the body surface. Provided the flow is attached, no vortex line enters the 
external flow from the boundary layer and so 

~o .n  = 0 ,  (21) 

where o) -- V^v is the vorticity vector. If (21) is supplemented by boundary values on an appropriate 
initial line, the three equations (19), (20) and (21) determine the velocity components in some neighbour- 
hood of the initial line in which the flow remains attached. 

We are concerned with conical, laterally symmetric flow over plane surfaces only, so it is convenient 
to choose a set of rectangular axes with 0 at the apex, Oz along the outward normal to the surface, Ox 
in the plane of symmetry and Oy completing the right-handed system. Then, if 

v = i v x + j v y + k v z ,  

equation (20) becomes simply 

Vz=0 

and (21) becomes 

Ovx = Ov_._zy (22) 
8y Ox " 

For conical flow, v x and vy depend solely on the polar angle 0, where x = r cos 0 and y = r sin0. Hence 
(22) becomes 

dvx dv r 
d--O cos 0 + ~ sin 0 = 0,  (23) 

?0 cos 0 30 sin 0 
- and - - - .  We now introduce v~ and Vo, the components of v in the directions of since ?y r ~x r 

increasing r and 0 respectively. Then 

v~ = vx cos 0 + vy sin 0 
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and 

dvr_ dvx 
dO dO 

cos 0 +-d0 sin 0 -  vx sin 0 + vy cos 0 

= (by (23)) Vo. 

On the surface, v, z + v02 = v 2 and so, introducing 

v 
f(O) = - -  

Voz 

and 

(24) 

g(o) v, 
V~ 

we have 

2 ,2 f 2  g + o  = (25) 

where f is known from (19). This is an ordinary differential equation of the first order and the second 
degree, for which a single boundary condition is required. In the present case we have Vo = 0 for 0 = 0 by 
symmetry, and so 

g'(0) = 0. (26) 

A pair of analytic solutions of (25) exists only for very special choices of the function f. For the case 
f = fo, a constant, there are two solutions satisfying (26), viz 

g = f0 and g = f0 cos 0. (27) 

These correspond to a radial outflow from the apex and a parallel flow. The equation can be reduced to a 
pair of equations of Abel type by the successive substitutions g = f c o s  u and h = tan u. The result is 

f h h ' -  (1+ h2) f '  +_ -(1 + h2) fh  = O. (28) 

Equation (25) has a simple geometrical interpretation. Ifg represents the radial distance of a point from 
the origin of polar co-ordinates and 0 is the polar angle , f  represents the derivative of the arc length with 
respect to 0. Solving the equation corresponds to finding the curves whose arc lengths are a given function 
of the polar angle. The two solutions (27) obviously correspond to a pair of circles of radii fo and fo/2 
which touch internally at 0 = 0. 

The numerical integration of (25) presents difficulties in general since solution curves branch at points 
where O' = 0 and it is not easy to follow both branches. In particular, starting from (26) w i th f  = fo, most 
methods of integration only give the solution g = fo. This is not the solution most likely to be appropriate 
in the present case, where a region of constant pressure near the plane of symmetry probably corresponds 
to a region of parallel flow. A further difficulty arises whenfinitially decreases as 0 increases, i .e.f" (0) < 0. 
No real solution exists i f f  decreases rapidly: i f f  decreases gradually and a solution does exist, special 
procedures are needed to deal with the negative values found for g'~ in the Runge-Kutta process. The use 

• of (28) would avoid some of these difficulties, but would require values o f f '  as data. Deriving these from 
measurements o f f  would introduce uncertainties. 
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Fortunately, it is sufficient for the purpose of the present Report to consider only the case where the 
pressure begins to fall quite close to the plane of symmetry and continues to fall monotonically to its 
overall minimum, as illustrated by Fig. 8a. This means that we can takef(A) > f(0)  in all cases, where A 
is either the integration interval or the first data point away from the plane of symmetry. There is then no 
difficulty in obtaining a pair of solutions which extend beyond the value of 0 at which the occurrence of 
secondary separation invalidates equation (21). It is not obvious a priori  whether the physically realistic 
solution will arise from the positive or negative value of 9', so both solutions have been programmed for 
numerical solution by the Runge-Kutta method. In the cases computed only one of the solutions produced 
vy > 0 near the suction peak and this was clearly the one appropriate to the real flow. 
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TABLE 2 

Positions of Static Pressure Holes. 

Along the semi-span 

x 
a t -  = 0'336 

c 

Y 
s 

0.014 
0.040 
0.069 
0.096 
0.125 
0.150 
0.200 
0.249 
0.300 
0.353 
0.400 
0-450 
0.500 
0.550 
0.601 
0.660 
0.703 
0.750 
0.801 
0.851 
0"875 
0"900 
0.926 
0-951 
0-971 

x 
a t -  = 0.601 

c 

Y 
s 

0.102 
0.202 
0"300 
0.353 
0-399 
0.450 
0.500 
0.547 
0.599 
0.647 
0.697 

Along the generator 

at y = 0'597 
s 

X 

c 

0.050 
0.100 
0-150 
0-200 

' 0.250 
0.300 
0"350 
0.400 
0.450 
0.500 
0.550 

0"750 
0"801 
0"848 
0"875 
0"897 
0"924 
0"952 

0.600 
0.700 
0-800 
0.902 
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Fwc~. 2. Model motmtcd in working section oftunnel. 
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