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Summary. 
This report extends earlier work by describing the time-vector method for lateral stability investigations. 

Using thls method, each equation of motion of an aircraft can be represented by a closed vector polygon, 
the shape and size of which conveys useful information about the mode of motion under consideration. A 
graphical method for constructing these polygons is presented and a mechanise.d system of vector cal- 
culators is described in detail. Because of the availability of digital computers, the main use of the method 
now is in the interpretation of results obtained by computers, giving improved physical insight into aircraft 
lateral behaviour. This application has proved to be particularly fruitful in relation to automatic control 
phenomena. Several examples are given. 
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1. Introduction.  

The time-vector method for aircraft stability investigations was developed more than ten years ago 1 
to satisfy two essential needs concerning the stability of the oscillatory modes of motion of an aeroplane. 
These needs are a knowledge of the stability characteristics (period, damping, etc.) and an understanding 
of the physical basis of these characteristics. Numerical methods were available 2.a to provide the former, 
but it was considered that many people found it difficult to obtain a sound grasp of the physics of the 
motion from such calculations. By retaining information concerning the phase, as well as the amplitude, 
of each term in the equations of motion, the time-vector method attempted to answer both questions-- 
what and why--in one process. 

During the past twelve years the principles of the time-vector method have been expounded in the 
R.A.E. 1 and elsewhere 4"6. The method has been used in theoretical stability investigations 7"9 and for the 
analysis 1°-18 and illustration t92~ of flight test results. Both the basic theory and the application of the 
method of longitudinal motion were described in detail in Ref. 1, but the value of the method when 
applied to lateral stability has been only briefly indicate& '7. The present report is intended to complete 
the detailed account begun in Ref. 1 by dealing with lateral stability investigations, including some effects 
of automatic control. A particular feature of this report is a description of some specially designed cal- 
culators: many of the original ideas involved in their design were contributed by W. J. G. Pinsker of 
Aerodynamics Department. 

The basic idea of the time-vector method is that a periodically varying quantity can be represented by a 
line, of appropriate magnitude and phase, which rotates at constant angular velocity. Such lines are 
called time vectors and may be manipulated according to the standard rules of vector analysis. It was 
necessary, in Ref. i, to extend the theory for constant amplitude oscillations to apply to oscillations with 
damping, as in aircraft motion, where the amplitude of each quantity varies exponentially with time. 

Attention can be fixed on any particular oscillatory mode, and the excitation of each variable in this 
mode expressed in terms of the amplitude and phase at some arbitrary moment. Thus each variable, and 
hence each term in an equation of motion, can be interpreted as a vector whose magnitude, or modulus, 
is equal to the appropriate complex amplitude, and whose direction is at an angle equal to the phase angle. 
The important results for the practical use of the time-vector method is that an equation, stating that the 
sum of certain terms is zero, may be represented by a closed vector polygon, the sides of which stand for 
the individual terms. In the present application there is thus one polygon for each equation of motion, 
and a separate set of polygons for each oscillatory mode of the system. The shapes and relative sizes of the 
polygons for one mode are determined by the damping, frequency and amplitude ratios of that mode, and 
vice versa. 

Throughout this report it is assumed that the stability derivatives are known and that the characteristics 
of the motion are required. The reverse process, of finding the derivatives once the period, damping, 
amplitude ratio and phase angles have been obtained from flight tests, is not considered here. This task 
is one to which the time-vector method is well suited; Ref. 13 is a good example of such an application. 

Starting from a knowledge of the derivatives, two ways of constructing the time-vector diagrams will be 
described : a graphical method and a process using specially developed calculators. Considerable emphasis 
will be placed on the interpretation of the time-vector diagrams, by including a variety of examples. 

Several examples are given because the characteristics of the lateral oscillation vary much more widely 
with aircraft geometry than those of the longitudinal modes. The lateral oscillation ranges from the 
nearly exclusively directional oscillation as found on many aircraft with straight wings of large span, to 
an almost pure oscillation about an axis roughly aligned with the longitudinal body axis, as for slender 
wing aircraft. Certain features of the motion connected with particular shape parameters of the aircraft 
can be discerned and will be demonstrated. 

The time-vector method can be used in aircraft stability work for two purposes : as a method of analysis 
or as a means of representation of results. Both purposes will be considered in this report, but it seems that 
the most fruitful future application of the method will be to assist in the understanding and interpretation 
of results. 



2. Theoretical Background. 
2.1. Recapitulation of the Principles of the Time-Vector Method. 

The time-vector method I is concerned with second-order oscillatory systems, a mechanical version of 
which, in the form of a spring-mass-dashpot system, is illustrated in Fig. la. The differential equation 
governing the motion is 

-mS~-k~:-cx  = O, (1) 

which has the general solution 

x = X 1 e - t / tD COS (ogtWe, x) (2) 

where xl and ex are constants which depend on the initial conditions, ex is the phase ofx  relative to some 
datum line and is measured positive in an anti-clockwise sense. The coefficients in equations (1) and (2) 
are related by 

1 k 

t o 2m 
(3) 

o92 + ~ = --mC = o92 (4) 

to is the damping time during which the amplitude of the oscillation decreases to 1/e = 0"368 of its 
original value, and COo is the undamped natural frequency of the system. The relationship (4) can be 
represented as in the diagram. 

o9 

1/tD 

1 
" t a n  e / )  = - -  

ogtv 

1 
- -  = o9 0 sin eo 
tD 

O9 = (D O COS/3 D 

(5) 

The angle eD, called the damping angle, is a measure of the relative damping of the system, which can be 
expressed by 

Logarithmic decrement 6 = 2n tan eD. 

The basic principles of the time-vector method is that a quantity such as x, which has the damped 
harmonic time history illustrated in Fig. lb, can be represented by a generating 'time-vector', ~, rotating 



at constant angular velocity, ~o, in the phase plane R - I  (strictly the complex plane). Its length decreases 
exponentially with time. Th~s its tip traces a logarithmic spiral (Fig. lc) and the projection of this time 
vector on the real axis R (assumed to be vertical here) produces the time-history indicated in Fig. lb. 

In the particular case of Fig. la the mass is assumed displaced from equilibrium by an amount Xo and 
released from this position at time t = 0. Since the velocity :~ is zero at the instant of release, the corres- 
ponding time vector :¢ must be perpendicular to the real axis in order to give zero projection on this axis. 
If the mass is released from rest its displacement at t = 0 must be a maximum, which occurs when the 
tangent to the spiral is parallel to the/-axis. For any logarithmic spiral the angle between the tangent and 
the line normal to the radius vector is a constant, the spiral angle. Therefore if the tangent at t = 0 is 
horizontal the radius vector must be displaced from the vertical by this spiral angle, which is in fact 
equal to co, the damping angle of the system under consideration. Thus the phase angle between the 

and ~ time vectors at t = 0 is 90 ° + 8D and the length of the displacement vector at t = 0 is 

I Xo ] = Xo see 8 D . 

Equation (2) may be rewritten for these conditions, i.e. starting at t = 0 from maximum deflection (phase 
reference is the real axis): 

x = I e-  ' / '" cos (a~t- co). (6) 

From this the velocity may be derived by differentiation : 

E 1 1 = I Xo I e- '/t° - - -  cos (ogt - eD)- 09 sin (o~t - 80) 
to 

and with the relations (5) 

= - Wo Ix01 e- ' / '"  sin cot 

= o,0 I ol e- ' / 'D cos (~t  +½re) (7) 

which confirms the phase relation between 2 and ~ previously arrived at by qualitative geometrical 
argument. The length of the time vector representing $ is 090 times that of the time vector for x. Similarly 

= -o g I ol e-t/tD cos (~ot+8o) 

= to~ 12o I e-'/ '~ cos (cot + rt + co). (8) 

Thus the acceleration and the length of its representative time vector is 090 times that of the velocity, and 
is advanced in phase by another (90 ° + co). Thus ~ and 5~ can be represented by time vectors rotating at 

the same angular velocity as x. These relations are illustrated in Fig. 2a, together with time histories of the 
three variables in Fig. 2b. 

Although, in the derivation of phase relationships from Fig. 1, a particular instant of time (t = 0) was 
considered, the analysis has demonstrated that the deductions are generally valid. This is because the 
decay factor e -t/'D is common to each variable and merely indicates that each vector shrinks~at the same 
rate. Since the time vectors rotate at the same angular velocity and shrink at the same rate, they are 
invariant with respect to each other and it suffices to consider their relationship to any particular instant 
of time, e.g. at t = 0. 

When dealing with the equations of motion it is convenient to separate the amplitude and phase of each 
term. For example, equation (1) may be tabulated 



Modulus 

Phase 

mOgo 2 Xl k co o xl CX 1 

= 0 .  

The'  = 0' indicates that the vectors form a closed polygon. Phase expressed a s ' -  2' means in counterphase 
to the x-vector, which may be drawn in any convenient position and with any convenient size (e.g. Xl = 10). 
Phase ' - ~ '  then means in counterphase to the ~ vector, which is itself advanced in phase by (90°+ co) on 2. 
This convention of expressing phase and counterphase forces the operator to determine the appropriate 
phase from physical considerations rather than rely on having observed the signs correctly throughout 
the evaluation of the moduli. 

The equilibrium of the forces of equation (1) is then represented geometrically by an isosceles triangle 
(Fig. 2d), the sides of which have lengths proportional to the quantities which they represent. This triangle 
has two useful properties: the apex angle is twice the damping angle and the height is proportional to the 
damped frequency (see diagram on page 7). For a system with several degrees of freedom, it is still possible 
to identify an equivalent isosceles triangle. This is of value because of the way in which the triangle 
summarises the basic stability characteristics of period and damping. 

2.2. Equations of Motion. 
The usual linearised equations of motion are used, with some modifications. 
Firstly, the sideslip angle is different from the usual definition, in that positive sideslip angle is chosen 

to be in the same sense as positive rotation about the z-axis, Fig. 3. 
A bar is put under the symbol, to make this clear. Thus 

= -v/Ve = - ~ .  

In flight, particularly in the lateral oscillation which is the main theme of this report, the actual sideslip 
occurs as a consequence of a rotary disturbance rather than an acceleration of the cg along the y-axis. 
Since ~ is, for this particular mode, closely approximated, in magnitude as well as phase, by the deflection 
in azimuth, if, it helps the understanding of the physics of the motion when the sign convention for sideslip 
is chosen to agree with that of ~k. 

Secondly, the acceleration along the y-axis is written in terms of the angle of track Z. 

X = 0 -  ~ sec Ye. (9) 

When referred to aerodynamic-body axes and with controls fixed, the linearised non-dimensional 
equations of motion for a datum flight condition which is steady, straight and level are 

-A~+E~+Lo~+L~ ,¢+L4 ,  ~ = 0 (10) 

- C ~ ) + E ~ J + N ~ + N ~ + N ~ c ~  = 0 (11) 

- - m  Ve~'q'- Y#ff+Y~,~+Y4,~+W~b = 0 (12) 

where ~b = 2+L~ = r (9a) 

q~=p .  

For the datum condition assumed here of steady, straight and level flight and for aerodynamic-body axes 
it is reasonable to equate L~ with Lp, L~ with L. etc., but it is important to note that, in general, L6 is 



not the same as Lv (see Section 22 of Hopkin2~). However, taking L ,  = Lp and similarly for other deriva- 
tives these equations can be made non-dimensional in the usual way z3' leading to 

(10a) 

_~ t~+~4;~_~.w n.. 
• ~ + - , ~ + ~ 6 ~  = o 

Ic lc I c lc 
(1 la) 

o = o .  (12a) 

In most of the following sections, yp and Yr are neglected. The sideforce calculator (see Section 3.3.2) 
does provide, however, for a non-zero value Ofyp, and y~ can also be allowed for. 

2.3. The Equations of Motion Rewritten for the Vector Method. 
As mentioned in Section 2.1, the linearised differential equations of motion can be rewritten for the 

vector method by splitting each term into amplitude and phase. The amplitudes are obtained by substitut- 
ing for each order of time derivative the corresponding power of ~o o. This angular frequency can then be 
combined with the time-scale factor ~ to form the normalised angular frequency 6) o, measured in radians 
per airsecond. 

~ o t  = 6)0. 

In deriving the phase of each term in the vector equations, it is assumed that each derivative and inertia 
constant has its 'conventional' sign : 

Yv, Yv, Iv, Iv, nv, nr, in negative 

Yr, nv, 1,, iA, i c positive. 

If any derivative is opposite in sign to that assumed, then the phase of the term must be reversed• 

Modulus 

Phase 
IA 

Iv I Ir Ip 6)0 ?P 
iA #2 ~ ~A 6)0 iA 

= 0 (13) 

Modulus 

Phase 

. 

~ q, z~ 2 4 ~ ic 6)0 ~m~ n-~o ~' ~6)o~ 
ic 

-D -~ -$ = 0 (14) 

Modulus 6)0 X Yv L ~ 

Phase - 2  +L ~ 

Y~ Y~6)o¢ -~4, 
/~2 6)0 ~O ,#2 = 0 
+$ -$ +~ (15) 

I and the kinematic relation : = ~ ~ (16) 

A set of polygons, representing a typical example, is shown in Fig. 4, in order to demonstrate their shape• 
Fig. 4 contains the rolling-moment diagram (a), the sideforce diagram (b) which is usually amalgamated 



with the kinematic relation (c), and the yawing-moment diagram (d). The equivalent isosceles triangle is 
shown shaded as part of the yawing-moment polygon. 

3. Construction of  the Time-Vector Polygons for an Aircraft without Automatic Control. 

3.1. Introduction. 

3.1.1. General remarks. An iterative graphical method to construct the polygons has been devised 
using the principles established in Ref. 1 for the phugoid motion. To speed up this process for frequent 
use, it has been mechanised by the design of special calculators. These two methods will be described in this 
section, after a few preliminary remarks which are relevant to both. 

3.1.2. Remarks on notation. A variable such as q5 is described by the time vector 05, the length of 
which at the datum time is the modulus [051. The phase angle of this vector at that time is e, relative to 
some reference vector, which is usually taken as the sideslip vector ~. In general only the relative amplitudes 

of each variable are of interest, not the absolute values. Thus the value of 105[ may be required. This is a 
f_Pl 

4~ clumsy notation, and such an amplitude ratio will usually be written ~ ,  with the modulus of each 

vector implied but not written. 

3.1.3. Starting conditions. Since the oscillation is usually poorly damped, it is sufficient to assume 
initially that the damping is zero. 

eD ~ 0 .  

A useful approximation to the undamped natural frequency &o is24 

d)o 2 #2 nv #2 Iv iE (17) 
= ic F ia ic" 

In certain cases (e.g. slender aircraft at high incidence) this could be revised to2 s 

#2 n~, iE ].2 2 I v 
F7 

(5 2 = ic tc iA 

1 i~ 
ia ic 

The assumption is also made initially that sideways motion of the centre of gravity of the aircraft is zero, 
i.e., 

X = 0  

which implies that 

and 

0/_~ = 1 ( i s )  

e o = O. (19) 

3.1.4. Iteration. The basic method is an iterative one. It starts from the approximations to the 
natural frequency and damping of the lateral oscillation, described in Section 3.1.3, and improves these 
approximations with each cycle of the iteration process until the change between cycles is small enough 



to be ignored. The order in which the polygons are taken during the iteration is important, since this 
determines the convergence of the process. 

For most aircraft with a moderate Dutch-roll ratio, the yawing moment polygon is the fundamental 
polygon in which the equivalent isosceles triangle can be found. This diagram must therefore be last, 
since it provides the corrections to the frequency and damping for the next cycle. As the rolling-moment 
polygon is relatively insensitive to changes in damping angle, it is used first. The diagrams are therefore 
used in the order: rolling moment, sideforce, yawing moment; although occasional extreme examples 
may involve iteration difficulties and require the reverse order. 

Thus the procedure, which will be dealt with in more detail in Sections 3.2 and 3.3, is as follows. The 
rolling-moment diagram is used first, with the assumptions of Section 3.1.3. This diagram yields initial 
values of the amplitude ratio c~/fl, and of e~, the phase angle of ~ relative to ft. The phase angle of q~ is 
then found from 

% = e~-(180+2%).  

This additional information enables the sideforce diagram to be drawn, from which the amplitude ratio 
~9/ff and the phase angle e o are obtained. Finally the yawing-moment diagram produces a correction 
factor for the undamped natural frequency d~ o and a revised value for the damping angle e.D. The whole 
process is then repeated. 

3.1.5. Choice of reference length. When constructing the diagrams it is convenient to take the main 
vector in each polygon as the reference length. To do so has advantages in both the graphical and mechan- 
ised methods. In each polygon one vector will then be of constant length, while the others will be reduced 
to reasonably uniform values. 

No single reason governs the choice of reference length. In the yawing-moment polygon the yaw inertia 
term (52 ~ is chosen because it contains the highest power in d~ o. The change in overall dimensions of the 
diagram will therefore be minimised at each iteration. 

When all other terms in the equation are divided by this reference length, they can be written solely in 
terms of amplitude ratios. For example 

ic ic ~o ~' 

From a comparison of the sideforce equation (15) with the kinematic equation (16) it is clear that by 
eliminating the ~50 X term, both equations can be represented in a single diagram or on a single mechanical 
calculator. Since the longest vector will usually be that representing ~ (Fig. 4) the choice of this vector 
as reference will immediately make the length of the other long vector represent the important amplitude 

ratio ~ - ~ 

/22 lv 
In the rolling-moment diagram the sideslip term is selected as reference length because c8 will 

iA 
usually be the longest of the 'excitation' vectors. 

3.2. Graphical Method. 
3.2.1. Rolling-moment polygon. Expression (13) may be rewritten with the amplitude of each term 

divided by the reference length #2. lv Lfl and with the order of the terms rearranged as they occur in the 
IA 

graphical process. 

10 



Modulus 1 ~ COo ff ~ "o  

Phase +ff +q~ - f f  

Ip ~ ia 6)0 z ~b 
#2 l---~ 6)0 e #2 Iv 

= 0. (20) 

A working sheet has been prepared (Table 1) which has separate spaces for the amplitude and direction of 
each term. 

If the derivatives for a particular aeroplane are given, the first two columns of the working sheet may be 
filled in. All phase angles are measured relative to k~, which is drawn in the positive abscissa direction 
(Fig. 5a). By equation (19), ~, is in the same direction, so that ~ is at right angles to this (since sn = 0 
initially). With the initial approximations, equations (17) and (18), the magnitudes of the l, and iE terms 
may be worked out. The unit vector is drawn in positive/~ direction, the I~ term is drawn at right angles 
to this and the is term at right angles again (Fig. 5a). The resultant, AB, of these three vectors is called 
the roll excitation RE. Since the two remaining vectors involve q~ and ~, they will be orthogonal and will 
therefore meet at a point on a circular arc drawn on RE as diameter. Neither the direction nor the length 
of these roll impedance terms is known but since AACB is a right angled triangle 

BC _ Ip  (21)  
tan CAB = tan q = CA iA 6)0 

and this is known. The inertia vector AC may therefore be inserted at an angle t / to  RE and the points 
B and C joined to give the lp p vector. (An alternative to constructing the semicircle on AB as diameter 
in order to establish the point C is to draw the Ip p vector at an angle ( 9 0 -  t/) to AB. This will meet the 
inertia vector at C.) 

From the diagram the length of the roll inertia vector can be measured. If this length is Rz 

iA /a2 (P 

or --~ = Iu2 Iv Rz 
L8 iA 6)o 2" (22) 

(In both the relations of (21) and (22), only the magnitudes of lp and Iv are used, not the sign.) The phase of 
~, written e& is also obtained, from which 

eo = - ( 1 8 0  ° + 2Co) + e ~ .  

,41 
3.2.2. Sideforce polygon. Once the phase of 4) and the amplitude ratio ~ have been estimated, the 

E 

sideforce polygon can be constructed. The unit of length is taken to be 6)o L 8, so that (15) becomes, when 
Yv, Y, are, as usual, neglected 

y. CL 4) X 
Modulus ~oo 26)0 ~ 

O. 
Phase + ~  + ~  - 

(23) 

The first two terms may be drawn in (Figs. 5b, top left), since their approximate amplitudes and phases 
are known, and the resultant 2--vector  obtained. Next the kinematic relation (16) may be plotted (Fig. 5b, 
bot tom left) but it can readily be incorporated with the sideforce equation because, as previously ex- 
plained, the polygon obtained from the kinematic equation has the same resultant )~-vector. This is shown 
in Fig. 5b, right. Measurement of the length EF yields the amplitude ratio O/L8 and the angle DEF is the 

11 



phase angle % between the ~ and ~ vectors. From the basic time vector properties, this angle is also the 
angle between the c6 and ~ vectors. The significance of this angle will become clear when the third and 
final polygon is constructed. 

3.2.3. Yawing moment polygon. All phase angles and amplitude ratios have now been estimated. 
Expression (14) is, when rewritten with &~ 0 as reference length : 

Modulus 

Phase 

]/2 nv 1 iE ¢ 

ic ~ n p l O  

i c I~ ic °9o 0 
-$ 

H r 

icdao (24) 

The n~ term is drawn first (Fig. 5c), with the ie and np terms added in succession. If the yaw-damping 
nr 

vector is drawn with a length ~ in counterphase to the new ~ direction obtained from the sideforce 

polygon, the length of the closing vector GH is in fact the frequency correction parameter R,o. 

New (&o) 2 = R,o x Old (6)o) 2 . (25) 

Ultimately GH will be of unit length, appropriate to the yaw inertia term. To obtain the new approximation 
to the damping angle, the ~ vector direction X H  (Fig. 5c), must be drawn in by adding e o from Fig. 5b 
to the phase of if, and then 

2eo = IXHG.  

In this particular example L~ is leading ~ (Q, negative), which is beneficial. 

3.2.4. Iteration. Once the new estimates of d) 0 and eD are known, the process may be repeated. 
Vectors representing quantities such as ~ and ~b will now have a phase difference of (90°+eD). In the 
rolling moment diagram the construction of the roll damping and inertia vectors will be slightly different. 

After the first three vectors are drawn the roll excitation vector is now a chord of the auxiliary circle 
and not the diameter. Because e D is no longer zero the angle subtended by this chord at the circumference 
is (90 ° -  eD). The centre of the auxiliary circle is found, therefore, by bisecting AB and drawing a line at an 
angle eD to AB, as shown in Fig. 6. Where the lines meet is the centre of the circle. For non-zero eo, the 
expression for the angle r/also changes, and is 

2 cos eD (26) 
tan t ' / -  1 - 2 s in e9 

where 2 - Ip 
iA ~00 

and only the magnitude of Ip is used. 
The roll inertia vector R~ is measured again, and the iteration proceeds. After one or more iterations 

a sufficiently accurate set of polygons will usually be obtained. The complete process may be followed by 
referring to the worked example in Table 2 and the sequence of diagrams in Fig. 7. The third approximation 
differs so little from the second that it is not entered in the diagrams. (It was shown, incidentally, in Fig. 4.) 

3.3. Vector Calculator Method. 

A routine and rapid method to solve the equations of motion by means of simple vector calculators, 
instead of the more laborious graphical process, has been fully developed and used during the past two 
decades. The design of these calculators has now been frozen to give what is considered to be a reasonably 

12 



universal and quick-convergence system. It covers the range of derivatives and derivative ratios experi- 
enced by the author and others during that period, and it is hoped will be valid for some time to come. 

The principle of the vector calculators is essentially the same as in the graphical method, but for ease 
of mechanisation some differences have been introduced. A separate working sheet has been prepared 
(Table 3). 

There are three calculators (Figs. 9a, 10a and lla), each of which corresponds to one of the three 
polygons previously described. Each calculator consists of a number of linked and pivoted linear or 
angular scales. (The photos show the calculators set to correspond to the first iteration of the example 
previously illustrated in Figs. 4 and 7.) 

3.3.1. Rolling moment calculator. To facilitate the determination of the roll damping and inertia 
terms the rolling-moment polygon is split into two parts, the first comprising the 'excitation' terms and 
the second 'impedance' terms. Each part has its own unit of length. Fig. 8 shows what has been done. 

In Fig. 8 the rolling moment polygon as obtained in the graphical process (Fig. 5a) is shown at ADBC.  
On the calculators the first part, from A via D to the point B, is the same except that for convenience 
the lr and iE vectors are made orthogonal (such an approximation will only introduce errors in the rare 
case of good Dutch-roll damping), although the Ir term is not always at right angles to the unit reference 
vector. The triangle of the impedance vectors A C B  (Fig. 8) is now separated, and the vector lengths are 
normalised by making AB'  the new unit of length. Triangle A C B  becomes triangle AC'B'.  AC'  is now a 
modified roll inertia term and is given the symbol R). 

To establish the exact location of C' a technique different from that applied in Fig. 6 has been adopted 
here. It uses the important property of the triangle AB'C '  that 

B'C' _ Ip - 2 

CM i A d> o 

(where l~ takes its numerical value only). Therefore the point C' lies on the circumference of one of a 
family of circles known as Apollonius' circles. Arcs of such orthogonal circles have been constructed to 
give a grid for obtaining R), given 2 and eD (Fig. 9a). A detailed description of the rolling-moment cal- 
culator follows, and reference should be made to the annotated diagram of Fig. 9b. 

This calculator consists of four parts: the baseplate W, a pivoting piece X containing the it ~) and 
I, ~ vectors; a second pivoting piece Y with the roll excitation scale RE and the orthogonal circular arcs 
giving the roll damping co-ordinates; and a simple scale Z representing the roll inertia vector scaled as R). 
The parts Y and Z pivot about the same point A, while X pivots about D; A D  represents unit distance 
for the first part of the polygon, as in Fig. 8. (The points A, D, B, B', C' are the same as in Fig. 8.) 

To use this calculator, proceed as follows. 
(1) Set the arrow E at the current value of the phase angle (e 0 + ~D). 
(2) Locate on the co-ordinate plane X the point B specified by the l~ and it co-ordinates on the calculator 

sheets (Table 3). 
(3) Place the roll excitation scale, R e, on this point B and read offthe value ofR E at that point. 

(4) Find on the plane Y a point C' specified by the co-ordinates eo and lo 
iA ~0"  

(5) Place the roll inertia scale Z so that it passes through this point C'. 
(6) Read the value of R~ at this point and also the phase angle of ~ given by the intersection of the R~ 

scale with e~ scale. 
(7) Tabulate the various readings on the special sheet and make any subsidiary calculations before 

going on. 
(In cases with extremely large values of ie, the errors, mentioned above, associated with making the 
i t 0 and l~ 0 terms orthogonal, may be reduced by aligning the product of inertia term correctly (i.e. 
setting (eq,+ 2eo) on the calculator), as shown in Fig. 9c, interchanging the l, and it terms in the co-ordinate 
plane.) 
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3.3.2. Sideforce calculator. The sideforce calculator (Figs. 10a and 10b) repeats exactly the graphical 
process and consists of five parts. A baseplate F contains two pivot points H and P which are unit distance 
apart to represent the ~ vector. A channel G, pivoting about H, carries the slide J, which contains a third 
pivot point K. The distance HK represents the y~ ~ vector, which is set by the mark M against the Yv 
scale on G. Pivoting about K is a grid L for setting the values of the yp q5 and CL (o vectors. For simplicity 
il is assumed that cb and 05 are at right angles, which is true, of course, only for very small damping. Since 
the yp term is rarely of much importance, this approximation is justified. The final scale N pivoting 
about P represents the q} vector and enables the amplitude ratio ~,/ff and the phase angle e~, to be read 
directly. To use the sideforce calculator: 

(1) Set the value ofeD by means of the angular scale on G. 

(2) Slide J along until the mark M is against the appropriate value of Y~-~[ on G. 
• " "  O 

(3) Turn L to the value of the phase angle e¢. 

(4) On the grid L find the point given by the co-ordinates Y_ep ~ and CL q~ 1 (normally yp is taken 
#2 t~ 2 ~ &o 

to be zero). 
(5) Set the scale N to pass through this point and read the value of ~b/L~ at that point and also the phase 

angle g~. 
(6) Enter these readings bn the working sheet. 

It is possible to allow for Yr by the following expression. 

where Yr takes its appropriate sign. 

3.3.3. Yawing moment calculator. Mechanically the most complex, the yawing moment calculator 
has two main parts and a detachable scale, shown assembled in Fig. 1 la and separated in Fig. 1 lb. The 
part R slides in a channel on the part Q so that the n v ~ vector can be set as the distance between the 
pivots U and W. The main sliding member R carries a rotating scale T, pivoted at U, with which the phase 
angle % is set and then locked with the locking screw S. Mounted on the scale T is a four-bar linkage 
designed to put the n~ ~ vector V at the correct phase angle (90+~D+%) to the sideslip vector UW. 
This it does with good accuracy for the range of values of eD and ~q, covered in the calculators. The arm V 
is longer than the distance UY so that, for increasing damping, the vector V rotates clockwise relative to 
UX, the unit vector (yaw inertia term). The detachable scale D has a pin at E which fits into a series of 
holes along V, and the other end olD has a slot which slides over the pivot knob at U to give a floating zero. 

On the other piece, Q, there is a scale Z which pivots about W to allow the phase angle of the 4; vector 
to be set. The scale itself represents the i e 4; vector. Sliding up and down the scale Z is another scale A 
for setting up the np q~ term. 

To use this calculator: 
(1) Set the phase angle e~ by rotating the scale T and lock with the screw S. 

(2) Slide the piece R along until the mark B indicates the desired value of #2 nv 1 ic&~ ~0/~" (The four-bar 
linkage with V is best kept out of the way at this stage.) 

(3) Set the phase angle e,~ by rotating the arm Z. 

(4) Slide the scale A down the arm Z to the appropriate value of ie ~b 
ic g" 

(5) Locate on A a point defined by the value of ~c ~ 4) ~ol and the current value of the damping angle %. 
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nr 1 
(6) Insert the pin, on the detachable scale D, in the hole on the scale V given by the value of_ 

Zc ~bo" 
(7) With the pivot knob U in the slot in D, rotate the linkage UV and the scale D until the point located 

in step 5 lies on the axis of the scale D. 
(8) Read the value of R~ at this point and the corrected damping angle where the unit arm UX intersects 

the ev scale. (A concentric scale enables the damping to be read in terms of logarithmic decrement.) 
From R~, a new value for the undamped frequency, d~ o, is calculated and used, with the corrected 

damping angle, for the next iteration. 

4. Examples. 
Four aircraft, ranging from a straight wing, high aspect ratio type to a slender-wing aircraft of low 

aspect ratio, are used to illustrate the variety of lateral oscillation characteristics that can occur in practice. 

4.1. High Aspect Ra~io. Straiyht Wincl Aircraft. 
Typical of many aircraft in widespread service throughout the world, this type has a cylindrical fuselage 

and a straight wing, of aspect ratio 9, which carries the engines. The longitudinal principal axis of inertia is 
closely aligned with the fuselage datum, and the yaw and roll inertias do not differ by much more than a 
factor 2. 

Fig. 12 shows the variation with lift coefficient of the main lateral derivatives. Important points to note 
are that - Iv is small and decreases in magnitude with increasing CL while no is bigger and increases ; the 

damping in roll, - Ip, is very large and - 12 _ 7, the cross coupling term lr increases rapidly with CL and 
ia 

reaches a large value at high CL; the product of inertia i~ is very small. The yaw damping derivative, - nr, 

is constant at about 0.08 and n ~  _~ 0-8. 
ic 

The general effect of these derivatives may be seen in Fig. 13. All these results were obtained by using 
the mechanical vector calculators, each calculated point taking about 20 minutes calculating time. Over 
the CL range the changes in the various parameters are small. The damping is always at a high level (for 
the lateral oscillation) and the Dutch-roll ratio p/r is very low, indicating that the motion is primarily in 
yaw. Instead of the period, P, of the oscillation the product of period and indicated airspeed (more correctly 
EAS ft/sec) is plotted because this 'indicated wavelength' varies far less from one aircraft type to another or, 
generally, as a function of speed and altitude. It will also become obvious, with subsequent examples, that 
abnormal behaviour can more readily be recognised and discussed. 

Vector polygons for C z = 0"8 at sea level are shown in Fig. 14. In the rolling-moment polygon, the 
most important terms are' those due to rate of yaw and rate of roll : they both contribute to a very early 
phase of the roll acceleration vector A~. This has beneficial results in the sideforce polygon, where the 
phase of the ~b term is such as to aid slightly the Yp ~ vector in producing a favourable phase angle % 
between the ~ and ~t vectors. The apex angle of the equivalent isosceles triangle, shown in the yawing- 
moment diagram, is thereby increased. The yawing-moment diagram also shows that the main stiffness 
is due to N 0 and the main damping is due to N~, (= N,). Both the N6 and product of inertia vectors are 
sufficiently small to be neglected. Finally, the vector star of the parameters of motion shows how closely 

equals if, thus justifying the initial assumption of equation (18). 

4.2. Delta Wing Aircraft of Small Span. 
Compared with the previous example, certain important derivatives now vary quite noticeably as CL 

changes (see Fig. 15). This is a consequence of both the sweep effect and the small aspect ratio of 1.8. 
In particular, - lo  increases from just over 0.01 to nearly 0.09 as CL increases from 0 to 0"6, while -y~ 
decreases sharply at high CL. Because of the small span, the damping in roll derivative, - Ip, is now small 

and the inertia coefficients are much larger than before; both lp and nr . . . .  are reduced, to about 0"8 
iA ic 

and 0"5 respectively. The product of inertia is more negative at high CL. 
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The derivative variations with CL are reflected in the curves of the stability characteristics given in 
Fig. 16. Although the 'indicated wavelength' is still more or less constant at about 1000 it, the damping 
decreases nearly to zero by a C1, of 0.6, while the Dutch roll ratio p r  increases from 0.5 ai Zero lift to a 
maximum of 2.65 at CL = 0-4. 

The factors contributing to these serious changes may be deduced from the vector diagrams in Fig. 17, 
drawn for CI. = 0.6. In lhe rolling-moment polygon the L,5 q~ and L~ ~ vectors are now very much smaller 

i t i l a n  before, v, h ich illt.'iiil,,, Ih'<il l i l t  pt'lasc <~f Ihc iner t ia  xcc to r  i:~ ~o la lc tha i  tl-lc bank le rn l  is lhc  s ideforcc 
polygon is nearly in counterphase to the Y~./J vector. And because the q~!/j ratio is also large, a very un- 
favourable phase angle between the ~ and c8 vectors is produced. This phase angle is nearly sufficient to 
counteract the other damping terms in the yawing-moment diagram. Only very small damping remains. 
Neither the product of inertia term nor the N~ q$ term may now be neglected: the product of inertia 
contributes a significant part of the effective stiffness and the N,  q$ vector counteracts the beneficial effect 
o| the yaw damping. This is because the yawing motion and rolling motion are nearly in counterphase, as 
can be seen in the vector star. Despite the considerable change in the character of the motion, compared 
with the previous aircraft, ~ and ff still differ only slightly in magnitude and phase. 

4.3. Swept Win9 Aircraft. 
This aircraft has a moderately swept wing, a high set tail fin and the engine underslung beneath the nose. 

(This case may also be considered typical for transport aircraft with tail loading ramp and high set tail.) 
An important consequence of this layout is that the longitudinal principal axis of inertia is inclined 
downwards at an angle of about 10 ° to the fuselage datum. At incidences below this value, therefore, the 
product of inertia is positive (see Fig. 18). Other points of note are that the yaw to roll inertia ratio is 
now about 5, np is positive over a large part of the CL range because of the high tail, - lv increases to a 

maximum of 0.13 at a CL of 0-7, and lP - - - - ~ - - - 6 .  
ia 

The lateral stability characteristics (Fig. 19) show some unusual features. The oscillation is unstable at 
high speed, i.e. low Ct. Increase of altitude extends the unstable region. The wavelength is rather long at 
low CL but becomes much smaller at higher CL. The Dutch roll ratio reaches values in excess of 6 at sea 
level and 8 at altitude. 

In order to explain these unusual characteristics, two sets of vector polygons have been chosen, one for 
CL -- 0.3, Fig. 20a, and the other for CL = 1.0, Fig. 20b, both at sea level. In the first case both iE and np are 
positive. This sign of the product of inertia, combined with the large Dutch-roll ratio, produces a vigorous 

t yawing moment, E~, more or less in counterphase to the damping in yaw, N¢ ~, thus causing the instability 
of the motion. The positive yawing moment due to rate of roll, as a consequence of the high tail, reduces 
the virtual spring force of the system, being largely in counterphase to N~ _/7. This has the effect of lengthen- 
ing the wavelength. 

In the second case, Fig. 20b, both iE and np have changed their sign. The product of inertia vector, E~, 
has two effects on the equilibrium of yawing moments. Firstly it contributes nearly as much again as 
Ng fl to the virtual spring force, thus causing the frequency to go up and the wavelength to shorten, as 
mentioned above. The second effect is a strong additional component in phase with the damping in yaw. 
This creates such reserves in damping that even the extremely large unfavourable phase angle e0, produced 
by the bank term W0 as a consequence of the large Dutch-roll ratio, fails to destabilise the motion. 

4.4. Slender-Win9 Aircraft (A.R. = 1.0). 
Perhaps the most unusual aircraft type considered in this report is the slender wing of unity aspect 

ratio, of the general shape proposed for a supersonic transport. It is called slender because the span is of 
the order of half the overall length. 

Of the derivatives shown in Fig. 21, some have been measured and others estimated, assuming the wing 
area is ten times the fin area. Compared with the preceding examples, the slender-wing aircraft has many 
unusual features. Of particular importance are: the large yaw and small roll inertias, which, with the large 
incidences at low speeds, imply a very large and negative product of inertia, iE; the small damping in roll 
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Ip 
such that - _  < 1 ; the very large value of - lt, resulting from the high leading-edge sweepback (of the 

za 
order 70 ° ) and low aspect ratio. 

The low wing loading means that the approach conditions are CL = 0-5 and ~ = 15 °, for which 
- I  v -- 0.22 and -iE/i a > 1. Fig. 21 shows np as positive and more or less constant. This is a difficult 
derivative to measure or estimate, but more recent ideas 2s indicate that np will become increasingly 
negative as CL increases, as a result of sidewash on the fin. 

The basic stability characteristics are illustrated in Fig. 22. Vector diagrams are shown for two flight 
conditions in Figs. 23a and 23b. At low CL, Fig. 23a, the L4, ~ and E~) vectors in the rolling-moment 
diagram are small and the phase of A~ is late. In the sideforce diagram the late phase of ~b and the large 
ratio ¢/ff lead to an unfavourable phase angle % between ~ and ~. The yawing moment diagram shows 
that important contributions to the effective damping are made by the E~ and N,  q~ vectors. (If N~ were 
negative, however, as discussed above, the N¢ q~ vector would reduce the effective damping.) 

At CL = 0.5, Fig. 23b, the inertia effects dominate the motion. The large product-of-inertia vector and 
small damping-in-roll vector in the rolling-moment diagram cause the phase of A¢ to be very late. The 
We vector in the sideforce diagram is many times bigger than the YO ~ vector, with the result that the 
phase angle between ~ and ~ is very large and detrimental. Both the product-of-inertia vector E¢ and the 
yaw inertia vector C~) are much larger than any of the aerodynamic terms in the yawing-moment polygon. 
The product-of-inertia vector now contributes vigorously to the effective damping and over 70 per cent 
of the effective stiffness. A consequence of this is that the frequency of the Dutch-roll oscillation does not 
fall off with decreasing speed as would be the case with a more conventional aircraft. Low frequency or 
long period of oscillation would have produced much larger and perhaps intolerable Dutch-roll ratios. 

An important point to note is that the rolling motion (~b) and the yawing motion (4) are nearly in 
counterphase to each other. The phase angle e ~  between ~b and ~9 has been computed over the CL range 
and is shown in Fig. 22. For CL > 0.3, eoq, -~ 180 °. Ife~¢ = 180 °, then ~ is at its maximum negative value 
when q~ is at its maximum positive value (see Fig. 24), so that the resultant angular velocity is f~ about 
an axis inclined at an angle of ~ + A to the wind-body axis. 

•2  = ~max_[_¢ma x = (]~max 1+ 

and 

tan (az + A) = ~b m a x  1 
~b max ¢/~ 

A is a small angle (see Fig. 22) so that the axis of oscillation in this case is approximately the principal 
axis of inertia. The aircraft cg also moves sideways to some extent, and it can be shown that the aircraft 
oscillates, in a pendular fashion, about an axis above and roughly parallel to the principal inertia axis. 

5. Some Aspects of Automatic Control. 
5.1. General Remarks. 

It has been indicated that the time-vector method lends itself particularly well to the interpretation of 
results obtained by mathematical analysis or machine computation. This application is specially useful 
when considering the more complex effects of automatic control. In fact, in some cases, this has proved 
to be the best means of achieving a proper understanding of unexpected phenomena, when flying under 
automatic control 7. 

The designer of automatic flight-control systems frequently uses root locus plots to gain insight into 
the variation of flight behaviour. These plots combine damping and frequency information in a single 
curve for each mode of motion, and it allows the correct transfer functions of automatic control terms to 
be introduced. 
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In many cases, however, and in particular in the early stages of control design, it suffices tO describe 
the action of the automatic control systems in terms of individual parameters of motion (or the sum of 
several) with fixed coefficients. Thus the usual linear differential equations of the uncontrolled aircraft 
can be retained, with the simple addition of such further linear control terms. This quite common pro- 
cedure makes these problems amenable to treatment also by the time-vector method. 

The results of such simplified analysis can again be plotted in the root locus diagram, but often designers 
prefer in this case to use a 'stability diagram' as exemplified in Fig. 25 in which the real and imaginary 
parts of the solution, i.e. damping and frequency, are plotted separately (see also Ref. 3). This graph is 
particularly suitable for the discussion of the effect of individual control terms with linearly increasing 
control signal strength or 'gearing'. 

5.2: Aileron Control. 

As an example of how the time-vector method improves the insight into unusual flight behaviour with 
automatic control, the addition of automatic aileron control proportional to roll angle will be discussed 
first. When such unsophisticated aileron control was applied in an early automatic control system, the 
pilots complained that small settings of aileron gearing produced the unexpected effect that the roll 
amplitudes of the usual lateral oscillation were increased rather than suppressed. The reasons for this 
effect, and also for the remarkable associated effect of such control on the damping of the oscillation, were 
subsequently readily explained by means of the time-vector method. 

The differential equation of the rolling moments (equation I0)) is augmented by the additional control 
term, which, with the assumed constancy of the coefficient, may be transferred to the left hand side and 
treated like all the other aircraft terms. 

-A~+E~+L~+L+~+L+~+L¢F+(~ = 0 (27) 

Fe is the aileron gearing, i.e. degrees aileron deflection per degree bank angle. The other equations (11) 
and (12) may, for our present purpose, remain unaltered. The complete solution of the simultaneous 
differential equations is plotted in the stability diagram, Fig. 25, as a function of the aileron gearing 
constant, Fo. 

For zero aileron gearing, the roots of the uncontrolled aircraft appear as the starting values for the 
development of the different modes of dynamic motions. The heavily damped roll subsidence can be 
recognized, and the other aperiodic motion, the spiral root, is so small that it cannot be shown distinctly 
near the origin of the graph. 

When aileron gearing is applied, these real roots change their numerical values in an opposite sense; 
the damping of the roll subsidence decreases rapidly, through the introduction of a kind of 'spring force' 
in the roll degree of freedom by means of the automatic aileron control, and the damping of the spiral 
is correspondingly augmented. This is because the automatic aileron control tends to erect the aircraft 
in bank when the spiral motion tries to develop bank. 

At a relatively low aileron gearing of about one tenth of a degree of aileron deflection per degree of 
bank, both aperiodic roots combine and degenerate into a single complex pair, i.e. the subsidences 
disappear and a new lateral oscillation begins, which may be termed 'roll oscillation' as distinct from the 
yaw oscillation (Dutch roll) which already exists for the uncontrolled aircraft. Initially this new roll 
oscillation has a very low frequency (dotted line) and is extremely well damped by comparison with the 
yaw oscillation, but with increasing gearing Fo the new oscillation yields some of its damping to the yaw 
oscillation. (The sum total of the damping of all the aircraft modes of motion, as expressed by the coefficient 
of D 3 in the stability quartic, remains unchanged by the introduction of a pure spring force term F~.) 

It is of great interest to see how the mechanism of this exchange of damping operates. The vector 
method will now be used for an investigation of the phenomenon. 

For this investigation a number of points along the abscissa are chosen viz. at aileron gearings F ,  = 0, 
0.05, 0.4 (where the damping of the yaw oscillation reaches a maximum) and finally at Fo = 2.0, where the 
interaction between the roll and the yaw oscillation has subsided. For each of these gearings the vector 
polygons have been established and are shown in Figs. 26-28. 
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In the rolling-moment polygon the introduction of a term proportional to ¢ means the insertion of a 
corresponding time vector roughly at right angles to the L¢ ~b vector (observe the change of the polygon 
for the values Fo = 0 and 0.05). This necessarily means first of all an opening-out of the polygon by an 
increase in length of all rolling-reaction vectors whilst the excitation, consisting in this example of the 
L 0 fl and Lg, ~--vectors, remains practically unchanged. As a consequence of this relative increase of all 
roll-reaction vectors the Dutch-roll ratio must increase. 

The maximum increase occurs at an aileron gearing of Fo = 0.4 (see Fig. 26), which also corresponds to 
the point in the stability diagram where the dotted lines of the imaginary roots cross each other, i.e. where 
both oscillations have the same frequency. 

Beyond this point the lengths of the roll-reaction vectors decrease again and they become eventually 
very small indeed (see polygon for F+ = 2), indicating a marked reduction in the Dutch-roll ratio. The 
cause for this reversal of the roll-amplitude effect can be found in the phase rotation of the rolling mode 
in an anti-clockwise direction. This phase advance has persisted right through from very small initial 
values of aileron gearing (observe Fig. 26). At large values of F ,  this phase rotation brings the rolling 
moment due to aileron, L¢, Fo ¢, into an opposing phase to the original roll excitation (i.e. mainly opposing 
L 0 ~), cancelling most of this. Thus the two impedance terms A~ and L¢ 4~ are much reduced in magnitude, 
together with the Dutch-roll ratio. 

This latter effect is, of course, what pilots naturally expected from this type of automatic aileron control 
and what in fact they found in practice when told to increase the autopilot gain to such high values. The 
paradoxical effect of increased Dutch-roll ratio at small gain settings, however, that first puzzled them, 
may now be understood in the light of what is said above and illustrated in Fig. 26. 

Next the drastic improvement in damping of the yaw oscillation may be explained with the aid of the 
remaining two sets of vector polygons, Figs. 27 and 28. It has been demonstrated (see section 4) that an 
important part of the total Dutch-roll damping may be achieved by means of a phase advance of sideslip 
against yaw. Its magnitude is indicated by a correspondingly large negative angle s o in the triangle of 
kinematic relations, which is usually combined with the polygon of sideforces (compare Fig. 5). Fig. 27 
shows these polygons for the different aileron gearing values chosen. The anti-clockwise rotation of the 
rolling phase with increasing Fo observed earlier in Fig. 26 also rotates the vector Wq~ (gravity component 
in y-direction) in the diagrams of Fig. 27. Thereby so, first positive, turns negative, i.e. the initial phase lag 
of L~ against ¢ is changed into a lead, and this lag or lead is directly added to the apex angle of the corres- 
ponding isosceles triangle in the polygons of yawing moments, Fig. 28. The greatest beneficial effect will be 
noted in the polygon for Fo = 0-4. Beyond this value the Wq5 vector'in Fig. 27 is still further rotated in a 
favourable sense, but the length of this vector decreases proportionately with the rapid reduction of the 
Dutch-roll ratio. Thus for F¢ = 2 the contribution of this vector to the magnitude of negative s~ has 
become negligible despite the fact that its phase is the most favourable possible, viz. in line with Y# ft. 

5.3. Gyro Tilt Effect. 
An effect that bother designers of yaw autostabilizers is that the yaw-rate gyro used with such equip- 

ment is normally fixed to the airframe and its reference system, and therefore, with changing incidence, 
does not measure rate of yaw as defined in aerodynamic-body axes. At high incidence, for instance, it 
picks up some of the roll-rate component of the Dutch-roll motion and thereby not only changes the 
magnitude of its output signal but also its phasing with respect to true ~. Here again the fact that the 
time-vector method stresses the phase relationship between the parameters of motion suggests that it 
may also be a most suitable method to investigate this gyro problem. This is indeed the case as will be 
seen immediately. 

In Fig. 29 the rate gyro is shown schematically as it is installed in an aircraft at incidence ~ and, for 
generality, with an additional inclination s of the gyro frame axis with respect to the fuselage longitudinal 
axis. The gyro measures any component of an aircraft rotation that lies along its sensitivity axis. If rate 
of yaw and rate of roll during a Dutch-roll oscillation are considered, the total gyro signal can be expressed 
a s  

q~G = ~b cos (~z + s) + 4~ sin (cz + e). 
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It must be remembered here that ~ and 4; are not coincident in phase, so that at any particular instant 
one or the other of the two terms on the right hand side of the equation may dominate. 

However, both components may be added vectorially in the phase plane as shown in Fig. 30. In this 
diagram q) is assumed to have unit length and is oriented along the positive ordinate axis. The roll rate, 4;, 
for the particular incidence or airspeed is shown with a phase lag of about 160 °. The resultant total gyro 
signal according to the above equation is shown to be nearly 90 ° out of phase with true ~ and much 
reduced in magnitude. 

In Fig. 31a this process has been repeated for the sample aircraft (corresponding to that of 4.2) for 
different airspeeds but without additional gyro tilt angle, e. The end points of all ~G--vectors may be 
joined together in a locus curve for the whole airspeed range as shown by a dotted line. The gyro reads 
reasonably well at the high speed end, but produces far too small and lagged signals at low speed. 

In Fig. 3 lb it is demonstrated how additional gyro tilt can, at constant aircraft incidence, radically 
affect the gyro signal; an improvement is obtained for E negative (gyro tilted down) and a deterioration 
for e positive. 

In Fig. 31c such gyro tilt has been applied to improve the locus of the gyro signal. The low speed end 
has become acceptable, and at high speed some additional gain of the gyro signal has been achieved 
together with some slight phase advance. This is quite welcome in order to compensate for some servo 
lag of the autostabilizer at the higher Dutch-roll frequency connected with high airspeed. On the other 
hand the aileron control characteristics of the aircraft have been affected, because any rolling motion 
besides that occurring during Dutch-roll, e.g. in manoeuvres, now produces some autostabilizer induced 
rudder deflection. Therefore the method has to be applied judiciously. It has, however, proved to be very 
effective in some practical cases. 

6. Conclusions. 
The time vector method was described in Ref. 1 as a means of analysing oscillation problems, using 

the short period longitudinal aircraft oscillation and the phugoid motion to explain the application of the 
method. 

The present report extends the time vector method to the perhaps more interesting and varied field of 
aircraft lateral oscillations. Two procedures are described for constructing the vector diagrams : a graphi- 
cal method, and, for more frequent use, a system of specially constructed calculators. 

Some examples are given in detail to show how the shape of the vector polygons varies with aircraft 
configuration and flight condition. Some aspects of automatic control are also described. 

The present report has been restricted to steady Straight and level flight. The method could be ex- 
tended to climbing and turning flight. More complicated forms of automatic control could also be 
considered. 

Although digital computers are available now to do the basic stability analysis, the time vector method 
still has a useful role as an aid to a physical understanding of the results. 
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F~ 

iA, iC, iE 

k 

L 0, L~, L4,, L v, Lr, L¢ 

Iv, It, lp 
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N o, N~, N4, 
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RE 

RI 

R~ 
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Vi 
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Xo 

x1 

Y~, Y4,, Yg, 

Yv, Yp, Yr 

LIST OF SYMBOLS 

Moment of inertia in roll 

Moment of inertia in yaw 

Lift coefficient 

Spring-stiffness factor 

Product of inertia 

Base of natural logarithms 

Gearing of automatic control 

Inertia coefficients 

Damping factor 

Dimensional stability derivatives in roll 

Non-dimensional stability derivatives (see Ref. 23) 

Mach number 

Mass 

Dimensional stability derivatives in yaw 

Non-dimensional stability derivatives 

Period (= 2~/co) 

Components of angular velocity (roll, yaw) 

Roll excitation vector "} 

Roll inertia vector ~ (see Fig. 5) 

Frequency correction parameters 

Time 

Unit of aerodynamic time 

Damping time 

Equilibrium (true) airspeed 

Equivalent airspeed 

Velocity component along y-axis 

= 1)IV e 

Aircraft weight 

Displacement 

Initial displacement 

Arbitrary initial condition 

Dimensional stability derivatives, sideforce 

Non-dimensional stability derivatives 
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~x 

8~, % 

%0 
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6)0 

~b/~ etc. 

LIST OF SYMBOLS--continued 

Angle of incidence relative to body datum line 

Angle of incidence relative to principal inertia axis 

Angle of sideslip (= - ~) 

Equilibrium climb angle 

Inclination of roll axis to principal axis (see Fig. 24) 

Logarithmic decrement (= 2re tan eo) 

Gyro inclination angle (see Fig. 29) 

Damping angle 

Phase angle of x relative to some datum 

Phase angle of q~(~,) relative to 

Phase angle of ~b relative to ~b 

See Fig. 5a 

I/,I 
i,~ 6) 0 

m 
Relative density parameter - 

b 

Bank-angle perturbation 

Track-angle perturbation 

Heading-angle perturbation 

Gyro signal 

Resultant angular velocity (see Fig. 24) 

Damped frequency 

Undamped natural frequency 

(.Oot 

Amplitude ratio 

Indicates differentiation with respect to time 

Indicates a time-vector 
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TABLE 1 

Graphical Solution. 

Dutch-Roll Oscillation. 

AIRCRAFT Cmptd. by Date 

Altitude ft CL M 

[2 2 i iA ic 

Initial Approx. '  6)o z = , /12 nJi  c + 122 Iv/i A . ie/i c; ¢ /~  = 1 ; eD = 0; % = 0 

R O L L I N G  M O M E N T S  

l,, 

lr 

#2 It,/iA 
i&o 
I 

It~#2 It, X d~ 0 @/ff 

ie iJfl2 It, 

Ip lp/i A + ~bo @ 

. = t a n - '  [ @ c o s  e o / 1 - @ s i n  so)] 

From 

Diagram 
Roll Inertia Rx 

Roll-Sideslip Ratio qS/ff = #2 It,/ia × Rx/tb2 

+ ¢  

• -,7- F 

Y-FORCES 

Yt~ 

CL 

Yp 

From 
diagram 

Yp/#2 

"- tBo 

x 1/&o q~/~ 

x ,~/g 

Yaw Ratio O/L8 

Yaw Phase e o 

Dutch Roll Ratio q~/~k = q~/~ .- ~O/ff 

+~ 

26 



TABLE 1--continued 

YAWING MOMENTS 

n~, #2 ndic  2 -'- ~o 016 

iE iE/ic X alp~ 0 

n v ndi  c x 1/~)o 4 /0  

n~ n f i  c + d% 

From Damping Angle % 
diagram 

Frequency Correction R,o 

New d~ 2 = previous d~o 2 x Ro~ 

-B 

-T-~ 

I RESULTS I °° I 8D p P I p/r 
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TABLE 2 

Graphical Solution Worked Example. 

Dutch-Roll Oscillation. 

AIRCRAFT 

Altitude 5000 ft CL 0"6 M 0'33 

#2 31'2 ~ 3'45 i A 0"064 ic 0'166 

Initial Approx. : 6)2 = #2 nv/ic + #2 Iv/ia . ie/ic ; 

Cmptd. by Date 

f f / ~  = 1 ; e o  = 0 ; e ~  = 0 

R O L L I N G  MOMENTS 

l,,-0'115 #2 l~,/iA 56 

6)0 2 32"5 39'4 38"6 

6)0 5'70 6'27 6"21 

@ 0.618 

lr+0'130 lr/~2 l v 0.0362 x 6)0 ff/~ 0.206 0.212 0.217 

iE-0"038 iE/#2 l,, 0.0106 x 6)22 O/ff 0.345 0.388 0.395 

I v -  0-225 Id'i 1 3"52 + d)o 0.561 0"566 

r /=  tan ' [Q~ 'cos  eo/(l - O s i n  c,,)] 

Roll Inertia RI 
From 
Diagram 

32.8 ° 30.8 ° 

1"15 1'28 

1"98 1'82 

31.6 ° 

1'29 

1"87 Roll-Sideslip Ratio ~o/ff = # 2  lt,/iA X RI/6) ~ 

Y-FORCES 

y~, - 0.250 

½ CL 0'3 

Yp Yp/#2 

Yaw Ratio 

+ 6)0 

x 1/6)o ¢t~ 

x ~/g 

0"0438 

0"104 

0"0398 

0"087 

0.0402 

0-0904 

From ~/~ 0.93 0"965 0"965 
Diagram 

Yaw Phase e o + 2 ° + 2 ° + 2.8 ° 

Dutch Roll Ratio qS/ff = ~b/L~ + O/L6 2.06 1.89 1.94 

+0 

28 



TABLE 2--continued 

Y A W I N G  M O M E N T S  

nv 0"110 

i E - 0.038 

n v -  0.083 

nr-0"166 

From 
Diagram 

]A 2 nv/ic 20"7 

i J i c  0"229 

nl,/i c 0"50 

nr/ic 1"0 

2 
+ ~o ¢/~ 

x ¢/¢  

× 1/~o 4~/~ 

+ ~o 

Damping Angle eo 

0-686 

0.472 

0"181 

0.175 

7.5 ° 

0.545 

0.433 

0.151 

0.159 

9 ° 

0.556 

0.445 

0.156 

0.161 

9 ° 

Frequency Correction Ro 1.21 0.98 0-993 --- 1 

New Cbo z = previous ~b~ x R~ 39.4 38.6 38-4 

RESULTS ~o 6"2 l eo  9 ° P 3"5 sec p/r 1.94 3 0"995 
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T A B L E  3 .  
Vector Calculator Solution. 

Dutch-Roll Oscillation. 

A I R C R A F T  Cmptd .  by !Date 

Alti tude ft CL M 

#2 t i,4 ic 

Initial  Approx.  : d~02 = P2 nv/ic+#2 1,,/iA. iJ ic ;  ~/~  = 1 ; at) = 0; aq, = 0 

R O L L I N G  M O M E N T S  

d)o 
l,, #2 Iv/ia 

1~ 12~2 lv × ~o ¢/~ 

ie ie/kt2 Iv × d)2 0/~ 

lp lp/iA + d) o 

F r o m  

Calcula tor  

Resul tant  Roll Exci tat ion RE 

Roll Iner t ia  R} 

Roll Accelerat ion Phase e~ 

Roll Phase  = ee = - (180 + 2ao) + a~ 

Roll-Sideslip 
, 2 Ratio q~/~ = / t  21,,/i A x Rt  Re/d)o 

Y - F O R C E S  

Yo + 03 o 

cL × 1/~o ~/_~ 

yp yd#2 × 4'/~ 

F r o m  Yaw Rat io  ~/[? 
Calcula tor  

Yaw Phase e 0 

Dutch-Rol l  Rat io ¢ / ~  = ~b/~ + ¢ / ~  
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TABLE 3--continued 

YAWING MOMENTS 

in i J ic  x q~/O 

np np/i c x 1/Cbo 4/0 

gt r 

F r o m  

Calculator 

nr/ic "-- &o 

Damping Angle eo 

Frequency Correction Ro, 

New &o 2 = previous &~ x Ro, 

I RESULTS [6~o leo P I p/r 
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FIG. 1 a to c. S imple  oscil lator.  
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