

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Low Speed Tunnel Investigation of the Effect of the Body on

 $\mathrm{C}_{\mathrm{m}_{0}}$ and Aerodynamic Centre of Unswept Wing-Body CombinationsBy
A. Anscombe, M.A. and
D. J. Raney, B.Sc.(Eng.), A.C.G I., D I.C.

Crown Copyright Reserved

Aprz1, 1949

ROYAL AIRCRAFT ESTABLISHMENI

Low-speed Tunnel Investigation of the Effect of the Body on $\mathrm{C}_{\mathrm{m}_{0}}$ and Aerodynamic Centre of Unswept Wing-body Combinations
by
A. Anscombe, $\mathrm{H} . \mathrm{A}$.
and
D. J. Raney, B. Sc. (Eng.) ; A.C.G.I.; D.I.C.

STMANARY

Systematic low-speed tunnel tests have been made on wang-body combinations writhout tail plane, to find the effect of the body on $C_{m_{0}}$ and aerodynamic centre position. Model variations included front and rear body length, body diameter, depth and nose shape, wing height and angle, wing root fillet and wang aspect ratio. The wing was not swept back. Dimenszons were based pramaxaly on those of current civil aircraft.

The results showed that the change in aerodynamic centre position, K_{n}, varies lunearly with front body length and in a secondary addutional way with rear body length; it is vartually independent of wing angle and helght. The change in C_{m} varies linearly with wing-body angle and roughly wath the volume of revolution of the body planform; wang height and fort-and-aft position on the bedy have only secondary effects. 沙碞g root fillet effects are small on K_{n} but appreciable on $C_{m_{0}}$.

Values of the body effects on K_{n} and $C_{m_{0}}$, calculated by simple impulse theory, were found to agree wh th the test results in some respects, but to disagrec in others. Using thas theory as a guide to the correct parameters, semi-cmplrical formulae have been produced for prediction on other aircraft designs.

The effects calculated by these formulae have been compared with values measured on various wand tunnel models. For the change in K_{n}, agreement is obtained to within ± 0.005 in most cases. For the change in $\mathrm{C}_{m_{0}}$, the formula satisfies the present test results, but badly underestimates most of the ad hoc measurements. Thus, while the prediction of the change in K_{n} is reasonably satisfactory, some of the $C_{m_{0}}$ effects still require explanation.

The fillet effects have been analysed as far as possible, but very little work was done and the formulae presented can only be regarded as a stop-gap until further information is available.
1 Introduction - 5
2 Range of tests 5
3 Model details 6
4 Test results and discussion 7
4.1 Test procedure and prosontation of results 7
4.2 Preliminary test on effect of cabin 8
4.3 Effect of body and fillets on C_{L} and C_{L} max. 8
4.4 Change in aerodynamic centre position duc to body 8 $\left(\Delta K_{n}\right)$
4.41 ΔK_{n} for bodzes of revolution, 9 in. dia., 8 large wang, no fillets
4.42 Effect on ΔK_{n} of turned-up rear body 9
4.43 Effect on ΔK_{n} of altering nose shape 9
4.44 Effect on ΔK_{n} of varying body diameter and 9 depth and wing span
4.5 Change in the value of $\Delta \mathrm{G}_{\mathrm{m}}$ due to body 10
$4.51 \Delta \mathrm{C}_{\mathrm{m}_{\mathrm{o}}}$ for bodies of rovolution, 9 In. dia., 10 large wing, no fillots.
4.52 Fiffect on $\Delta G_{m_{0}}$ of turnod-up rear body 11
4.53 Effect on $\Delta c_{m_{0}}$ of altering nose shape 11
4.54 Effect on $\Delta C_{m_{0}}$ of varyang body diameter 11 and depth and wing span
4.6 Effect of wing root fillets on ΔK_{n} and $\Delta G_{m_{0}}$ 12
5 Comparison of results with existing methods of 13 estimation
5.1 Existing methods for Δh_{n} 13
5.2 Existing, mothods for $\Delta c_{m_{0}}$ 14
6 Application of results to prodiotzon on other designs 16
6.1 Generalisation of the modsured ΔK_{n} (no fillets) 16
6.2 Generalisation of the measured ΔK_{n} due to fillets 19
6.3 Generalisation of the neasured $\Delta \mathrm{c}_{\mathrm{m}_{0}}$ (no fillets) 19
6.4 Goneralisation of the measured $\Delta 0_{m_{0}}$ due to fillets 21
7 Summary of methods of predzotion 22
8 Conclusions 23
Notation 25
References 27
App.
I
Potential flow formulae for $\Delta \mathrm{m}_{\mathrm{m}}$ and ΔK_{n} due to body
II
Formula for ΔK_{n} due to wing root fillets
III
Formula for $\Delta \mathrm{C}_{\mathrm{m}_{0}}$ due to fillets
Accuracy of generalised methods, and comparzson with other data IV
LIST OF TABLES
Table
Model details I
Comparison of airoraft dimensions with test model II
Aerodynamic chara-teristios of large and small span wings III
Lifts drag and pitching moment with body for three wing heights IV
Change in aerodynamic oentre and $C_{m_{0}}$ due to body, no fillets V
Bffest of turning-up rear end of body VI
Effeot cf nose-shape varmation and cabin VII
Effect of vorying body diameter and depth and wing span VIII
Change in aurodymamic contre and $\mathrm{C}_{\mathrm{m}_{0}}$ due to body, modium fizlets IX
Change in aerodynamic centre and C_{mo} due to body,smail and large filletsX
Effoct of fillet reflex and thickness on $-\Delta K_{n}$ and $-\Delta C_{m_{0}}$ XI
Effect of fillets compared with no-fillet measurements XII
Analysis of test results on $\Delta \mathrm{K}_{\mathrm{n}}$ due to body, no fillets XIII
Analysis of test results on $\Delta \mathrm{C}_{\mathrm{m}_{\mathrm{O}}}$ due to body, no fillets XIV
IIST OF IULUSTRATIONS
Fig。 1
2
2
G.A. of 4.5 in . dia., 9 in. $\times 13.5 \mathrm{in} .$, and 13.5 in. dia
G.A. of 4.5 in . dia., 9 in. $\times 13.5 \mathrm{in} .$, and 13.5 in. dia bodies bodies
3
3
Miscellaneous model details
Miscellaneous model details 4 4
Charaoteristzcs of wing alone
Charaoteristzcs of wing alone 5 5
Liftmeffect of wing height and angle, and fillets
Liftmeffect of wing height and angle, and fillets 6
Pitching moments for range of body front lengths
Pitching moments for range of body front lengths on body rear No. 4 on body rear No. 4 7 7
Forward shift of aerodynamic centre due to body $\left(-\Delta K_{n}\right)$ -
Forward shift of aerodynamic centre due to body $\left(-\Delta K_{n}\right)$ - no fillets no fillets 8 8
Effect of body size and depth on $-\Delta K_{n}$, and theoretical
Effect of body size and depth on $-\Delta K_{n}$, and theoretical values - large wing values - large wing 9 9
Effects of body size on $m \Delta K_{n}$, and theoretical values -
Effects of body size on $m \Delta K_{n}$, and theoretical values - small wing small wing 10 10
$-\Delta \mathrm{cm}_{\mathrm{m}}$ due to body - no fillets
$-\Delta \mathrm{cm}_{\mathrm{m}}$ due to body - no fillets 11 11
$-\Delta \mathrm{c}_{\mathrm{m}_{0}}$ due io body - no fillets; continued
$-\Delta \mathrm{c}_{\mathrm{m}_{0}}$ due io body - no fillets; continued 12 12

LIST OF ILLUSTRATIONS (Conta.)

Diagram of body forces at $C_{L}=0$ for low and high wing 13
Effect of i_{w} on $-\Delta C_{m_{0}}$ due to body 14
Effect of body size and depth on $-\Delta \mathrm{C}_{\mathrm{m}_{0}}$, and theoretical
values - large wing
Effect of body size on $-\Delta \mathrm{C}_{\mathrm{m}_{0}}$, and theoretical values -
small wing
Effect of turned-up rear on $-\Delta \mathrm{C}_{\mathrm{m}_{0}} \quad 17$
Effect of fillets on aerodynamic centre - normal shape
and reflex
Effect of fillets on $\mathrm{C}_{\mathrm{m}_{0}}$ - normal shape and reflex 19
Effeot of fillet reflex and thickness on $C_{m_{0}} \quad 20$
Values of Δ_{10} for 9 in. dia. model 21
Charts for estimating ΔK_{n} duc to body of revolution,
no fillets
Analysis of model results for $\Delta \mathrm{c}_{m_{0}}$ due to body 23

The semes of systematic tests described in this report was made to find the effect of the body of an airoraft on the wing aerodynamic centre position and the value of $\mathrm{G}_{\mathrm{m}_{0}}$ at low Mach number. The lengths of the bodies tested ahead and aft of the wing were larger, relatzve to wing chord, than those on which previous empirical rules (Refs.l and 2) had been based. The main type of aircraft with a long body relative to wing root chord is the transport aircraft with pressurnsed cabin, and the damensions of the models tested were based primarily on present-day designs with bodies consisting of a central cylinder of constant diameter, with an elliptic nose fairing, and a rear fairing tapering to a point. In order to make the investigation more complete, the programme was extended to include measurements with a deep body and with a wing of smaller aspect ratio. The effoot of wing sweepback was not included in the present investigation: a theoretical treatment of the effect of swoopback on body pitchang moment is given in Ref.9.

Some preliminary results have already been given in Ref.3, but these are all included in full hore, and the earlier note is now superseded.

Ihis report doscribes the tests made (Section 4), compares the results wath the answers obtained from existing methods of estimation (Section 5) and gives (Section 6) new rules for the prediotion of body ef'fects. To fachlitate use of the charts, a summary is given in Suction 7 of the methods to bo used and of their validity as found by comparang with exasting model data.

2 Range of tosts

Inft, drag and pitchang moment were measured over a range of ancidence for the followng model conditions. No fin, tail plane or naotlles were represented.
(1) Wing alone, aspect ratio $=10$ (large span wang) and 5 (small span wing).
(2) With and rithout cabin on onc body, length. All further tests made without caban.
(3) Body of revolution, 9 zn. max. dica. Large span wing ($A=10$). 4 front and 4 rear lengths:-Low-wing:- geometric wang-body angles of 0° and $4^{\circ}\left(i_{W}=2^{\circ}, 60\right)$. Mad-wing:- geometric wing-body angles of 0° and $4^{\circ}\left(i_{W}=2^{\circ}, 6^{\circ}\right)$. High-wing:- geometric wing-body angle of $0^{\circ}\left(i_{w}=2^{\circ}\right)$,
where $i_{w}=a n g l o$ between body axis and wing no-liftt line. Most of the low wing measuremonts wore made with wing root fillets fittod.
(4) Fillets of various shzes and reflex, tested on low wing, 9, ine dia. bodies.
(5) Turned-up-rear body, on low and high wing, several, rear body lengths, 9 in. dia. bodzes.
(6) Blunter nose falring, low wing, two front body lengths, 9 in. dia. bodies.
(7) 13.5 in . dia. bodies, mid-wing, two front and two rear lengths.
(8) 4.5 in. dia. bodzes, as (7).
(9) 13.5 nn . deep $\times 9 \mathrm{in}$. wide bodies, as (7).
(10) Small span wing ($\mathrm{A}=5$) 9 ino dia. bodies, mid-wing, two front and two rear lengths.
(11) Small span wing, 4.5 mn . dza, bodies, as (10).

3 Model details

The bodies of maximum diameter 9 in., on which the majority of the tests were made, are detailed in Table I and Fig.l. Comparative dimensions of several transport aircraft, which were used as a basis for the model dimensions, are given in table II. The models consisted of a straight-tapered wing of mean chord $9,9 \mathrm{in}$. and with zero sweepback at quarter-chord, and a central cylindrical portion of body of variable length, with end fairings. Both the four front and the four rear body lengths differed from one another by increments of 6.3 in. The nose fairing was a semi-ellipsoid of revolution, and the rear fairing a solid of revolution tapering to Ω point, typical of the shape found in practice. The same nose and rear fairings were used for all body lengths.

The cabin used for the preliminary test of cabin effect is shown in Fig.3. The body planform was unaltered by the presence of the oagin, and the disturbance in profile in side elevation was moderate, to conform with typical modern full soale design for a large aircraft.

The turned-up rear boay is shown in Fig.3. The original body planform was unaltered, and the now sidemelevation vas obtained by shearing the symmetrical fairing so that the top surface became horizontal.

The 9 in. wide $\times 13.5 \mathrm{in}$. deep body models are shown in Fig. 2 . The planform was the same as for the corresponding 9 in. dia. bodies. The 4.5 in . ami 13.5 in . dia. bodies (also shown in Fig.2) were formed by scaling the local diameter of the 9 in . bodies while leaving unaltered the fore-and-aft body dimensions.

Fig. 3 shows the small span w.ng. Except for details in tip shape, this was formed from the large span wang of aspect ratio 10 by halving all spanwise dimensions. The sweepback of the quarter-chord line for the wings was zero, and the section was 18% thack at the centre line and 12% at the tip, with 2% constant comber. The wing sections used, NACA 2418 to 2412, were chosen as having satisfaotory oharacteristios at the Reynolds number of the tests: 0.6×10^{6}, and are not typical of those used full scale.

Hig. 4 shows the wing root fillets tested on the low wing-body combinations. Three sizes were fitted, and these have been labelled "small", "medium" and "large". The size of the fillet likely to be fitted full soale would probably be "small" or "medium". The three sizes were made similar to one another, having equal increments of linear dimension between them. For the majority of the tests - the case oalled "normal" in the disoussion - the fillet upper surface was formed from circular aros tangential to body and wing surfaces; the
variation of arc radius with chordvase station followed a prescribed rule whzch was the same for all fillets. In the tests where the amount of fillet reflex aft of the wing trazling edge was altered; the fillets were cut and rotated about the wang trailing edge, and the gaps smoothed over with plasticene. The fillet lower surface was flat, and the fillet reflex angle, θ, is defined as the angle between this surface and the no-lift line of the wing. The reflex was (in general) 12° when $i_{w}=2$, and 16° when $i_{w}=6$ (i.e. the fillet was at the same angle' to the boay datum). The angle between the wing lower surfece near the trailing edge and the no-lift line was about 11 , so the angle between the wing undersurface and fillet undersurface was always small.

Wang-body angle was altered by rotation of the wing relative to body about the line containzng the quarter chord point of the wang centre-line chord. Since the wang chord incidence for no-laft was neasured as -2°, the two wring-body angles of 0° and 4° at which the tests were made correspond to aerodynamic wang-body angles of 2° and 6°, denoted by the symbol, 3_{w}, and this latter definition has been used throughout the discussion. This is shown diagrammatically in the lower paxt of Fig. 4 .

Initialiy a transition wire was fatied round the body nose faimang but thas was removed early in the tests, as it was found that by doing -so loss scatter was obtained on the patching moment readings and the mean lanes_through the points were not appreciably altered.

The tests were mado in the No. $1 \quad 11 \frac{1}{2} f_{2} \times 8 \frac{1}{2} f^{\prime} t$. wind tunnel at the R.A.E. between September 1947 and June 1948. The wind speed was 120 ft ./sec., which gave ${ }^{3}$ Roynolds number of 0.6×10^{6} based on wing mean' chord, or 0.85×10^{6} based on wang centre-line chord.

4 Test results and discussion

In this section the test results are presentod and discussed in relution to the series of systomatic tests to which they belong.

4.1 Test procedure and presontation of results

The wing was tested alono at regular intervals throughout the oxperiment and thus any changes in the datum characternstics could be detected. Such changos were very small. Fig. 5 and Table III show the results for typzal test runs on the large and small span wings.

The anoidence range oovered for the majoraty of the tests corresponded roughly to $C_{L}=-0.1$ to 0.7 , although in some cases readings were taken right up to the stall. Readings wore taken at about every $\frac{3}{4}$ deg. over most of the range,

Pitching moments are gaven about the mean uarter chord point. Coefficients were based on the aroa and mean chord of the wing planform with the wing continued in straught taper to the body centre-line, since the wing was of this shape whon the body was off. This allows the same definztions to be used for all, tests independent of body diameter or wing tacer. The front and rear body longths, donoted by the symbols m_{0} and n_{0}, are measured relative to the leading edge and trailing edge of thas oentre-line wang chord, c_{0}, for the same reason. For purposes of generalisation of the tust results, slightly modified def"initions of wing area and front and rear body length are stated in sootion 6 of this report, but no confiusion should arise as different symbols have been used
when the change in definition occurs; m_{0} and n_{0} and c_{0} are replaced by m, n and c, where $c=$ root chord.

Measurements of C_{m} for the wing alone were subtracted from the volues of C_{m} for the wing plus body at the same value of C_{L} in order to obtain ΔC_{m} due to the body. Some typical $C_{m}-C_{I}$ and $\Delta G_{m}-C_{L}$ curves are given in $F 3 \mathrm{~g} .7$ to illustrale to what degree the curves aro straight; the slope used to define $-\Delta \mathrm{K}_{\mathrm{n}}$ due to the body is that at low C_{L}. The experimental aocuracy of $\quad \Delta \mathrm{K}_{\mathrm{n}}$ is about $\pm 0.002 \mathrm{fo}^{2}$. the majority of the tests: in the fow oases where some scatter occurred, repetition of measurements did not mprove the accuracy.

For the main bulk of the tests, the results are given as $-\Delta C_{m_{0}}$ and $-\Delta \mathrm{K}_{n}$, the change in pitshing moment at no lift and the shif't in aerodymamic centre, due to adding the body.

In order to simplify the presentation of the results, the following notation has been adopted:-

Front body lengths are numbered $1,2,3$ and 4 shortest to longest, and rear body lengths aro numbered similarly. This is shown in Table I and Fig. 1 .

To define a given model combination, the numbers are written down together, front body first; thus, $(1,2)$ means wing with front body length No.l and rear body length No. 2 .

4.2 Preliminary test on effect of cabin

The cabin, illustrated in Fig, 3, gave a shift of aerodymamic centre of $0.002 \bar{c}$, destabilising, and changed C_{m} by -0.0025 . This result is recorded in Table VII. Sincc these effects were so small, it was decided to make all further tests with the symmetrical body of revolution as nose fairing.

4.3 Effect of body and fillets on C_{I} and $C_{I} \max$

In Fig. 6 it is seen that wing heaght has no effect on the lift curve for $i_{w}=2^{0}$ over the rango used for the pitchang moment measurements. The fillets alter the lift slope slightly. With $i_{W}=60$, these effects are larger.

The results show no inllet is needed except for the low wing position, and that a larger fillet, is needed with the low wing-body angle than with higher angle.
4.4 Change in aerodynamic centro position due to body $\left(\Delta K_{n}\right)$
4.4工 ΔK_{n} for bodies of revolution, 9 ine dia., large span wing, no filluts

This group contains the majority of the tests made.
The aerodynamic centro movement duc to body, without fillets, for the three wing heaghts and two wing-body angles is given in Table V, and plotted in Fig. 8 against front body length; this length is expressed as a multiple of wing centre-linc chord ($c_{0}=13.5$ in.) in order to give a sensc of the model proportions.

In Fig. 8 the same two dotted lines are drawn through each set of points, and represent the mean values for all the cases for rear bodies (I) and (4) respeotively. It is seen that ΔK_{n} due to body is practically independent of wang heaght and wang-body angle. This is supported by the tests with fillets at two wing-body angles (Section 4.6).

Fig. 8 also shows that there is a linear relationship between ΔK_{n} and front body length, the body having a destabilising effect. The roar body length is of much less importance; within the accuracy of the tests this is also linear, and increase in rear body length also destabilises.

The full set of body lengths in the low-wing aase was only tested with the "medium" fillets fitted, bcoause some sort of fillot is invarıably fitted in actual practice (see Section 4.6).

$$
4.42 \frac{\text { Effoct on } \Delta K_{n} \text { of turned-up rear body (9 in. dia., large }}{\text { span wing) }}
$$

The effect was found on high wang and on low wing with fillets. The results are given in Table VI. The offect is to cause a numerical reduction in $-\Delta K_{n}$ of about 0.005 , andependent of roar body length.
$4.43 \frac{\text { Effect on } \Delta K_{n} \text { of alternng nose shape (} 9 \text { in. dia. body, }}{\text { large span wing) }}$
Table VII gives the results of scme brief tests made to compare the standard elliptac nose fauring of length 16.2 in., as used for the masjority of the testa, with an appreciably blunter fairing, also elliptic, of length 7.2.in. The nose shapes are compared in Fig. 3 . The total body-front leagth remanned the same.

The change in $-\Delta \mathrm{K}_{\mathrm{n}}$ amounts to 0.009 for the shorter front length (1), and 0.007 for the longer front length (3), the body being more destabilising for the blunter nose fauring than wath the normal fairing, for the same overall front body length.
4.44 Effeot on ΔK_{n} of varying body diameter and depth

The 4.5 in . ard 13.5 in . dia, and the 9 in . wide $\times 13.5 \mathrm{in}$. deep bodies illustrated in FIg. 2 were tested with the mad wing at one wing-body angle for two front lengthis and two rear lengths. To obtann an accurate overall comparison the corresponding models of 9 in. dia. were tested again at the same time. Similar tests wore made on the 4.5 in . and 9 in . bodies using the smaller span wing. The results are compared in Table VIII and plotted in Flgs. 9 and 10 for the large and small span wings respectively.

The results may be summarised:-
(a) The $9 \times 13.5 \mathrm{in}$. bodies give values of $-\Delta \mathrm{K}_{\mathrm{n}}$ which on the average bre 7% numerically larger than the corresponding 9 In. dia. body values, showing that inorease of body depth has very little overall effect, so ' that body destabilising depends'almost entirely on planform.
(b) ΔK_{n} varies approxamatciy as $D^{1.6}$ for the range of diameters tosted. The ratios are given in Table VIII, which shows they are independent of body length and are the some for both the large and the small span wings.

The effect of wing span is considered furthcr in section 5 below.

4.5 Ohange in the value of $\Delta \mathrm{C}_{\text {mo }}$ due to body

$4.51 \Delta 0_{m_{0}}$ for bodies of revolution: 9 in. dia., large span wang, no fillets

The, change in $C_{m_{0}}$ due to body without fillets for the three wing heights and two wingmbody anglos is given in Table 5, and plotted in Fig. 11 and 12 against total body length L. This parameter is used rather than front body length (used for graphs of $\Delta \mathrm{K}_{n}$) beoause front and rear body length are found to be of the same order of importance for $\Delta \mathrm{g}_{\mathrm{o}}$; the length L is plotted as a multiple of wing centre-line chord, oo. Only a few points with low-wing were obtained without fillets, the full range being tested with fillets (see 4.6).

In Fig. ${ }^{1 l}$, where the no-fillet results for the three wing heights are compared at one wing-body angle, $i_{W}=20$, the points for high wing lie on the graph in a pattern not unlike a parallelogram (exoept for body (4,4), in which case the point is low). The farst short series on the mid-wing (set A) Ine fairly well on a line, except for (1,4) and (2,4), which are low. The second short semes (set B-made as a cheok test at a later stage) gave points lying in a narrow parallelogram formation. The two sets are shown superimposed in the lower part of Fig.12. In the case of the lowwing, the few points obtanned lie on a strazght line except for (3,4) and (4,4), which are low.

There is thus a sequence from low wing to high wing. The straightline formation of the low-wing semes means that $\Delta \mathrm{C}_{\mathrm{mo}}$ is independent of wing fore-and-aft position of the body. As the wing moves higher up the body, the contribution to $\Delta \mathrm{C}_{\mathrm{m}_{0}}$ of the rear body becomes less (slope of constant-front-length line decroases) while the contribution of the front body becomes more (slopo of constant-rear-length line increases). In all cases the longest rear body, No. 4 , shows signs of contributing proportionately too little to $\Delta C_{m_{0}}$ compared with shorter rear body lengths. The duality of the results for mid-wing suggests a small degree of instability of the flow over the rear body, as if this is a borderline case between two different regimes of flow.

The effect of wing helght on the rear body contribution to $\Delta_{m_{0}}$ an be explanned by referonce to the diagrams of Fig. 13. In the oase of the low wing the wing wake missec the rour body, and as the wing moves from Iow to high posction, the wing wake moves up over the rear body. This is because, at zero lift, the body is nose down. In the high-wing position we may expect the wing wake to decrease the rear body lift by thiokening the body boundary layer, and to replace it by an increased drag force. The lift and drag on the front body will not be affected by the position of the wang. Tho moment axms of the lift forces are independent of wing heaght, but the drag moment arms depend on wing height, as shown in Fig.13. Thus, on changing from low-wing to high-wing, front body nose-dow pitching moment is reinforced due to increase of drag moment arm, while rear body nose-down pitching moment is reduced due to decrease of lirt, It is impossible to say what the effect of rear body arag is, as it depends on the length of the moment arm and the amount of drag increase.

The aerodynamic centre was not affected by wing height because the whole contribution of the rear body to ΔK_{n} is so small that changes would hardly be noticed, while the suggested change in front body drag anm will not appreciably affect ΔK_{n} if the increase in front body drag with body incidence is small.

The explanation given above is oniy suggested as satisfyang the observed results, and it has not been substantiated experimentally. However, the sensitiveness of the flow over the rear body to disturbang influences in the position of the wang is illustrated by some tests described in Ref.4, where the patching moment and lift on an inclined torpedo were appreciably different whth a thin ware or central spindle suspension.

In Fig. 11 , the lines joining (1,1) $(2,2),(3,3)$ and $(4,4)$ for high and mid wing (B), and the mean lines through the points for má wing, set A, and low wing, all lie close to one another. Thus the effects described are relatively small and to a first approximation, $\Delta G_{m_{0}}$ due to body is independent of wing height.

In Fig.12, where the effect of wing-body angle is shown for mad wing, the points at $i_{w}=60$ form a parallelogram with values closely equal to 3 times the corresponding values at $i_{w}=2^{\circ}$. Thas as shown clearly by Fig. 14 where some of the values of $-\Delta c_{m o}$ are cross-plotted against \dot{i}_{w}, including the three cases measured with low wing, no fillets.

This inducates that $\Delta C_{m_{0}}$ due to body varies directly with i_{w}, the angle between body axis and wing no-lift line. This result is supported by the tests doscribed in Ref.l7.
$4.52 \frac{\text { Effect on } \Delta G_{m_{0}} \text { of turned-up rear body (9 m. dia., large }}{\text { span wang) }}$

The cases testod with turned-up rear body are compared with the corresponding symmetrical boducs in Table VI and Fig.17. The effect is to decreasc $-\Delta G_{m o}$ numerıcally. Icc. give a nose-up pitchang moment. Tho change varies from 0.0015 to 0.0085°, the value increases with rear body length, and thore is a tendenoy to inorease with wing-body angle:

$$
\text { 4.53 Effect on } \Delta \mathrm{Cm}_{\mathrm{o}} \text { of allering nose shape (9 in. dia. body,' }
$$

On replacing the standard nose fazring by a blunter nose, as described in section 4.43, the nogativo (nose-down) pitching moment due to body, $-\Delta \mathrm{C}_{\mathrm{m}}$, is numerically increased by 0.0027 for the shorter front body longth (1), and by 0.0022 for the longer front length (3).
4.54 Effect on $\Delta \mathrm{C}_{\mathrm{m}_{0}}$ of varying body dzametor and depth and wing span

The 4.5 in. and 13.5 in. daa, und the 9 n. wide $\times 13.5$ in. deep bodies illustrated in Frg. 2 were tested with the mid wing at one wingbody angle for two front and two roar longths. To obtain an accurate comparison, the corresponding models of 9 zn . dia. were tested again at the same time. The rosults are compared in Tablo VIII and plotted in Fig. 15 and 16 for the largo, and small span wings respectively.

The results may bo summarised as follows:-
(a) The 9×13.5 in. bodses gave values of $\Delta G_{m_{0}}$ on the avorage 10% larger numerically than the corrosponding 9 n. dia. bodies. This shows that increase of body depth has $l_{2} t t l e$ effect, so that body pitching moment depends moinly on plunform.
(b) The effect of body size does not in this case follow a simple power law. The ratios are given in Table VIII. The values for the 9 in. dia. and 4.5 in. dia. bodies are in proportion to $D^{1.6}$ for the large span wang, but for the small span wing the variation is as $\mathrm{D}^{l} .2$; the variation between 9 in . and 13.5 in . dia. bodies on the large span wing is in excess of D^{2}.

The effect of wing span is considered further in section 5 .

4.6 Effect of wing root fillets on $\Delta \mathrm{K}_{\mathrm{n}}$ and $\Delta \mathrm{G}_{\mathrm{m}_{0}}$ (low wing)

Various tests on wing root fillets were made with low wing, using the 9 in. dia. bodies and large span wing. The measuruments can be grouped as f'ollows:-
(1) "Medium" fillets, complete set of front and rear body lengths at two wing-body angles, the inclination of fillet to body being constant (Table IX).
(2) A few tests with "small" and "large" fillets, with various body lengths (Table X).
(3) Effect of altering reflex of "modium" fillets (Tuble XI).
(4) Effoct of varying fillet oross-scotion (Tuble XI),

In each case the model had similar fillets in port and starboard wing roots.

The fillets havo been describod in seotion 3 and are jllustrated in Fig. 4 - For group (I) above, the fillet lower surface was reflexud at 10^{8} to the body axis for both wing-body angle settings, so that the reflex relative to the wing altercd by 4° in changing rrom $i_{w}=2^{\circ}$ to 6° (reflex angles, θ, $=12^{\circ}$ and 16°).
(a) Fillet size $-\mathrm{K}_{\mathrm{n}}$

Fig. 18 gives the measurements wi.th modium fillets at two wing-body angles. The mean results without filluts are plotted for comparison. If mean lines are drawn for rear bodies(1) and (4), in the same manner as was done for all the values of $-\Delta \mathrm{Kn}_{\mathrm{n}}$ wathout fillets on Fig. 8 , it is scen that the fillet offect is to alter K_{n} by about 0.015 (stabilising), and that this is andependent of body length and wing-body angle.

The individual readings, using the mean values without fillet as datum, are given in Table XII.

In Table XII (but not plotted) are results for the large and small fillets, giving the change in $-\Delta K_{n}$ as 0.018 and 0.006 respectively. It should be noted that the large fillet was tested in one case only, and that the value obtained is smaller than would be expected. Repeat values without fillet showed some varmation, and in this case the mean curve used as zero may not be giving the correct rosult. This fillet is larger than would be used full soale, and will not be considured further.
(b) Fillet reflex:- K_{n}

Table XII shows that angle of reflex has no effect on ΔK_{n} due to fillets.
(c) Fillet thicknoss:- K_{n}

Table XII shows that ther are anoreasos in K_{n} when the fillet shape is changed from its normal deangn, both when it is fattened or reduced to a flat plate councident with tho fillot lower surface. The increases in K_{n} arc rospoctively 0.008 and 0.018 . The changes in fillet shape are illustratod in Fig. 4 .

$$
\begin{equation*}
\underline{\text { Fillet size: }-\mathrm{C}_{\mathrm{m}}} \tag{d}
\end{equation*}
$$

Fig. 19 shows the mexsurements of $\Delta \mathrm{cm}_{\mathrm{m}}$ duc to body wath small and medium fillets, together wh the poants for no fallots ruproduced from Table V. The onc point for lurge fillets, given in Table X, is omitted. It is seen that, whereas the offect of fillets on K_{n} is small and independent of refiex, body length and wing-body angle, the effect on C_{O} is comparatively large, and varies with body length and wing body angle. In Fige19, while the no-fillots case for low wing gave points lying more or less on a straight linc, the offeot of fillets is to open out the points into a parallologram formation, as proviously notioed for high wing, no fillets (fig.ll). One explanation would be that the cadition of fillets causes a disturbance of the fllow over the ruar body in the sanc waly as was previously suggested for the wing wake if the wing was high on the body; the negative lift in the wing root may also be causing an upwash over the rear body, honce a dowward pitching moment proportional to body rear length. The change of Cm_{0} aue to fillets is given in Table XII.

The small discrepanoies between the "medium" fallet moasurements in Tables IX and XI for bodies (1,2) and (1,4) are presumably due to the fillets not being replaced at exactly the somo angle in the two series of tests.
(e) Fillet reflex:- Om_{o}

The results are given in Tablos XI and XII and plotted in Fig. 20 against angle of reflex relative to wang no-lift line, θ. It can bo scen that there is a linear relationshap with angle of reflox, and the results are independent of body angle relatavo to wang.

$$
\begin{equation*}
\text { Fillet thickness:- } \mathrm{C}_{\mathrm{m}_{0}} \tag{f}
\end{equation*}
$$

The results are gaven in Tablos XI and XII and aro plottcd in Fig. 20 against θ. It as now apparent that, on the smatll amount or' evidenco avarlable, the flat plate points lie on a line passing through $\theta=0$, whale the normal-thickness fillets and fillet-out fillets form a.series, showing that fillot thokness, i.c. cambor, is a separate parameter to be added to the flat plate results.

An, attompt to dcrive generalised formulae from these results is discussed in section 6.2 and 6.4°

5 Comparison of results with existang methods of ostimation

5.1 Existing methods of estimating $\Delta \mathrm{K}_{\mathrm{n}}$ duc to body

An analysis due to Warren (Ref.l) of collected experimental data was based on a comparatively small range of front and rear body lengthe, and no attempt could be mode from tho avollable rosults to separato out the effects of body planform, wing aspoct mtio or fillets.

The systematic series of tests described in this report has shown that the rear body effect is much smaller numerncally than Ref.l suggested, and has the opposite effect; increase of rear body length increases the destabilising effect to a small degree instead of reducing it. Noreover, it is now, seen that ΔK_{n} due to body is not directly proportional to body width, as Ref.l supposes.

A purely theoretical` approach to the problem was made by Multhopp (Ref.5) and considered in more detail by Schlichting (Ref.6). The method is briefly revzewed, in its application to the present modelis, in Appendix I. This theory states that in a purely potential ficld of' flow both the front and the rear parts of the body are destabilising, and if there were no curved field of flow due to the circulation round the wing, a geometrically similar front and rear body would produce equal additive effects: however, due to the wing lifft, there is an upwash which increases the contribution of the front body, and a downwash which deoreases the offeot of the rear body. The result $2 s$ to make the front body the dominating parameter, while the rear body, although still contributing in the same sense, is comparativcly unimportant.

The values of $\Delta \mathrm{K}_{\mathrm{n}}$ duc to body aro ustimated by this theory in Appendix I, and plotted in Fig. 9 and 10 in comparison with the test results for the mid-wang modils with the three body diameters and two wing aspect ratios. It will be seen that the 9 in . diametor models give measurements in close agrement with the thoory - the uffect of increase of rear body length is accurately reproduced - but there is bad disagreement for the 4.5 mn . and 13.5 zn . diemeter models. This is begause in practice the vamation with body diametor followed roughly a $D^{1.6}$ law (see seotion 4.44), while the potential flow theory gives a D^{2} law. It appears, therefore, that the agreement between theory and practice in the case of the 9 zn . diameter model is a coincidence.

The theory states that ΔK_{n} due to body is independent of body depth, and depends entarely on body planform. The results of section 4.44 show that this is nearly borne out in practice.

The small effect noted on turning up the rear ond of the body (section 4.42) would not be expected from the theory.

The calculated increases in ΔK_{n} for the 9 in , diameter bodies on substituting the blunt nose fairung for the standard nose fairing are 0.008 for both front bodies (1) and (3), with the longer front body giving a slightly smaller valuc than the shorter body. The measured values were 0.009 and 0.007 for the shorter and longer front bodies respectively (see 4.43).

On halving the wang span, \vec{c} is left unchanged, S is halved, the upwash and downash flelds due to wing lif't are altered, and the wing lift slope is changed. Carrying out the oalculations outlined in Appendıx I, the theoretical values ΔK_{n} due to body for the two wings would be in the ratio 2.7 for all body lengths and diameters. The test results are seen in section 4.44 and Table VIII, to give ratics varying between 2.3 and 2.5.

There is no existing theory or analysis of fillet effects with which to oompare the present model data.

5.2 Existing methods of estimating $\Delta G_{m_{D}}$ due to body

The analysis due to Haile (Ref.2) separated the low, mid and high wing cases into three different empirical relationships. Tho data used in the analysis suffered, as in Ref.l, from the smallness of the range
of body length, and a miscellaneous array of body sizes and fillets.
The results of the prosent systematic tests have shown that wing height is not an important variable so long as fillets are not fitted (Section 4.51) and that fillet effects may be considerable and should be conszdered as a separate varmable (Section 4.6). The results now obtained without fililets lie to a first approximation about 50% above the line given in Ref. 2 for mid-wing.

The theoretical analysis of Ref. 5 and 6 already descrabed in Section 5.1 and outlined in Appendix I gaves the resultt-

$$
\Delta \mathrm{c}_{\mathrm{m}_{\mathrm{O}}}=-\frac{2 i_{\mathrm{w}}}{\mathrm{so}} \cdot \mathrm{Vol},
$$

i_{w} being in radians, where vol. is the volume of the solid of revolution having the same planform as the boay. The rosult is independent of wing fore-and-aft position on the body.

The values of ΔG_{m} due to body are estimated by this formula in Appendix I and are plotted in Fig. 15 and 16 in comparison with the test rosults for the mid-wang moduls with the throe body diameters and two wing aspect ratios. It will be seon that the exporimental results for the 9 in . and 13.5 in . diamoter models lic well below the theoretical, being only about 0.5 of the ostimated values. The expurimental results for the 4.5 in . bodios agroo more noarly wath the theoxy (factor about 0.7). The amount of the disorepancy varies because the theoretical values follow a D^{2} law, inherent in the volume term, while the experimental values do not. The theoretical formula gives points all lying on a single straight line, independent of wing fore-andaft position, while the experimental values only approximate closely to a straight line law for the case of the low wing (Fhg.il).

The theory states that $\Delta C_{m_{0}}$ due to body is independent of body depth, and depends ontirely on body planform. The results of seation 4.54 show that this is approximately borne out in practice.

The small effect noted in the experiments on turning up the rear end of the body is not covered by the theory, which only considers a long straight body.

The oalculated change in $\Delta \mathrm{C}_{\mathrm{m}_{0}}$ on substituting the blunt nose for the normal longer nose is -0.0041 . The measured values (see Section 4.53) are still relatod to the calculated by the factor of about 0.5 noted already for the whole $\Delta \mathrm{C}_{\mathrm{m}_{\mathrm{O}}}$ due to body for 9 in . dzametor models.

The theory states a direct proportionality to aerodymamic wingbody angle, i_{w}. It was shown in Section 4.51 and Fig. 14 that this was in fact true in practice.

On halving the wing span, $\stackrel{\circ}{\circ}$ is left unchanged and S is halved, so that theoretically the values of $\Delta \mathrm{c}_{\mathrm{m}_{\mathrm{O}}}$ due to body aro exactly doubled. The expermental values (Soction 4.54 and Table VIII) give a multiple varying between 1.9 and 2.8 , with a mean value of 2.2 .

There is no existing theory or analysis of fillet effeots with which to compare the present model data.

Up to now we have been concerned purely wath the results obtained in the present series of systematic tests. An attempt is now made to generalise the results in a non-dumensional form suitable for the prediction of body effects on other aircraft designs.

In Section 5 it was shown that the simple potential flow formulac of Ref. 5 and 6 are in some respeots supported closely by experiment, but in other respects, notably the variation with body diameter, the theory needs modification. Therefore, in the following analysis, the potential flow theory has been used as a basis where convonient and cmpimeal curves have been derived to tie up theory and experiment.

Finally, charts are given for prediction purposes in Figs. 22 and 23. Previous od hoc exporimental results are compared in Appendax IV with the values estimated by the mothods derived here, for a number of aircraft models. There have not been many suitable tests made, and more data would be valuable, especially on fillet effects.

The methods of prediction derived here are summarised in Section 7 .
6.1 Generalisation of the measured ΔK_{n} due to body (no fillets)

As explazned in Appendix I, a simple theoretical value of ΔK_{n} due to body can be obtained from Ref. 5 and 6 in the form

$$
\left.\Delta K_{n} \propto \frac{-D_{D}^{2}}{a S \bar{o}}\left[\left(\frac{m}{o}\right)\left(\frac{d \beta}{\mathrm{~d} \alpha}\right)-\text { (nose taper effect }\right)+(\text { rear body effect })\right]
$$

The second and third terms are both small compared with the first; the second term is nearly independent of $\frac{m}{c}$, while the third term is oompletely independent. This theoretical expression has been used as a basis of the present analysis.

It was seen in Fig. 8 that mean valucs of ΔK_{n} oould be taken independently of wing-body angle and wning height, with no appreczable loss of accuracy. These mean values for the 9 zn . diameter bodies, and the mad-wing values for the 4.5 in . and 13.5 in . diameter bodies - all without filliets, and on the large span wing of aspect ratio 10 - have been expressed in a form suggested by the theorctical fomula quoted above:-

$$
\Delta_{10}=-\Delta K_{n} \cdot \frac{\mathrm{as} \overline{\mathrm{c}}}{\mathrm{cD}^{2}}
$$

The values of Δ_{10} are given in Table XIII for the three body diameters, and the values for the 9 nn . diameter bodies only are plotted

The ratios, k, of the values of Δ_{10} for 23.5 in. and 4.5 in . dameter bodies to the corresponding 9 In. diameter bodies, are also given in Table XIII, and it will be seen that, within the accuracy to be expectedifrom the oraginal measurements, the values of k are independent of body length.

This analysis is repeated in the same Table for the resul.ts on the small aspect ratio wing $(A=5)$. The values of Δ for $A=5$ are written Δ_{5}.

It is now possible to plot in Fig. 22 (Iower right-hand side) the factor, k, which correlates empirically the variations with body diamoter ratio, D / c. It is neoessary to treat body diameter an a non-dumensional form, and root chord o has been choson for convenience. The factor k is seen to be independent of ving aspect ratio.

At the foot of Table XIII, the results for tho two wing spans are oompared in the ratio $\frac{\Delta 5}{\Delta_{10}}$. This ratio is seen to be practically the same for all body lengthso In the lower lef't-hand part of Fig. 22, the values of the ratio aro plotted against wang aspect ratio A. The dottod line shown is the theoretzcal relationship connecting Δ_{A}, for any aspect ratio, and Δ_{10}, and gives us a guade to the correct curve connecting the points for $A=5$ and $A=10$, so that the experimental results can be presented in the generalisud form $\frac{\Delta_{A}}{\Delta_{10}}$.

In order to complete the generolisation of the results, a modified version of Fig. 21 is derived as follows:-

The curves of $\operatorname{Fig} \cdot 21$ cannot be produced indefinitely towards the origin without modification hecause the nose of the body tested vas rounded off elliptically throughout the first 16.2 In . of its length; this is equivalent to $\frac{\mathrm{m}}{\mathrm{c}}=1.26$ (the actual value varmes slightly with small changes in c for various wing-body combinations). Obviously the existing curves of Fig. 21 must be modified for $\frac{m}{a}<1.26$, because shorter front body lengths must have shorter nose fairings. We may

[^0]safely assume that the whole of any front body length with $\frac{\mathrm{m}}{\mathrm{c}}<1.26$ oonsists entirely of nose farrang; the error involved is likely to be very small. It was seen (Section 4.43) that, when the length of the curved part was shortened from $\frac{m}{c}=1.26$ (i.e. $m=16.2$ in.) to $\frac{m}{c}=0.56$ (the equivalent of 7.2 in.), the total front body length being unaltered, then the moan change in ΔK_{n} on the 9 in. diameter bodies was 0.008 . This in terms of Δ_{10} is equivalent to 0.35 . Hence, in Fig. 21 , the position of the lines at $\frac{m}{c}=0.56$ is obtained by extrapolation of the present lines down to this point, with an addition of 0.35 to the corresponding values of Δ_{10}. This gives sufficient guide for drawing the ourve for low $\frac{\mathrm{m}}{\mathrm{o}}$. The required extrapolation is shown by the dotted line of Fig.2l.

A similar trouble amses for valucs of $\frac{n}{o}$ less than 2.1 , because the last 27 in. of the models formed a fouring tapering to a point. Rear body lengths shorter than this would have to be blunter. We have no experimental measurements to use, but sance the theory of Ref. 5 was seen in Seotion 5.1 to gave a good estamate of rear body effeots on the 9 in. diameter bodies, we can use the calculated values with sufficient accuracy to obtain the lines of Δ_{10} for $\frac{n}{c}=1$ and $\frac{n}{c}=0$.

The upper half of Fig. 22 shows the values of Δ_{10} for the 9 in. diometer bodies replottcd in chart form suitable for general use. The actual experimental values of $\frac{n}{0}$ have been roplaced by round numbers to facilitate use of the chart.

Summarising, the calculated value of ΔK_{n} due to a body of revolution $a s$ given by

$$
\begin{equation*}
\Delta K_{n}=-\Delta_{10} \cdot\left(\frac{\Delta_{A}}{\Delta_{10}}\right) \cdot k \cdot \frac{c D^{2}}{a S c} \tag{I}
\end{equation*}
$$

where $\Delta_{10},\left(\frac{\Delta_{A}}{\Delta_{10}}\right)$ and k are read off the curves of Fig. 22, " c " is the root chord, at the junction of wing and body, "a" is the lift slope per radian, and D, it is suggested, is taken as the body diameter (or width) at the position of the wing leading edge; because, in the ase of the body which does not have a constant diameter, the value of D should refer to front body rather than rear body since rear body effects on ΔK_{n} are of a secondary order.

The other variables in body shape not yet considered are:-
(a) Body depth. The results of 4.44 suggest that 7% might bo added to ΔK_{n} for round bodzes, if the depth is increased by 50%. Hence the rule

$$
\begin{equation*}
\Delta K_{n}=[\text { round body value of equation (1) }] \times\left[1+0.15 \frac{(h-D)}{D}\right] \tag{2}
\end{equation*}
$$

where $\frac{h}{D}=$ body $\frac{\text { depth }}{\text { width }}$ ratio.
(b) Cabin. The efroct was nogligible for the shape tested. (Section 4.2).
(c) Turned-up rear body. In 4.42 it was seen that $-\Delta \mathrm{K}_{\mathrm{a}}$, due to body was decreased by 0.005 for any body longth. This can now be generalised by making this equavalent to a decrease in Δ_{10} of 0.22 for a fully turned-up rear. The effect is smoll, and an intermediate degree of sweep-up could be dealt wath by interpolation.
(d) Difforent body nose planform. Blunter noses have already been considered; the changes described in Section 4.43 only resuited in a very small change in K_{n} due to body. It was seen in Section 5.1 that the potential filow thoory of Ref. 5 and 6 gave this small change closely and, andeed, the theory agreed quate well with the model valuos of $\Delta \mathrm{K}_{\mathrm{n}}$ for the one case of the 9 in . diametor bodies on the large span wing. Thas usefui résult suggests that the effect of a very different nose-shape e.g. the long pointed cone of a supersonic body, could be calculated with sufficient accuracy by the mothod outlinte in Appendux I so long as the result is applied in the form Δ_{10} so as to make it subject to the omparical rules for body diamctcr and wang aspect ratio varnations.
(e) Dafferent Dody rear planform. The contributaon of the rear body tc K_{n} as so small that ve car safely agnore dafferences in rear body planform.

6.2 Generalisation of tho measured ΔK_{n} due to fillets

The test results 0 fi 4.6 shownd thot the fillet effoct is small and is independent of wirgebody angle, angle of reflex and body lengith. It Is thercfore basically a function of planform geometry of the wing, body and fillet. If we consider the fillict to act as a rearward oxtension of the wing, and assume the of rect to be carried right through the wing, an approximate expres sion can be calculated for the rearward shift of the wing mean quartor ohord pointe the calculation is given in Appendux II. Thas formuia is seen in Appendax IV to agree satisfaotorily with tho systomatic los's nodol rosults for the "small" and "modium" fillets, but breaks down for the one lest rosult whth "large" fillcts.

The test results with flat plate and extra-thick fillet do not give enough informatinn to make any generalisations about the effect of fillet thickness. Quite possibly the effect observed with the flat plate fillet was duo in part to a wake from the wing-body junction affecting the flow ovex the rear part of the body.
6.3. Genuralisation of wh measured $\Delta \mathrm{Cm}_{\mathrm{m}}$ due to body - no fillets

Since, for all bodies without, fallets, there was no measurable ohange of zero Infi angle compared with the wing alone, the wing itself is at zero lift, when we are measuring $\Delta \mathrm{Cm}_{0}$ due to body. Therefore the only effectis the wing san have are interference effects due to the velocity inoremont round the vang (likely to bo neglagible) and due to the wake and distortion of the flow over the rear part of the body: Thas lutter could be observed when low-, mid- and high-wng oombinations were comparud in section 4051. There was an effuct which varied with wing heighi, bus the differencos in the value of $\Delta 0_{m_{0}}$ for a given body front and roax longth were quate small. The fifth column of Table XIV gaves the mean values of $-\Delta C_{M_{0}}$ for $\dot{I}_{W}=2^{0}$ for the three wing heights on the boaics of jevolution. The greatest error in taking a mean is only $0.00{ }^{\prime}+$ in the worst case, and most of the original values are much closer to tho mean than this.

Apart from the interference of the wing on the body at $C_{L}=0$, the only parameters controiling the results must be the dimensions of the bodies themselves. In order, therefore, to present the values of $\Delta G_{m_{0}}$ in a form independent of wing dimensions, and since we know they are proportional to I_{w}, the function f has been tabulated in the last two columns of rable XIV where

$$
f=\left(-\Delta \mathrm{c}_{\mathrm{m}_{0}}\right) \times \frac{\stackrel{\mathrm{So}}{\mathrm{VoI}} i_{\mathrm{w}}}{\text { Vol }}
$$

where Vol. = volume of body of revolution.
This form was suggested by the theoretzcal values for $\Delta C_{m_{0}}$ (sce Appendix I). We have omitted considcration, for the time being, of the deep bodies tested or the bodios with turned-up rear part, and of the wing root fillets.

The values of f for the three body diameters, the two wing-body angles and the two wing aspeot ratios have been plotted in Fig. 23 against the body fineness ratio L / D where $L=$ total length of body and $D=$ body maximum dianeter.

It will be seen that the three diameters form a series giving values of f which increase with L/D. For the 9 in. diameter bodies the points with wing aspect ratio $A=5$ lie a little below those for $A=10$, while on the 4.5 nn . diameter bodies the reverse is the case. It can thurefore be concludud that wing aspeot ratio has no predictable effect. The points for the 4.5 in , bodies are rather scattered, but the volume is smallest for thas casc and therefore experimental scatter shows up most here. The lines in Fig. 23 join points wath constant N/D, where N is the rear body length measured from the wing quarter chord point. Thzs is chosen as the point of reference for rear body length because the wing affeots the pitching moment on the body only by distorting the flow over the rear body. It would therefore be wrong to express rear body length as the distance, n, from wing trailing edge, since this would erroneously bring the numerical dimensions of the wing chord into the analysis.

It is seen in Fig. 23 that the values of N / D ancrease faurly consistently from lef't to right across the graph.

The physical 'interpretation suems to be that, the greater tho body fineness ratio L / D, the nearer tho actual values of $-\Delta C_{m_{0}}$ due to body approach the theoretical ${ }^{5}$ value in potential flow of $\frac{2 \mathrm{Vol} . \mathrm{i}_{\mathrm{W}}}{57.3 \times \mathrm{Sc}}$, which is equivalent to $f=\frac{2}{57.3}=0.035$. Also, for a given overall length of body, the larger the roar body arm N the more the measured value of $\Delta \mathrm{m}_{\mathrm{m}}$ falls below the theoretical.

This variation with N, i.e. with point of reference of pitching moment, is not large, and the variations obsorved in Fig. 23 due to change of wing-body angle or aspect ratio, are nearly of the same order of magnitude. Therofore a single line as drawn in Fig. 23 seems a sufficiently accurate generolisation.

$$
\begin{equation*}
\text { Thus } \Delta \mathrm{G}_{\mathrm{m}} \text { due to body }=-f \cdot \frac{\mathrm{Vol} \cdot \mathrm{i}_{\mathrm{W}}}{\text { So }} \tag{3}
\end{equation*}
$$

where f is read from the straight line of Fig. 23 .

Comparison with avaclable ad hoc data is made in Appendix IV where it is seen that this generalisation underestimates in most cases considered.

The fact that there is an appurent small variation with N / D in Fig. 23 for a given L/D might noed further conslduratz on in the case of aircraft with highly swept back wings, because the question arises as to whether N is being measured from the C oG. on from the wing root quarter chord point (whioh were coincident on the systcmatic test model).

The other body varables covered by the prosent sermes of tosts are:-
(a) Body depth The results of Section 4.54 suggest a rule to add 10% to the values estimated for bodues of revolution if the depth is 1.5 times the width.

Thes givos the formula

$$
\begin{equation*}
\Delta G_{m_{0}}=[\text { round boay value from oquation (3) }] \times\left[7+0.2\left(\frac{h-D}{D^{1}}\right)\right] \tag{4}
\end{equation*}
$$

where $\frac{h}{D}=\operatorname{body} \frac{\text { depth ratio. }}{\text { wicith }}$
(b) Cabin. The effeot of the cabin tostad (Section 4.2) was very small. Further experamental values are avalable in Ref.c7.
(o) Turned-up rear body. The measured values (Section 4.52) sufirer from experimental scatter. Comparison of the change in Cm_{m} due to turning up the rear body, wath the corresponding no-finllet values of $10 \mathrm{~m}_{\mathrm{o}}$ due to body suggests that the effeot could be represented by reducing $-\Delta m_{0}$ numerically by one fifth. The effect is small and the rule seoms sufficiently accurate, even if it has no physioul feandation.
(d) Body nose vamations. As discussed in 5-2, the effoct of nose shape varlations follows the same rulc as that; of the whole body, both being related to the potential flow ostamate by the sumo empimeal factor. Hence the oharts of Fige 23 automatically znclude any noso shape variation (symmetrical) in the volum of revolution. No data are available on the effect of turned-up or turnedwdom nose fayrings.
(e) Different rear body planform. On the ovidence of the paragraph above all rear planforms are included in the volune.
'6.4 Generalisation of the measured $\Delta \mathrm{cmo}_{\mathrm{mo}}$ due to fallets
Fig. 20 showed that the fillet effect consistod of a flat plate effect varyang linearly with angle of deflection relative to wing no-lıf't line, together with a thackness term of opposite sign, which was constant for all angles of deflection, and vuried with fillet upper surface shape.

It is seen in Appendix III that the flat plate results are largex than those whach would be expected from a pluin flap in the position of the body and fillets. By vrating the jlain flap estimate in a generalised form and comnecting it wath the tost results by cmpirical factors, a formula has been derived which satisfies the model rosults (except for the one case tested with "largo" fillets), but is not supported by the fow other test rosults avazlable.

7 Summary of methods of predzction (List of notation given elsewhere)

7.1 ΔK_{n} due to body (no fillets)

For body of revolution, $\Delta K_{n}=-\Delta_{10} \cdot\left(\frac{\Delta_{A}}{\Delta_{10}}\right) \cdot k \cdot \frac{C D^{2}}{a S O}$
body destabilising; where $\Delta_{10}, \frac{\Delta_{A}}{\Delta_{10}}$ and k are given in Fig.22, and require a knowledge of front and rear body overhang, m / o and n / o, body diameter ratio D / c, and wing aspect ratio. D is takon as body width at wing L.E., $a=$ Iift slope per radian. For a deep body,

$$
\begin{equation*}
\text { , } \Delta K_{\mathrm{n}}=[\text { round body value from (1) }] \times\left[1+0.15\left(\frac{h-D)}{D}\right)\right] \tag{2}
\end{equation*}
$$

where $\frac{h}{D}=$ body $\frac{\text { depth }}{\text { width }}$ ratio.
For a fully turned-up rear end to the body (i.e. tapering to a point on level of body uppor surface), subtract 0.22 from A_{10}.

For a very different nose shape from that used in the tests of this report, the value of Δ_{10} can be calculated by the method of Appendix I, and the empirical values of $\frac{A_{A}}{\Delta_{10}}$ and k applied from Fig.22.

For a different rear shape, no oorrection need be made. Appendix IV shows good agreement with ad hoc test results, to ± 0.005 on ΔK_{n} in most cases.

$7.2 \Delta K_{n}$ due to fillets

Formula suggested is

$$
\begin{equation*}
\Delta K_{n}=\frac{\ell_{p}\left(c+\ell_{f}\right)\left(D+b_{f}\right)}{4 S \vec{E}} \tag{3}
\end{equation*}
$$

where ℓ_{f} and b_{f} are the maximum length and breadth of the fillet outside body and wing as seen in planform outline. Fillets are stabilising.

This holds for small and medium sizes of systematic test fillet, but the two ad hoc results available do not agree.
$7.3 \quad \mathrm{~cm}_{m_{0}}$ due to body, no fillets
For body of revolution,

$$
\begin{equation*}
\Delta c_{m_{0}}=-\frac{f . \operatorname{Vol} \cdot i_{W}}{S \widetilde{o}} \tag{4}
\end{equation*}
$$

being a nose-down pitching moment for normal wing-body angles. The; factor f is read off Fig.23, requiring a knowledge of body fineness ratio L/D. For a deep body,

$$
\begin{equation*}
\Delta a_{m_{0}}=[\text { round body value from (4) }] \times\left[1+0.2\left(\frac{h-D}{D}\right)\right] \tag{5}
\end{equation*}
$$

where $\frac{h}{D}=$ body $\frac{\text { depth }}{\text { width }}$ ratio.

For a fully turned-up rear body, $\Delta \mathrm{Cm}_{\mathrm{m}}$ is numerically decreased by one-fifth of the round-body value.

Any nose and rear facring shapes on bodies of revolution are included in equation (4) in the volume of body.

Although these formulae are satisfied by the results of the present seffes of systematic tests, $\Delta \mathrm{m}_{\mathrm{m}}$ is badly underestimated numerically for most of the ad hoo tost results investagated, the estimate being a half to two thirds of the measured value, $1 . e .0 .01$ or 0.02 too low.
7.4 $\Delta \mathrm{C}_{\mathrm{m}_{0}}$ due to fillets

The formula dernved in Appendix III is

$$
\Delta C_{m_{0}}=\left\{\left.\left(0.046+0.08 \frac{\partial C_{m}}{d C_{L}}\right) \lambda_{I} \theta-0.2 \frac{\left(c+f_{f}\right)}{0} \right\rvert\, \frac{\left(D+b_{f}\right)}{b},\right.
$$

the first term being due to the reflex of the fillet lower surface, the second term being the effect of fillet upper surface shape.

This fits the small and modium fillets tested, but neods moro expermmontal evidence before it can be substantaated.

7.5 Effect of cabin

The cabin tested had negligable offect on ΔK_{n} : it is probably satzsfactory to ignore the caban in general. $\Delta \mathrm{C}_{m_{0}}$ was increased numerically very slightly by addition of the cabzn; other data are available in Ref.7.

8 Conclusions

The model tests desoribed here have covered the case of a body on a tapered wing wathout sweepback. The changes in aerodynamic centro position, K_{n}, and in Gm_{0}, dus to body, havo been found for a range of body front and rear lengths, noso shape, body wiäth and depth, wing-body angle and hezght. and wing aspect ratzo. The rosults may ?e sumarised:-
(1) The main parameters affooting change in aerodynamio centro position due to body are body frent length and width; rear length has a secondary added offect. It is practacally indopendent of body depth, wing-body anglo and wing hoight. The front length variation is linear and the width variaticia lyes between i Innoar and a square law. Charts have been constructed which incorporate non-dimensionally the effects of the various parameters with good accuracy. On comparing estimates based on these charts with results obtained in other ad hoc model tests it is found that the agreoment is wathin about ± 0.005 on K_{n} in most of the cases tried, the worst disorepancy being $\overrightarrow{0}_{0} .024$.
(2) The change in $\mathrm{C}_{\mathrm{m}_{0}}$ dut to body varnes linearly with the angle between wing no-lıf't lino and body axis, and the variation with body width is more scattored, but of the same type as for the changes of K_{n}. The effeot of wing height is small. The variations with body front and rear length are complicatcd. Churts have been constructed which reproduce non-damenszonally the present test results with good accuracye. It is found that estamates basod on these charts for other aircraft designs give good agreement with model rusults in a fow of the oases examined, but badly underestimato in most, the disorapancy being of the order of
0.01 or 0.02 . The lack of more consistent agreement may be due to difficulties in the definition of body axis in some oases, or to the effects of lange cabuns.
(3) Tests made with wing root fillets of various sizes, reflex angles and thickness, show that the effect on aerodynamic oentre is mall, but the effect on Cm_{0} may be considerable. Semi-empzrical formulae have been derived conneoting the observed variations, but more work is necessary for a full understanding of fillet effects. The suggested formulae which are based on the systematio model test results, are not supported by the few ad hoc results available.

NOTATTON

```
    A = wing aspect ratzo
    a = lift slope of wing or wing plus body, per radian
    b = wing span; also used as local body width in Appendices
    bf}=\mathrm{ span of fillet measured from edge of body in plan view to
        junction with wing T.E.
    o = root wing chord, at junction of wing and body planform
    co = wing oentre-line chord whon wing is tapered to centre line
    \vec{0}=w
    CIL = wing or wang plus body liff ooeffncient
    Gm}=\mathrm{ wing or wing plus body pltching moment, measured during tests
        about mean }\frac{1}{4}\mathrm{ chord pount
    Gmo}=\mp@subsup{C}{m}{}\mathrm{ at zero lift
    \Delta\mp@subsup{g}{\mp@subsup{m}{0}{}}{}= change in C (molue to body or fillets
    D. = maximum body diameter of test models
    = body width at wing L.E. in generalised analysis of }\Delta\mp@subsup{K}{n}{
        due to body
    f}=~\Delta\mp@subsup{C}{\mp@subsup{m}{0}{}}{}\times\frac{Sö}{Vol I
    h = body depth
    i
        stated
            = angle between no-lyft line of wing, and body axis
    K
        relative to I.E. of mean chord a.s a factor of \overline{c}
            =0.25-(\frac{d\mp@subsup{C}{m}{}}{d\mp@subsup{C}{L}{}})
    \DeltaK}\mp@subsup{K}{n}{}=\mathrm{ change in aerodynamic oentre position due to addition of body
        or fillets to wing. Posltive for stabllusing change.
    k = factor connecting }\Delta\mp@subsup{K}{n}{}\mathrm{ for various body diameters
    I = total body length
    lf}=\mathrm{ ohord of fillet measured from wing root ohord T.E. to
        junction of fillet and body planforms
    M = overall moment on inclined body in field of potential flow
    m = body front length ahead of I.E. of wing root chord, o.
```

$m_{0}=$ body front length ahead of L.E. of wing centre-line chord, c_{0}
$N=$ body rear length aft of wing root quarter chord point
$n=$ body rear length aft of T.E. of wing root chord, c
$n_{0}=$ body rear length aft of T.E. of wing centre-line chord, c_{0}
$S \quad=$ wing area taken as area of wing tapered to centre line in presentation of results, or defined as preferred in application of general analysis
$V \quad=$ velocity of free stream
Vol $=$ volume of revolution of the body plan form $=$ true volume for body of revolution
$\alpha \quad=$ incidence of wing chord line to free stream
$\beta^{\prime}=$ local angle of inclination of air to body
$\Delta \quad=\Delta_{A}=\left(-\Delta K_{n}\right) \frac{a S \vec{c}}{c D^{2}}$ for wing of any aspect ratio
$\Delta_{10}=$ value of Δ when wing aspect ratio $=10$
$\Delta_{5}=$ value of Δ when wing aspect ratio $=5$
$\varepsilon \quad=$ dowwash angle behind wing at position of body centre-line
$\theta \quad=$ angle, in degrees, of reflex of fillot lower surface to wing no-lift line
$\frac{\overline{\partial B}}{\partial \alpha}=$ mean volue of $\frac{\partial \beta}{\partial \alpha}$ from a given position ahead of wing down to wing L.E.

LIST OF REFERENCES

No.	Author	Trtle, etc.
1	Warren	A method of estumating the forward shift of neutral point due to body shapes, deduced from wand tunnel tests. ARC 8071 . RAE Report No. Aero. 1960° (August, 1944). (Unpublished)
2	Faile and Piper	Note on the estamation of $\mathrm{C}_{\mathrm{m}_{0}}$. ARC 6075. RAE Report No. Aero. 1743 (July, 1943). (Unpublished)
3	Anscombe and Tatchell	Preliminary results of wand tunnel tests on effect of a long cylundrical fuselage on longitudinal stabzility. ARC 11,664. RAE Technical Note No. Aero. 1930 (January, 1948). (Unpublished)
4	Albring	Applicability of the results of wand tunnel measurements on solids of revolution to full scale conditions. German Document Centre 10/1462 (1944). (Unpublished)
5	Multhopp	Aerodynamses of the fuselage. Iuft. Vol.18. ARC 5263 (March, 1941).
6	Schlichting	The aerodynamics of the mutual influence between parts of the alroraft. RAE Library Translation No. 275 (May, 1949).
7	Halle and Jefferies	Wind tunnel data on the effects of cabins, raduators and samzlar excrescenoes on Cm_{m}. ARC 6655. RAE Report No. Aero. 1743A (February, 1943). (Unpublished)
8	Young	The aerodynamic characteristics of flaps. ARC 10, 766. RAE Report No. 2185 (February, 1947). (To be Publushed)
9	Schlichting	Calculation of the influence of a body on the position of the asrodynanic centre of aurcraft with swept-back wings. ARC 10,689. RAE Technical Note No Aero. 1879 (March, 1947). (To be Published)

The followng papers were used for the comparison of experamental results and estumated values, in Appendix IV.

10 Mair, Hutton High speed wind tunnel tests on a twin-engined
and Gamble fighter (Hornet).
RAF Report No. Aero. 1971 (August, 1944).
11 Kirk and Godwin

Whnd tunnel tests on a twenty fourth scale model of an elght-engined transport aircraft (Brabazon I). ARC 9618.
RAE Report No. Aero. 2115 (February, 1946).
(Unpubilished)

12 R. Warden Wind tunnel tests on a $1 / 12$ th scale model of a twin-engined Military Transport at N.P.L. (Airspeed C.13/45 Ayrshire) ARC 12,058. (To be Published)

13 - Type 175, lift, drag and pitching monent tests. Bristol Aeroplane Co. Report F.N. 144. (Unpublished)
U. Thompson Wind tunnel tests on the Gloster Whittle F9/40.
and Barmes

Scholkemeier SIx-component measurements on the G.0.345. A.G.D.1017/G (July, 1944). (Unpublished)

I6 Jacobs and Interference of wing and fuselage from tests of Ward

ARC 4998.
RAE Report No. B. A. 1648 (December, 1940). (Unpubilshed)

15 Scholkemeier 209 combinations in the N.A.C.A. varıable-density wand tunnel. NACA Report No. 540 (1935).

APPENDIX I

Potential flow formulae for $\Delta \mathrm{C}_{\mathrm{m}}$ and $\Delta \mathrm{K}_{\mathrm{n}}$ due to body

1. The formulae of Ref. 5 and 6

Using the notation gaven in this report, it is shown in Ref. 5 and 6 that the overall moment on a body in potential flow is

$$
M=-\int_{L} \frac{1}{2} \rho V^{2} \cdot \frac{\pi}{2} \cdot \frac{d}{d x}\left(\beta b^{2}\right) x \cdot d x
$$

where the origin of reference lzes at any point on the boay axis, where $\mathrm{b}=$ body width.

Integrating by parts and writing in coefficient form

$$
a_{m}=\frac{\pi}{2 S 0} \int_{L} \beta b^{2} \cdot d x
$$

independent of fore and aft posation of oragin.
If the body does not affect the wing lift, at $G_{L}=0$ the wing has no effect and $\beta=$ constant, equal to $-i_{w}$, the angle between body axis and wing no-lift angle.
$\therefore \Delta a_{m_{0}}$ due to body $=-\frac{\pi_{n} i_{W}}{2 \mathrm{Sc}} \int_{L} b^{2} \cdot d x=-\frac{2 i_{W} V_{0 I}}{S \vec{O}}$,
j_{W} being measured in radzans.
Again,

$$
\frac{d G_{m}}{d \alpha}=\frac{\pi}{2 S O} \int_{L} \frac{d \beta}{d \alpha} \cdot b^{2} \cdot d x .
$$

If the wing lift slope is unaltered by the presence of the body, this gives
ΔK_{n} due to body $=-\frac{d C_{m}}{d C_{L}}=-\frac{\pi}{2 \operatorname{sic}} \int_{L} \frac{d \beta}{d \alpha} \cdot b^{2} \cdot d x$.

Wing height and body depth do not appear as variables in either of these formulae, and both $\Delta \mathrm{C}_{m_{0}}$ and ΔK_{n} vary as (body width) ${ }^{2}$.

Ahead of the wing $\frac{d \beta}{d \alpha}>1$ duc to upwash, over the wing $\frac{d \beta}{d \alpha}=0$, and aft of wing $\frac{\alpha \beta}{\alpha_{\alpha}}<1$ due to downwash. Thus the part of the body ahuad of the wing has the dominating effect.

For the models used in the systematic tests, $b=$ the diameter D of the cylindrical body, except for elliptic nose and tapered rear fairings. Writing $b 2$ on the nose foiring $=D^{2}$-(function of nose fairing shape), we have, taking oragin at wang L.E.,

$$
\begin{aligned}
& \Delta K_{n} \text { due to body }=-\frac{\pi}{2 a S c}\left[\int_{-m}^{0} \frac{\partial \beta}{\partial \alpha} D^{2} \cdot d x-\right.\text { (nose fairing effeot) } \\
& +\int_{0}^{0+n} \frac{\partial \beta}{d \alpha} \cdot b^{2} \cdot d x \text { for rear body } \\
& \propto \frac{-D^{2}}{a S o}\left[m \frac{\overline{d \beta}}{d \alpha}-\text { (nose farring effect) }+ \text { (rear body effect) }\right] \\
& \text { where } \\
& \frac{\overline{d \beta}}{\partial \alpha}=\frac{1}{m} \int_{m}^{0} \frac{\partial \beta}{d \alpha} \cdot d x . \\
& \therefore \Delta K_{n} \text { due to body } \propto \frac{-c D^{2}}{a S \bar{c}}\left[\left(\frac{m}{c}\right)\left(\frac{\overrightarrow{d \beta}}{d \alpha}\right)\right. \text { - (nose fairing effect) } \\
& + \text { (rear body effect) }]
\end{aligned}
$$

This is the expression quoted in section 6.1 of the report.

2. Evaluation of the formulae for models tested

(i) For 9 in. dia. models on large-span wing, the following values were calculated:-

Body combinations	$-\Delta \mathrm{C}_{m_{0}}$ for $\mathrm{i}_{w}=2^{0}$	$-\Delta C_{m_{0}}$ for $i_{W}=6^{\circ}$
(1, I)	0.0219	0.0656
(1,2) $(2,1)$	0.0248	0.0142
(1,3), $(2,2),(3,1)$	0.0276	0.0828
(1,4) to (4,1)	0.0305	0.0914
(2,4) to (4,2)	0.0334	0.1001
(3,4 (4,3)	0.0363	0.1087
(4,4)	0.0392	0.1175

The values are independent of wing height and fore-and-aft position, and body depth.

For the 13.5 in . dia. bodies, results are multaplied by 2.25 .
For the 4.5 mn . bodies, results are multiplied by 0.25 .
For the small spon wing (half area of big wing), values arc multiplied by 2.
(ii) In order to evaluate the expression for $\Delta \mathrm{K}_{\mathrm{n}}$, charts for $\frac{d \beta}{d \alpha}$ and $\frac{d \beta}{d \alpha}$ ahead of the wing are given in Ref.6; the values are based
on a plain reotangular wing with no allowance for effects of body on local wing lift distribution. Behind the wing $\frac{d \beta}{d \alpha}=1-\frac{d \varepsilon}{d \alpha}$ and a simple formula for downwash is given in Ref.6. The value of "a", wing lift slope, has been obtained from test measurements. The following values of $-\Delta K_{n}$ due to body 9 in. daao on the large span wing were calculated:-

	$-\Delta \mathrm{K}_{n}$ (large span wing, 9 in. dia. body)			
Front body no.	1	2	3	4
Rear body no.1	0.086	0.106	0.125	0.144
2	0.091	0.111	0.130	0.149
3	0.095	0.115	0.134	0.153
4	0.100	0.120	0.139	0.158

The values are independent of wing height and wing-body angle and body depth.

For the 13.5 mn . dia. bodies, results are multiplied by 2.25 . For the 4.5 in. dia. bodies, results are multiplied by 0.25 . For the small span wing, Sö is halved, wing lift slope is altered and $\frac{d B}{d \alpha}$ changes acoording to the charts of Ref.6. The values calculated for large span wing now have to be multiplied by a factor nearly constant for all cases, mean value 2.4 .

* Allowance for wing shape and body effect on lift seemed an unnecessary refinement, as the simple calculations made here show that the theory only partly agrees with test results in any case.

APPENDIX II

Formula for ΔK_{n} due to wing root fillets

Consider fillet plan form as rear extension to wing, taken right across body.

The mean quarter chord shift is roughly

$$
\frac{1}{4} \frac{c_{f} S_{f}}{S \vec{c}}
$$

where $\quad c_{f}=$ mean rearward extension due to fillet

$$
=\frac{\left(e_{f} b_{f}+D e_{f}\right)}{\left(D+2 b_{f}\right)}=\frac{\left(D+b_{f}\right) e_{f}}{D+2 b_{f}}
$$

while $S_{f}=$ shaded area $=\left(D+2 b_{f}\right) c+\left(D+b_{f}\right) \ell_{f}$

$$
\begin{aligned}
& =\left(D+2 b_{f}\right)\left(c+\ell_{f}\right)-b_{f} \ell_{f} \\
& =\left(D+2 b_{i}\right)\left(c+\ell_{f}\right) \text { approximately }
\end{aligned}
$$

- centre of pressure shift of wong $=$

$$
\Delta K_{n} \text { due to fillet }=\ell_{f} \frac{\left(c+\ell_{f}\right)\left(D+b_{f}\right)}{4 S \bar{c}}
$$

The lengths ℓ_{f} and Df_{f} are assumed to be those of the fillet outside the maximum width of the body, zee. the part of the fillet not seen in plan view is ignored.

APPENDIX III

Formula for $\Delta C_{m_{0}}$ due to fillets

Analysing the measured effects at constant α,

$$
\Delta G_{m_{\alpha}}=\Delta C_{m_{0}}+\left(\frac{d C_{m}}{\Delta C_{L}}\right)\left(\Delta C_{L}\right)
$$

For the flat plate f"ilets of "medium" planform

$$
\Delta \mathrm{G}_{\mathrm{L}}=-0,0055 \theta, \quad \text { (from measured lift change), }
$$

and

$$
\begin{aligned}
\Delta \mathrm{g}_{\mathrm{m}_{\alpha}} & =0.0035 \theta \quad \text { (from Fig. } 20)+0.01 \Delta \mathrm{C}_{\mathrm{I}} \\
& =0.0023 \theta
\end{aligned}
$$

where $\theta=$ fillet lower surface reflex angle.
The corresponding values for a plain flap of the dimensions of the fillets and the body in botween (as for Appendix III), have been calculated aocording to Ref.8, and it is found that

$$
\begin{aligned}
& \left.\Delta \mathrm{C}_{\alpha} \text { (measurcd }\right)=2.07 \Delta \mathrm{G}_{m_{\alpha}}(\text { oalculated }) \quad \text { and } \\
& \left.\Delta \mathrm{C}_{\mathrm{L}}(\text { moasure })=1.3 \Delta \mathrm{C}_{\mathrm{I}} \quad \text { (oalculatea }\right) .
\end{aligned}
$$

For the range of fillet planforms inkcly full scale, the charts of Ref. 8 can be simplified to give $\Delta \mathrm{C}_{\mathrm{m}}$ and $\Delta \mathrm{C}_{\mathrm{L}}$ in terms of fillet dimensions; thus

$$
\begin{aligned}
& \Delta C_{m_{a}}(\text { calco })=0.022 \lambda_{1}\left(\frac{D+b_{f}}{b}\right) \theta \\
& \Delta C_{L}(\text { aalco })=-0.061 \lambda_{I}\left(\frac{D+b_{f}}{b}\right) \theta
\end{aligned}
$$

where λ_{1} is given in Rof. 8 .
For the "normal" fillet thickness, the thickness effeot was seen in Fig. 20 to be about 0.030 on $\Delta \mathrm{C}_{\mathrm{m}_{0}}$, nearly independent of θ_{f}. This can be generalised on the assumption that i.t varies with fillet overall span and chord; hence

$$
\begin{aligned}
& \text { hence } \\
& \qquad\left(\Delta G_{m_{0}}\right) \text { thickness }=-0,2\left(\frac{0+\ell_{f}}{0}\right)\left(\frac{D_{+b_{f}}}{b}\right)
\end{aligned}
$$

Finally
$\left(\Delta C_{m_{0}}\right)$ due to fillets $=2.07 \Delta C_{m_{\alpha}}$ (calc.) $-1.3 \frac{d C_{m}}{d C_{L}}\left(\Delta C_{L}\right)$ (calc.)

+ thickness effect

$$
=\left[\left(0.046+0.08 \frac{d c_{m}}{d c_{L}}\right) \lambda_{I} \theta-0.2\left(\frac{c+\varepsilon_{\mathrm{f}}}{c}\right)\right]\left[\frac{D+b_{\mathrm{L}}}{b}\right]
$$

where λ_{1} is given in Fig. 5 of Ref. 8 and $=0.5$ to 0.6 for normal fillet ohords.

If the no-tail C_{m} is beang considercd, $\frac{d C_{m}}{d C_{L}}$ may be large for an orthodox with-tail aircraft. But if the overall trim change for an orthodox airoraft, or the value of $C_{m_{0}}$ for a tailless aircraft, is being considered, $\frac{d C_{m}}{d C_{L}}$ is usually small enough for the second term in the expression to bc ignorcd.

It will be noted that the formula derived above does not give $\Delta \mathrm{C}_{\mathrm{m}_{0}}=0$ for $\theta=0$, because the thickness term was unaffected by θ for the range of values of θ used in the analysis. At very different valuos of θ from those used here we may expect the thickness term to vary in an unknown manner, and for $\theta=0$, the value of $\Delta \mathrm{C}_{\mathrm{m}_{0}}$ may or may not equal zero depending on the shape of the wing-body farring.

When b_{f}, fillet width, is zero, we should expect $\Delta \mathrm{C}_{\mathrm{m}_{0}}=0$. The above formula, which uses ($D+b_{f}$) as a variable, obviously breaks down for very small fillet wadths.

APPENDIX IV

Accuracy of generalised methods of prediction, and

comparison wath other data
I. ΔK_{n} due to body, no fillets

The following table compares results from the systematic tests with values estimated by means of the charts of Fig.22:-

Test body	Wing Aspect Ratio	Body dia.	$-\Delta K_{n}$ due to body	
			Estimated	Measured
$(1,3)$	5	4.5	0.068	0.068
$(3,3)$	5	4×5	0.100	0.095
(3,1)	5	9	0.289	0.290
(3,3)	10	4×5	0.042	0.042
$(3,3)$	10	13.5	0.244	0.258
$(2,2)$	IU	9	0.106	$\begin{aligned} & 0.104 \text { to } \\ & 0.112 \end{aligned}$
$(4,2)$	10	9	0.148	$\begin{gathered} * 0.144 \text { to } \\ 0.159 \end{gathered}$

*Range of various wing heights and angles relative to body.
The table shows that the charts reproduce the test results on which they are based to a mean accuracy of ± 0.004 •

The following table compares estimated and measured effects on various aircraft models. All the models were tested without fillets except for the Meteor, Bristol 175 and Stirling. In the first two of these the fillet is very small and cannot have much effect. According to the analysis of Appendix III the fillet should reduce $-\Delta \mathrm{Kn}$, but no allowance for it has bcen made in estimated values given below :-

Aircraft model	Ref. No.	$\stackrel{m}{\mathrm{c}}$	$\frac{\mathrm{n}}{\mathrm{c}}$	$-\Delta K_{n}$ due to body	
				Estimated	Measured
Hornet	10	0.26	1.5	0.009	0.011
Brabazon	11	1.98	2.67	0.070	0.076
Ayrshire	12	1.83	2,31	0.107	0.100
Brastol 175	13	1.96	3.32	0.129	+0.105
Meteor.	14	0.91	1.6	0.036	0.038
G.0.345	15	1.27	1.65	0.055	0.051
Vampire		0.61	0.18	0.034	0.040
N.A.C.A. model	16	0.12	2.91	0.005	0.002
-		0.51	2.52	0.020	$\begin{aligned} & { }^{*} 0.009 \text { to } \\ & 0.015 \end{aligned}$
		0.76	2.27	0.029	*0.022 to 0.030
		1.01	. 2.02	0.036	+0.030 ${ }^{*} 0.038$ to
		1.51	1.52	0.048	$\begin{aligned} & 0.044 \\ & 0.057 \end{aligned}$

Aircraft Model	Ref. No.	$\frac{m}{c}$	$\frac{n}{c}$	$-\Delta K_{n}$ due to body Estamated	
Manchester		1.1	2.1	0.029	0.030
Lancaster		1.1	2.1	0.022	0.020
Stirling					
Tapered wing/		1.05	2.1	0.030	0.035
body		1.34	1.54	0.036	0.038

\nvdash Brastol 175 was tested wath 3 angles of wing swocpbnck. Value quoted here is extrapolation to zero sweepback. Sweepback effects on ΔK_{n} measured agree quate well with values estimated by Ref.9.
thxtreme values for various ving heights and wing body angles.

The table shows that, apart from the Bristol 175, calculation and measured are within a muan agrooment of ± 0.005.
$2 \Delta \mathrm{~K}_{n}$ due to fillets
The formula in Appendix II, whon applied to the systematic test model gives the following comparison with measurement:-

Finlot	$-\Delta \mathrm{K}_{\mathrm{n}}$ duc to fillots	
	Estimated	Measured
Small	-0.005	-0.006
Medium	-0.017	-0.015
Large	-0.044	-0.018

The agreement is satisfactory except for the "large" fillet. The large fillet effect depends on a single case, and the zero "no fillet" run was not repeated at the time. It is likely that this single result is wrong. However, the practical size of fillet installations full scale is unlikely to cxcood the "medium".

There is vory little adcquate data from ad hoc tests, but the following table summarises what is available:-

Aircraft Modcl	Ref'。 No.	$-\Delta K_{n}$ due to finlets	
		Estimated	Measured
Brabazon (largo)	11	-0.025	-0.005
* Dakota		-0.011	+0.011

These results are not in agreement with the formula suggested: it appears that the formula overestimates the stabliging influence. In the case of the Dakota, the test result shows a destabilisation due to fillet, which cannot be conceived in the analysis of Appendix II.
$3 \quad \Delta \mathrm{C}_{\mathrm{m}_{0}}$ due to body, no fillets.
Comparisons of test measurements witti the values shown on the charts of Fig .23 for the systematic tost model are given in the following table:-

Test body	Wing Aspect Ratio	Bodydia.	$\begin{gathered} \mathbf{i}_{W} \\ \operatorname{dcg} . \end{gathered}$	$-\Delta \mathrm{m}_{\mathrm{m}}$ due to body	
				Estimatod	Moasured
$(1,1)$	5	$4 \cdot 5$	2	0.007	0.009
(3,3)	5	4.5	2	0.0128	0.0135
(3,1)	5	9	2	0.0335	0.030
(3,3)	5	9	2	0.0387	0.033
(1,1)	10	$4 \cdot 5$	2	0.0035	0.0035
$(3,3)$	10	$4 \cdot 5$	2	0.0064	0.0055
$(1,4)$	10	9	2	0.0135	$\begin{aligned} & 0.0185 \text { to } \\ & 0.0125 \end{aligned}$
$(2,2)$	10	9	2	0.0154	$\begin{aligned} & r^{0} 014 \text { to } \\ & 0.0175 \end{aligned}$
$(2,2)$	10	9	6	0.0461	$\begin{aligned} & 0.0465 \\ & 0.0545 \end{aligned}$
$(1,4)$	10	9	6	0.0403	0.047
$(3,3)$	10	13.5	2	0.0402	0.042

* Means for various wing heights.

The table shows that, apart from (1,1) 405 In . dia., and the high value for (1,4) 10 in . dia., the.values estimated are all, within 20% of the original test results. Of the two exceptions, the first is numerioally too small to expect a high acouracy, and the second refers to low wing, no filllets, whych is a casc whioh does not occur full scale.

The followng tablo compares test results on aircraft models without fillets, the exoeption being the Bristol 175 which had a small fillet of unknown dimensions:-

Airoraft model	Ref. No:	$\frac{\mathrm{L}}{\mathrm{D}}$	$\begin{gathered} i_{w} \\ \mathrm{deg} . \end{gathered}$	$\frac{-\Delta \mathrm{c}_{\mathrm{m}_{0}} \text { due }}{\text { Estimated }}$	$\frac{\text { to body }}{\text { Measured }}$	Remariks,
Hornet ${ }^{\text {- }}$	10	10	3.7	0.0047	0.004	
Brabazon	11.	9.45	5.9	0.031	$\begin{aligned} & 0.053, \\ & 0.047 \end{aligned}$	Without and with wires on wing surfioce.
Ayrshire	12	7.3	2.6	0.017	0.04 .5	Turned-up' rear.Square body.
Bristol 175	13.	9.8	4.7	0.0345	0.047	Turned-down nose. Small fillet.
G.0.345	15	7.4	-5.5	0.020 '	. 0.0333^{\prime}	Inaocurate data.
Vampire		$\cdots 4.45$	0.5	10.0010	$0 \% 008$	Turned-down nose and large cabin.

Aircraft Model	'Ref. ìvo.	$\frac{\mathrm{L}}{\mathrm{D}}$	$\begin{gathered} i_{w} \\ \operatorname{deg} . \end{gathered}$	$-\Delta C_{m_{0}}$ due to body		Remarks
				Estamated	Measured	
M.A.C.A.	16	5.86	8	0.016	0.025	Mid.wing. Iwo fore-and-aft positzons. High or low ving.
Model				0.019	0.029	
				0.016	0.018	
Manchester		11	6.5	, 0.0125	0.0125	
Lancaster		11	6.5	0.010	0.007	
Tapered wing/body		11.8	4.5	0.0135	0.026	

Difficulty axises in defining the body axis in some cases. The midheight line was taken for the Hornet; no allowance was made for the turned-down nose shapes.

It is seen that the calculation agrees writh measurement in 4 out of the 12 cases listed. In the other 8 cases, the calculation undorestimates, on an average, by one third to a half.
$4 \Delta \mathrm{Cm}_{\mathrm{m}}$ due to fillets
The formula of AppendixIII, when appleed to the systematic test model, gives the following comparison for the fillets of "normal" thickness:-

$\begin{gathered} \text { Fillet } \\ \text { size } \end{gathered}$	$\stackrel{\theta}{\operatorname{deg} .}$	$-\Delta \mathrm{m}_{0}$ duo	to fillcts	Remarks
		Estimated	Mcasured	
Small	12	-0.006	-0.006	Mean for $i_{W}=2^{\circ}$.
Medium	8	+0.001	-0.004	Maan for (1,2) and (1,4) at
(nose(1))	12	-0.013	-0.015	$i_{W}=20$ and 60.
	1.6	-0.028	-0.024	
Medium $\text { (nose } 4 \text {) }$	12	-0.017	-0.018	Mean for all noses (4) at $i_{W}=20$.
Large	12	-0.024	-0.015	Single reading (2,2) .

The variation with θ, the roflex angle, is slightly overestimated because of the simplfication in the analysis that the thickness offect was independent of θ (the "normal" throkness line and the flat plate line in Fig. 20 arc not quito parallel). The largo-fillet effect is overestimated; this is tho samo as for $\Delta \mathrm{Kn}$ due to fillets. The greater value of $\frac{\mathrm{dG}_{\mathrm{m}}}{\mathrm{dC}}$ for front body (4) compared with front body (1) is rerlocted in measurement and ostimate by an increase in $\Delta G_{m_{0}}$ due to fillets.
\therefore Comparison with available ad hoc data gives the following table:-

Airoraft Model	Rof. No.	$-\Delta \mathrm{m}_{0}$ due to fillets	
		Estamated	Measured
Brabazon	11	-0.030	-0.012
*Dakota		+0.007	+0.002

TMested without nacclles (which lie close to wing root).

The overestimation on the Brabazon maght possibly be connected whth a shielding effect of the wing (21% thick, 3.3% camber, cusped section) at the low test Reynolds number. The changed sign for the Dakota fillet (due to the small amount of reflex) is roproduccd in the estimate.

TABLE I

MODEU DETATLS

BODY For all bodjes:-

Boay lengths:-
$m, m_{0}=$ body front length measured from L.E. of root and centro
line chords respectively: $n, n_{0}=$ body rear longths measured from
T.E. of root and centre-line chords respectively.

Body	Front length - inches						
	m_{0}	$\frac{m_{0}}{o_{0}}$	$A=10 \cdots{ }^{\text {m }}$ m ${ }^{-\cdots}$				
			13.5 in.	9 in.	4.5 in.	9 in.	4.5 in.
1	20.2	1.5	20.44	20.36	20.28	20.52	20.36
2	26.5	1.96	26.74	26.66	26.58	26.82	26.66
3	32.8	2.43	33.04	32.96	32.88	33.12	32.96
4	39.1	2.9	39.34	39.26	39.18	39.42	39.26

	Rear length - inches						
	no	$\frac{n_{0}}{c_{0}}$	n				
			$A=10$			$A=5$	
1.	28.3	2.1	29.02	28.78	28.54	29.26	28.78
2	34.6	2.57	35.32	35.08	34.84	35.56	35.08
3	40.9	3.03	41.62	41.38	41.14	41.86	41.38
- 4	47.2	3.5	47.92	47.68	47.44	48.16	47.68

Total body length, I, is obtanned by addang front, m_{0}, and rear-body length, n_{0}, and $c_{0}=13.5$ in. Values of N used in Fig. 24 are obtained by adding $\frac{3 c_{0}}{4}=10.1$ in. to values of n_{0}. For N / D, divide by appropmate body dnameter.

WING-BODY JUNCTJON
Height of wing centre line quarter chord point:-
Low wing 3.10 in. below body centre-tinc
Mid wing on body centre-lino
High wing 2.60 mln . above body centre-line
Wing-body, angle:-
Gemutric $\quad 0^{\circ}$ and 4°
Aerodynamic, $i_{V} 2^{\circ}$ and 6° (measured relative to wing no-lift line). Wang was pivoted about wing centre-line quarter chord point.
C.G.POSETION

Patching moments measured in test about wing centre-line quarter chord point:
Fitching moment results referred to wing mean quartur chord point.

Comparison of aircraft damenszons in.th test model

Some dimensions are approximate. Test model refers to 9 in. dia. bodies on, large-span inng.
$\vec{c}=$ mean chord;,$c=r o o t$ chord, $D=$ body daa. at wing $\mathrm{I} . \mathrm{E}$. ;
$m=$ lody front length ahead of L.E. root chord;
$n=$ body rear length aft of T. \vec{I}. root chord;

	Tudor I	Tudor II	Hermes	Apollo	Brabazon	Brastol 175	Test model
Wing Camber \%	1.6 3.5	1.6 3.5	1.5 3.5	2.5 4.5	3.3	${ }_{5}^{2}$ (root)	${ }_{1}^{2} 0$
Root $t / \mathrm{c} \%$	18	18	21	18	21.	17	18
Tıp t/c\%	ε	8	7	18	15	13	12
Aspect Ratzo	10	10	9.1	8.7	9.9	9.5	10
Taper Ratio	3 -	3.	-2.6.	2	3	3.3	2
$\overline{\mathrm{c}}$ c	0.75	0.75	0.78	. 0.78	0.76	0.65	0.77
Wing/body angle	4°	4°	2°	0°	$3.5{ }^{\circ}$	3^{0}	0° and 4°
Body D/c	0.63	0.69	0.69	0.78	0.60	0.62	0.70
m / c	1.4	2.0	1.6	1.9	2.0	1.9	1.58 to 3.05
n / c	2.6	3.0	2.5	2.5	2.6	2.9	2.24 to 3.71

TABLE III

Aerodynamic charaoteristics of large and small span wings

Wing Aspect Ratio	α°	$\mathrm{C}_{\text {L }}$	$G_{\text {D }}$	C_{m}
10	-3.9	0.1449	0.0124	-0.0562
	-2.3	-0.029		-0.0518
	-0.75	0.105		-0.0473
	0.8	0.231	0.0122	$=0.0430$
	2.4	0.351		-0.0381
	3.9	0.475		-0.0347
	5.5	0.609	0.0237	-0.0346
	7.05	0.739		-0.0352
	8.6	0.866		-0.0330
	10.15	0.945	0.0473	-0.0225
	11.7	1.013		-0.0122
	13.2	1.086		-0.0037
	14.7	1.131	0.0755	+0.0015
	± 6.3	1.149		-0.0008
	17.75	1.149		-0.0099
	19.15	0.922		
5	-3.6	-0.080		-0.0550
	-2.6	-0.018	0.0126	-0.0511
	-1.6	0.040	0.0120	-0.0469
	-0.55	0.100	0.0124	-0.0434
	0.95	0.196	0.0132	-0.0380
	2.45	0.286		-0.0315
	4.0	C. 380	0.0196	-0.0257
	5.5	0.481		-0.0209
	7.05	0.586	0.0335	-0.0192
	8.55	0.689		-0.0184
	10.1	0.776	0.0540	-0.0133
	11.6	0.849		-0.0047
	13.6	0.937		
	15.65	1.013		
	18.65	1.098		
	21.6	0.825		

TABLE IV

Typical Iift and pitching moment measurements on body combinations
Range of front body lengths on rear body (4). Low wing, 9 in. dia. body, Medium fillets, large span wing, $i_{w}=6^{\circ}$.

Pitching moments referred to wing mean quarter chord point.

$\begin{gathered} \alpha \\ \operatorname{deg} . \end{gathered}$	$\mathrm{C}_{\text {I }}$	G		C_{L}	C_{M}	$\triangle \mathrm{CM}$ due to body
		Body (1,4)			Body (2,4)	
-2.55	-0.105	-0.0922	-0.0365	-0.104	-0.1031	-0.0473
-1.5		- -	-	-0.021	-0.0899	-0.0374
-1.0	0.021	-0.0778	-0.0268	$+0.027$	-0.0844	-0.0334
-0.25	\cdots	-	-	0.084	-0.0756	-0.0270
0.6	0.155	-0.0634	-0.0174	0.158	-0.0656	-0.0198
1.35	. -	-	\cdots	0.213	-0.0576	-0.0143
2.1	. 0.282	-0.0495	-0,0081	0.281	-0.0483	-0.0068
3.7	-0.479	-0.0342	0.0034	0.421	-0.0317	0.0056
5.25.	0.551	-0.0211	0.0137	0.556	-0.0159	0.0188
$6.85{ }^{\circ}$	0.696	-0.0106	0.0234	0.702	-0.0021	0.0320
8.4	0.820	-0.0013	0.0327	0.824	+0.0107	0.0444
		Body (3,4)			Body (4,4)	
-2.55	-0.111	-0.1111	-0.0552	-	-	-
-1.5	-0.021	-0.0978	-0.0453	-0.003	-0.1043	-0.0525
'-1.0	'0.027	-0.0906	-0.0398	0.035	-0.0979	-0.0475
- 0.25	0.085	-0.0800	-0.0314	0.101	-0.0853	-0.0374
0.6	-0.152	-0.0686	-0.0226	0.174	-0.0731	-0.0281
. 1.35	* 0.209	-0.0601	-0.0162	0.228	-0.0627	-0.0195
- 2.1	0.278	- -0.0485	-0.0070	0.298	-0.0508	-0.0098
. 3.7	0.478	- 0.0276	0.0099	0.436	-0.0263	0.0107
- 5.25	0.549	-0.0096	0.0251	0.567	-0.0058	0.0288
- 6.85	0.689	0.0043	0.0383	0.726	0.0115	0.0459
. 8.4	0.829	0.0210	0.0546	0.846	0.0297	0.0627

TABLE V
Change in aerodynamic centre and $\mathrm{C}_{\mathrm{m}_{0}}$ due to body, no fillets
9" diameter body, large span wing
The low wing measurements marked *sere made separately from the other tests.

Wing height	Body	$-\Delta K_{n}$		$-C^{-C_{0}}$	
		$i_{W}=2^{0}$	$i_{N}=6^{\circ}$	$i_{\text {WF }}=2^{0}$	$i_{\mathrm{v}}=60$
Low	$\begin{aligned} & 1,1 \\ & 1,2 \\ & 1,3 \\ & 1,4 \\ & 2,2 \\ & 2,3 \\ & 2,4 \\ & 3,3 \\ & 3,4 \\ & 4,3 \\ & 4,4 \end{aligned}$	$\begin{array}{ll} 0.078 & \\ 0.081 & \\ 0.097^{*} \\ .0 .092^{\prime} \\ 0.107 & \\ 0.106 & 0.121^{*} \\ .0 .114 & 0.146^{*} \\ & 0.140^{*} \\ - & 0.163^{*} \\ & 0.258^{*} \end{array}$	$\begin{aligned} & 0.082 \\ & 0.083 \\ & 0.104 \end{aligned}$	$\begin{array}{ll} 0.013 & \\ 0.0165 & \\ 0.0185 & 0.017^{*} \\ 0.0175 & \\ 0.0195 & 0.0195^{*} \\ 0.022 & \\ . & 0.022^{*} \\ & 0.0225^{*} \\ & 0.0235^{*} \\ & 0.0230^{*} \end{array}$	$\begin{aligned} & 0.045 \\ & 0.0485 \\ & 0.0545 \end{aligned}$
Mid	$\begin{aligned} & 1,1 \\ & 1,2 \\ & 1,3 \\ & 1,4 \\ & 2,1 \\ & 2,2 \\ & 2,3 \\ & 2,4 \\ & 3,1 \\ & 3,2 \\ & 3,3- \\ & 3,4 \\ & 4,1 \\ & 4,2 \\ & 4,3 \\ & 4,4 \end{aligned}$	Set A Set B 0.084 0.080 0.088 0.083 0.0885 0.098 0.094 0.110 0.106 0.112 0.106 0.115 0.1085 0.113 0.128 0.136 0.127 0.129 0.145 . 0.159 0.152 0.152	$\begin{aligned} & 0.073 \\ & 0.077 \\ & 0.088 \\ & 0.087 \\ & 0.101 \\ & 0.105 \\ & 0.110 \\ & 0.110 \\ & 0.116 \\ & 0.123 \\ & 0.1245, \\ & 0.128 \\ & 0.141 \\ & 0.144 \\ & 0.144 \\ & 0.150 \end{aligned}$	Set A Set B 0.011 0.010 0.0135 0.0105 0.012 0.015 0.0135 0.0145 . 0.017 0.014 0.019 0.015 0.016 . 0.0165 . 0.021 0.016 0.017 0.018 0.0235 0.019 0.0195	$\begin{aligned} & 0.035 \\ & 0.0395 \\ & 0.043 \\ & 0.047 \\ & 0.044 \\ & 0.0465 \\ & 0.048 \\ & 0.055 \\ & 0.0515 \\ & 0.0535 \\ & 0.057 \\ & 0.0615 \\ & 0.0585 \\ & 0.061 \\ & 0.0645 \\ & 0.0700 \end{aligned}$
High	1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4	$\begin{aligned} & 0.076 \\ & 0.082 \\ & 0.088 \\ & 0.090 \\ & 0.104 \\ & 0.106 \\ & 0.111 \\ & 0.115 \\ & 0.129 \\ & 0.129 \\ & 0.135 \\ & 0.137 \\ & 0.149 \\ & 0.150 \\ & 0.152 \\ & 0.155 \end{aligned}$		$\begin{aligned} & 0.0095 \\ & 0.011 \\ & 0.0115 \\ & 0.0125 \\ & 0.014 \\ & 0.0145 \\ & 0.016 \\ & 0.0165 \\ & 0.0175 \\ & 0.0175 \\ & 0.019 \\ & 0.019 \\ & 0.0205 \\ & 0.020 \\ & 0.021 \\ & 0.0195 \end{aligned}$	

Effect of Turned-Up Rear End of Body 9" dzameter body, large span wing

Datum cases marked with "were repeated at same time as turned-up body tosts.

Wing Position	$i_{\text {w }}$	Body	$-\Delta K_{n}$		$-\Delta c_{m_{0}}$	
			Symmetrioal Rear	$\begin{gathered} \text { Tumed-Up } \\ \text { Rear } \end{gathered}$	Symmetrical Rear	$\begin{gathered} \text { Turned-Up } \\ \text { Rear } \end{gathered}$
Low	2^{0}	2,2	0.095*	0.092	0.0035*	0.0020
(with		2,3	$0.098 *$	0.094	0.0045^{*}	-0.001
medium		2,4	$0.104 *$	0.099	$0.0035 *$	-0.002
fillets)	6°	2,2	0.092	0,084	0.0315	0.027
		2,3	$0.097{ }^{\text {² }}$	0.090	0.0335*	0.027
		2,4	0.102	0.096	0.0355	0.027
High	2^{0}	2,2	$0.108^{\prime \prime}$	0.099	0.013*	0.009

TPABLE VII

Fffect of Nose Shape Varzatzon and Cabin

$$
\begin{aligned}
& 9^{*} \text { diameter body, largo span wing, } i_{\mathrm{w}}=6^{\circ}{ }^{\circ} \mathrm{low} \text { when, medium fillets }
\end{aligned}
$$

Total body front length is not altered by change in nose-shape
Normal forring oase was tosted at same time as both shorter. nose and cabin tests

Body	Nose Shape	$-\Delta K_{n}$	$-\Delta \mathrm{m}_{0}$
1,1	Normal olliptic farring	0.071	0.0227
1,1	Shorter " "	0.080	0.0254
3,1	Normal	0.117	0.0370
3,1	Shorter	0.124	0.0392
3,4	Normal	0.125	0.043
3,4	Cabin nose-piece	0.123	0.0455

TABLæ VIII

Effeot of varying body dsmeter and depth and wing span

Mid Wing $i_{W^{*}}=2^{0}$
The "ratio" tabulated is the value for 4.5 " or 13.5 " diameter bodies divided by the value for the 9 " body.

	Body size	$-\Delta K_{n}$				$-\Delta \mathrm{C}_{\mathrm{m}_{0}}$			
Combination		$A=10$ ring $A=5$ wang				$A=10$ wing		$A=5$ wing	
		Values	Patio	Values	Ratio	Voluos	Ratio	Volues	Ratio
1,1	4.5" Dia.	0.026	0.32	0.064	0.35	0.0035	0.35	0.0090	0.46
	9" Dia.	0.082	1	0.184	1	0.0100	1	0.0195	1
	$13.5^{\prime \prime} \mathrm{Dia}$.	0.146	1.8			0.0225	2.3		
	$9^{\prime \prime} \times 13.5^{\prime \prime}$	0.084	*			0.011	-		
1,3	$4 \cdot 5^{\prime \prime}$ Dia.	0.028	0.32	0.068	0.34	0.0035	0.30	0.0095	0.38
	97 Dia.	0.088	1	0.199	1	0.0115	1	0.0250	1
	13.5 ${ }^{\text {t' }}$ DIa.	0.165	1.9			0.030	2.6		
	$9^{\prime \prime} \times 13.5^{\prime \prime}$	0.096	-			0.0145	-		
3,1	4.5' Dia.	0.040	0.32	0.092	0.32	0.0055	0.38	0.0115	0.33
	91 Dia.	0.125	1	0.290	1	0.0145		0.0300	
	13.5" Dia.	0.241	1.9			0.034	2.3		
	$9^{\prime \prime} \times 13.5^{\prime \prime}$	0.135	-			c.0145	-		
3,3	4.5" Dra.	0.042		0.095	0.31			0.0135	0.12
	9" Dia.	0.137		0.321	1	0.0175	1.	0.0330	1
	13.5" Dıa.	0.258	1.9			0.042	2.4		
	$9^{\prime \prime} \times 13.5^{\prime \prime}$	0.149	-			0.019	-		

TABLE IX

Change in aerodynamic oentre and C_{m} due to body, medium fillets
9" dia. body. Large span wing. Low wing.
Normal fillet shape. Reflex $\theta=12^{\circ}$ and 16°

	$-\Delta K_{n}$		$-\Delta a_{m_{0}}$	
	Body			
	$i_{w}=2^{0}$	$i_{W}=60$	$i_{w}=2^{a}$	$i_{w}=6^{0}$
1,1	0.067	0.067	0.002	0.022
1,2	0.068	0.070	0.001	0.025
1,3	0.079	0.074	0.0005	0.0275
1,4	0.079	0.075	0.0015	0.0285
2,1	0.090	0.089	0.0035	0.030
2,2	0.093	0.092	0.004	0.0315
2,3	0.095	0.098	0.0035	0.0335
2,4	0.102	0.102	0.0035	0.0355
3,1	0.107	0.115	0.004	0.038
3,2	0.112	0.117	0.0055	0.039
3,3	0.120	0.123	0.005	0.042
$.3,4$	0.120	0.125	0.0055	0.043
4,1	0.126	0.136	0.008	0.0435
4,2	0.132	0.138	0.008	0.0455
4,3	0.130	0.143	0.0035	0.049
4,4	0.137	0.144	0.006	0.052

TABLE X
Ohange in aerodynamio centre and $C_{m_{0}}$ due to body, small and large fillets
9"' dia. body. Large ipan wing. Low wing.
Normal fillet shape. Reflex $\theta=12^{\circ}$ and 16°

$\begin{gathered} \text { Fillet } \\ \text { Size } \end{gathered}$	Body	$\cdots \mathrm{K}_{\mathrm{n}}$		$-\Delta m_{0}$	
		$i_{W}=20$	$\dot{i}_{W}=60$	$i_{\text {W }}=20$	$i_{W}=6^{\circ}$
Small	1,1		0.072		0.035
Small	1,4	0.092		0.120	
Small	2,2	0.100	0.101	0.011	0.045
Small	2,3	0.108		0.0130	
Small	2,4	0.116		0.0147	
Small	3,2	0.121		0.0132	
Small	4.1	0.146		0.0140	
Large	2,2	0.090		0.0025	

TABLE XI
'Frifect of fillet refilex and thickness on $-\Delta K_{n}$ and $-\Delta 0_{m_{0}}$ due to body
9́ㅔ dia• body. Large span wing. Low wing. The no-fillet 'and with-fillet measurements' werc made at the same tame.

Body	${ }^{\text {i }}{ }_{\text {W }}$	$\begin{aligned} & \text { Roflex } \\ & \text { Angle } \end{aligned}$	Fillet Thickness	$-\Delta K_{n}$	$-\Delta G_{m_{0}}$
1,2	20.	no fillet 8° 12° 16°	$\underset{\substack{\text { normal } \\ " \prime \\ " 1}}{ }$	$\begin{array}{r} 0.081 \\ 0.070 \\ 0.071 \\ 0.069 \end{array}$	$\begin{array}{r} 0.0165 \\ 0.0135 \\ 0.0035 \\ -0.0060 \end{array}$
1,4	2°	$\left\lvert\, \begin{gathered} n o f i l l e t \\ 8^{\circ} \\ 12^{\circ} \\ 16^{\circ} \\ 12^{\circ} \end{gathered}\right.$		$\begin{aligned} & 0.092 \\ & 0.0775 \\ & 0.079 \\ & 0.080 \\ & 0.073 \end{aligned}$	$\begin{array}{r} 0.0185 \\ 0.0133 \\ 0.0040 \\ -0.0067 \\ 0.0096 \end{array}$
1,2	6°	$\left\|\begin{array}{c} \text { no fillet } \\ 12^{\circ} \\ 16^{\circ} \\ 16^{\circ} \\ 20^{\circ} \end{array}\right\|$	normal normal flat plate flat plato	$\begin{aligned} & 0.083 \\ & 0.069 \\ & 0.070 \\ & 0.050 \\ & 0.043 \end{aligned}$	$\begin{array}{r} 0.0483 \\ 0.0320 \\ 0.0233 \\ -0.0096 \\ -0.0230 \end{array}$

TABLE XII

Effoct of fillets compared with no-fillet moasurements
$9^{\text {th }}$ din. body. Large span wang. Low wing.
For ΔK_{n} the no-fillet datum values are means for all wing heights and volues (because insufficient and scatterod values measured for low wing).
For $\Delta \overrightarrow{C_{m}}$ the no-filiet datum valucs are tho se cotually mesured for low winge In ali testis a fillet was fitted an both port and starboard wing-body junctions.

TABIE XIII
Analysis of test results on ΔK_{n} due to body (see seotion 6.1 of text)

$$
\text { No fillets } \Delta=\left(-\Delta K_{n}\right) \cdot \frac{a s \bar{c}}{c D^{2}}
$$

Body	Ratio $\Delta_{5 / \Delta_{10}}$		Mean Value
	9 in - dia.	4.5 in. dia.	
1,1	. 0.86	. 0.91	
1,3	0.82	0.91	0.87
3,1	0.88	0.86	
3,3	0.90	0.85	

$$
\begin{aligned}
\Delta_{5}= & \text { value of } \Delta \text { for } \\
& \text { A.R. }=5 \text { wing. } \\
\Delta_{10}= & \text { value of } \Delta \text { for } \\
& \text { A.R. }=10 \text { wing. }
\end{aligned}
$$

Analysis of test results on $\Delta \mathrm{m}_{0}$ due to body without fillets

Bodies of revolution only. $\quad f=\left(-\Delta m_{0}\right) \cdot \frac{S \overline{\mathrm{c}}}{\mathrm{Vol} \cdot \dot{i}_{V}}$

Body	$\frac{\mathrm{I}}{\mathrm{D}}$	$\begin{gathered} \text { Wing } \\ \mathrm{A} \end{gathered}$	$\begin{aligned} & \text { Body dia. } \\ & D \text { in. } \end{aligned}$	Ifiean $\left(-\Delta a_{m_{0}}\right)$ $z_{W}=2^{0}$ all wing hoighte	$\begin{gathered} \left(-\Delta{a_{0}}_{0}\right) \\ i_{\mathrm{w}}=6^{\circ} \\ \text { Mid wing only } \end{gathered}$	Value of \pm	
						$i_{W}=2^{0}$	$i_{W}=6^{\circ}$
1,1	6.9	10	9	0.011	0.035	10.0175	0.010
1,2	7.6			0.013	0.0395	10.0185	0.0185
1,3	-8.3			0.0135	0.043	0.017	0.010
1,4	+ $9.0 \mid$			0.015	0.047	0.017	0.018
2,1	7.61			0.0145	0.044	0.0205	0.021
2,2	8.3			0.016	0.0465	0.0205	0.0195
2,3	9.0			0.0175	0.048	0.020	0.0185
2,4	9.7			0.018	0.055	0.019	0.019
3,1	8.3			0.017	0.0515	0.0215	0.022
3,2	- 9.0			0.018	0.0535	0.021	0.020',
3.3	9.7			0.019	0.057	0.020	0.020
3,4	10.4			0.0205	0.0615	0.020	0.020
4,1	9.0			0.019	0.0585	0.022	0.0225
4,2	9.7			0.021	0.061	10.022	0.0215
4,3	10.4			0.0215	0.0645	0.021	0.0205
4,4	11.1			0.021	0.070	0.019	0.021
1,1	4.6	10	1312	0.0225		0.016	
1,3	5.5			0.030	*The three	0.017	
3,1	5.5			0.034	values for	0.019	
3,3	6.5			0.042	low wing	0.0195	
1,1	13.8	10	$4 \frac{1}{2}$	0.0035	omitted	10.0225	
1,3	16.6			0.0035	as 211	10.018	
3,1	16.6			0.0055	about	10.028	
3,3	19.4			0.0055	0.608	10.023	
1,1	6.9	5	9	0.0195	higher and	0.155	
1,3	8.3			0.025	would not	0.115	
3,1	8.3			0.030	gavo fair	0.019	
3,3	9.7			0.033	mean value	0.0175	
1,1	13.8	5	$4 \frac{1}{2}$	0.009		0.028	
1,3	16.6			0.0095		0.024	
3,1	16.6			C.0115		0.029	
3,3	19.4			0.01 .35		0.0285	

FIG. I.

FIG.I. G.A. OF LARGE SPAN WING AND $9^{\prime \prime}$ DIA. BODIES.

FIG. 5.

FIG.5. CHARACTERISTICS OF WING ALONE.

FIG. 6. EFFECT OF WING HEIGHT AND ANGLE AND WING ROOT FILLETS ON LIFT.

FIG 7

FIG 7 PITCHING MOMENTS FOR RANGE OF FRONT BODY LENGTHS ON REAR BODY NO (B) LOW WING, 9 DIA GOOY, MEDIUM FILLETS, LARGE SPAN WING, ${ }^{6} W=6^{\circ}$

FIG. 8.

FIG.8. FORWARD SHIFT OF AERODYNAMIC CENTRE DUE TO BODY ($-\Delta \mathrm{K}_{\mathrm{n}}$)
NO FILLETS, 9 "DIA: BODY, LARGE SPAN WING

FIG. 9.

FIG.9. EFFECT OF BODY DIAMETER AND DEPTH ON $-\Delta K_{n}$ DUE TO BODY, AND - COMPARISON ${ }^{n}$ WITH POTENTIAL FLOW THEORY.

LARGE SPAN Wing, MID Wing, ${ }^{i} w=2^{\circ}$

FIG. 10

FIG. IO. EFFECT OF BODY SIZE ON $-\Delta K_{n}$. DUE TO BODY, AND COMPARISON WITH POTENTIAL FLOW THEORY.
SMALL SPAN WING, MID WING, $i^{i}=2^{\circ}$.

FIG. II.

FIG. II. $-\Delta C_{m_{0}}$ DUE TO BODY. NO FILLETS, $9^{\prime \prime}$ DIA: BODY, LARGE SPAN WING, ${ }^{i} w=2^{\circ}$

FIG. 12.

FIG. IR. $-\Delta C_{m_{0}}$ DUE TO BODY.
MID WING, 9 "DA: BODY, LARGE SPAN WING, ${ }^{i} \omega=2^{\circ} \&^{i} \omega=6^{\circ}$

FIG.I3. DIAGRAM OF BODY FORCES AT $C_{L}=O$, FOR LOW AND HIGH WING.

FIG.14. EFFECT OF $i_{\omega} O N-\Delta C_{m_{0}} D U E$ TO BODY. NO FILLETS, 9 "DIA: BODY, LARGE SPAN WING

FIG. 15.

FIG. 15. EFFECT OF BODY DIAMETER AND DEPTH ON $\triangle C_{m_{0}}$ DUE TO BODY, AND COMPARISON WITH POTENTIAL FLOW THEORY.

LARGE SPAN WING, MID WING, ${ }^{i} \omega=2^{\circ}$

FIG. 16. EFFECT OF BODY DIAMETER ON $-\Delta C_{m_{0}}$ DUE TO BODY, AND COMPARISON WITH POTENTIAL FLOW THEORY.
SMALLSPAN WING, MID WING; ${ }^{\text {S }} w=2^{\circ}$

FIG. 17. EFFECT OF TURNED-UP REAR BODY ON $-\Delta C_{m_{0}}$ 9" DIA• BODY, LARGE SPAN WING.

LOW WING, MEDIUM FILLETS, 9 "DIA: BODY, LARGE SPAN WING. FILLET SHAPE NORMAL, AT 10° TO BODY $\left(\theta=12^{\circ} \& 16^{\circ}\right)$

FIG. 19.

FIG. 19. EFFECT OF FILLETS ON $\mathrm{C}_{\mathrm{m}_{0}}$. LOW WING, 9"DIA: BODY, LARRGE SPAN WING, ${ }^{L} w=2^{\circ} \&^{L} \omega=6^{\circ}$ FILLET SHAPE NORMAL,AT 10° TO BODY. $\theta=12^{\circ} \& 16^{\circ}$

FIG. 20.

FIG. 20. EFFECT OF FILLET REFLEX, θ, AND THICKNESS ON $\mathrm{C}_{m_{0}}$
LOW WING, $9^{\prime \prime}$ DIA: BODY, LARGE SPAN WING, ${ }^{i} \omega=2^{\circ} 8^{i} w=6^{\circ}$, MEDIUM FILLET PLAN-FORM

FIG. 21.

FIG. 21 VALUES OF Δ_{10} FOR $9^{\prime \prime}$ DIA: MODEL. SEEFIG 22 FOR FINAL PRESENTATION

FIG. 22.

FIG. 22. CHARTS FOR ESTIMATION OF ΔK_{n} DUE TO BODY.
NO FILLETS, SYMMETRICAL REAR BODY, ELLIPTIC NOSE,BODY OF REVOLUTION ONLY

FIG. 23.

FIG.23. ANALYSIS OF MODEL RESULTS FOR ΔC_{m} DUE TO BODY. BODY OF REVOLUTION ONLY, NO FILLETS.

A.R.C. Technleal Report

PUBLISHED BY hiS MAJESTY'S STATIONERY OFFICE
To be purchased from
York House, Kingsway, LONDON, w.c 2, 429 Oxford Street, LONDON, w 1, P.O. Box 569, LONDON, S.E.1,

13a Castle Street, edinburgh, $2 \mid 1$ St Andrew's Crescent, Cardiff
39 King Street, manchester, 2 I Tower Lane, bristol, 1
2 Edmund Street, birmingham, $3 \mid 80$ Chichester Streef, belfast,
or from any Bookseller
Price 5s. 6d. net

[^0]: * The values of c, m and n used throughout Section 6 are dernved by letting the intersection of wang leading and trailing edges wath the body planform definc the root chord c. The wing planform is taken as rectangular inside the body, and is not considerod to taper to a maxamum value, c_{0}, on the body contro-line, as was usca in the previous parts of the report. Throughout the presentation of the results in the report this latter definition of wing area was used, as it would havo been extremely confusing in comparing answers if the units changed with body diameter and wing aspect ratio, but in applying the generalised results to other airoraft designs it as likely to prove much simpler and more logical to use the defanitions, based on root chord, now suggested. It is also consadered that the uprash and dowmwash fields which control the pitching moments on the body must be functions of the wing planform outside the body: only.

 The values of c, m and n, whach now replacc c_{0}, m_{0} and n_{0} as definitions of body length, vary slightly with body diametcr and wing aspeot ratio. They are listed fully in Table I. The values of Δ_{10} and Δ_{5} are of course derived from the measured ΔK_{n}, which was based on So of the fully tapered wing, by using the carly definition of S and 3 . The now definitions are illustrated by the diagrams in FIg. 21 and 22.

