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Summary. 
The linearised equation for the velocity potential of subsonic flow past a semi-infinite plane sector has 

eigensolutions. These determine the singular behaviour of the loading, according to the linearised theory 
of subsonic flow, at the leading and trailing edges of the centre-section of a swept wing. The eigensolutions 
are proportional to a positive power of the distance from the apex of the sector. Values of the exponents 
of this factor for the first two eigensolutions are calculated as functions of the apex angle, using a finite- 
difference approximation to the partial differential equation. The first of these corresponds to the 
strength of the singularity in the loading at the apex of a swept wing and thesecond, which is compatible 
with the Kutta-Joukowski condition; describes the rate at which the loading tends to zero as the trailing- 
edge root is approached. 
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1. Introduction. 

According to the linearised theory of subsonic flow, the loading on a lifting swept wing is singular 
along the leading edges, including the apex, and zero at the trailing edges. It is well known that the loading 
tends to infinity like the reciprocal of the square root of the distance from the leading edge, and to zero 
like the square root of the distance from the trailing edge, except at points where the edge has discon- 
tinuous slope. This Report examines the behaviour of the linearised solution for the subsonic flow 'over a 
lifting swept wing in the regions near the landing and trailing edges of the centre-section, where the edges 
have discontinuous slope. 

By considering the problem in a stretched co-ordinate system, it can be sho~vn that in both regions the 
velocity potential for this problem is dominated by a term which is an eigensolution of the equation and 
the boundary conditions which govern the velocity potential of subsonic flow past an infinite plane sector. 

Germain 1 has shown that the equation for the latter velocity potential has an infinity of eigensolutions 
of the form 

ok. = r~mf,. (~, co) 

with vm >1 0, where r is the distance from the apex of the sector, fro a function of the polar angles 9 and o~, 
and vm depends only on the apex angle of the sector. 

The strength of the singularity in the loading at the apex of the wing corresponds to the eigensolutions 
with 

O < v ~ < l ,  

and Germain 1 has shown that there is just one eigenvalue in this interval for all values of the semi-apex 
angle of the wing, 7. This eigenvalue v o is a continuous function of 7 and decreases monotonically with 7, 
being one when 7 = 0, 0-5 when 7 = ~z/2, i.e. when the wing is unswept, and zero when ~ = n. 

The first attempt to find Vo for a general value of ~ was made by Legendre 2, who expanded v o for 
near n/2 as a power series in cos 7 and calculated the first three terms. Guiraud 3 obtained two terms of a 
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power series expansion in (1 - cos ~) for V near zero. Brown and Stewartson 4 have also calculated power 
series expansions for ? near 1r/2 and for ~ near zero, by a systematic technique, and in each case have ob- 
tained a further term. The expansions are, for ~ near 7t/2, 

= r+~cos r+ ~ + ~  cos3r+0(cos4r) 

and for V near 0, 

v o = 1-½ (see ? -  1)+ {¼ (see ? -  1) 2 log (see 7 - 1 ) + ~  (1 - loge  2) (see V-  1) 2} 

+ 0 [(see 7 - 1 )  3 log 2 (see ~ -  1)]. 

Values obtained from these series are tabulated in Table 1 and shown graphically in Fig. 12. 
A numerical method for calculating values of v, for any angle ? is given in this Report. In Section 2, 

it is shown that v, is an eigenvalue of a two-dimensional partial differential equation with homogeneous 
boundary conditions in a semi-inf'mite domain. The method of solution for Vm is given in Section 3, and 
entails using a transformation of variables to make the domain of the problem a rectangular region. By 
approximating the partial differential equation by a finite difference equation at each point of a rectangular 
mesh, '~m, where 

= v,. (1 + v.,) 

is shown to be an eigenvalue of a known matrix, and the required eigenvalue can be found from an initial 
approximation. This eigenvalue depends, of course, on the order of the matrix, which is related to the 
size of the finite difference mesh. By calculating eigenvalues for smaller and smaller meshes, it is possible 
to estimate the eigenvalues of the differential equation by extrapolation. Accurate values are obtained 
using coarse meshes for ~, near Ir/2, but for V very near 0 or lr the extrapolation cannot be relied on. 

Results for Vo are given in Tables 1 and 2, and Figs. 10, 11 and 12, and are discussed in Section 4. They 
agree closely with results obtained by Brown and Stewartson 4, who use a different numerical method 
based on the eigenvalues of a pair of ordinary differential equations obtained by separation of the variables. 
In the R.A.E. standard method, the load on the centre-section has a similar singularity at the apex, but the 
exponent varies hnearly with 7 between the same limits, as shown in Fig. 12. 

The flow at the apex of the wing is dominated by the eigensolution with the smallest exponent Vo, 
and the other eigensolutions of the infinite sector problem are therefore of less interest. However, the 
method has been used to fred the next eigenvalue vl for two values of V less than ~r/2, and these results 
are given in Section 4. 

In the case of the trailing edge, the dominant term in the velocity potential is the eigensolution with 
smallest exponent which is compatible with the Kutta-Joukowski condition. This states that the stream- 
wise derivative of the velocity potential must be finite at the trailing edge, and means we must have 

VinYl.  

The smallest such v,,, denoted by vt, represents the rate at which the loading tends to zero at the centre- 
section of the trailing edge, and has been found for a large range of angles of sweepback of the trailing edge. 
The results are given in Section 4, Table 3 and Figs. 13 and 14. Included in the former figure are the 
analytical values vl = 1.5 for an unswept trailing edge, and the limiting value vl = 1 for a trailing edge 
with angle of sweepback rr/2. 



2. Formulation of the Problem. 

2.1. Basic Equations of the Flow. 

We consider the linearised approximation to the inviscid subsonic flow past a lifting swept wing. By a 
Prandtl-Glauert transformation this may be reduced to a consideration of the inviscid, incompressible 
flow past a related swept wing and, by virtue of the linearity, the lifting problem may be separated from 
the thickness problem. 

We introduce the right-handed rectangular Cartesian co-ordinates OX1XEX 3 with x 3 = 0 as the plane 
of the wing and x2 = 0 as the plane of symmetry of the flow, and seek a disturbance velocity potential 
• (xl, x2, x3). This is a harmonic function which satisfies the following boundary conditions: 

(a) Since on the wing the overall normal component of velocity is zero, c3cb/Ox 3 = -Ug(x l ,  x2) = 
co(x 1, x2), say, on the planform in the plane x3 = 0, where g(xl, x2) is the slope of the camber surface of the 
wing and U is the undisturbed speed. 

(b) By symmetry, d9 is an even function of x 2. 
(c) Since q) and O~/ax~ are odd functions of x3 and OO/Ox~, which is proportional to the pressure in the 

linear approximation, is continuous at points off the wing planform, atb/OXx = 0 off the planform in the 
plane x 3 = 0. 

So, in the plane x3 = 0, except on the wing and wake, q) = 0, by integration from infinity upstream. 
(d) Similarly, in the plane xa = 0, on the wake, tl) is a function o f x  2 only, i.e. • = f ( x 2 ) .  

(e) By the Kutta-Joukowski condition, O0/axl is continuous at the trailing edge. 
0 e) V@ tends to zero at infinity, except in the wake of the wing. 
We wish to examine the behaviour of q) near the landing and trailing edges of the centre-section of the 

wing. At these two points, the planform has a corner, which can be regarded as the apex of either the wing 
or the wake. In each case, we take the apex as the origin 0 and direct the axis 0x 1 from the apex on to the 
planform, see Fig. 1. We denote by ~ the angle between the direction 0xl and the tangent at 0 to the 
edge we are interested in. 

We now introduce stretched co-ordinates 

put 

(Yl, Y2, Y3) = (Xl/e, X2/e', X3/e,), 

(x i, x2, x3) = t~e (Yl, Y2, Y3) 

and look for a limit of ~b, as e tends to zero 

(2.1) 

(2.2) 

lim 
q~ (Yl, Y2, Y3) = e ~ 0 q~ (Yl, Y2, Y3). (2.3) 

Then the behaviour of q~ should reflect that of • near 0. 
Since Laplace's equation is homogeneous in (xl, x2, x3), ~b is also a harmonic function. In each case, 

the planform becomes an infinite sector of angle 2~,, see Fig. 2. The following boundary conditions on q~ 
are obtained by considering conditions (a) to (f) above as e tends to zero : 

J 

(A) Since ~49~ = dO Ox3 O~b 
0y 3 OX 3 0 y  3 = g 0 ~  3 = /~ 69 (X1, X2) 

on the planform by condition (a), we have 

a~b = Ofory  s = Oand [Y2[ < Yl. 
Oya tan 

(2.4) 



(B) tp is symmetrical about Y2 = 0. (2.5) 

Condition (c) will apply only to the wing apex case and becomes 

(C) ~ = 0 for Ya = 0 and l y2[ > y~. 
tan 

(2.6) 

Conditions (d) and (e) apply only to the case when 0 is the apex of the wake. In the limit e ~ 0, condition 
(d) implies 

~b = f ( 0 ) f o r y  3 = O a n d  [y2l > y l .  
tan 

However, as the potential is unique only to an additive constant, we can take f(0)  as zero without loss of 
generality, and thus condition (C) also applies to the trailing-edge case. 

(Z) d¢/Byl is continuous for IY2] = Yl tan ~. 

Condition (f) no longer applies, since, when e tends to zero, points at infinity in the y-space arise from 
points at a finite distance in the x-space. 

Germain 1 has shown that there exist eigensolutions of Laplace's equation satisfying the above con- 
ditions, in the form 

¢P = r V f ( y 2 ' y 3 -~l ] (2.7) 

where r 2 ,2 +~ 2 + ,2 
= Y l  Y 2  Y 3  

and v and f depend on V. He expressed the problem in terms of integral equations and made use of a 
classical result (Chapter III 8.4 of Ref. 6) concerning the continuity properties of the eigenvalues and 
eigenfunctions of integral equations to show that the number of independent eigenfunctions associffted 
with the eigenvalues v in the interval (p, p +  1), where p is an integer, is independent of V. By considering 
the problem for the case V = zt/2, Germain proves that there is just one eigenvalue v o in the interval 
(0, 1) for all ?. This takes the values vo = 1 for ~ = 0, v o = 0.5 for 7 = n/2, and v o = 0 for ~ = n. 

Since any negative value of v would correspond to a non-integrable singularity in the load on the wing, 
• v o is the smallest acceptable eigenvalue. On the other hand, eigensolutions corresponding to larger 

eigenvalues v are dominated, for small r, by that corresponding to Vo. Hence this eigenvalue Vo(V) describes 
the singular behaviour of the loading at the apex of a swept wing. 

The eigensolutions relevant to the trailing edge case must satisfy the additional condition (E). This 
imposes the condition 

v > ~ l .  

The eigensolution corresponding to the smallest such eigenvalue, v1, will be the dominant term in the 
velocity potential near the centre-section of the trailing edge, vl determining the rate at which the loading 
tends to zero at that point. 

2.2. Derivation of  Equation for v. 
We introduce the system of orthogonal curvilinear co-ordinates (r, 0, z) as defined by Legendre 2 

r cos 0 r sin 0 
Yt coshz Y2 cosh~ Ya = r t anhz  r = (y2+y22+y2)l/2 (2.7) 



and seek a solution of the form 

of Laplace's equation 

c~ = r~ f (~, O) (2.8) 

~2~ ~2~ ~2~ 
~ +~. -~+ ~-~.2 = O. (2.9) 

aYt ~Y2 63Y3 

We obtain a second order partial differential equation for f i n  the variables • and 0 in which v appears as 
a parameter: 

a2f a ' f  v ( v + l ) +  b - ~ 2 + ~ + ~ j  = 0. (2.10) 

The domain of the problem is the strip of the (T, 0) plane where 101 ~< r~ (see Fig. 3). The space Y3 >t 0 
corresponds to the area • >i 0, 101 ~< ~; the space Y2 I> 0 to the area 0 ~< 0 ~< n; and the wing to • = 0, 
101 ~< ~. The boundary conditions on f, derived from conditions (A), (B) and (C) on ~b, are 

(i) Of/dr=O on z = 0 , 1 0 l  ~<? (2.11) 

(ii) f =  0 on T = 0. :, 101 ~ (2.12) 

(iii) f i s  an even function of 0.  (2.13) 

Equation (2.10) has non-trivial solutions satisfying these boundary conditions for certain values of v, 
and it is these eigenvalues which we proceed to calculate. 

3. Method of Solution. 
It is required to find the value of v corresponding to a given value of?  such that a solution of equation 

(2.10) satisfying the boundary conditions (2.11) to (2.13) exists. The numerical method described here 
consists of using a transformation of variables to make the domain of the problem a rectangular region, 
in which the second order partial differential equation resulting from the transformation of variables is 
approximated by a finite difference representation on a rectangular mesh. This leads to a matrix equation 
which is satisfied when v (v + 1) is an eigenvalue of a specified matrix. 

If an initial approximation to v is known, the required eigenvalue of the matrix can be found accurately 
by an iterative process. The value of v given by this method depends on the size of mesh used, and an 
accurate value ofv is found as the limit of a sequence of values ofv calculated for decreasing mesh sizes. 

3.1. The Problem in a Rectangular Domain. 
The transformation of the domain into a rectangular region is accomplished in two steps: first, the 

domain in the (~, 0) plane is conformally mapped on to the interior of a circle, and then the latter is trans- 
formed non-conformally into a rectangular region. 

The transformation of the domain into the interior of a circle with unit radius in a (w t, w2) co-ordinate 
system is accomplished by the series of conformal transformations defined by :. 

u = i(e~+i°-cosy) z+iO = l o g ( - i u + c o s ? )  (3.1) 



l t/ . y l  
- ,  tan 

/ i t an2  / 
\1 

. ' l ' x + i O  tan2 ) itanla ~ T  ) s i n y ( v + i  

( ') tan 2 l + i v t a n ~  
(3.2) 

w = v - ( v z - 1 )  1/z v = ~ w +  (3.3) 

where u, v and w are complex variables and w = Wl + iw2- The domain of the problem in the u, v and w 
co-ordinate systems are illustrated in Figs. 4, 5 and 6. It can be seen that the wing becomes the circum- 
ference of the circle in the (wl, w2) plane, and that, inside the circle, the areas w2 > 0, w2 < 0, Wl > 0, 
wl < 0 correspond to the spaces in the physical plane Y3 < 0, Y3 > 0, Yz < 0 and Y2 > 0. Thus, f is an 
even function of wl and an odd function of Wz, so we need consider only the first quadrant of the circle. 
We transform this into a rectangular region 0 ~< R ~< 1, 0 ~< ~p ~< 7r/2 by 

w = Re i~ , (3.4) 

the wing becoming the line R = 1, 0 ~< q~ ~< 7r/2 (see Fig. 7), and the point A', corresponding to infinity 
upstream, becomes the line R = 0, 0 ~< q~ ~< 7r/2. 

The differential equation for f i n  R, q~ co-ordinates is, from equation (2.10), 

I d(wl+iw2) 2 fO2f 1 af 1 O2f 
cosh2z d - ~ + - ~  i~-~-~+ ~ ~-~-~ R2 Oq~2,j + v ( v + l ) f = o  (3.5) 

or 
( ~92f 1 Of 1 a2f "~'+2f= 0 ¢, (R, q,) ~b-~+~  R: J 

(3.6) 

where 

2 = v(v+ 1) (3.7) 

and 

(R.¢) = coshZz I 
d (wl + iw2) [ 

d (z + iO) I 
which, after some manipulation, reduces to 

R z + 0"25 (R 4 + 2R 2 cos 2q~ + 1) tan z 

~k (R, ¢p) = (3.8) 
Y (R4+ 1 - 2 R  z cos 2~p) tan z 

We obtain the boundary conditions on f from equations (2.11) to (2.13) and from considerations of 
symmetry': 

(i) f = 0  on ~ 0 = 0 , 0 ~ < R ~ < l  "andon R = 0 , 0 ~ < q ~ < T r / 2  





f ,+ l  = f i -  1 when p = m in equation (3.12) 

Thus we obtain the equations: 

C,fr+DJ~+l+Arfi+,. = 2f, when 

Brfi_ 1 +Crfi+Drfi+l+AJ~+., = 2fi when 

(B~+Dr)f,-~+Crfi +Arfi+,. = 2fi when 

A Jr-, .  +C,fi+Drfi+t+Arfi+m = 2fi when 

Arf~_,.+(B,+D~)fi_l+C~fi +Arfi+,. = 2fi when 

2Arfi_,. +Crfi+Drfi+~ = 2fr when 

2Arfi- , .+Brfi-t  +C,fi+Drfi+l = 2fi when 

2Arfi-,. + (Br + D~)fi_ 1 + Crfi = 2fr when 

p = l , q = l  

2 < ~ p < . m - l , q = l  

p = m , q = l  

p =  l, 2< .q<~ l -1  

p = m, 2 <~ q <<. l - 1  

p = l , q = l  

2 < ~ p < ~ m - l , q = l  

p = m , q = l .  (3.17) 

Similar equations to (3.12) and (3.17) are obtained if the lengths of the mesh intervals ar e unequal. 
Some calculations were made using intervals of equal length al6ng the (o axis and of unequal length along 
the R axis, and the equations for the finite difference approximations and the coefficients At, B,, Cr and Dr 
for this case are given in Appendix A. 

The equations (3.12) and (3.17) lead to the matrix equation 

(Eo-2I )  f = 0 (3.18) 

where {f} is the vector (fl,f2,...fmZ), 
I is the unit matrix, and Eo is a square matrix of order ml with non-zero elements along five diagonals 
only. The form of E0 is shown in Fig. 8. 

A non-trivial solution for f requires that 

det IE0-2I [  = 0 (3.19) 

i.e. that 2 is an eigenvalue of the matrix E o. 

3.3. Details of Calculation. 
A computer programme has been written in ICL 1900 Fortran to calculate the elements of the matrix Eo 

and find its required eigenvalue 2 for input values of V, m and I. 
The calculation of the matrix Eo is straightforward from the equations (3.13) to (3.16), (3.8) and Fig. 8. 

A good estimate 20 of 2 can be made from the behaviour and series expansions of v already known. The 
values taken for 2o in the various cases calculated are given in the following table: 



V 0 

Case Value of 20 calculated from 

0 ~< Y < rt/4 series expansion 4 from 7 = 0 for v 

n/4 n/2 

n/2<<.~<~n 

four term aeries expansion 4 from ? = n/2 for v 

linear approximation v = 1 -  y/re 

0 <~ ~ <~ n/2 estimate based on v o 

re/2 ~< ~ ~< rc approximation v = 1 +0'5 sin 

2 can then be calculated accurately in the following way. 
If we consider the matrix 

E = E o -  20 I ,  (3.20) 

then provided 2o is sufficiently close to 2, the eigenvalue of E, p, with smallest modulus will be given by 

SO 

p = 2 - 2 0  (3.21) 

• i 

2 = kt + 20. (3.22) 

The value of kt is obtained by Inverse 'Iteration 5. This is a repetitive process, the ith stage being the cal- 
culation of the vector y0) from 

E y~O = y0-1) (3.23) 

where ytO) is arbitrary. For  i sufficiently large 

y.) = /~ -  i (y + e<O) (3.24) 

where ~' is a constant vector and E ") a vector with very small components. In practice, the vector ytg) is 
normalised during each iteration to prevent accumulator overflow. This process has been found to give p 
as accurately as required for i about four. 

The calculation of the inverse of E for use in equation (3.23) is not feasible in view of th e large size orE, 
which has m 2 x 12 elements. Instead, we decompose E into the product of a block upper triangular matrix 
U and a lower triangular matrix L with unit diagonal elements, i.e. put 

E = L U .  (3.25) 

Equation (3.23) can now be written 

L U  yO) = y(~- 1) (3.26) 

or, using a dummy vector z, 

L z = yCi- t) (3.27) 

U yO) = z.  (3.28) 
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Z and thence yt0 can now be found by back substitution in equations (3.27) and (3.28). 
Further savings in computer time and storage are gained by using the sparseness of the matrix E to 

write it, L and U as matrices of order I with submatrices of order m as elements. Then only {(2l - 1) m 2 + ml} 
elements of E need be stored in the computer and matrix operations are carried out on matrices of Order 
m 2 only. Further details of these calculations are given in Appendix B, and a flow diagram of the pro- 
gramme is given in Fig. 9. 

The programme was generally used with a square mesh, i.e. with I = m. For a specific y, the value of/~ 
calculated by the programme will only approximate to the true value T say, owing to the finite difference 
approximation of equation (3.6), the difference between/~ and T decreasing as I is increased. In practice, 
the magnitude of I is limited by computer storage restrictions, and a value for T is obtained by extrapola- 
tion from a sequence of values of/~ calculated for increasing values of I. 

The variation of It with I was found to be approximately 

,,, cl-k + Y (3.29) 

for I greater than some lo, where c and k are constants for a particular ? and k >/2. Y can thus be found 
using equation (3.29) to extrapolate to I = oo. Then, by equation (3.22), 

2 = Y + 2 o  (3.30) 

and hence v can be found from 

v = (0.25 + 2) 1/2 - 0.5. (3.31) 

4. Results. 
4.1. The Singularity in the Loading at the Apex. 

For values of ~ near rr/2, the variation of # with l (=  m) could be closely approximated by an equation 
of the form (3.29), and so an extrapolation to give T and hence v o could be made with confidence. How- 
ever, for small values of ?, the dependence of # on l valid for large l could not be established from the 
results obtained with I limited by storage restrictions, and so no extrapolation was attempted. Some 
calculations were made at ~ = 27 ° with different numbers of mesh intervals l and m, and with mesh 
intervals of unequal length along the R axis, but these did not enable the extrapolation to be made more 
accurately. In Figs. 10a and 10b, the values of v o for different mesh sizes l (=  m) are plotted, together with 
the extrapolated value of Vo as a dotted line, for each value of ~. 

Values of vo for different angles ~ and the largest value of I (=  m) used are given in Table 2. The column 
on the right gives Vo calculated from the extrapolated value T, the variation of v 0 with ~, being shown 
graphically in Fig. 11. These results for ? ~< ~/2 are also included in Table 1 for comparison with values 
obtained by different methods. The data of Table 1 is presented graphically in Fig. 12. It can be seen that 
the present method gives results in good agreement with the four-term series expansion near rr/2, and with 
the values calculated numerically by Brown and Stewartson 4, but that the method cannot be used for 
small values of ~. 

4.2. The Loading at the Trailing Edge. 

The rate at which the loading tends to zero at the trailing-edge centre-section is determined' by v 1. 
Values of v t have been calculated for a wide range of values of ~ corresponding to swept-back trailing 
edges (y > ~/2), and for two values corresponding to forward sweep (~, < rr/2), and these results are given 
in Table 3 together with the value of v 1 calculated by the programme for the largest mesh size l (=  m) used. 
The variation of v I with ~ is shown graphically in Fig. 13. 

Fig. 14 gives for each sweepback angle considered a graph of values of vl calculated for different mesh 
sizes 1 (=  m) together with the extrapolated value vl as a dotted line. 

As in the calculation of v o for small ~,, values of vt for ? near to n could not be found with certainty 
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as the extrapolation to give Y could not be made reliably. 
A search for other eigenvalues v,, in the interval (1, 2) was made by calculating the eigenvalue closest to 

each of a range of numbers covering the interval (1, 2). This established that v~ was the only eigenvalue 
in this interval. It was also noted that, in general, 

v1(7) + 1 +Vo(y), 

although there is equality for y = 0, re/2 and n. 

5. Conclusions. 

(a) According to linearised theory, the velocity potential has a singular behaviour near a kink in an 
edge of the planform of a lifting wing. For kinks at the leading and trailing edges of the centre-section, this 
behaviour is related to that of the flow past an infinite sector. 

(b) The strength of the singularity in the loading at the apex of the wing has been calculated for a wide 
range of angles of sweepback. These results are in good agreement with series expansions 1'3'~ previously 
obtained and with the numerical results calculated by Brown and Stewartson 4. 

(c) The way in which the loading tends to zero at the trailing edge of the centre-section has also been 
calculated for a wide range of angles of sweepback of the trailing edge and for two cases of forward sweep. 
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APPENDIX A 

Equations for a Mesh with Intervals of Unequal Length. 

Consider a mesh with intervals of equal length along the q~ axis and of unequal length along the R axis. 
Let the length of the pth interval on the R axis be tJm. Then the distance to the pth grid line is 

p m 

i=1 i = 1  

We use the finite difference approximations 

~-~fx(Xl)-- (hi l_t_h2)(~22f(x2)-~lf(xo)) -(hhl]h2 2)f(X1) 

zi(xl) 
(ht+h2)k, hi h2 J hlh2 

where h t = x l - x 0 ,  h2 = x2 - xv  These expressions reduce to those in (3.10) and (3.11) for h~ = h2. 
The boundary condition on R = 1 is satisfied by putting 

t in+ 1 : /:m 

and f i+i  = f i - 1  forp = m. 

The equations (3.12) and (3.17) still apply in this case, but with modified expressions for the coefficients" 

4m 2 0r I2 
A r ~ p 

i = l  

m2 Or I 2 _  tp+ 1 B r - -  tp(tp_i_tp+l ) P 

i = 1  m2 l 1 
i = 1  

8m2 0r 12 
P 

i = 1  

Dr = 
m 2 Or 

tv+ i (tp + tp+ i) 
t "3 v p ;--t" p 

t i 
i = 1  .# 

2 m 2  O r  
Note that (Br + D,) = 2 when p = m. 

tm 
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APPENDIX B 

Details of Programme. 

The matrix E can be written in the form 

H1 J t  0 

J2 H2 J2 

I 0 J~ H 3 J3 0 . . . . . .  

\ 

N 
\ \ 

N \ 
\ \ \ 

~ \ ) l - - 1  

\ \ 

\ \ ¢ 
\ 
J, H, 

0 0 

0 0 

(B.I) 

where the H's and J 's  are submatrices of order m, the H's being tridiagonal, and the J 's  diagonal (see 
Fig. 8). Similarly the matrices L and U have the form 

L = 

f 
I 0 0 

L1 I 0 

0 L 2 I 

o o 

. . . . . .  

. . . . . .  

. . . . . .  

. . . . . .  
\ 

\ 

\ \ 

\ \ 
, \ 
L,_ t I 

U = 

U1 Jl  0 

0 U2 J2 

0 0 U3 
\ 

0 

0 

\ 
\ 

\ 
\ 

\ ', 

U,_ i\Jt_ 

u, / 

(B.2) 

where the U's and L's are submatrices of order rn but have no special form. 
From equation (3.25) E = LU 

hence 

U 1 ~ n 1 

L~_ ~ = J~ U721 I ,  

f Us H s - L~_ 1 Js-  1 
for s = 2. . . l .  

(B.3) 

(B.4) 

(B.5) 

14 



Thus only the Us and Ls matrices and the diagonal elements of the Js matrices need to be stored in the 
computer to record the matrix E. 

It is then convenient to formulate the back-substitution calculations (3.27) and (3.28) in terms of the 
Us, Ls and Js matrices. Let {a} be the transpose of a column vector a and denote 

{y(,- 1)} = ({vl}, {v2} , . . . ,  {v,}) 

(z} = ((zl}, {z2} ..... {z,}) (B.6) 

(yt0} = ({Yl}, {Y2} . . . .  , {Y,}) 

where vs, zs and y~, 1 ~< s ~< l, are m x 1 column vectors. Then the back substitution 

Lz = y~i- 1) (3.27) 

is done using the formulae 

and the back substitution 

using the formulae 

Zl = /)i 

Zs = Vs -- Ls- i zs- 1 for s = 2 , . . . l ,  

(B.7) 

Uy (° = z (3.28) 

Yl = U7 ,  zz (B.8) 

Ys = U [ l ( z s - J s Y s + l )  for s = ( / - 1 )  . . . .  1. 

We note that the inverses of the matrices Us and not the matrices themselves are required in the cal- 
culations (B.4) and (B.8), and so immediately after the calculation of each Us from (B.3) and (B.5) the 
inverse of the matrix is found and stored in place of the matrix. 

The interation is begun using a unit column vector as y(0), and thereafter each yti- 1) is normalised with 
respect to its largest element. Thus, after the ith iteration the current estimate of # is the inverse of the 
element of yti) of largest modulus. The iteration is continued until the difference between two successive 
estimates of # is smaller than some value specified by the programmer. The rate of convergence to/~ 
depends mainly on the ratio of/~ to the eigenvalue of E with next smallest modulus, and, therefore, on the 
closeness of the approximation 20 to 4. In practice, convergence was rapid and occurred for i about 4. 

-15 



A,, B,, C~, D, 

E 

Eo 

f , f , ,  (0, ~ 

L 
f 

Hs 

i 

I 

Js 

l 

L 

Ls 

m 

P,q 
?. 

R 

I t' 

U 

U 

Us 

V 

vs, Ys, Zs 

W = W l - l - i w  2 

X 1, X2,  X3 

YI, Y2, Y3 

Z 

7 

Y 

LIST OF SYMBOLS 

Coefficients in finite difference equation (3.12), defined in equations (3.13), (3.14), 
(3.16) and (3.15) respectively 

Matrix, = E o -  20 I 

Matrix, see equation (3.18) and Fig. 8 

Functions describing factor of 4,. d',,, respectively 

Value of f a t  rth grid point 

Column vector {fl . . . . .  fm~} 

Submatrices of E for s = 1 . . . . .  l 

Iteration counter 

Unit matrix 

Diagonal submatrices of E for s = 1 . . . . .  l 

Number of intervals in mesh along ~0 axis 

Lower triangular matrix 

Submatrices of L for s = 1 . . . . .  l -  1 

Number of intervals in mesh along R axis 

Counters for numbering grid lines along R and ~0 axes, respectively 

(y~ + y2 + yZ)t/2 

also, = p + ( q -  1) m 

IwI 
m times length of pth inter~al on R axis 

Complex co-ordinate defined in equation (3.1) 

Block upper triangular matrix 

Submatrices of U for s = 1 , . . . ,  l 

Complex co-ordinate defined in equation (3.2) 

m x 1 column vector elements of y(i- 1), y(0 and z 

Complex co-ordinates defined in equation (3.3) 

Physical Cartesian co-ordinates, see Fig. 1 

Stretched co-ordinate system of sector problem, see equation (2.1) and Fig. 2 

Vector result of ith iteration 

Dummy vector 

Slope of camber surface of wing 

Semi-apex angle of sector 

True value of # 

Parameter of co-ordinate stretching, see equation (2.1) 
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2 

2o 

# 

v, Vra 

~0 

~,(R, ~o) 

¢, 

LIST OF SYMBOLS---continued 

Co-ordinate system of Legendre, see equation (2.7) 

-- v ( l+v)  

= v m ( l + v . )  

Approximate value of 2 

= "2-20 

Exponents of distance factor in eigensolutions ~b, ~bm 

Smallest positive vm 

Second smallest positive Vm 

Velocity potential of sector problem 

See equation (2.2) 

Disturbance velocity potential of flow past wing 

= arg (W) 

Function defined in equation (3.8) 

Value of ~ at rth grid point 
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TABLE 1 

Values of Vo Obtained by Different Methods. 

0 
9 

18 
27 
36 
45 
54 
63 
72 
81 
90 

Four term series 4 
expansion from 

~ = n/2 

1.0049 
0.9954 
0.9678 
0.9244 
0'8690 
0.8059 
0.7394 
0.67334 
0.6106 
0.5526 
0.5000 

Series expansion 4 
from ? = 0 

1.0000 
0.9936 
0.9729 
0.9344 
0.8747 
0.7946 
0.7189 
0.7983 
~0386 

17-245 
cO 

Brown and 
Stewartson 4 

numerical method 

0.9925* 
0.9733* 
0.9356* 
0.8808* 
9"8146 
0.7441" 
0.6749* 
0.6108" 
0.5528* 

Present method 

0.933 
0.880 
0.8145 
0.7441 
0.6749 
0.6109 
0.5526 
0.5000 

*Interpolated using Lagrangian interpolation from values calculated at intervals of 15 °. 

?o 

9 
18 
27 
36 
45 
54 
63 
72 
81 
90 
99 

108 
117 
126 
135 
144 
153 
162 
171 

TABLE 2 

Values of v o Calculated by the Programme. 

At largest mesh size 
l (= m) Vo 

18 0"93147 
19 0.92474 
18 0.87654 
18 0"81256 
17 0.74262 
17 0-67416 
17 0.61037 
17 0.55229 
17 0.49980 
17 0.45227 
17 0.40894 
17 0.36907 
17 0.33191 
18 0.29672 
17 0.;26276 
18 i 0.22898 
17 0.19370 
18 0.14724 

Extrapolated 
values of Vo 

0"933 
0.880 
0.8145 
0:7441 
0.6749 
0.6109 
0.5526 
0.5000 
0.4524 
0-4090 
0.3690 
0-3318 
0-2966 
0.2626 
0.229 
0,194 
0'15 
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TABLE 3 

Values of vl Calculated by the Programme. 

yo 

45 
81 
99 

108 
117 
126 
135 
144 
153 
162 
171 

i At largest mesh size 

l ( = m )  1 vl 

18 
17 
17 
17 
17 
18 
18 
18 
19 
19 
18 

1.58131 
1.49569 
1.49524 
1"49058 
1.47777 
1.45427 
1.41734 
1.36786 
1.30760 
1.21277 
0.89529 

Extrapolated 
value of vl 

1.60 
1.501 
1.499 
1.495 
1.483 
1"461 
1.426 
1.382 
1.33 
1.26 

20 



! 

! 

Wa~- I 
! 

i 
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FI~. 1 a & b. Planform and physical co-ordinate 
system. 
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' FIG. 2. Co-ordinate system for sector problem. 
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FIG.  5. v co-ordinate system. 
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FIG. 6a. (wl, w2) co-ordinate system for ? < ~/2. 
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FIG. 6b. (wl, w2) co-ordinate system for ~ > n/2. 
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~_....,....--.~ ~ 

FIG. 7. The mesh in the R, q) plane. 
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FIG. 8. The form of matrices E and Eo. 
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FIG. 9. Flow diagram of programme. 
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FIG. 10a. Graphs of Vo calculated for different 
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FIG. 10b. Graphs of Vo calculated for different 
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FIG. 12. Comparison of values of Vo obtained by different methods. 
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. Extrap o l a  t~ d 
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FIG. 14. G r a p h s  o f  vt, ca lcu la ted  for different mesh  sizes. 
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