

MINISTRY OF TECHNOLOGY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Numerical Appraisal of Multhopp's Low-Frequency Subsonic Lifting-Surface Theory

By H. C. Garner

Aerodynamics Division N.P.L.

LONDON: HER MAJESTY'S STATIONERY OFFICE
1970
PRICE £2 12s 0 0 [$[\mathfrak{E} 2 \cdot 60]$ NET

Numerical Appraisal of Multhopp's Low-Frequency Subsonic Lifting-Surface Theory

By H. C. Garner
Aerodynamics Division N.P.L.
Reports and Memoranda No. 3634*
October, 1968

Summary.

A brief review of oscillatory theories reveals that some of these suffer from a defect that has been corrected in the Algol programme now subject to critical examination. Its features in steady and lowfrequency subsonic flow are outlined, and extensive tabulated results are presented for seventeen planforms. The accuracy and convergence of solutions are studied in relation to arbitrary parameters representing chordwise and spanwise collocation positions, spanwise integration points and the essential central rounding of sweptback wings. Rectangular and other wings with streamwise symmetry, untapered and tapered sweptback wings, slender and curved-tipped wings show progressively slower convergence, and they are examined in respect of overall forces, spanwise loading, local aerodynamic centres, central chordwise loading and oscillatory pitching derivatives. Some new general criteria are recommended for selecting the arbitrary parameters.

Serious inaccuracy arising from the original defect is established, and hence the need to examine theories for general frequency. The residual errors in the Algol programme may stem from high or low aspect ratio demanding extra spanwise or chordwise terms, but the most elusive cause of collocation error in the standard solutions is found to be insufficient central rounding of highly sweptback wings. It is demonstrated, however, that the rounding itself often influences the aerodynamics as much as the standard collocation error and in the opposite sense, so that one correction is useless without the other. Approximate results with both effects taken into account provide a few examples of improved comparisons with exact theory and experiment.

[^0]
LIST OF CONTENTS

Section

1. Introduction
2. Steady-Flow and Low-Frequency Theories
3. Numerical Results
3.1. Steady flow
3.2. Oscillatory flow
4. Convergence of Solutions
4.1. Rectangular wings
4.2. Wings with streamwise symmetry
4.3. Wings of constant chord
4.4. Tapered sweptback wings
4.5. Slender wings
4.6. Wings with curved tips
5. Criteria for Selecting m, N and \bar{m}
6. Central Rounding of Sweptback Planforms
7. Concluding Remarks

Acknowledgements
List of Symbols
References 1 to 39
Tables 1 to 51

Illustrations-Figs. 1 to 23
Detachable Abstract Cards

LIST OF TABLES

No.
1 Details of Planforms and Mach Numbers Used
2 Summary of Numerical Results
3 to 22 Solutions for Wings at Unit Incidence
23 to 34 Spanwise Loading and Local Aerodynamic Centres

35 to 42 Coefficients for Wings in Oscillatory Motion

43 to 48 Oscillatory Pitching Derivatives
49 Solutions for Planforms 13 and $16(M=0, \alpha=1)$ with Double Rounding
50 Effect of Rounding on the Aerodynamic Loading of Planforms 7,9, 13 and $16(M=0, \alpha=1)$
51 Constant-Chord Wing $\left(A=4, \Lambda=45^{\circ}, M=0\right)$ with Double Rounding in Oscillatory Motion

LIST OF ILLUSTRATIONS

Figure

1 Convergence of local aerodynamic centres on rectangular wings with respect to \bar{m} and N
2 Convergence of lift slope and centres of lift on a curved-tipped wing with respect to \bar{m} and N
3 Convergence of pitching derivatives for a constant-chord wing with hyperbolic leading edge
4 Convergence of pitching stiffness and damping with respect to m for a sweptback wing of high aspect ratio
5 Correlation of convergence with respect to \bar{m} for rectangular wings in steady flow $(N=3)$
6 Convergence of aerodynamic centres of wings with streamwise symmetry from direct and reverse flow ($M=0$)
7 Convergence of pitching damping derivatives about axis of streamwise symmetry from direct and reverse flow
8 Effect of m and q on spanwise distributions of $X_{a c}$ for three constant-chord wings of aspect ratio 4 ($M=0$)
9 Pitching damping against axis position for sweptback wings of constant chord with and without central kink

10 Effect of q on lift slope and aerodynamic centre of an arrowhead wing in compressible flow ($m=15$)
11 Convergence of lift slope and aerodynamic centre with respect to m for a sweptback wing of high aspect ratio
12 Convergence of local lift and $X_{a c}$ at centre section of a sweptback wing of high aspect ratio
13 Effect of m on damping derivatives against axis position for a sweptback wing of low aspect ratio at $M=0.8$
14 Effect of N on spanwise distributions of $X_{a c}$ on slender delta and gothic wings ($A=0.0001$)
15 Effect of N on central chordwise loadings of delta wings of aspect ratios 0.0001 and 1.5
16 Effect of N on pitching damping against axis position for slender delta and gothic wings ($A=0.0001$)
Convergence of lift slope and pitching damping on a curved-tipped wing at $M=0.8$ with respect to \bar{m} and m
18 Effect of q on spanwise distributions of $X_{a c}$ for two curved-tipped wings and comparison with experiment
Approximate criterion for selecting \bar{m} for a given planform, Mach number and number of chordwise terms

LIST OF ILLUSTRATIONS-continued

Figure

20 Comparisons with exact theory of central chordwise loadings of a slender gothic wing with various amounts of rounding
21 Calculated effect of m as a rounding parameter on central $X_{a c}$ and total lift of four wings ($M=0$)
22 Convergence of pitching damping derivatives of an arrowhead wing with fixed rounding from direct and reverse flow

23 Approximate effect of rounding on total and local loads from solutions for sweptback wings with twice the standard rounding

1. Introduction.

Consider a planform S in oscillatory vertical motion relative to a free stream of density ρ, subsonic Mach number M and of velocity U parallel to the positive x-axis. Let the real part of $\bar{z}(x, y) \exp (i \omega t)$ denote the upward displacement of the surface at time t, and let the load distribution per unit area over the planform be written as the real part of

$$
\begin{equation*}
\frac{1}{2} \rho U^{2} l(x, y) \exp (i \omega t) \tag{1}
\end{equation*}
$$

Then under the usual linearizing assumptions a double integral equation

$$
\begin{equation*}
\iint_{S} \bar{l}\left(x^{\prime}, y^{\prime}\right) K\left(x^{\prime}-x, y^{\prime}-y, \omega, M\right) d x^{\prime} d y^{\prime}=-\frac{\partial \bar{z}}{\partial x}-\frac{i \omega \bar{z}}{U}, \tag{2}
\end{equation*}
$$

with a complicated kernel function K, relates the complex loading function l to the instantaneous flow direction at (x, y) on the planform. Oscillatory lifting-surface theory poses the problem of evaluating \bar{l}, when \bar{z} is given. With very few exceptions (see Section 3) mathematical solutions are unobtainable and recourse to numerical analysis is essential.

Garrick ${ }^{1}$ has described the historical background to the subject from the earliest theoretical methods to those available some twelve years ago. He remarks that the problem of three-dimensional flow about wings must be considered to be in a state of continuing development, and the statement remains true. Williams ${ }^{2}$ has contributed a later account of theoretical progress with emphasis on the mathematical formulation. Theoretical methods differ according to whether exponential factors are inserted in the expression (1) or whether the velocity potential over the wing and wake is used in place of 7 in equation (2). The corresponding changes in the kernel function transform the analysis, but of perhaps greater importance are the basic distinctions in the technique of evaluating equation (2) as exemplified in the different classes of solution, viz., strip theory, vortex lattice, box grid, low aspect ratio, high aspect ratio and exact kernel.

The most simple procedure with its powerful empirical capability is strip theory. Van de Vooren and Eckhaus ${ }^{3}$ have developed this for tapered swept wings, and their method has been extended by Eckhaus ${ }^{4}$ to compressible subsonic flow. Such methods are known to give inaccurate aerodynamic damping forces at low frequencies, and their main application is to cases of high aspect ratio and frequency. Vortex lattice and box grid methods for unsteady flow have been developed since the publication of Ref. 1. These exploit changes in mathematical model involving discrete elements of vorticity to simplify the evaluation of equation (2) or some corresponding double integral. Lehrian's ${ }^{5}$ vortex lattice method for incompressible flow and its further development for subsonic and sonic flow by Runyan and Woolston ${ }^{6}$ have been widely used. The chief disadvantage of such methods is the uncertainty resulting from the extra parameters that define the lattice, and there is the burden of proof that the results converge as the lattice spacing is reduced. Although a box method, such as that due to Stark ${ }^{7}$, is probably more promising from the standpoint of establishing accuracy, the same disadvantages have to be overcome. The whole problem of accuracy stems from the fact that there are no exact mathematical solutions for practical planforms, and the change of mathematical model requires justification by numerical analysis alone.

Other methods involve simplifications to the kernel function. One extreme is slender wing theory, formulated for incompressible flow by Garrick ${ }^{8}$ and for compressible flow by Mazelsky ${ }^{9}$. Lawrence and Gerber ${ }^{10}$ have treated wings of low aspect ratio in incompressible flow by splitting the downwash integral into a slender wing term and a residual part in which an approximation is made. The counterparts for wings of high aspect ratio are Cicala's ${ }^{11}$ lifting line theory and the extension for subsonic compressible flow by Reissner ${ }^{12}$ who splits the downwash integral into a two-dimensional term and a residual part with a suitable approximation. Theories such as Refs. 10 and 12 lead to interesting mathematics, but suffer from restricted applicability. Moreover, they stem from the decade before the intensive development of computers and the readjustment of theoretical methods that has ensued.

The use of the exact kernel function is no longer inhibited by computational demands. The basic methods of Watkins et al ${ }^{13}$ and Richardson ${ }^{14}$ differ in that Ref. 13 makes no concessions to expediency of computation, while Ref. 14 implies greater numerical approximation in the pursuit of economy. The latter has been developed by Hsu ${ }^{15}$, and both Lashka ${ }^{16}$ and Davies ${ }^{17}$ have fully mechanized applications of equation (2) with K as formulated in equation (22) of Ref. 13. The procedure is first to evaluate the chordwise integral with respect to x^{\prime}, and then to integrate across the span. This latter spanwise integration turns out to be crucial and represents a considerable threat to accuracy.

All the theoretical methods mentioned above (Refs. 3 to 17) apply to general frequencies of oscillation. The mathematical formulation is of course much simpler when only first order effects of frequency are sought. The low-frequency method of Ref. 18 has been developed with a view to the reduction of numerical errors from spanwise integration. In the present report extensive calculations for a wide range of planforms are analysed in order to demonstrate the errors and how they are reduced. The uncertainties that remain are probably no greater than those due to the initial linearization. The convergence of solutions for the aerodynamic loading has been studied with more success for some planforms than others, but the less amenable ones are of more practical interest. Although the primary purpose of the investigation is the appraisal of Ref. 18 as a numerical technique, perhaps of greater importance is the implication that the methods of Refs. 13 to 17 for general frequency are capable of significant improvement by straightforward modification.

2. Steady-Flow and Low-Frequency Theories.

Before the essential features of Ref. 18 are described, a brief account of the historical development of Multhopp's low-frequency subsonic lifting-surface theory is desirable. The original steady-flow theory of Ref. 19 was extended to slow pitching oscillations in Ref. 20. The chordwise integration of equation (2) is carried out first. Although Multhopp recognized the need for care in the subsequent spanwise integration and paid attention to the logarithmic singularity in the integrand, his treatment was promptly improved by Mangler and Spencer ${ }^{21}$; with this refinement Multhopp's theory has been widely used for many years. The same basic technique of spanwise integration is carried over into Refs. 16 and 17. Multhopp's original theory was wisely restricted to $N=2$ chordwise terms in the load distribution, and subsequent extensions to larger N have been made without due care. These applications entail collocation points at chordwise positions

$$
\begin{equation*}
\xi=\frac{x-x_{l}}{c}=\frac{1}{2}\left(1-\cos \frac{2 \pi p}{2 N+1}\right) \text { with } p=1,2, \ldots N, \tag{3}
\end{equation*}
$$

which extend closer to the leading edge $x=x_{l}$ as N increases. Let \bar{m} denote an odd number of spanwise integration points between the wing tips, viz.,

$$
\begin{equation*}
\eta=\frac{y}{s}=\sin \frac{\pi \bar{n}}{\bar{m}+1} \quad \text { with } \quad \bar{n}=0, \pm 1, \ldots \pm \frac{1}{2}(\bar{m}-1) . \tag{4}
\end{equation*}
$$

Then it is shown in Ref. 22 that, to ensure 1 per cent accuracy in the calculated steady downwash at the centre of simply loaded rectangular wings of aspect ratio A, it is necessary to take $(\bar{m}+1)>4 A$. The analysis of Ref. 22 has been extended to downwash points towards the leading edge of the centreline ($\eta=0$) and reveals inaccuracies greater than 1 per cent if $(\bar{m}+1)<2 A / \xi$. An increase in N with fixed \bar{m} must ultimately lead to divergent results, and it is tentatively recommended in Ref. 18 that

$$
\begin{equation*}
\bar{m}+1 \geqslant 2 A \sec \Lambda_{1} \operatorname{cosec}^{2} \frac{\pi}{2 N+1}, \tag{5}
\end{equation*}
$$

where Λ_{1} is the angle of trailing-edge sweepback. Thus for $A=6, \Lambda_{1}=30^{\circ}$ and $N=4$, say, equation (5) would require that $\bar{m}>117$.

Ref. 18 meets this demand by an increase in the number of spanwise integration points to

$$
\begin{equation*}
\bar{m}=q(m+1)-1 \tag{6}
\end{equation*}
$$

where m is the number of collocation sections and q is either unity or an even integer which will need to be increased as N is increased. When $q=1$, the summation of downwash takes the form of equation (22) of Ref. 18 and the calculation is simply that of Ref. 20. As described in Section 2.4 of Ref. 18, the procedure for spanwise integration for $q \geqslant 2$ is to evaluate the downwash at the same collocation sections

$$
\begin{equation*}
\eta_{v}=\cos \theta_{v}=\sin \frac{\pi v}{m+1} \quad \text { with } \quad v=0, \pm 1, \ldots \pm \frac{1}{2}(m-1) \tag{7}
\end{equation*}
$$

in terms of the loading coefficients at the \bar{m} sections of equation (4). Then Multhopp's interpolation polynomial

$$
\begin{equation*}
g(\theta)=(-1)^{\frac{1}{2}(m+1)} \sum_{v=-z}^{z} g\left(\theta_{v}\right) \frac{(-1)^{v-1} \sin \theta_{v} \sin (m+1) \theta}{(m+1)\left(\cos \theta-\cos \theta_{v}\right)} \tag{8}
\end{equation*}
$$

with $z=\frac{1}{2}(m-1)$ is applied to each loading coefficient at every value of

$$
\begin{equation*}
\theta=\frac{\pi}{2}-\frac{\bar{n} \pi}{\bar{m}+1} \tag{9}
\end{equation*}
$$

that occurs from equation (4) in the summation of downwash. Thus the downwash is expressed more accurately as a linear combination of the coefficients in the load distribution

$$
\begin{align*}
I\left(x^{\prime}, y^{\prime}\right)=\exp \left(\frac{i \omega M^{2} x^{\prime}}{\beta^{2} U}\right) \frac{8 s}{\pi c_{n}} & {\left[\gamma_{n} \cot \frac{1}{2} \phi+4 \mu_{n}\left(\cot \frac{1}{2} \phi-2 \sin \phi\right)\right.} \\
& +\kappa_{n}\left(\cot \frac{1}{2} \phi-2 \sin \phi-2 \sin 2 \phi\right) \\
& \left.+\lambda_{n}\left(\cot \frac{1}{2} \phi-2 \sin \phi-2 \sin 2 \phi-2 \sin 3 \phi\right)\right] \tag{10}
\end{align*}
$$

Here the number of functions γ_{n}, μ_{n}, etc., is equal to $N, \beta^{2}=1-M^{2}$, the subscript n denotes that

$$
\begin{equation*}
y^{\prime}=y_{n}^{\prime}=s \sin \frac{\pi n}{m+1} \quad \text { with } \quad n=0, \pm 1, \ldots \pm \frac{1}{2}(m-1) \tag{11}
\end{equation*}
$$

and the angular chordwise co-ordinate ϕ is given by

$$
\begin{equation*}
x^{\prime}=x_{l n}+\frac{1}{2} c_{n}(1-\cos \phi) \tag{12}
\end{equation*}
$$

The boundary conditions (2) at the $m N$ collocation points, defined by equations (3) and (7), become ordinary linear simultaneous equations to determine the unknowns γ_{n}, μ_{n}, etc.

More recent developments in steady subsonic lifting-surface theory are described in Refs. 23 and 24. Zandbergen et al ${ }^{23}$ use a parameter such as q in equation (6), but couple this with a refined technique for spanwise integration. Hewitt and Kellaway ${ }^{24}$ offer a different approach in which the spanwise integration of equation (2) precedes the chordwise integration. Although both these methods have certain advantages
in numerical technique, Ref. 18 is adequate for many purposes and has the additional facility for treating low-frequency oscillations.
The present applications are to wings at a steady uniform incidence α or in oscillatory pitching motion. In steady flow the single solution

$$
\begin{equation*}
\alpha=\alpha_{1}=1 \tag{13}
\end{equation*}
$$

is required, and the load distribution $l=l_{1}$ is obtained in the form of equation (10) without its exponential factor. In most of the oscillatory cases four additional solutions are obtained with

$$
\left.\begin{array}{ll}
\alpha=\alpha_{2}=x / \bar{c} \text { giving } l=l_{2} \tag{14}\\
\alpha=\alpha_{3} & \text { from equation (23) of Ref. } 18 \text { with } l=l_{1} \\
\alpha=\alpha_{4}=(x / \bar{c})^{2} \text { giving } l=l_{4} \\
\alpha=\alpha_{5} & \text { from equation (23) of Ref. } 18 \text { with } l=l_{2}
\end{array}\right\},
$$

where \bar{c} is the geometric mean chord and a full derivation of α_{3} is given in Ref. 20. To each incidence $\alpha=\alpha_{\mathrm{r}}$ there corresponds a steady wing loading

$$
\begin{align*}
l_{r}=\frac{8 s}{\pi c_{n}} & {\left[\gamma_{n r} \cot \frac{1}{2} \phi+4 \mu_{n r}\left(\cot \frac{1}{2} \phi-2 \sin \phi\right)\right.} \\
& +\kappa_{n r}\left(\cot \frac{1}{2} \phi-2 \sin \phi-2 \sin 2 \phi\right) \\
& \left.+\lambda_{n r}\left(\cot \frac{1}{2} \phi-2 \sin \phi-2 \sin 2 \phi-2 \sin 3 \phi\right)\right] \tag{15}
\end{align*}
$$

from which are calculated the coefficients of lift and pitching moment

$$
\left.\begin{array}{c}
C_{L r}=\frac{1}{\beta} I_{L r}=\frac{\pi A}{m+1} \sum_{n=-z}^{z} \gamma_{n r} \cos \frac{n \pi}{m+1} \quad\left[z=\frac{1}{2}(m-1)\right] \tag{16}\\
C_{m r}=-\frac{1}{\beta} I_{m r}=\frac{\pi A}{m+1} \sum_{n=-z}^{z} \frac{1}{\bar{c}}\left\{\gamma_{n r}\left(x_{l n}+\frac{1}{4} c_{n}\right)-\mu_{n r} c_{n}\right\} \cos \frac{n \pi}{m+1}
\end{array}\right\}
$$

and also the second moment coefficients

$$
\begin{align*}
-I_{n r}^{*}=\frac{\pi \beta A}{m+1} \sum_{n=-z}^{z} \frac{1}{\bar{c}^{2}} & \left\{\gamma_{n r}\left(x_{l n}^{2}+\frac{1}{2} x_{l n} c_{n}+\frac{1}{8} c_{n}^{2}\right)\right. \\
& \left.-\mu_{n r}\left(2 x_{l n} c_{n}+\frac{3}{4} c_{n}^{2}\right)+\kappa_{n r}\left(\frac{1}{16} c_{n}^{2}\right)\right\} \cos \frac{n \pi}{m+1} . \tag{17}
\end{align*}
$$

These coefficients determine the four pitching derivatives as formulated in equations (39) of Ref. 18 and also those for the reversed planform by equations (38) of Ref. 18.

In the treatment of swept wings major uncertainty arises from the central kink in the planform. Although the form of load distribution (10) or (15) is acceptable for smooth planforms, it is known to lead to logarithmically infinite downwash along a section where a kink occurs. The common practice is therefore to smooth the planform by means of artificial rounding. In order to define the planform at the sections (4), the rounding is formulated according to equation (28) of Ref. 18. When both leading and trailing edges have straight portions in the range

$$
\begin{equation*}
0<y<y_{1}=s \sin \frac{\pi}{m+1} \tag{18}
\end{equation*}
$$

the leading edge and chord in the range $|y| \leqslant y_{1}$ become

$$
\left.\begin{array}{l}
x_{l}(y)=x_{l}\left(y_{1}\right)\left[\frac{|y|}{y_{1}}+\frac{1}{6}\left(1-\frac{|y|}{y_{1}}\right)^{6}\right] \tag{19}\\
c(y)=c_{r}+\left[\frac{|y|}{y_{1}}+\frac{1}{6}\left(1-\frac{|y|}{y_{1}}\right)^{6}\right] \quad\left\{c\left(y_{1}\right)-c_{r}\right\}
\end{array}\right\}
$$

Here c_{r} is the true central chord and the origin is chosen at the leading apex so that

$$
\begin{equation*}
x_{l}\left(y_{1}\right)=y_{1} \tan \Lambda_{0} \tag{20}
\end{equation*}
$$

where Λ_{0} is the angle of leading-edge sweepback. The factor $1 / 6$ in equations (19) is chosen to be consistent with Multhopp's rule in Appendix VI of Ref. 19. Although this standard rounding is controlled by the value of m through equation (18), there is provision for any other desired rounding.

For a given planform, including any artificial rounding and the usual lateral scaling factor β in cases of compressible flow, there are only the three integers m, N and q to specify the matrices that govern the simultaneous equations for γ_{n}, μ_{n}, etc. The programme of Ref. 18 limits the number of chordwise terms to $N \leqslant 4$ and there are interdependent restrictions on m, N and q imposed by the capacity (32K) of the N.P.L. KDF9 computer and an arbitrary maximum running time of 45 minutes. The tables in Section 1 of Ref. 18 illustrate the restrictions and typical running times. In the present applications it is possible to study the convergence of the theoretical results with respect to each of the parameters. The extent to which full convergence is frustrated by the restrictions is dependent on the planform and the aerodynamic quantity being considered. To be necessary, the method must show inadequate convergence with respect to N when $q=1$. To be successful, it must show convergence with respect to q, m and N.

3. Numerical Results.

Calculations have been made for the seventeen planforms listed in Table 1. When both leading and trailing edges are straight, the planform is defined by the tabulated values of aspect ratio $A=2 s / \bar{c}$, $c_{r} / \bar{c}, \tan \Lambda_{0}$ and $\tan \Lambda_{1}$, themselves related by

$$
\begin{equation*}
c_{r} / \bar{c}=1+\frac{1}{4} A\left(\tan \Lambda_{0}-\tan \Lambda_{1}\right) . \tag{21}
\end{equation*}
$$

The exceptions are Planforms $4,6,15,16$ and 17 for which additional formulae or data are included. The final column of Table 1 gives references to earlier work on some of the planforms. Stark ${ }^{\prime} \mathrm{s}^{25}$ theory has been applied to the rectangular wing $(A=2)$. The circular planform is one example of an exact solution by Van Spiegel ${ }^{26}$, whose theory and corrected results are presented by Benthem and Wouters ${ }^{27}$. Other examples where exact theory is available are the very slender delta and gothic planforms $(A=0.0001)$ to which Garrick's ${ }^{8}$ theory is applicable. Planforms 10,11 and 17 are chosen because they have formed the
subjects of earlier theoretical and experimental research (Refs. 30,31 and 35). Although comparison with experimental results forms a very minor part of the present investigation, five of the remaining planforms have been chosen because measured aerodynamic data were available in Refs. 28, 29, 32, 33 and 34. These represent a wide range of shapes and offer the opportunity to examine the difficulties associated with high and low aspect ratio, leading-edge and trailing-edge sweepback and curved tips.
The tabulated theoretical results for each of the planforms are summarized in Table 2. Tables 3 to 34 concerning steady flow ($\alpha=1$) are sub-divided into complete solutions and total forces (Tables 3 to 22) and into spanwise distributions of lift and aerodynamic centre (Tables 23 to 34). The next sequence involves oscillatory pitching motion, the coefficients being given in Tables 35 to 42 and the pitching derivatives in Tables 43 to 48. As the discussion unfolds, it will become clear that one crucial source of inaccuracy is associated with the need for artificial central rounding of sweptback wings, as defined in equations (18) to (20). Some attempts have been made to reduce these errors and to evaluate the effect of rounding, and Tables 48 to 50 are included primarily for this purpose.

3.1. Steady Flow.

In the case of 7ero frequency Ref. 18 reduces to steady flow, and altogether over 200 solutions have been obtained for the planforms listed in Table 1 at unit incidence. The non-dimensional loading

$$
\frac{\Delta p}{\frac{1}{2} \rho U^{2}}=\Delta C_{p}=l
$$

at the sections $\eta=\sin \frac{\pi n}{m+1}$ are given by equation (15) where the subscript $r(=1)$ may be omitted. The solutions in Tables 3 to 22 are N sets of functions $\gamma_{n}, \mu_{n} \ldots$, e.g. when $N=4$,

$$
\gamma_{0}, \gamma_{1}, \ldots \gamma_{z} ; \mu_{0}, \mu_{1}, \ldots \mu_{z} ; \kappa_{0}, \kappa_{1}, \ldots \kappa_{z} ; \lambda_{0}, \lambda_{1}, \ldots \lambda_{z}
$$

where $z=\frac{1}{2}(m-1)$. The local lift coefficient and aerodynamic centre are given by

$$
\begin{equation*}
C_{L L}=\frac{4 s \gamma_{n}}{c_{n}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{a c}=\frac{1}{4}-\frac{\mu_{n}}{\gamma_{n}} . \tag{23}
\end{equation*}
$$

The total lift and moment about the origin at the leading edge of the root chord are evaluated as coefficients $C_{L}=C_{L 1}$ and $C_{m}=C_{m 1}$ from equations (16). The centre of lift or aerodynamic centre acts at a distance $x_{a c}$ downstream of the origin and is readily evaluated as

$$
\begin{equation*}
\frac{x_{a c}}{\bar{c}}=-\frac{C_{m}}{C_{L}} . \tag{24}
\end{equation*}
$$

The spanwise centre of pressure of the half wing is defined as

$$
\begin{equation*}
\bar{\eta}=\int_{0}^{1} \frac{c C_{L L}}{\bar{c} C_{L}} \eta d \eta=\frac{2 A}{C_{L}} \int_{0}^{1} \gamma \eta d \eta, \tag{25}
\end{equation*}
$$

where $c C_{L L} / \bar{c} C_{L}$ represents the spanwise loading and the distribution of γ satisfies equation (8). For symmetrical spanwise loading we may write

$$
\begin{equation*}
\gamma=\sum_{k=0}^{z} a_{2 k+1} \sin (2 k+1) \theta \tag{26}
\end{equation*}
$$

Thus $C_{L}=\frac{1}{2} \pi A a_{1}$, and it follows from equations (8), (25) and (26) that

$$
\begin{equation*}
\bar{\eta}=\frac{4}{\pi a_{1}} \sum_{k=0}^{z} \frac{(-1)^{k+1} a_{2 k+1}}{(2 k-1)(2 k+3)}, \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{2 k+1}=\frac{2}{m+1} \sum_{\nu=-z}^{z} \gamma_{v} \sin (2 k+1) \theta_{v} . \tag{28}
\end{equation*}
$$

A typical result, for $m=11$, is

$$
\begin{equation*}
\bar{\eta}=\frac{0.02671 \gamma_{0}+0.24372 \gamma_{1}+0.43514 \gamma_{2}+0.49904 \gamma_{3}+0.43349 \gamma_{4}+0.24980 \gamma_{5}}{0.50000 \gamma_{0}+0.96593 \gamma_{1}+0.86603 \gamma_{2}+0.70711 \gamma_{3}+0.50000 \gamma_{4}+0.25882 \gamma_{5}} . \tag{29}
\end{equation*}
$$

Nearly every solution that has been obtained with $\bar{m}=m$ or $q=1$ is seen to be inadequate. There are examples in Tables $3,4,5,7,8,10,12,13,17,18,20,21$ and 22 , and the behaviour of κ_{n} or λ_{n} with increasing q illustrates the point at once. In some cases C_{L} and C_{m} prove to be unacceptable, and there is no doubt that the method of Ref. 18 (with $q \geqslant 2$) is necessary. More careful study is required to establish whether the method converges satisfactorily. Fig. 1 shows the behaviour of local aerodynamic centres from equation (23) for simple rectangular planforms. Convergence with respect to m is so perfect that $X_{a c}$ can be plotted against a logarithmic scale of $(\bar{m}+1$) with insignificant changes as m is increased from 7 to 15 . The horizontal lines joining points corresponding to the larger values of $(\bar{m}+1)$ show convergence with respect to \bar{m} or q. The separate results for $N=2,3$ and 4 chordwise terms show perfect convergence for the centre section when $A=2$ and satisfactory, but slower, convergence with respect to N near the tip when $A=4$. The results for the smaller aspect ratio when $\bar{m}=m=7$ illustrate, perhaps surprisingly, how the previous method (Ref. 18 with $q=1$) diverges with respect to N. A less favourable example is the highly swept Planform 16 with curved tips considered in Fig. 2 where, as in Fig. 1, the false zeros and large scale tend to exaggerate the discrepancies. The lift slope $\partial C_{L} / \partial \alpha$ and the overall centres of pressure $\bar{\eta}$ and $x_{a c} / \bar{c}$ are plotted against $(\bar{m}+1)$. The effect of increasing m from 15 to 31 is now discernible, but not large. Convergence with respect to \bar{m} is slower, but satisfactory. Convergence with respect to N would appear to be fairly good for $q=1$ and $q=8$ (respectively $\bar{m}+1=16$ and 128 when $m=15$), but this is illusory in the former case and the resulting lift slope is about 7 per cent too high and the aerodynamic centre nearly $0.04 \bar{c}$ too far forward.

These examples serve as preliminary illustrations. The different types of planform, in steady and oscillatory flow, will be considered in Section 4 where each sheds new light on the numerical appraisal. An attempt is made in Section 5 to recommend a suitable choice of m, N and \bar{m}. A critical study of the use of artificial central rounding is deferred until Section 6.

3.2. Oscillatory Flow.

The output from the Algol programme of Ref. 18 can give the coefficients

$$
\begin{equation*}
I_{L r}(r=1,2, \ldots 5), \quad-I_{m r}(r=1,2, \ldots 5) \quad \text { and } \quad-I_{m r}^{*}(r=1,2) \tag{30}
\end{equation*}
$$

from equations (16) and (17). The coefficients are listed from various solutions for thirteen of the planforms in Tables 35 to 42, but in the last instance and in a few other solutions not all twelve coefficients are available. But there are always sufficient to determine the pitching derivatives defined by
where the frequency parameter $\bar{v}=\omega \bar{c} / U, \theta_{0}$ is the amplitude of pitching oscillation and the pitching moment is nose-up and about the axis $x=x_{0}$. In terms of the coefficients (30)

$$
\left.\left.\left.\begin{array}{rl}
-z_{\theta}= & \frac{1}{2 \beta} I_{L 1} \\
-m_{\theta}= & \frac{1}{2 \beta}
\end{array}\right]-\frac{x_{0}}{\bar{c}} I_{L 1}+\left(-I_{m 1}\right)\right] \quad \begin{array}{rl}
-z_{\dot{\theta}}= & \frac{1}{2 \beta}
\end{array}\left[-\frac{x_{0}}{\bar{c}} I_{L 1}+\frac{\beta^{2}-M^{2}}{\beta^{2}} I_{L 2}+\frac{1}{\beta^{2}} I_{L 3}+\frac{M^{2}}{\beta^{2}}\left(-I_{m 1}\right)\right]\right\} \text { - } \begin{aligned}
=\frac{1}{2 \beta} & {\left[\frac{x_{0}^{2}}{\bar{c}^{2}} I_{L 1}-\frac{x_{0}}{\bar{c}}\left\{\frac{\beta^{2}-M^{2}}{\beta^{2}} I_{L 2}+\frac{1}{\beta^{2}} I_{L 3}+\frac{1}{\beta^{2}}\left(-I_{m 1}\right)\right\}\right.} \\
& \left.+\left\{\frac{\beta^{2}-M^{2}}{\beta^{2}}\left(-I_{m 2}\right)+\frac{1}{\beta^{2}}\left(-I_{m 3}\right)+\frac{M^{2}}{\beta^{2}}\left(-I_{m 1}^{*}\right)\right\}\right] \tag{32}
\end{aligned}
$$

where $\beta^{2}=1-M^{2}$.
Among the various applications of the reverse-flow theorem considered by Lehrian and the present author, Section 5.1 of Ref. 36 gives the formulation for low-frequency pitching oscillations. The derivatives (32) may be expressed in terms of the coefficients (30) for the reversed wing, i.e. the given planform in a stream of reversed direction and unchanged Mach number. These coefficients are denoted by $\bar{I}_{L r},-\bar{I}_{m r}$ and $-\bar{I}_{m r}^{*}$. It can be shown that there are precise relationships between the two sets of coefficients, which are conveniently expressed in matrix form as follows.

$$
\left[\begin{array}{c}
I_{L 1} \tag{33}\\
I_{L 2} \\
I_{L 4} \\
-I_{m 1} \\
-I_{m 2} \\
-I_{m 4} \\
-I_{m 1}^{*} \\
-I_{m 2}^{*}
\end{array}\right]=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\lambda & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\lambda^{2} & -2 \lambda & 1 & 0 & 0 & 0 & 0 & 0 \\
\lambda & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
\lambda^{2} & -\lambda & 0 & -\lambda & 1 & 0 & 0 & 0 \\
\lambda^{3} & -2 \lambda^{2} & \lambda & -\lambda^{2} & 2 \lambda & -1 & 0 & 0 \\
\lambda^{2} & 0 & 0 & -2 \lambda & 0 & 0 & 1 & 0 \\
\lambda^{3} & -\lambda^{2} & 0 & -2 \lambda^{2} & 2 \lambda & 0 & \lambda & -1
\end{array}\right]\left[\begin{array}{c}
\bar{I}_{L 1} \\
-I_{m 1} \\
-\bar{I}_{m 1}^{*} \\
\bar{I}_{L 2} \\
-\bar{I}_{m 2} \\
-\bar{I}_{m 2}^{*} \\
\bar{I}_{L 4} \\
-I_{m 4}
\end{array}\right]
$$

and

$$
\left[\begin{array}{r}
I_{L, 3} \tag{34}\\
I_{L:} \\
-I_{m 3} \\
-I_{m 5}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
\lambda & -1 & 0 & 0 \\
\lambda & 0 & -1 & 0 \\
\lambda^{2} & -\lambda & -\lambda & 1
\end{array}\right] \quad\left[\begin{array}{r}
\bar{I}_{L 3} \\
-\bar{I}_{m 3} \\
\bar{I}_{L 5} \\
-\bar{I}_{m 5}
\end{array}\right]
$$

where $\lambda=c_{r} / \bar{c}$ and the length c_{r} enters in as the displacement between the origins of the two co-ordinate systems. Both square matrices have the property of self-inversion, so that the column matrices on the two sides of equation (33) or (34) can be interchanged. The numerical results do not satisfy these equations exactly, and proof of inaccuracy due to inadequate collocation or spanwise integration can often be established.
Woodcock ${ }^{37}$ and Dat et al ${ }^{38}$ have considered the accuracy of collocation solutions to oscillatory problems in subsonic lifting-surface theory. Ref. 37 reveals large discrepancies for the present Planforms 1,4 and 11 at high frequency parameter, and it is important to resolve any similar discrepancies at low frequency. Ref. 38 suggests that lifting-surface theory can be optimized in aeroelastic applications with the aid of the reverse-flow theorem, and it will be relevant to study the convergence of the pitching derivatives from equations (32), not only with the usual coefficients from direct flow but also by reverse flow with the aid of equations (33) and (34).
The peculiar problems of the various types of planform will be discussed in Sections 4.1 to 4.6. But, as for steady flow, two figures have been prepared to illustrate the convergence of pitching derivatives under favourable and adverse circumstances. In Fig. 3 all four pitching derivatives are plotted against a logarithmic scale of $(\bar{m}+1)$ for Planform 6 having a smooth hyperbolic leading edge and constant chord. The small slopes of the lines joining points corresponding to the larger values of \bar{m} show satisfactory convergence, although the damping derivatives are somewhat slower to settle. The results for $\bar{m}=95$ indicate satisfactory convergence with respect to m and N. The points (0) for $m=\bar{m}=15$ show relatively poor convergence with respect to N when $q=1$, but the discrepancies for $N=4$ nowhere exceed 0.02 . Planform 12 has high aspect ratio $A=8$ and a central kink typical of sweptback wings, and both these features would be expected to aggravate convergence. Figure 4 shows the direct pitching derivatives for an axis $x_{0}=2 \bar{c}$ against a logarithmic scale of $(m+1)$. With $N=3$ throughout, convergence is sought firstly with $q=1$ and secondly with $\bar{m}=95$ up to the limit of m imposed by the KDF9 computer. The two processes show a tendency to approach a common limit, but for neither m_{θ} nor m_{θ} do the respective curves come within 0.03 of each other. The comparable discrepancies in Fig. 3 for the smooth edges and lower aspect ratio are of order 0.002 .

4. Convergence of Solutions.

The planforms of Table 1 have been chosen from different standpoints, and it is convenient to group them in the following sub-sections. The rectangular wings (Planforms 1,2,3) cover a range of aspect ratio, and the rate of convergence with respect to \bar{m} shows an inverse correlation with A. The wings with streamwise (fore-and-aft) symmetry for which oscillatory calculations have been made (Planforms 2, 4, 5) form a natural group and are used for studying numerical results from direct and reverse flow. The three wings of constant chord with $A=4$ (Planforms 2, 6,7) show the separate effects of sweepback and the central kink. Planforms 8 to 12 constitute an assortment of tapered sweptback wings; the effect of Mach number is considered, and the problems posed by Fig. 4 are elaborated. The slender wings (Planforms 13, 14, 15) include one that is not-so-slender with better convergence properties illustrated by the chordwise loading; the results for the really slender wings $(A=0.0001)$ are subjected to comparison with exact theory. Wings with curved tips (Planforms 16, 17) show the greatest discrepancies when $q=1$ and peculiarly slow convergence associated with the tips.

4.1. Rectangular Wings.

Selected solutions for the rectangular wings of aspect ratios 2 and 4 at unit incidence are given in

Tables 3, 4 and 5 . In Table 3 the subscript n of the four loading functions $\gamma_{n}, \mu_{n}, \kappa_{n}$ and λ_{n} relates to equations (10) and (11) with $m=15$. It is seen that the outermost values κ_{6} and λ_{6} converge more rapidly with respect to q than κ_{0} and λ_{0} do; the more central sections of the wing show discrepancies in the fourth decimal place up to $\bar{m}=127$, while by $\bar{m}=47$ these have practically disappeared near the tip. The last two columns of Table 3 are in remarkable agreement, showing little change as m is increased from 7 to 15 . Furthermore, unpublished solutions for $m, N, q=15,4,2$ and $31,4,1$ are identical to six decimal places. An independent check from Table 3 of Ref. 25 gives in the present notation $C_{L}=2.471$ and $x_{a c}=0.2089 \bar{c}$, which are in very satisfactory agreement with values in the present Table 3.

In Table 4 the major part of the error with $q=1$ is eliminated as q is increased to 2 . It will be found that the spanwise integration in Hsu's ${ }^{15}$ theory is virtually equivalent to that from Ref. 18 with $q=2$ and is commended thereby. Solutions for $A=4, N=4$ and the same value of \bar{m} in Tables 4 and 5 show surprisingly little effect of increasing m from 7 to 15 . The first two and last columns of Table 5 demonstrate excellent convergence with respect to N at the centre section and slower convergence near the tip as in Fig. 1.

Table 23 presents material for a fuller analysis of local aerodynamic centres on the two rectangular wings, and Table 24 gives further results for the high aspect ratio $A=8$. Unless the consequences of Ref. 18 are fully appreciated, a solution for this wing with $m, N, q=23,3,1$ and 36 collocation points on the half wing might seem to promise good accuracy. Yet Table 24 shows that the lift slope $\partial C_{L} / \partial \alpha$ is more than 2 per cent low when $q=1$, while the local $X_{a c}$ at $\eta=0$ is $0-002 c$ too far aft when $q=1$ and nearly $0.004 c$ too far forward when $q=2$. These findings are rationalized in Fig. 5, where the errors in the two quantities are plotted convincingly against $(\bar{m}+1) / \beta A$ from the available data for $N=3$. Similar curves with slower convergence can be drawn for $N=4$. As foreshadowed in Ref. 22, wings of high aspect ratio pose a major problem, especially when larger numbers of chordwise terms are needed.

Results for oscillatory flow in Tables 35 and 43 will be discussed in Section 4.2.

4.2. Wings with Streamwise Symmetry.

The oscillating circular planform in incompressible flow is a notable exception to the intractable methematical problems of lifting-surface theory. The analysis is due to Van Spiegel ${ }^{26}$ and a correction to his numerical result for the pitching damping is given by Benthem and Wouters in Table 2 of Ref. 27. We consider first the solutions by the collocation method of Ref. 18 for steady flow in Table 6. Convergence with respect to q is very good, except near the tip as indicated by the values of λ_{5} when $m=11$ and $N=4$. The solutions with $N=2$ and 3 show a small effect of reducing m to 5 . The results for the largest values of q are tabulated below and show remarkable convergence with respect to N in perfect agreement with exact theory.

Solution	$\partial C_{L} / \partial \alpha$	$x_{a c} / \bar{c}$
$N=2$	1.7888	0.3015
$N=3$	1.7906	0.3052
$N=4$	1.7903	0.3049
Exact	1.7902	0.3049

The aerodynamic centre is plotted against q at the top of Fig. 6. It must be admitted that the circular planform is a favourable case with smooth edges and low aspect ratio.

Table 25 gives the local aerodynamic centres for circular and symmetrically tapered planforms. The results for the circular planform ($A=1.27$) show excellent convergence with respect to m, N and q except near the tip where in no respect is the convergence quite complete. Unfortunately there are no reliable numerical results from exact theory to form a basis for comparison. The symmetrically tapered wing
($A=4.33$) shows good convergence with respect to q and, except near the centre section, little effect of increasing m from 11 to 23 . Although $(m+1)=2 A$ is acceptable for rectangular wings, $(m+1) \geqslant 4 A$ seems desirable for both the others.

Wings with streamwise symmetry present a convenient opportunity to use the relationships in direct and reverse flow, since the coefficients $\bar{I}_{L r}=I_{L r}$ and $\bar{I}_{m r}=I_{m r}$. Thus by equations (33) the aerodynamic centre may be calculated from reverse flow to be

$$
\begin{equation*}
\frac{x_{a c}}{\bar{c}}=\frac{c_{r}}{\bar{c}}-\frac{I_{L 2}}{I_{L 1}} . \tag{35}
\end{equation*}
$$

This is compared with equation (24) for direct flow against the logarithmic scale of q in Fig. 6. The results with $N=3$ are shown to converge to good accuracy within 0.0005 for the rectangular wing ($A=4$, $m=15$), but for the symmetrically tapered wing the discrepancies between equations (24) and (35) are 0.004 when $m=11$ and 0.002 when $m=23$ and show little sign of disappearing as q is increased. Such uncertainty, though tolerable, is a danger signal.
The coefficients for the three wings in oscillatory flow are given in Table 35 and the derivatives have been calculated for pitching motion about the axes of symmetry from equations (32) with $\beta=1$. Table 43b shows excellent results for the circular wing, good convergence of $z_{\dot{\theta}}$ and m_{θ} with respect to N close to exact theory and reverse-flow checks that only reveal errors in the fifth decimal place. Damping derivatives for the rectangular and symmetrically tapered wings with $N=3$ from Tables 43a and 43c are plotted against q in Fig. 7 together with the corresponding results when the reverse-flow equations (33) and (34) are used for the coefficients. The upper diagram shows $-z_{\hat{\theta}}$ for the rectangular wing with good correlation when $q=4$ and 6 , but a substantial error of 8 per cent when $q=1$. The lower diagram shows $-m_{\theta}$ for the symmetrically tapered wing with a persisting discrepancy of nearly 0.01 between direct and reverse flow for $m=11$, that is halved when $m=23$ and is compatible with eventual convergence with respect to m.

4.3. Wings of Constant Chord.

Planforms 2, 6 and 7 all have constant chord and aspect ratio 4 and are considered in incompressible flow. The first two have smooth edges and illustrate the effect of sweepback without the complication of a central kink. The last two have 45 deg of sweepback at the tip and illustrate the effect of the kink.

From the solutions for steady flow in Tables 4,5,7 and 8 there is found to be no appreciable worsening of the convergence with respect to q due to the sweepback or kink. Neither of the swept wings exhibits the same remarkable convergence with respect to m as is noted for the rectangular wing in Section 4.1 : the last two columns of Table 8 show somewhat poorer convergence for the skinked straight-edged planform. Moreover, the larger values of λ_{0} suggest that there could be a local problem of convergence with respect to N at the central kink as well as near the tip. The local aerodynamic centres for the three wings are fully listed in Tables 23b, 26a and 26b, and some of the spanwise distributions with $N=4$ are plotted in Fig. 8. For the rectangular wing there is no effect of m and the small effect of q barely exceeds $0-003$. In the case of hyperbolic edges there is a minor effect of m and that of q exceeds 0.01 locally. When there is the central kink, the effect of q is similar near the tip, but near the centre section both m and q produce changes of 0.035 in $X_{a c}$ and its distribution, referred to the planform without artificial rounding, is less well defined.

The coefficients for oscillatory motion are given in Tables 35a, 36 and 37. Convergence with respect to q is evidently less sensitive to sweepback than to aspect ratio (Section 4.1), but the kinked wing introduces a marked deterioration in convergence with respect to m. The four pitching derivatives for the swept wings have been calculated from equations (32), and their convergence for the hyperbolic-edged wing has already been demonstrated in Fig. 3. The results for both wings in Table 44 include sets of derivatives calculated from solutions with $m, N, q=15,3,6$ in reverse flow. The pitching damping derivative $-m_{\theta}$ is plotted against axis position x_{0} / \bar{c} in Fig. 9 . The effect of N is indiscernible, and for each wing the full curve represents $N=3$ and $N=4$. But, whereas for the hyperbolic edges the curve from reverse flow is
also indiscernible, the broken curve for the kinked wing reveals discrepancies in m_{θ} of order 10 per cent and exceeding 0.1 for rearward axes. This is an order of magnitude greater than likely residual errors from insufficient q and N and still several times what would be expected from the poorer convergence with respect to m. For conventional sweptback wings this aspect of numerical solutions needs more detailed study.

4.4. Tapered Sweptback Wings.

The five planforms in this category were all chosen for comparison with other work beyond the scope of the present report. Planforms 8,9 and 12 relate to steady measurements of pressure distribution, and Planforms 10 and 11 to particular oscillatory applications (Refs. 28 to 32). It will not be necessary to discuss all the tabulated results, and we shall now concentrate mainly on the effects of m and M.

The solutions for the cropped delta wing at $M=0.8$ in Table 10 include a set of three with $N=3$, $\bar{m}=31$ and $m=7,15$ and 31. Although the effect of m is quite small, the convergence with respect to m is unconvincing. Tables 11 to 13 give results, all with $m=15$, for an arrowhead wing of identical leadingedge sweepback at $M=0,0.6$ and 0.8 . Table 11, comprising solutions for the two lower Mach numbers with $N=2,3,4$ and $q=2 N$. shows excellent convergence with respect to N and no adverse effect of compressibility. Figure 10 is prepared from the more comprehensive results for $M=0 \cdot 8$. The lift slope and aerodynamic centre are plotted against N for three conditions, $q=1$ showing errors of about 3 per cent, $q=2$ showing great improvement, and $q=2 N$ when the convergence is really convincing. For $N=3, x_{a c} / \bar{c}$ is plotted against M in the lower part of Fig. 10; although the correct trend is predicted with $q=1$, the curve for $q=6$ shows that the error is of the same order as the effect of compressibility. Tables 27 and 28 give the calculated local aerodynamic centres at $M=0.8$ for these wings and Planform 10 of lower aspect ratio and sweepback. The latter with $N=4$, fixed $\bar{m}=95$ and $m=7,11$ and 15 shows no alarming effects on spanwise loading or $X_{a c}$, but it is the use of the parameter m for high aspect ratio and sweepback that needs critical examination.

Planform 12 has aspect ratio $A=8$ and quarter-chord sweepback of 45 deg. As has already been seen in Fig. 4 (Section 3.2), oscillatory pitching derivatives for this wing at $M=0$ converge inconsistently with respect to m; no common limit is approached with $q=1$ and $\bar{m}=95$ before the capacity of the KDF9 computer is exceeded. Results for steady flow are contained in Tables 15, 29, 30 and 31. The overall forces from eleven solutions with $N=3$ are plotted against the same logarithmic scale of $(m+1)$ in Fig. 11, where besides the values for $q=1$ and $\bar{m}=95$ there are some further results in which the artificial rounding is defined by equations (18) to (20) with $m=15$, i.e. with $y_{1}=s \sin (\pi / 16)$, while the number of collocation sections m is increased. Under these conditions both the lift slope and aerodynamic centre lie between the best values obtainable with $q=1$ and $\bar{m}=95$ and the uncertainties appear to be reduced to $\pm 1 \frac{1}{2}$ per cent in $\partial C_{L} / \partial \alpha$ and ± 0.015 in $x_{a c} / \bar{c}$. The local load grading $c C_{L L} / \bar{c} C_{L}$ and $X_{a c}$ at $\eta=0$ are plotted similarly in Fig. 12, where by contrast the uncertainties are broadened when the fixed $m=15$ rounding is considered and reach respective values 4 per cent and 0.04 .

The coefficients and pitching derivatives about the mid-root-chord axis are given for four of the sweptback tapered wings in Tables 38, 39, 40, 45 and 48. The typical effect of m is illustrated in Fig. 13 by curves of the damping derivatives against axis position for Planform 10 at $M=0.8$. The factors such as β^{-2} inside the square brackets of the appropriate equations (32) may not improve convergence, and there is evidence in Table 45b to this effect ; nevertheless, with $N=4$ and $\bar{m}=95$ the curves in Fig. 13 for $m=11$ and $m=15$ are close enough to allay serious doubts. It remains to look more closely at the separate effects of m as collocation parameter and rounding parameter, and the results for Planform 11 in Tables 48 are used for this purpose in Section 6.

4.5. Slender Wings.

Let $s(x)$ be the local semi-span of a slender planform. Then, provided that the gradient

$$
d s / d x=s^{\prime}(x) \geqslant 0,
$$

the trailing edge is unswept and the incidence is uniform, slender-wing theory gives a load distribution

$$
\begin{equation*}
\frac{\Delta C_{p}}{\alpha}=\frac{4 s(x) s^{\prime}(x)}{\left[\{s(x)\}^{2}-y^{2}\right]^{1 / 2}} . \tag{36}
\end{equation*}
$$

Planforms 13 and 14 are complete delta wings of contrasting aspect ratios 1.5 and 0.0001 . In the latter case equation (36) is applicable, but ΔC_{p} remains non-zero along the trailing edge $x=c_{r}$. Thus the assumed loading in equation (15), which behaves like $0\left(c_{r}-x\right)^{1 / 2}$, is incorrect for all η. The slender gothic Planform 15 has been chosen to have

$$
\begin{equation*}
\frac{s(x)}{s}=1-\left(1-\frac{x}{c_{r}}\right)^{3 / 2}, \tag{37}
\end{equation*}
$$

so that equation (15) is no longer violated at the trailing edge when α is constant. In this case the singularities in chordwise loading at the leading and trailing edges are consistent with Multhopp's theory, except at the leading apex.

Steady-flow solutions for these three wings are found in Tables 16 to 18. In Table 16 the not-so-slender wing shows good convergence with respect to q everywhere and with respect to N away from the tip. Table 17 reveals poorer convergence in both respects when $A=0.0001$. Solutions for the slender gothic planform converge much better with respect to N, as demonstrated by the values of λ_{0} in Tables 17 and 18 , but no satisfactory solutions could be obtained for $q>6$, as there appears to be a sudden ill-conditioning of the equations. Fortunately there is exact theory (Ref. 8) with which to compare solutions with $m=11$ and $q=6$ in the table below.

Solution	Slender delta wing		Slender gothic wing	
	C_{L} / A	$x_{a c} / \bar{c}$	$C_{\dot{L}} / A$	$x_{a c} / \bar{c}$
$N=2$	1.4931	1.2318	1.5755	0.9339
$N=3$	1.5400	1.3331	1.5681	0.9296
$N=4$	1.5579	1.3189	1.5728	0.9290
Exact	1.5708	1.3333	1.5708	0.9167

These overall aerodynamic characteristics are inaccurate by comparison with the corresponding table for the circular planform in Section 4.2, but this is perhaps to be expected in view of the sharp central kinks.

The calculated local aerodynamic centres for the delta wing $(A=1.5)$ in Table 32a show rather poorer convergence with respect to N than with respect to q, but would meet normal practical requirements. Tables 32 b and 32 c include the exact values for the slender delta wing

$$
\begin{equation*}
X_{a c}=\frac{1}{1-\eta}\left[\frac{1}{2}-\eta+\frac{\eta^{2} \operatorname{sech}^{-1} \eta}{2\left(1-\eta^{2}\right)^{1 / 2}}\right] \tag{38}
\end{equation*}
$$

and for the slender gothic wing

$$
\begin{equation*}
X_{a c}=\frac{3}{2\left(1-\xi_{1}\right)\left(1-\eta^{2}\right)^{1 / 2}} \int_{\xi_{1}}^{1} \frac{\left(\xi-\xi_{1}\right)(1-\xi)^{1 / 2}\left[1-(1-\xi)^{3 / 2}\right]}{\left[\left\{1-(1-\xi)^{3 / 2}\right\}^{2}-\eta^{2}\right]^{1 / 2}} d \xi \tag{39}
\end{equation*}
$$

where $\xi_{1}=1-(1-|\eta|)^{2 / 3}$. These are derived from equation (36) with $s(x)=s x / c_{r}$ and from equation (37) respectively. The spanwise distributions are drawn in Fig. 14 for $N=2,3$ and 4 . Although the solutions
become unreliable close to the tip, the results for both slender wings in the range $0.5<\eta<0.9$ approach the exact curve as N increases. Near the centre the comparisons are less convincing; the delta wing shows poor convergence, and $X_{a c}$ at $\eta=0$ for the gothic wing appears to converge to a value 0.424 instead of the exact 0.4.

The central chordwise loadings on the two delta wings are plotted in Fig. 15. The trailing-edge condition is seen to have a dominant effect on the convergence with respect to N. Such detailed aerodynamic characteristics demonstrate the wide gulf between the slender-wing and lifting-surface theories. Since Planform 13 is nearly as slender as planforms are likely to become, the divergence in the upper diagram is academic, but so also may be the slender-wing theory in this context.

Garrick's ${ }^{8}$ theory for oscillations of low frequency is formulated for pitching motion in Appendix III of Ref. 20. Under the same conditions as equation (36) it can be shown that

$$
\left.\begin{array}{l}
-z_{\theta}=\frac{1}{4} \pi A \\
-m_{\theta}=\frac{1}{4} \pi A\left[\frac{c_{r}-x_{0}}{\bar{c}}-\frac{c_{r}}{\bar{c}} \int_{0}^{1}\left(\frac{s(x)}{s}\right)^{2} d\left(\frac{x}{c_{r}}\right)\right] \\
-z_{\dot{\partial}}=\frac{1}{4} \pi A\left[\frac{c_{r}-x_{0}}{\bar{c}}+\frac{c_{r}}{\bar{c}} \int_{0}^{1}\left(\frac{s(x)}{s}\right)^{2} d\left(\frac{x}{c_{r}}\right)\right] \tag{40}\\
-m_{\dot{\theta}}=\frac{1}{4} \pi A\left[\frac{c_{r}-x_{0}}{\bar{c}}\right]^{2}
\end{array}\right\} .
$$

Although negative damping is never predicted, $-m_{\theta}$ falls to zero when the pitching axis coincides with the trailing edge. Now

$$
\begin{aligned}
& \frac{c_{r}}{\bar{c}}=2 \text { and } \int_{0}^{1}\left(\frac{s(x)}{s}\right)^{2} d\left(\frac{x}{c_{r}}\right)=\frac{1}{3} \quad \text { for the delta wing, } \\
& \frac{c_{r}}{\bar{c}}=\frac{5}{3} \text { and } \int_{0}^{1}\left(\frac{s(x)}{s}\right)^{2} d\left(\frac{x}{c_{r}}\right)=\frac{9}{20} \text { for the gothic wing, }
\end{aligned}
$$

and hence the picthing derivatives are easily evaluated. Coefficients from the collocation solutions are given for the three wings in Table 41, where the delta wing ($A=1.5$) is seen to provide excellent convergence with respect to q and N. The derivatives, calculated from equations (32) for the mid-root-chord axis in Table 46, show good convergence with respect to N for the gothic wing, but not for the slender delta wing. Such is the effect of violating the condition of zero loading at the trailing edge. It is well summarized in Fig. 16 by the curves of $-m_{\theta} / A$ against x_{0} / c_{r}. The discrepancies between $N=4$ and exact theory are more than twenty times greater for the delta than for the gothic planform.

4.6. Wings with Curved Tips.

In Section 3.1 the lift slope and centres of lift of Planform 16 are used to illustrate a case in which the previous version of Multhopp's theory ($q=1$) is in serious error. Moreover, Fig. 2 shows adequate convergence of overall forces with respect to the parameters m, N and q. From the full solutions in Tables 20 and 21 for this wing at $M=0$ the local convergence is less satisfactory, especially in the region of the
curved tip. Associated features in the last three columns of Table $21(q=8)$ are the irregular spanwise distributions of μ_{n}, κ_{n} and λ_{n}, which can be attributed partly to the high sweepback ($\Lambda=60^{\circ}$) and partly to the curved tip. In Table 22 the same features are found for Planform 17, another curved-tipped wing of slightly lower sweepback $\left(\Lambda=55^{\circ}\right)$ but at $M=0.8$. Here the lift slope with $m=11$ and $N=3$ falls by over 10 per cent as q is increased from 1 to 8 . Attention is also drawn to the third and last solutions in Table 22, which differ only in the amount of central rounding; this is seen to influence the lift slope by 2 per cent and the local lift at $\eta=0$ by 8 per cent. The behaviour of the calculated $\partial C_{L} / \partial \alpha$ is plotted in the upper diagrams of Fig. 17, which demonstrate the effect of q and suggest that the aerodynamic effect of the artificial rounding may need to be taken into account (Section 6).

There are eleven solutions with $N=3$ for Planform 17 in low-frequency pitching motion at $M=0.8$. The coefficients in Table 42 and the derivatives for the mid-root-chord axis in Table 47 show a marked effect of q with satisfactory convergence, but there are considerable differences between the five results with $\bar{m}=95$ as the rounding and number of collocation sections are changed. The pitching damping about the axis $x_{0}=1 \cdot 5 \bar{c}$ just forward of the aerodynamic centre is plotted against $(\bar{m}+1)$ and $(m+1)$ in the lower part of Fig. 17. By increasing the parameter q the discrepancies are reduced from 30 per cent ($\bar{m}=m=11$) to ± 3 per cent.

A peculiarity of curved tips is the behaviour of local aerodynamic centres in Tables 33 and 34. Previous solutions with $q=1$ had indicated a rapidly falling value of $X_{a c}$ as $\eta \rightarrow 1$ in common with the accepted characteristic of sweptback wings of non-zero tip chord, viz., Fig. 8. Spanwise distributions of $X_{a c}$ for the two curved-tipped wings are drawn in Fig. 18, where the upper diagram for Planform 17 shows a marked effect of q such that the fall in $X_{a c}$ virtually disappears; there remains, however, the irregular waviness already noted. The lower diagram supports the progressive effect of q on $X_{a c}$ by experimental data from Ref. 34 calculated from observed pressure distributions on two half-models of Planform 16 with different aerofoil thickness. Apart from the slender delta wing (Section 4.5), planforms with curved tips have presented the greatest difficulties regarding convergence. They have, nevertheless, proviled convincing examples of the need for the improved programme of Ref. 18 and some experimental confirmation of its success.

5. Criteria for Selecting m, N and \bar{m}.

The preceding sub-sections have demonstrated that the rate of convergence of solutions by the Algol programme of Ref. 18 is highly dependent on the type of planform. From the wide range of results available it should be possible to recommend a suitable set of values of the parameters m, N and \bar{m} for other planforms, but discretion is needed according to the scope of the aerodynamic quantities to be evaluated and the required accuracy.

The difficulty in choosing the number of collocation sections is that in the standard procedure for kinked planforms the odd integer m has the added role of defining the artificial central rounding. Where this complication does not arise, i.e. for Planforms $1,2,3,4$ and $6,(m+1)$ can safely be taken below the value $4 A \sec \Lambda_{1}$ recommended as a minimum in Section 2.4 of Ref. 18, unless accurate results are required close to the wing tip. It is probably best to relate the choice of m to the length of the trailing edge and, in view of the factors β^{-2} in the square brackets of the last two of equations (32), not to reduce its value in compressible flow. In general, the recommendation of Ref. 18 should be followed and the number of collocation sections should satisfy the condition

$$
\begin{equation*}
m+1 \geqslant 4 A \sec \Lambda_{1} \tag{41}
\end{equation*}
$$

where for curved trailing edges $\sec \Lambda_{1}$ may be regarded as the length of the trailing edge as a fraction of the span. However, it is undesirable to take $m<11$, and this is the recommended minimum value whenever $A \sec \Lambda_{1}<3$. From Section 6 it will appear that, when artificial rounding is necessary, the standard y_{1} in equations (18) to (20) should be replaced by

$$
\begin{equation*}
y_{2}=s \sin \frac{2 \pi}{m+1} . \tag{42}
\end{equation*}
$$

The results then involve smaller collocation error but need some allowance for the rounding itself.
An increase in the number of chordwise terms causes slower convergence with respect to \bar{m}. It is therefore desirable to choose the smallest value of N that ensures theoretical data to the required accuracy. In practice the choice rests between $N=3$ and $N=4$. For the simple mode of rigid pitching oscillation there is little evidence in Tables 43 to 47 to suggest that appreciable errors would result from using $N=3$. Only in the case of the slender gothic wing in Table 46 c would $N=4$ seem to be overwhelmingly advantageous. In steady flow at uniform incidence, however, it is essential to take $N=4$ when the chordwise loading is to be calculated near a tip or a central kink. A glance at the magnitude of λ_{n}, when it appears in Tables 3 to 22, gives the best indication of the importance of the fourth chordwise term. At the central section, for example, it is only for wings of leading-edge sweepback tan $\Lambda_{0} \geqslant \beta$ that $\left|\lambda_{0}\right|$ exceeds 0.01 . For applications to more complicated oscillatory modes or camber distributions the four terms may prove inadequate and the method of Ref. 18 must be used with discretion.

In the course of the present work convergence with respect to \bar{m} or q has naturally been a major preoccupation. One criterion embracing a wide range of planforms is that the lift slope $\partial C_{L} / \partial \alpha$ should be within $\frac{1}{2}$ per cent of its value for the highest attainable value of q. The upper part of Fig. 19 shows for ten planforms the roughly estimated values of the quantity

$$
\frac{\bar{m}+1}{\beta A} \sin ^{2}\left(\frac{\pi}{2 N+1}\right)=\frac{q(m+1)}{\beta A} \sin ^{2}\left(\frac{\pi}{2 N+1}\right)
$$

above which this is achieved. The critical values depend to some extent on N, but the values are mainly for $N=3$ and lie reasonably close to a curve against $\beta^{-1} \tan \Lambda_{\frac{1}{2}}$, where $\Lambda_{\frac{1}{2}}$ is the angle of mid-chord sweepback. In producing a criterion for selecting \bar{m}, the compressibility factor is retained in the sweepback but, to ensure extra accuracy of the coefficients in equations (32), it is omitted in the aspect ratio. The full curves in the lower part of Fig. 19 give the corresponding critical values of $(\bar{m}+1) / A$ for $N=3$ and 4 and offer one lower limit to \bar{m} as an alternative to the tentative equation (5). Another consideration from Sections 4.1 and 4.4 is that there is usually a substantial improvement in a solution when q is increased from 1 to 2 , and $q=2$ should be regarded as a minimum value. It therefore follows from the recommended choice of m that

$$
\left.\begin{array}{l}
\bar{m}+1 \geqslant 24 \tag{43}\\
\bar{m}+1 \geqslant 8 A \sec \Lambda_{1}
\end{array}\right\}
$$

which for $N=3$ will usually be more restrictive than the condition set in Fig. 19.
The following table lists the minimum odd values of \bar{m} from the conditions (43) and any larger values that may be required by equation (5) or Fig. 19.

Planform					Minimum $\bar{m}(N=3)$				
No.	A	$A \sec \Lambda_{1}$	$\tan \Lambda_{\frac{1}{2}}$	Eqn. (43)	Eqn. (5)	Fig. 19 $M=0$	Fig. 19 $M=0.8$		
2	4.00	4.00	0	31	43	-	-		
3	8.00	8.00	0	63	85	-	-		
5	4.33	4.48	0	35	47	-	-		
7	4.00	5.66	1.00	45	61	-	61		
9	2.83	3.37	1.00	27	35	29	43		
10	1.45	1.53	0.58	23	-	-	-		
11	2.00	2.24	1.12	23	23	-	33		
12	8.00	10.54	0.95	85	111	-	115		
13	1.50	1.50	1.33	23	-	-	(31)		
16	3.90	7.80	1.73	63	83	-	$?$		
17	3.56	6.20	1.43	49	65	-	(79)		

Equation (5) usually overrides conditions (43) and can be recommended for $M=0$. The larger values of \bar{m} from Fig. 19 for $M=0.8$ are thought to be essential. For the tapered sweptback wings of moderately small aspect ratio the pitching damping derivatives tend to converge more slowly than the lift slope on which Fig. 19 is based. Table 45a for Planform 9 suggests that $\bar{m}=63$ is desirable when $M=0.8$. This is met by modifying conditions (43) to become

$$
\left.\begin{array}{l}
\bar{m}+1 \geqslant 24 / \beta^{2} \tag{44}\\
\bar{m}+1 \geqslant 8 A \sec \Lambda_{1}
\end{array}\right\}
$$

Then equations (5) and Fig. 19 only enter into consideration when both aspect ratio and sweepback are moderately high or when in applications to detailed load distributions in steady flow it is necessary to take $N=4$. The following sets of maximum permissible values of m, q and \bar{m} will then apply.

m	11	15	21	27
q	14	8	4	2
\bar{m}	167	127	87	55

The tables in Section 1 of Ref. 18 indicate other upper restrictions on m, N and q, which are imposed to keep within the capacity of the KDF9 computer and an arbitrary maximum running time of 45 minutes. For planforms of high aspect ratio where these restrictions prohibit the use of the recommended values of m, N and \bar{m}, N should be reduced to 3 or ($m+1$) should be lowered from $4 A \sec \Lambda_{1}$ until a satisfactory value of \bar{m} can be accommodated.

6. Central Rounding of Sweptback Planforms.

Earlier sections have foreshadowed the need to study the influence of the central rounding on the solutions. It may be asked what happens when the rounding in equations (18) to (20) is increased, reduced or removed. It may be wondered whether such a study can shed light on the discrepancy between direct and reverse flow in the lower half of Fig. 9. In Figs. 11, 12 and 17 the rounding has been kept constant while the number of collocation sections has been increased, and crucial uncertainty lies in the aerodynamic influence of the rounding itself. It remains to clarify these three matters and to re-interpret certain of the
theoretical data already discussed.
There are four planforms for which the rounding has been systematically varied without changing the collocation sections and spanwise integration points. The solutions at steady unit incidence in Tables 9, 14 and 19 include a fixed value of m to denote the number of collocation sections and a variable m to define y_{1} in equation (18); in Table 9, for example, $m=\infty$ denotes zero rounding and $m=7$ is virtually twice the standard rounding $m=15$, and their respective effects are to reduce C_{L} by $7 \frac{1}{2}$ per cent and to increase it by 2 per cent. Naturally there are marked changes in the loading functions $\gamma_{0}, \mu_{0}, \kappa_{0}$ and λ_{0} at the centre section. For the slender gothic wing there is no difficulty in computing the exact central chordwise loading from equation (36)

$$
\begin{equation*}
\Delta C_{p} / \alpha=4 s^{\prime}(x) \text { at } y=0 \tag{45}
\end{equation*}
$$

so as to include the effect of the rounding. Fig. 20 shows full curves from exact theory with the standard $m=11$ rounding and also with $m=5$ and $m=23$, to compare with the distributions when γ_{0}, μ_{0} and κ_{0} from Table 19 are substituted into equation (15). There is a remarkable diminution in collocation error with twice the standard rounding, and as decisive a worsening when the standard rounding is halved. It follows from equation (45) that the distance of the local aerodynamic centre from the trailing edge is precisely the geometric mean chord. Referred to the actual root chord c_{r},

$$
\begin{equation*}
X_{a c}=1-\frac{S^{\prime}}{2 s c_{p}} \tag{46}
\end{equation*}
$$

where S^{\prime} is the area of the rounded planform. The top left diagram of Fig. 21 compares the result

$$
\begin{equation*}
X_{a c}=\frac{1}{c_{r}}\left[x_{l 0}+c_{0}\left(\frac{1}{4}-\frac{\mu_{0}}{\gamma_{0}}\right)\right] \tag{47}
\end{equation*}
$$

from the solutions in Table 19 with equation (46) and shows that with twice the standard rounding $(m+1=6)$ the collocation and rounding errors are nearly equal. Against the same diagrammatic scale of the rounding parameter ($m+1$), Fig. 21 shows for each of the four wings the central $X_{a c}$ and the ratio of C_{I} to its value with the standard rounding. Especially for Planforms 7 and 9 with sweptback trailing edges, there is no sign of convergence at either end of the scale. The conclusion is reached that solutions with less than the standard rounding are useless, while those with greater rounding may need some correction to offset its genuine aerodynamic influence.

Fig. 7 of Ref. 36 indicates excellent agreement between damping derivatives $-z_{\theta}$ and $-m_{\theta}$ against pitching axis calculated from direct-flow and reverse-flow solutions for Planform 11 at $M=0.781$. These calculations correspond to $m, N, q=15,3,1$ in the present method and are now seen to give misleading satisfaction. The effects of q in direct and reverse flow are given by coefficients in Table 39, by derivatives in Table 48 and graphically in Fig. 22. Although both solutions converge with respect to q, they diverge from each other until with $q \geqslant 4$ there are constant discrepancies of 0.1 in $z_{\dot{\theta}}$ and 0.03 in $m_{\dot{\theta}}$. These discrepancies are repeated when the number of chordwise terms is increased to $N=4$. Spanwise collocation error due to the irregularity of the planform with $m=15$ rounding is suspected, and further solutions have been obtained with the same rounding but $m, N, q=31,3,2$. The points (O and X) for $\bar{m}+1=64$ in Fig. 22 show that the discrepancies between direct and reverse flow are reduced by the factor 0.18 to a satisfactory level. An even better result can be achieved with $m, N, q=15,3,6$ and the rounding used in Ref. 23 which amounts to equations (19) with a different square bracket, viz.,

$$
\left.\begin{array}{l}
x_{l}(y)=x_{l}\left(y_{1}\right)\left[\frac{1}{3}+\left(\frac{|y|}{y_{1}}\right)^{2}-\frac{1}{3}\left(\frac{|y|}{y_{1}}\right)^{3}\right] \tag{48}\\
c(y)=c_{r}+\left[\frac{1}{3}+\left(\frac{|y|}{y_{1}}\right)^{2}-\frac{1}{3}\left(\frac{|y|}{y_{1}}\right)^{3}\right]\left\{c\left(y_{1}\right)-c_{r}\right\}
\end{array}\right\}
$$

The lower order of the polynomial in $|y| / y_{1}$ gives rounded leading and trailing edges with larger displacement and smaller curvature. The only misgiving is that the displacement may be influencing the answer and that the effect, though apparently small in Fig. 22, may be important for more highly swept trailing edges.

An attempt has been made to estimate the genuine effect of the rounding by considering only solutions in which the standard rounding is doubled. Thus y_{2} in equation (42) is used in place of y_{1} in equations (18) to (20). The ratio of the displacement of the leading edge to the root chord

$$
\begin{equation*}
\xi_{0}=\frac{x_{l 0}}{c_{r}}=\frac{y_{2} \tan \Lambda_{0}}{6 c_{r}} \tag{49}
\end{equation*}
$$

is taken as a measure of the rounding. Such solutions are available for Planforms 7, 9, 13 and 16 each with two different roundings and will be found in Tables 9,14 and 49. Corresponding values of overall forces, spanwise loading and local aerodynamic centres are presented in Table 50. For the Planform 7 of constant chord there are three solutions in Table 9 with $N=3$ and the following results are obtained.

Rounding m, N, q ξ_{0}	$\begin{aligned} & m=15 \\ & 31,3,2 \\ & 0 \cdot 0650 \end{aligned}$	$\begin{aligned} & m=11 \\ & 23,3,4 \\ & 0.0863 \end{aligned}$	$\begin{aligned} & m=7 \\ & 15,3,6 \\ & 0 \cdot 1276 \end{aligned}$
C_{L}	$3 \cdot 0042$	3.0080	3.0215
$\bar{\eta}$	$0 \cdot 4653$	0.4649	$0 \cdot 4640$
$x_{a c} / \bar{c}$	$1 \cdot 1748$	$1 \cdot 1743$	1.1764
$C_{L L}$ at $\eta=0$	3.0460	3.0740	$3 \cdot 1322$
$X_{a c}$ at $\eta=0$	$0 \cdot 4034$	$0 \cdot 4170$	$0 \cdot 4464$

Since the values tabulated above are roughly linear in ξ_{0}, it is permissible to think in terms of gradients

$$
\frac{1}{C_{L}} \frac{\partial C_{L}}{\partial \xi_{0}}, \frac{\partial \bar{\eta}}{\partial \xi_{0}}, \frac{\partial}{\partial \xi_{0}}\left(\frac{x_{a c}}{\bar{c}}\right), \frac{1}{C_{L L}} \frac{\partial C_{L L}}{\partial \xi_{0}}, \frac{\partial X_{a c}}{\partial \xi_{0}},
$$

and these are estimated for the four wings and plotted against $A \tan \Lambda_{1}$ in Fig. 23. To the rough accuracy now envisaged the straight lines adequately represent the known data and can be used to re-interpret some of the discrepancies that have already arisen.
First we consider Fig. 2 in relation to the appreciably different results in Table 50d with doubled rounding and small collocation error. When the overall forces in Table 50d for the $m=15$ rounding are corrected by subtraction of the contributions from Fig. 23 with $\xi_{0}=0.103$ and $A \tan \Lambda_{1}=6 \cdot 75$, the final values are

$$
\left.\begin{array}{rl}
\partial C_{L} / \partial \alpha & =2.3500[1-(0.18 \times 0.103)]
\end{array}=2.306, ~=0.4717\right\}
$$

It may be concluded that in Fig. 2 there are opposing effects of collocation error and rounding error, so that the standard results with sufficient \bar{m} are better than would be expected.
Next there is the discrepancy in pitching damping between direct and reverse flow for Planform 7 in Fig. 9. There are some further calculations for this wing with twice the standard rounding in Table 51,
which illustrate the transformation in equations (33) and (34) from coefficients $\bar{I}_{L r},-\bar{I}_{m r}$ and $-\bar{I}_{m r}^{*}$ for the reversed wing to $I_{t r .}-I_{m r}$ and $-I_{m r}^{*}$ from reverse flow. The worst discrepancies in $m_{i,}$ for the rearward axes are reduced from 10 per cent to an acceptable 2 por cent. Tables 51a and 51c sugew that the pitching derivatives are not linear in ξ_{0}, but that the corrections to allow for the smaller roundings are negligible in this case.

From the solution in the last column of Table 15 and the last row of Table 31 we may comment on the results in Figs. 11 and 12 for Planform 12. Since $\xi_{0}=0.0988$ and $A \tan \Lambda_{1}=6.86$, the final estimated theoretical values of total and local loads at $\eta=0$ are

$$
\begin{aligned}
& \partial C_{L} / \partial \alpha=3.7634[1-(0.18 \times 0.0988)]=3.696 \\
& x_{a c} / \bar{c}=2.1745+(0.055 \times 0.0988) \quad=2.180 \\
& c C_{L L} / \bar{c} C_{L}=1.0981 \times \frac{1-(0.71 \times 0.0988)}{1-(0.18 \times 0.0988)}=1.040 \\
& X_{a c}=0.4214-(0.85 \times 0.0988) \quad=0.337
\end{aligned}
$$

The lift slope and aerodynamic centre in Fig. 11, corresponding to $\bar{m}=95$ and the standard rounding, are again fairly consistent with the new values. In the case of the lift slope the collocation and rounding errors due to m almost cancel, while the rounding correction to $x_{a c} / \bar{c}$ takes it half-way back to its value with the standard rounding. The load grading $\left(c C_{L L} / \bar{c} C_{L}\right)$ at $\eta=0$ in Fig. 12 is not improved by considering collocation error alone as the rounding error is now estimated to be larger and of opposite sign; the new value is fairly consistent with the trend of the full curve for $\bar{m}=95$ and the standard rounding. It is perhaps premature to discuss the local $X_{a c}$ at the centre section, but the facts suggest that Fig. 12 is quite misleading and that the rapid increases as $\eta \rightarrow 0$, plotted in Fig. 8 for example, are grossly exaggerated. Moreover, there is experimental evidence for this wing in Fig. 14 of Ref. 32 to support the new value $X_{a c}=0.337$.

The next discrepancy to consider is that for the slender gothic planform at $\eta=0$ in Fig. 14. The solution in Table 19 with twice the standard rounding gives the local $X_{a c}=0.4110$ when $\xi_{0}=0.0617$. The corrected value is

$$
X_{a c}=0.4110-(0.28 \times 0.0617)=0.394
$$

in better agreement with the exact value 0.4 than the result $X_{a c}=0.424$ in Fig. 14.
It is suggested in Section 4.6 that the behaviour of $\partial C_{L} / \partial \alpha$ in the top right diagram of Fig. 17 is evidence that the aerodynamic effect of the artificial rounding may need to be taken into account. The solution with twice the standard rounding and $\zeta_{0}=0.0977$ for Planform $17\left(A \tan \Lambda_{1}=5.08\right)$ at $M=0.8$ is now corrected to give

$$
\partial C_{L} / \partial \alpha=2.7918[1-(0.13 \times 0.0977)]=2.756,
$$

a value in keeping with the trend of the results labelled $\bar{m}=95$ in Fig. 17.
A final instance of the importance of considering both collocation and rounding error concerns the value of $X_{a c}$ at $\eta=0.195$ in the lower diagram of Fig. 18. The result in Table 50d for the smaller doubled rounding is now corrected to give

$$
X_{a c}=0.2771-(0.08 \times 0.103)=0.269
$$

which is seen to be in better agreement with experiment than the standard solution with $m, N, q=15,4,8$.

7. Concluding Remarks.

(1) A parallel investigation is reported in Ref. 39, where Planforms 1, 4, 6 and 9 in steady incompressible flow are treated by the methods of Refs. 18, 23 and 24 . By comparison with the present investigation a higher degree of accuracy is sought and remarkably good agreement is found between the three methods. There is no doubt about the increasing superiority of Ref. 23 for wings of higher aspect ratio and of Ref. 24 when much larger numbers of chordwise terms are necessary.
(2) The present investigation establishes that large errors can result from previous extensions of the steady-flow theory of Ref. 19 or the low-frequency theory of Ref. 20 to three and four chordwise terms. The refinements in Ref. 18 reduce these errors to meet practical requirements in theoretical spanwise loading, local aerodynamic centres and oscillatory pitching derivatives.
(3) The properties of numerical convergence differ throughout the range of planforms. Rectangular wings require remarkably few, say $A=$ aspect ratio, collocation sections on the half-wing. For more general planforms, provided the leading and trailing edges are smooth and of low curvature, 2 A collocation sections on the half-wing are adequate. The central kink of a sweptback wing leads to a situation in which the balance between artificial rounding and number of collocation sections becomes crucial, with further complication in the convergence of wing loading near curved tips.
(4) To define a calculation for a particular planform and Mach number, the following choice of parameters is recommended:

$$
m+1 \geqslant 4 A \sec \Lambda_{1},
$$

where $\sec \Lambda_{1}$ is generalized to be the length of the trailing edge as a fraction of the span.

$$
\left.\begin{array}{l}
N=3 \quad \text { for calculations of pitching derivatives unless } \beta A \leqslant 1, \text { say }, \\
N=4 \quad \text { for elastic modes of oscillation or detailed wing loading. } \\
q \geqslant 2 \quad \text { and related conditions } \\
\bar{m}+1 \geqslant 24 / \beta^{2} \\
\bar{m}+1 \geqslant 8 A \sec \Lambda_{1} \\
\bar{m}+1 \geqslant 2 A \sec \Lambda_{1} \operatorname{cosec}^{2} \frac{\pi}{2 N+1} \\
(\bar{m}+1) \quad \text { to satisfy Fig. } 19
\end{array}\right\}
$$

(5) Errors are likely to persist near a kinked centre section or crank and near a tip. For chordwise loading the maximum $N=4$ is inadequate locally if the kink is severe or the tip is too closely explored, but it should suffice elsewhere unless the camber or deformation of the wing warrants a larger value from twodimensional considerations. Checks by reverse flow have proved that a severe central kink must be given adequate rounding if collocation error is to be acceptable; the standard rounding in Ref. 18 falls short in this respect. If the leading-edge sweepback is of order 45 deg , then the doubled extent of rounding

$$
0<y<y_{2}=\sin \frac{2 \pi}{m+1}
$$

is recommended in place of equation (18) or, following Ref. 23, the rounding from equation (48) may be used.
(6) Fig. 23 has been prepared on the hypotheses that the doubled displacement of the leading edge

$$
\xi_{0} c_{r}=x_{l 0}=\frac{1}{6} y_{2} \tan \Lambda_{0}
$$

eliminates collocation error, and that the rounding itself introduces an aerodynamic effect proportional to ξ_{0}. Thus the solutions with doubled rounding may be corrected roughly for rounding error which is quite as important as the collocation error with the standard rounding. Section 6 includes several examples to suggest that the standard solutions with both collocation and rounding errors are closer to the true solution for the planform with leading apex than the others with only rounding error; local aerodynamic centres from the latter, corrected for rounding error, are found to lie closer to exact theory or experiment. (7) The method of Ref. 18 and the present results have been applied or developed along the following lines:
(i) As suggested in Section 1, the same principles now under discussion apply equally to certain subsonic theories with general frequency parameter and have led to the significant improvements in Ref. 40.
(ii) The present low-frequency method has been extended to treat slowly oscillating part-span control surfaces, in particular the derivatives of hinge moment (Ref. 41).
(iii) The AGARD Manual on Aeroelasticity is to include an extra chapter, in which the results of numerous oscillatory theories are compared for wings including Planforms 4, 5, 10 and 11 (Ref. 42).
(iv) The influence of central rounding on local loading is so large that it requires more systematic study; the few solutions with doubled rounding in Tables $9,14,15,19,22$ and 49 are suitable for further analysis.
(v) Half-models of Planforms 8, 9, 12, 16 and 17 without twist or camber or fuselage have been extensively pressure plotted, and theoretical solutions for these wings can be extended to include effects of aerofoil thickness.

Acknowledgements.

The author acknowledges the assistance of Mrs. S. Inch of the Aerodynamics Division, N.P.L., who has been responsible for the preparation of data tapes and the tabulated results. She and Mrs. S. Lucas have shared the task of numerical analysis and have helped to prepare the illustrations. Acknowledgments are also due to the operators of the KDF9 computer in the Central Computer Unit, N.P.L.

LIST OF SYMBOLS

A	Aspect ratio $; 2 \mathrm{~s} / \bar{c}$
c	Local chord
\bar{c}	Geometric mean chord; $S / 2 s$
c_{n}	Local chord at station n including any artificial rounding
c_{r}	Root chord
C_{L}	Lift coefficient $;$ lift $/ \frac{1}{2} \rho U^{2} S$
$C_{L L}$	Local lift coefficient; local lift $/ \frac{1}{2} \rho U^{2} c$
C_{m}	Nose-up pitching moment about root leading edge $/ \frac{1}{2} \rho U^{2} S \bar{c}$
C_{p}	Pressure coefficient; $\Delta C_{p}=$ pressure difference $/ \frac{1}{2} \rho U^{2}$
$I_{L r}, I_{m r}$	Lift and pitching-moment coefficients in equations (16)
$\bar{I}_{L r}, \bar{I}_{m r}$	Equivalent of $I_{L r}, I_{m r}$ for reversed planform
$I_{m r}^{*}, \bar{I}_{m r}^{*}$	Second moment coefficient in equation (17) for direct, reversed planform Kernel function
l	Non-dimensional load distribution; ΔC_{p}
1	Complex load distribution from expression (1)
l_{r}	Loading l corresponding to $\alpha=\alpha_{r}$ in equations (13) and (14)
m	Number of collocation sections; rounding parameter in equation (18)
\bar{m}	Number of spanwise integration points; $q(m+1)-1$
m_{θ}, m_{θ}	Oscillatory pitching-moment derivatives in equation (31)
M	Mach number of free stream
n	Subscript or integer denoting loading station in equation (11)
N	Number of chordwise functions or collocation points
q	Factor; ($\bar{m}+1) /(m+1)$
-	Subscript or integer denoting incidence in equations (13) and (14)
s	Semi-span of wing
$s(x)$	Local semi-span of wing
S	Area of planform
t	Time
U	Velocity of free stream
$\begin{array}{r} x, y \\ x^{\prime}, y^{\prime} \end{array}$	Rectangular co-ordinates referred to root leading edge
x_{0}	Location of pitching axis
$x_{a c}$	Aerodynamic centre referred to $\bar{c} ;-C_{m} / C_{L}$
x_{l}	Ordinate of leading edge

LIST OF SYMBOLS-continued

$x_{\text {ln }} \quad$ Ordinate of leading edge at station n including any artificial rounding
$X_{a c} \quad$ Local aerodynamic centre referred to leading edge in equation (23)
$y_{1}, y_{2} \quad$ Semi-span of artificial rounding $; s \sin \frac{\pi}{m+1}, s \sin \frac{2 \pi}{m+1}$
$z \quad \frac{1}{2}(m-1)$
$\bar{z} \quad$ Complex upward displacement of wing surface
$z_{\theta}, z_{\theta} \quad$ Lift derivatives for pitching oscillations in equation (31)
$\alpha \quad$ Incidence of wing (radians)
$\alpha_{r} \quad$ Distribution of incidence in equations (13) and (14)
$\beta \quad$ Compressibility factor; $\left(1-M^{2}\right)^{1 / 2}$
$\gamma \quad$ Non-dimensional circulation; $\frac{1}{4} c C_{L L} / s$
$\gamma_{n} \quad$ First chordwise loading function in equation (10)
$\eta \quad$ Spanwise ordinate; y / s
$\bar{\eta} \quad$ Spanwise centre of pressure in equations (25) and (27)
$\theta \quad$ Spanwise parameter; $\cos ^{-1} \eta$
$\theta_{0} \quad$ Amplitude of pitching oscillation (radians)
$\kappa_{n} \quad$ Third chordwise loading function in equation (10)
$\lambda \quad c_{r} / \bar{c}$
$\lambda_{n} \quad$ Fourth chordwise loading function in equation (10)
$\Lambda \quad$ Angle of sweepback
$\Lambda_{\xi} \quad$ Local sweepback at chordwise position $\xi=0, \frac{1}{2}, 1$
$\mu_{n} \quad$ Second chordwise loading function in equation (10)
$v \quad$ Subscript or integer denoting collocation section in equation (7)
$\bar{v} \quad$ Frequency parameter; $\omega \bar{c} / U$
$\xi \quad$ Local chordwise position; $\left(x-x_{l}\right) / c$
$\xi_{0} \quad$ Leading-edge rounding parameter; x_{10} / c_{r}
$\rho \quad$ Density of free stream
$\phi \quad$ Chordwise parameter; $\cos ^{-1}(1-2 \xi)$
$\omega \quad$ Circular frequency of oscillation

REFERENCES

No.
Author(s)
Title, etc.
1 I. E. Garrick . .
. . . Non steady wing characteristics.
High Speed Aerodynamics and Jet Propulsion, Vol. VII, Aerodynamic Components of Aircraft at High speeds, Section F (Ed. A. F. Donovan and H. R. Lawrence).
Oxford University Press, 1957.
2 D. E. Williams. Some mathematical methods in three-dimensional subsonic flutter-derivative theory.
A.R.C. R. \& M. 3302, February, 1961.

3 A. I. van de Vooren and .. Strip theory for oscillating swept wings in incompressible flow. W. Eckhaus N.L.L. Report F.146, April, 1954.

4 W. Eckhaus Strip theory for oscillating swept wings in compressible subsonic flow.
N.L.L. Report F.159, October, 1955.

5 D. E. Lehrian Calculation of flutter derivatives for wings of general plan-form.
A.R.C. R. \& M. 2961, January, 1954.

6 H. L. Runyan and Method for calculating the aerodynamic loading on an oscillating D. S. Woolston

7 V. J. E. Stark A method for solving the subsonic problem of the oscillating finite wing with the aid of high-speed digital computers.
S.A.A.B. Tech. Note 41, December, 1958.

8 I. E. Garrick Some research on high-speed flutter.
Third Anglo-American Aeronautical Conference, Brighton, 4th7th September, 1951, pp. 419-446. (The Royal Aeronautical Society).

9 B. Mazelsky Theoretical aerodynamic properties of vanishing aspect ratio harmonically oscillating rigid airfoils in a compressible medium. J. Aero. Sci., Vol. 23, pp. 639-652, July, 1956.

10 H. R. Lawrence and The aerodynamic forces on low-aspect-ratio wings oscillating in an E. H. Gerber incompressible flow.
J. Aero Sci., Vol. 19, pp. 769-781, November, 1952.

11 P. Cicala La teoria e l'esperienza nel fenomeno delle vibrazioni alari.
L'Aerotechnica, Vol. 18, pp. 412-433, April, 1938.
Translation in N.A.C.A. Tech. Memo. 887, 1939.
12 E. Reissner On the theory of oscillating airfoils of finite span in subsonic compressible flow.
N.A.C.A. Report 1002, 1950.

No. Author(s)
13 C. E. Watkins, H. L. Runyan . and D. S. Woolston

14 J. R. Richardson A method for calculating the lifting forces on wings (Unsteady subsonic and supersonic lifting-surface theory). A.R.C. R. \& M. 3157, April, 1955.

15 P. T. Hsu Some recent developments in the flutter analysis of low-aspectratio wings.
Proceedings of the National Specialists Meeting on Dynamics and Aeroelasticity, Fort Worth, Texas, 6th-7th November, 1958, pp.7-26. (Institute of the Aeronautical Sciences).

16 B. Laschka Zur Theorie der harmonisch schwingenden tragenden Fläche bei Unterschallanströmung.
Z. Flugwiss., Vol. 11, pp. 265-292, July, 1963.

17 D. E. Davies Calculation of unsteady generalised airforces on a thin wing oscillating harmonically in subsonic flow.
A.R.C. R. \& M. 3409, August, 1963.

Algol 60 programme for Multhopp's low-frequency subsonic lifting-surface theory.
A.R.C. R. \& M. 3517, April, 1966.

19 H. Multhopp Methods for calculating the lift distribution of wings. (Subsonic
lifting-surface theory).
A.R.C. R. \& M. 2884, January, 1950.

20 H. C. Garner Multhopp's subsonic lifting-surface theory of wings in slow pitching oscillations.
A.R.C. R. \& M. 2885, July, 1952.

21 K. W. Mangler and :. . . Some remarks on Multhopp's subsonic lifting-surface theory.
B. F. R. Spencer

22 H. C. Garner Accuracy of downwash evaluation by Multhopp's lifting-surface theory.
A.R.C. R. \& M. 3431, July, 1964.

23 P. J. Zandbergen, A new approach to the numerical solution of the equation of T. E. Labrujere and J. G. Wouters

Title, etc.
On the kernel function of the integral equation relating the lift and downwash distributions of oscillating finite wings in subsonic flow.
N.A.C.A. Report 1234, 1955.

8 H. C. Garner and D. A. Fox .
subsonic lifting surface theory.
N.L.R. Report TR G.49, November, 1967.

24 B. L. Hewitt and W. Kellaway A new treatment of the subsonic lifting surface problem using curvilinear co-ordinates. Part I-Details of the method as applied to regular surfaces with finite tip chords and a preliminary set of numerical results.
B.A.C. Preston Division Report Ae. 290.
S. \& T. Memo. 20/68, August, 1968.

25 V. J. E. Stark Aerodynamic forces on rectangular wings oscillating in subsonic flow.
S.A.A.B. Tech. Note 44, February, 1960.

26 E. van Spiegel Boundary value problems in lifting surface theory.
N.L.L. Tech. Report W.1, March, 1959.

27 J. P. Benthem and The calculation of aerodynamic forces on the circular wing in J. G. Wouters unsteady incompressible flow.
N.L.R. Tech. Note W.25, November, 1963.

28 E. W. E. Rogers, I. M. Hall and An investigation of the flow about a plane half-wing of croppedC. J. Berry
delta planform and 6 per cent symmetrical section at stream Mach numbers between 0.8 and 1.41 .
A.R.C. R. \& M. 3286, September, 1960.

29 I. M. Hall Experiments with a tapered sweptback wing of Warren 12 planand E. W. E. Rogers form at Mach numbers between 0.6 and $1 \cdot 6$.
A.R.C. R. \& M. 3271, Part 2, July, 1960.

30 B. Laschka Die Druck-, Auftriebs- und Momentenverteilungen an einem harmonisch schwingenden Pfeilflügel kleiner Streckung im niedrigen Unterschallbereich.
Vergleich zwischen Theorie und Messung.
Proceedings of the International Council of the Aeronautical Sciences. Fourth Congress, Paris, 1964.
R.A.E. Library Translation 1223, 1967.

31 D. E. Lehrian Calculation of subsonic flutter derivatives for an arrowhead wing with control surfaces.
A.R.C. R. \& M. 3561, March, 1967.

32 R. R. Graham Low-speed characteristics of a 45° sweptback wing of aspect ratio 8 from pressure distributions and force tests at Reynolds numbers from 1,500,000 to 4,800,000.
N.A.C.A. RM L51 H13 (T.I.B. 2920), 1951.

33 L. Woodgate and P. G. Pugh
Measurements of the pitching-moment derivatives on a sharpedged delta wing in incompressible flow.
A.R.C. R. \& M. 3379, October, 1963.

REFERENCES-continued

No. Author(s)

Title, etc.
34 H. C. Garner and D. E. Walshe Pressure distribution and surface flow on 5% and 9% thick wings with curved tip and 60° sweepback.
A.R.C. R. \& M. 3244. January, 1960.

35 R. C. Lock The loading of swept wings at transonic speeds.
Proceedings of a Seminar in Aeronautical Sciences, Bangalore, December, 1961.
A.R.C. 23 352, December, 1961.

36 D. E. Lehrian and Comparative numerical applications of the reverse-flow theorem H. C. Garner to oscillating wings and control surfaces.
A.R.C. R. \& M. 3488, August, 1965.

37 D. L. Woodcock On the accuracy of collocation solutions of the integral equation of linearised subsonic flow past an oscillating aerofoil.
Proceedings of the International Symposium on Analogue and Digital Techniques Applied to Aeronautics, Liège, 9th-12th September, 1963.

38 R. Dat, J. Leclerc and Optimisation de l'emploi de la théorie de la surface portante en Y. Akamatsu aéroélasticité subsonique.
La Recherche Aérospatiale No. 113, pp. 37-52, July-August, 1966.
39 H. C. Garner, B. L. Hewitt .. Comparison of three methods for the evaluation of subsonic T. E. Labrujere lifting-surface theory.
A.R.C. R. \& M. 3597, June, 1968.

40 G. Long An improved method for calculating generalised airforces on oscillating wings in subsonic flow.
R.A.E. Tech. Report 69073.
A.R.C. 31 480, April 1969.

41 H. C. Garner and D. E. Lehrian The theoretical treatment of slowly oscillating part-span control surfaces in subsonic flow.
N.P.L. Aero Report 1303. A.R.C. 31 490, October, 1969.

42 D. L. Woodcock A comparison of methods used in lifting-surface theory.
(Chapter to appear in Vol. VI of AGARD Manual on Aeroelasticity).

TABLE 1
Details of Planforms and Mach Numbers Used.

No.	Planform	$A=\frac{2 s}{\widetilde{c}}$	$\frac{c_{r}}{\text { c }}$	$\tan \mathrm{N}_{0}$	$\tan \Lambda_{1}$	M	Ref.
1	Rectangular	$2 \cdot 00000$	$1 \cdot 00000$	0	0	0.	25
2	Rectangular	$4 \cdot 00000$	$1 \cdot 00000$	0	0	0	-
3	Rectangular	$8 \cdot 00000$	$1 \cdot 00000$	0	0	0	-
14	Circular	$1 \cdot 27324$	$1 \cdot 27324$	-	-	0	27
5	Symmetrical taper	4-32921	$1 \cdot 58000$	$0 \cdot 26795$	-0.26795	0	-
6	Hyperbolic edges	$4 \cdot 00000$	$1 \cdot 00000$	-	-	0	-
7	Constant chord	$4 \cdot 00000$	$1 \cdot 00000$	$1 \cdot 00000$	$1 \cdot 00000$	0	-
8	Cropped delta	$1 \cdot 97035$	$1 \cdot 66667$	1-35340	0	0.8	28
9	Arrowhead	$2 \cdot 82843$	$1 \cdot 50000$	1-35355	$0 \cdot 64645$	$0,0 \cdot 6,0 \cdot 8$	29
10	Arrowhead.	$1 \cdot 45033$	1-16969	0.81000	0.34200	$0 \cdot 8$	30
11	Arrowhead	2.00000	$1 \cdot 61603$	$1 \cdot 73205$	0.50000	$0 \cdot 78062$	31
12	Arrowhead	$8 \cdot 00000$	$1 \cdot 37931$	$1 \cdot 04741$	0.85776	0	32
13	Delta	$1 \cdot 50000$	2.00000	$2 \cdot 66667$	0	0	33
14	Slender delta	$0 \cdot 00010$	$2 \cdot 00000$	40000	0	0	-
15	Slender gothic	$0 \cdot 00010$	$1 \cdot 66667$	-	0	0	-
16	Curved tip	$3 \cdot 89927$	1.06829	-	$1 \cdot 73205$	0	34
17	Curved tip	3-55645	$1 \cdot 12120$	-	$1 \cdot 42815$	0.8	35

Planform 4
Planform 6

Planform 15
Planform 16

Planform 17
$c=c_{r}\left(1-n^{2}\right)^{1 / 2}$
$c=c_{r}($ constant $)$
$x_{e}=\frac{3}{4} c_{r}\left[\left(1+8 n^{2}\right)^{1 / 2}-1\right]$
$c=(1-\ln 1)^{2 / 3}$
$c=c_{r}($ constant $)$
$\left.c=c_{r}\left[1-\left(\frac{1-\eta}{0.383562}\right)^{1 / 2}\right]^{2} 0.616438<n<1\right\}$
$c=c_{r}($ constant $)$
and in following table
$\left.\begin{array}{l}0<\eta<0.4415 \\ 0.4415<\eta<1\end{array}\right\}$

n	0.5000	0.6088	0.7074	0.7934	0.8660	0.9239	0.9659	0.9914
c / c_{r}	0.9947	0.9588	0.8954	0.8059	0.6916	0.5535	0.3922	0.2077

TABLE 2
Summary of Numerical Results.

Planform (Table 1)		M	Tables					Figures
No.	A		Solns. $\alpha=1$	$\mathrm{C}_{\text {LL }}$	X_{ac}	Coeff's	$\begin{aligned} & -z_{\theta},-m_{\theta} \\ & -z_{\theta}^{\circ},-m_{\theta} \end{aligned}$	
1	2•000	0	3	-	23(a)	-	-	1.5
2	4^{-000}	0	4,5	-	23 (b)	35(a)	43(a)*	1,5,6,7,8
3	8.000	0	-	24	24	-	-	5
4	$1 \cdot 273$	0	6	-	25(a)	35(b)	43(b)*	6
5	$4 \cdot 329$	0	-	-	25 (b)	35(c)	43(c)*	6,7
6	4-000	0	7	-	26(a)	36	44(a)*	3,8,9
7	$4 \cdot 000$	0	8,9 ${ }^{+}$	50	26(b), 50	37, 51 *	44(b)*	8,9,21
8	$1 \cdot 970$	$0 \cdot 8$	10	-	27(a)	-	-	-
9	$2 \cdot 828$	0	$11,14^{+}$	50	50	38(b)	45(a)	10,21
9	$2 \cdot 828$	0.6	11	-	-	-	-	10
9	$2 \cdot 828$	0.8	12,13	-	27(b)	38(c)	45(a)	10
10	$1 \cdot 450$	$0 \cdot 8$	-	28	28	38(a)	45(b)	13
11	$2 \cdot 000$	0. 781	-	-	-	39*	48*	22
12	8.000	0	15^{+}	29	30,31	40	45(c)	4,11,12
13	$1 \cdot 500$	0	$16,19^{+}, 49^{+}$	50	32(a), 50	41(a)	46(a)	15,21
14	$0 \cdot 000$	0	17	-	32 (b)	41 (b)	46(b)	14,15,16
15	0.000	0	$13,19^{+}, 49^{*}$	-	$32(\mathrm{c})$	41(c)	46(c)	14,16,20,21
16	$3 \cdot 899$	0	20,21	50	33(a), 50	-	-	2,18
17	3-556	0.8	22^{+}	34	$33(\mathrm{~b}), 34$	42	47	17,18

[^1]TABLE 3
Solutions for Rectangular Wing $(A=2, M=0)$ at Unit Incidence.

$\begin{aligned} & m \\ & N \\ & \mathrm{~N} \\ & \mathrm{q} \end{aligned}$	7 4 1 7	7 4 2 15	7 4 4 31	7 4 6 47	7 4 8 63	7 4 16 127	$\begin{array}{r} 15 \\ 4 \\ 8 \\ 127 \end{array}$
Yo	$0 \cdot 768119$	$0 \cdot 775501$	$0 \cdot 776399$	0.776225	$0 \cdot 776098$	0.775928	0.775927
γ_{1}							0.762796
Yas	0. 716825	$0 \cdot 723068$	0.723723	$0 \cdot 723545$	0.723431	$0 \cdot 723287$	$0 \cdot 723287$
y^{3}							0.657277
γ_{4}	0. 561516	0. 565323	0. 565551	0. 565401	0. 565324	0.565244	0. 565240
γ_{5}							0.448964
γ_{6}	0.310660,	$0 \cdot 312161$	0. 312188	$0 \cdot 312116$	$0 \cdot 312083$	0. 312051	0. 312051
γ_{7}							0.160025
Ho	0.019207	0.025362	0.024073	0.023502	0.023366	0.023329	0.023327
μ_{1}							0.023876
μ_{2}	0.022852	0.027271	0.025947	$0 \cdot 025489$	0.025389	0.025364	0.025366
${ }^{1}$							$0 \cdot 027262$
${ }^{\mu}$	$0 \cdot 029096$	0.029855	0.028781	0.028566	0.028526	$0 \cdot 028517$	0.028511
μ_{5}							$0 \cdot 027549$
μ_{6}	$0 \cdot 024028$	0.023126	0.022746	$0 \cdot 022687$	$0 \cdot 022675$	$0 \cdot 022672$	$0 \cdot 022672$
μ_{7}							0.013042
κ_{0}	-0.036737	$0 \cdot 014748$	$0 \cdot 015386$	0.013065	$0 \cdot 012257$	0.011661	0.011633
K_{1}							$0 \cdot 012786$
K_{2}	-0.019325	0.021020	$0 \cdot 019551$	0.017584	$0 \cdot 016955$	0.016501	0.016536
K_{3}							$0 \cdot 023519$
K_{4}	0.027926	$0 \cdot 038961$	0.035166	0.034177	0.033909	0.033722	0.033666
K_{5}							$0 \cdot 043842$
κ_{6}	0.056507	0.047712	$0 \cdot 046118$	$0 \cdot 045907$	0.045850	$0 \cdot 045810$	$0 \cdot 045834$
K_{7}							0.030619
λ_{0}	-0.020904	$0 \cdot 003481$	$0 \cdot 001687$	-0.000013	-0.000471	-0.000656	-0.000678
λ_{1}							-0.000533
λ_{2}	-0.015414	$0 \cdot 004599$	$0 \cdot 001927$	$0 \cdot 000553$	$0 \cdot 000221$	$0 \cdot 000093$	0.000124
λ_{3}							$0 \cdot 002046$
λ_{4}	$0 \cdot 005009$	0.010446	$0 \cdot 007199$	$0 \cdot 006620$	0.006515	$0 \cdot 006475$	0.006416
λ_{5}							0.013362
λ_{6}	$0 \cdot 029308$	$0 \cdot 019877$	0.018726	0.018644	0.018628	$0 \cdot 018619$	0.018688
λ_{7}							$0 \cdot 014607$
$\mathrm{C}_{\text {L }}$	$2 \cdot 453985$	$2 \cdot 473974$	$2 \cdot 475899$	$2 \cdot 1+75294$	$2 \cdot 474923$	$2 \cdot 474470$	$2 \cdot 474468$
$-\mathrm{C}_{\mathrm{m}}$	$0 \cdot 518486$	0.511936	0.516773	0.518009	0.518219	0.518184	0.518188
夜	0.428613	0.428254	$0 \cdot 428167$	0.428163	0.428167	$0 \cdot 428177$	0.428176
x_{ac}	0. 211283	0. 206929	$0 \cdot 208721$	$0 \cdot 209272$	$0 \cdot 209388$	$0 \cdot 209412$	0.209414
c							

TABLE 4
Solutions for Rectangular Wing $(A=4, M=0)$ at Unit Incidence $(m=7)$.

$\begin{aligned} & \mathrm{m} \\ & \mathrm{~N} \\ & \frac{\mathrm{q}}{\mathrm{~m}} \end{aligned}$	7 4 1 7	$\begin{array}{r} 7 \\ 4 \\ 2 \\ 15 \end{array}$	$\begin{gathered} 7 \\ 4 \mathrm{e} \\ 4 \\ 31 \end{gathered}$	$\begin{array}{r} 7 \\ 4 \\ 8 \\ 63 \end{array}$	$\begin{array}{r} 7 \\ 4 \\ 12 \\ 95 \end{array}$	$\begin{array}{r} 7 \\ 4 \\ 16 \\ 127 \end{array}$
$\begin{aligned} & y_{0} \\ & y_{1} \\ & y_{2} \\ & y_{3} \end{aligned}$	$\begin{aligned} & 0.51206 \\ & 0.49030 \\ & 0.40776 \\ & 0.23798 \end{aligned}$	$\begin{aligned} & 0.53994 \\ & 0.51308 \\ & 0.42052 \\ & 0.24336 \end{aligned}$	$\begin{aligned} & 0.54890 \\ & 0.52051 \\ & 0.42470 \\ & 0.24491 \end{aligned}$	$\begin{aligned} & 0.55006 \\ & 0.52133 \\ & 0.42494 \\ & 0.24492 \end{aligned}$	$\begin{aligned} & 0.54985 \\ & 0.52113 \\ & 0.42477 \\ & 0.24484 \end{aligned}$	$\begin{aligned} & 0.54970 \\ & 0.52099 \\ & 0.42468 \\ & 0.24480 \end{aligned}$
$\begin{aligned} & \mu_{0} \\ & \mu_{1} \\ & \mu_{2} \\ & \mu_{3} \end{aligned}$	$\begin{gathered} -0.00884 \\ -0.00536 \\ 0.00554 \\ 0.01446 \end{gathered}$	$\begin{aligned} & 0.00335 \\ & 0.00547 \\ & 0.01128 \\ & 0.01373 \end{aligned}$	$\begin{aligned} & 0.00644 \\ & 0.00770 \\ & 0.01158 \\ & 0.01319 \end{aligned}$	$\begin{aligned} & 0.00540 \\ & 0.00666 \\ & 0.01080 \\ & 0.01298 \end{aligned}$	$\begin{aligned} & 0.00500 \\ & 0.00635 \\ & 0.01067 \\ & 0.01295 \end{aligned}$	$\begin{aligned} & 0.00491 \\ & 0.00629 \\ & 0.01066 \\ & 0.01295 \end{aligned}$
$\begin{aligned} & K_{0} \\ & K_{1} \\ & K_{2} \\ & K_{3} \end{aligned}$	$\begin{array}{r} -0.08672 \\ -0.07686 \\ -0.03969 \\ 0.03135 \end{array}$	$\begin{array}{r} -0.02901 \\ -0.02075 \\ 0.00240 \\ 0.02704 \end{array}$	$\begin{aligned} & 0.00311 \\ & 0.00497 \\ & 0.01140 \\ & 0.02415 \end{aligned}$	$\begin{aligned} & 0.00395 \\ & 0.00439 \\ & 0.00917 \\ & 0.02334 \end{aligned}$	$\begin{aligned} & 0 \cdot 00248 \\ & 0 \cdot 00312 \\ & 0 \cdot 00853 \\ & 0 \cdot 02323 \end{aligned}$	$\begin{aligned} & 0.00194 \\ & 0.00269 \\ & 0.00835 \\ & 0.02320 \end{aligned}$
$\begin{aligned} & \lambda_{0} \\ & \lambda_{1} \\ & \lambda_{2} \\ & \lambda_{3} \end{aligned}$	$\begin{array}{r} -0.02583 \\ -0.02509 \\ -0.01923 \\ 0.01265 \end{array}$	$\begin{array}{r} -0.01053 \\ -0.00795 \\ -0.00060 \\ 0.01063 \end{array}$	$\begin{aligned} & 0 \cdot 00298 \\ & 0 \cdot 00298 \\ & 0 \cdot 00279 \\ & 0 \cdot 00779 \end{aligned}$	$\begin{aligned} & 0 \cdot 00136 \\ & 0 \cdot 00095 \\ & 0 \cdot 00075 \\ & 0.00730 \end{aligned}$	$\begin{aligned} & 0 \cdot 00025 \\ & 0 \cdot 00006 \\ & 0 \cdot 00040 \\ & 0 \cdot 00727 \end{aligned}$	$\begin{array}{r} -0.00003 \\ -0.00014 \\ 0.00034 \\ 0.00727 \end{array}$
$\begin{gathered} c_{L} \\ -C_{m} \\ \bar{n} \\ \frac{x_{\mathrm{ac}}}{\bar{c}} \end{gathered}$	3041936 0.85458 0.43951 0.24992	3.56408 0.82831 0.43689 0.23240	3.61085 0.82866 0.43607 0.22949	3.61562 0.83650 0.43590 0.23136	3.61421 0.83800 0.43590 0.23186	$\begin{aligned} & 3.61332 \\ & 0.83813 \\ & 0.43590 \\ & 0.23196 \end{aligned}$

TABLE 5
Solutions for Rectangular Wing $(A=4, M=0)$ at Unit Incidence $(m=15)$

m N q d	$\begin{array}{r} 15 \\ 2 \\ 4 \\ 63 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 6 \\ 95 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 1 \\ 15 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 2 \\ 31 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 4 \\ 63 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 8 \\ 127 \end{array}$
Yo	0.54968	0. 54971	0.53994	$0 \cdot 54891$	0. 55006	0. 54970
γ_{1}	$0 \cdot 54268$	$0 \cdot 54271$	0.53344	0.54200	0.54306	0.54270
γ	0. 52095	0.52099	0.51308	0.52051	0.52133	0. 52099
γ_{3}	$0 \cdot 48249$	0.48255	0.47650	$0 \cdot 48235$	0.48287	0.48255
γ_{4}	0.42457	$0 \cdot 42468$	0.42052	0.42470	0.42495	0. 42468
γ_{5}	$0 \cdot 34506$	$0 \cdot 34530$	$0 \cdot 34272$	0. 34542	$0 \cdot 34550$	0. 34531
γ_{6}	0. 24437	0. 24.484	$0 \cdot 24336$	0. 24492	0. 24493	0. 24481
γ_{7}	0-12680	0.12729	$0 \cdot 12656$	$0 \cdot 12726$	$0 \cdot 12727$	0. 12721
Ho	$0 \cdot 00490$	0.00488	0.00334	0.00644	0.00539	0.00490
μ_{1}	0.00524	$0 \cdot 00522$	0.00388	0.00675	0.00570	0.00524
μ_{8}	0.00630	0.00629	0.00548	0.00771	0.00667	0.00630
${ }^{3}$	0.00812	0.00815	$0 \cdot 00808$	0.00937	0.00840	0.00815
μ_{4}	0.01049	0.01065	0.01127	0.01156	0.01078	0.01064
μ_{5}	0.01246	0.01289	0.01387	0.01346	0.01297	0.01291
μ_{6}	0.01210	0.01281	0.01375	0.01324	0.01301	0.01299
μ_{7}	0.00771	0.00831	0.00892	0.00872	0.00864	0.00863
κ_{0}		0.00173	-0.02902	0.00309	0.00392	0.00191
K_{1}		0.00192	-0.02693	0.00358	0.00401	$0 \cdot 00208$
K_{2}		0.00262	-0.02074	0.00500	$0 \cdot 00443$	0.00274
K_{3}		0.00436	-0.01076	0.00738	$0 \cdot 00570$	$0 \cdot 00439$
K_{4}		$0 \cdot 00821$	0.00233	0.01127	0.00904	0.00821
K_{5}		0.01504	0.01687	0.01771	0.01590	0.01550
K_{6}		0.02157	0.02728	0.02467	0.02382	0.02368
K_{7}		0.01783	0.02242	0.02119	0.02098	0.02094
λ_{0}			-0.01053	$0 \cdot 00298$	0.00136	-0.00003
λ_{1}			-0.00988	0.00300	0.00125	-0.00006
λ_{2}			-0.00796	0.00299	$0 \cdot 00096$	-0.00013
λ_{3}			-0.00484	0.00283	0.00060	-0.00016
λ_{4}			-0.00062	$0 \cdot 00274$	0.00069	0.00028
λ_{5}			$0 \cdot 00487$	0.00405	0.00270	0.00255
λ_{8}			0.01085	0.00821	0.00770	0.00767
λ_{7}			0.01070	0.00955	0.00946	0.00945
${ }^{\text {c }}$	3.61242	3.61340	$3 \cdot 56408$	$3 \cdot 61087$	$3 \cdot 61563$	3.61334
$-\mathrm{C}_{\text {m }}$	0483927	0.83838	0.82830	0.82862	0.83648	0.83810
$\vec{\eta}$	$0 \cdot 43582$	0.43591	0.43689	0.43607	0.43590	0.43591
$\frac{x_{\text {ac }}}{\bar{c}}$	$0 \cdot 23233$	0.23202	$0 \cdot 23240$	$0 \cdot 22948$	$0 \cdot 23135$	0.23195

TABLE 6
Solutions for Circular Wing $(A=1 \cdot 2732, M=0)$ at Unit Incidence.

$\begin{aligned} & m \\ & \mathrm{~N} \\ & \frac{\mathrm{q}}{\mathrm{~m}} \end{aligned}$	$\begin{array}{r} 11 \\ 2 \\ 4 \\ 47 \end{array}$	$\begin{array}{r} 5 \\ 2 \\ 8 \\ 47 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 5 \\ 3 \\ 12 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 4 \\ 47 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 8 \\ 95 \end{array}$
$\begin{aligned} & y_{0} \\ & y_{1} \\ & y_{2} \\ & y_{3} \\ & y_{4} \\ & y_{5} \end{aligned}$	$\begin{aligned} & 0.90246 \\ & 0.87018 \\ & 0.77595 \\ & 0.62742 \\ & 0.43690 \\ & 0.22142 \end{aligned}$	0.90280 0.77625 0.43818	$\begin{aligned} & 0.90302 \\ & 0.87086 \\ & 0.77686 \\ & 0.62846 \\ & 0.43759 \\ & 0.22098 \end{aligned}$	$\begin{aligned} & 0.90349 \\ & 0.77724 \\ & 0.43902 \end{aligned}$	$\begin{aligned} & 0.90296 \\ & 0.87080 \\ & 0.77676 \\ & 0.62827 \\ & 0.43727 \\ & 0.22070 \end{aligned}$	$\begin{aligned} & 0.90297 \\ & 0.87081 \\ & 0.77678 \\ & 0.62827 \\ & 0.43720 \\ & 0.22063 \end{aligned}$	$\begin{aligned} & 0.90300 \\ & 0.87084 \\ & 0.77681 \\ & 0.62832 \\ & 0.43724 \\ & 0.22063 \end{aligned}$
$\begin{aligned} & \mu_{0} \\ & \mu_{1} \\ & \mu_{2} \\ & \mu_{3} \\ & \mu_{4} \\ & \mu_{5} \end{aligned}$	$\begin{aligned} & 0.04888 \\ & 0.04826 \\ & 0.04623 \\ & 0.04216 \\ & 0.03488 \\ & 0.02181 \end{aligned}$	$\begin{aligned} & 0.04875 \\ & 0.04616 \\ & 0.03402 \end{aligned}$	$\begin{aligned} & 0.04688 \\ & 0.04608 \\ & 0.04358 \\ & 0.03894 \\ & 0.03150 \\ & 0.01982 \end{aligned}$	$\begin{aligned} & 0.04677 \\ & 0.04355 \\ & 0.03094 \end{aligned}$	0.04688 0.04608 0.04356 0.03903 0.03133 0.01761	$\begin{aligned} & 0.04692 \\ & 0.04613 \\ & 0.04366 \\ & 0.03917 \\ & 0.03196 \\ & 0.01993 \end{aligned}$	$\begin{aligned} & 0.04694 \\ & 0.04614 \\ & 0.04369 \\ & 0.03921 \\ & 0.03218 \\ & 0.02093 \end{aligned}$
$\begin{aligned} & K_{0} \\ & K_{1} \\ & K_{2} \\ & K_{3} \\ & K_{4} \\ & K_{5} \end{aligned}$			$\begin{aligned} & 0.00516 \\ & 0.00594 \\ & 0.00820 \\ & 0.01131 \\ & 0.01441 \\ & 0.01463 \end{aligned}$	$\begin{aligned} & 0.00508 \\ & 0.00813 \\ & 0.01268 \end{aligned}$	$\begin{array}{r} 0.00460 \\ 0.00532 \\ 0.00694 \\ 0.00950 \\ 0.00983 \\ -0.00589 \end{array}$	$\begin{aligned} & 0.00448 \\ & 0.00514 \\ & 0.00689 \\ & 0.00919 \\ & 0.01051 \\ & 0.00651 \end{aligned}$	$\begin{aligned} & 0.00445 \\ & 0.00508 \\ & 0.00689 \\ & 0.00908 \\ & 0.01075 \\ & 0.01212 \end{aligned}$
$\begin{aligned} & \lambda_{0} \\ & \lambda_{1} \\ & \lambda_{2} \\ & \lambda_{3} \\ & \lambda_{4} \\ & \lambda_{5} \end{aligned}$					$\begin{aligned} & -0.00737 \\ & -0.00826 \\ & -0.01094 \\ & -0.01367 \\ & -0.01663 \\ & -0.02519 \end{aligned}$	$\begin{aligned} & -0.00745 \\ & -0.00843 \\ & -0.01120 \\ & -0.01477 \\ & -0.01724 \\ & -0.01508 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.00747 \\ & -0.00849 \\ & -0.01130 \\ & -0.01523 \\ & -0.01770 \\ & -0.01054 \end{aligned}\right.$
$c_{\text {L }}$	$1 \cdot 78878$	1-79032	$1 \cdot 79057$	1.79248	1.79020	$1 \cdot 79019$	1.79028
$-\mathrm{C}_{\text {m }}$	0. 53940	0.54001	$0 \cdot 54653$	0.54715	0.54650	$0 \cdot 54605$	0. 54592
\bar{n}	0.42175	0.42199	0.42180	0.42209	0.42175	$0 \cdot 42174$	0.42174
$\frac{x^{\text {ac }}}{}$	$0 \cdot 30155$	0.30163	$0 \cdot 30522$	0.30525	0. 30527	0. 30502	0.30494

TABLE 7
Solutions for Planform 6 with Hyperbolic Edges $(A=4, M=0)$ at Unit Incidence.

$\begin{aligned} & \text { mil } \\ & \text { N } \\ & \text { g } \end{aligned}$	$\begin{array}{r} 15 \\ 2 \\ 4 \\ 63 \end{array}$	15 3 6 95	15 4 1 15	15 4 2 31	15 4 4 63	15 4 8 127	7 4 16 127
y_{0}	0.45611	$0 \cdot 45642$	0.45082	0.45767	0.45668	0.45642	0.45566
y_{1}	$0 \cdot 45584$	0.45607	0.45204	$0 \cdot 45796$	$0 \cdot 45648$	$0 \cdot 45609$	
y_{2}	0.45201	0.45231	$0 \cdot 45099$	0.45504	$0 \cdot 45293$	$0 \cdot 45238$	0.45262
y_{3}	0.43880	$0 \cdot 43931$	0.43999	0.44216	$0 \cdot 44001$	$0 \cdot 43944$	
y_{4}	0.40683	0.40719	0.40861	$0 \cdot 40947$	0.40772	$0 \cdot 40725$	0.40678
y_{5}	$0 \cdot 34453$	$0 \cdot 34404$	$0 \cdot 34518$	0. 34560	0. 34435	$0 \cdot 34405$	
y_{6}	$0 \cdot 24836$	0.24835	$0 \cdot 24924$	$0 \cdot 24956$	$0 \cdot 24881$	$0 \cdot 24865$	$0 \cdot 24876$
y_{7}	$0 \cdot 12881$	0.13027	0.13014	$0 \cdot 13040$	0.13007	$0 \cdot 12999$	
μ	-0.01057	-0.01089	-0.00954	-0.00930	-0.01068	-0.01091	-0.01106
μ_{1}	-0.00731	-0.00751	-0.00514	-0.00523	-0.00744	-0.00754	
${ }^{+}$	-0.00180	-0.00196	$0 \cdot 00173$	0.00106	-0.00218	-0.00204	-0.00234
μ_{3}	0.00372	0.00351	0.00793	$0 \cdot 00641$	0.00301	0.00342	
μ_{4}	0.01140	0.01152	0.01616	0.01354	0.01105	0.01153	0.01200
μ_{5}	0.02134	$0 \cdot 02260$	0.02653	0.02335	0.02234	0.02260	
μ_{s}	0.02656	0.02854	0.03074	0.02867	0.02844	$0 \cdot 02849$	$0 \cdot 02790$
μ_{7}	$0 \cdot 01871$	0.01964	0.02154	0.02067	$0 \cdot 02054$	$0 \cdot 02054$	
K_{0}		0.00175	-0.01858	$0 \cdot 00220$	0.00317	0.00209	0.00279
K_{1}		-0.00150	-0.01027	0.00585	$0 \cdot 00000$	-0.00144	
K_{2}		-0.00409	0.00324	0.01196	-0.00271	-0.00423	-0.00481
K_{3}		-0.00606	0.01277	0.01194	-0.00588	-0.00615	
K_{4}		-0.00838	0.01630	$0 \cdot 00465$	-0.01034	-0.00917	-0.00774
K_{5}		0.00157	0.02431	$0 \cdot 00641$	-0.00017	0.00090	
k_{6}		0.03408	0.05196	0.03853	0.03783	0.03808	0.03308
κ_{7}		0.04286	0.05588	$0 \cdot 05040$	$0 \cdot 04978$	$0 \cdot 04978$	
λ_{0}			-0.00118	0.00199	-0.00039	-0.00112	-0.00110
λ_{1}			0.00207	0.00569	0.00040	-0.00000	
λ_{2}			0.00701	0.00983	0.00006	0.00002	$0 \cdot 00058$
λ_{3}			0.01216	0.01040	-0.00071	-0.00012	
λ_{4}			0.01406	0.00684	-0.00279	-0.00160	-0.00318
λ_{5}			0.00783	-0.00280	-0.00751	-0.00654	
$\lambda^{\text {s }}$			$0 \cdot 01534$	$0 \cdot 00592$	000517	$0 \cdot 00340$	$0 \cdot 00720$
λ_{7}			0.03333	0.02711	0.02655	0.02655	
$\mathrm{c}_{\text {L }}$	$3 \cdot 23039$	$3 \cdot 23298$	3.22444	3. 24924	$3 \cdot 23673$	$3 \cdot 23347$	$3 \cdot 23216$
- $\mathrm{c}_{\text {m }}$	$2 \cdot 47938$	$2 \cdot 47941$	$2 \cdot 45347$	$2 \cdot 47635$	2. 48371	2.47990	2. 47962
\bar{n}	0.45324	0.45324	0.45469	0.45338	0.45328	0.45326	0.45336
$\frac{\mathrm{x}_{\text {ac }}}{\bar{c}}$	0.76740	0.76691	0.76090	$0 \cdot 76213$	$0 \cdot 76735$	$0 \cdot 76695$	0.76717

TABLE 8
Solutions for Planform $7\left(A=4, \Lambda=45^{\circ}, M=0\right)$ at Unit Incidence.

$\begin{aligned} & \mathrm{m} \\ & \mathrm{~N} \\ & \mathrm{q} \\ & \mathrm{q} \end{aligned}$	15 2 4 63	15 3 6 95	15 4 1 15	15 4 2 31	15 4 4 63	15 4 8 127	7 4 16 127
γ_{0}	$0 \cdot 36447$	0.36538	0.37810	$0 \cdot 37240$	0.36646	$0 \cdot 36516$	0.37308
γ_{1}	$0 \cdot 39874$	0. 39916	$0 \cdot 40700$	$0 \cdot 40526$	$0 \cdot 40042$	$0 \cdot 39915$	
γ_{2}	$0 \cdot 41678$	0.41709	$0 \cdot 42451$	0.42308	0.41836	0.41712	0.41655
γ_{3}	$0 \cdot 41621$	0.41696	0.42309	$0 \cdot 42184$	0.41807	0.41709	
γ_{4}	- 39164	0. 39204	$0 \cdot 39767$	0.39583	0. 39286	$0 \cdot 39209$	0. 39150
ν_{5}	0.33436	0.33399	0.33772	0.33649	0.33448	$0 \cdot 33400$	
γ_{6}	$0 \cdot 24176$	$0 \cdot 24175$	$0 \cdot 24450$	$0 \cdot 24362$	$0 \cdot 24233$	0. 24204	0. 24219
y_{7}	$0 \cdot 12562$	$0 \cdot 12712$	$0 \cdot 12779$	$0 \cdot 12754$	0.12697	$0 \cdot 12684$	
μ°	-0.03354	-0.03589	-0.02339	-0.03135	-0.03603	-0.03630	-0.02683
μ_{1}	-0.00944	-0.00988	-0.00180	-0.00542	-0.00997	-0.01009	
μ_{3}	0.00008	0.00032	0.00478	0.00402	-0.00004	$0 \cdot 00016$	-0.00307
${ }_{3}$	$0 \cdot 00410$	0.00364	0.00932	0.00708	0.00305	0.00352	
μ_{4}	0.01177	0.01206	0.01673	0.01416	$0 \cdot 01152$	0.01206	0.01305
μ_{5}	0.02120	0.02226	0.02672	0.02317	0.02203	0.02228	
μ_{6}	0.02640	0.02846	0.03068	0.02860	0.02835	0.02840	$0 \cdot 02705$
μ_{7}	0.01846	0.01930	0.02140	$0 \cdot 02040$	$0 \cdot 02020$	0.02020	
κ_{0}		0.01100	0.00556	0.00840	0.01005	0.01212	0.01286
k_{1}		-0.01307	0.00906	0.01028	-0.01051	-0.01310	
κ_{2}		-0.00172	$0 \cdot 01616$	0.02308	0.00036	-0.00225	-0.00927
K_{3}		-0.00673	0.01943	0.01439	-0.00665	-0.00670	
k_{4}		-0.00676	0.01913	0.00763	-0.00897	-0.00770	-0.00507
K_{5}		0.00098	0.02518	0.00570	-0.00083	0.00042	
K_{6}		0.03445	0.05207	0.03956	0.03813	0.03832	0.03126
K_{7}		0.04219	$0 \cdot 05558$	0.04964	0.04907	$0 \cdot 04908$	
λ_{0}			0.01762	-0.00172	-0.01090	-0.01116	-0.00630
λ_{1}			0.00919	0.01449 0.01406	-0.00152	0.0014	$0 \cdot 00080$
\cdots			0.01505	$0 \cdot 01250$	-0.00046	$0 \cdot 00029$	$0 \cdot 0080$
λ			0.04570	-. 0785	-0.00321	-0.00192	-0.00358
¢			$0 \cdot 00836$	-0.00261	-0.00723	-0.00617	
λ_{5}			-01538	0.0057	$0 \cdot 00477$	0.00500	$0 \cdot 00749$
λ			0.03310	0.02691	0.02634	0.02634	
$\mathrm{C}_{\text {L }}$	2•95962	$2 \cdot 96296$	$3 \cdot 01519$	3.00061	$2 \cdot 97070$	$2 \cdot 96314$	$2 \cdot 95591$
$-\mathrm{C}_{\text {m }}$	3-49192	3049550	3. 50157	3. 51075	3. 50594	$3 \cdot 49677$	$3 \cdot 49657$
\bar{n}	$0 \cdot 46789$	$0 \cdot 46782$	$0 \cdot 46639$	0.46690	$0 \cdot 46768$	$0 \cdot 46786$	$0 \cdot 46836$
$\frac{x_{\text {ac }}}{\overline{\bar{c}}}$	1-17985	$1 \cdot 17973$	1-16131	$1 \cdot 17001$	$1 \cdot 18017$	$1 \cdot 18009$	$1 \cdot 18291$

TABLE 9
Solutions for Planform $7\left(A=4, \Lambda=45^{\circ}, M=0, \alpha=1\right)$ with Different Rounding.

$\begin{gathered} \text { Rounding } \\ \mathrm{m} \\ \mathrm{~N} \\ \frac{q}{\mathrm{~m}} \end{gathered}$	$\begin{gathered} \mathrm{m}=\infty \\ 15 \\ 4 \\ 8 \\ 127 \end{gathered}$	$\begin{gathered} m=31 \\ 15 \\ 4 \\ 8 \\ 127 \end{gathered}$	$\begin{gathered} m=15 \\ 15 \\ 4 \\ 8 \\ 127 \end{gathered}$	$\begin{array}{r} m=7 \\ 15 \\ 4 \\ 8 \\ 127 \end{array}$	$\begin{gathered} m=7 \\ 15 \\ 3 \\ 6 \\ 95 \end{gathered}$	$\begin{gathered} m=11 * \\ 23 \\ 3 \\ 4 \\ 95 \end{gathered}$	$\begin{gathered} m=15^{*} \\ 31 \\ 3 \\ 2 \\ 63 \end{gathered}$
yo	0. 27348	0. 33564	0. 36516	$0 \cdot 39152$	$0 \cdot 39153$	$0 \cdot 38425$	$0 \cdot 38075$
γ_{1}	$0 \cdot 35649$	$0 \cdot 38558$	0. 39915	0.41019	0.41012		0.40647
γ	$0 \cdot 39324$	0.40939	0.41712	0.42341	0.42332	$0 \cdot 42226$	0.42194
γ_{3}	0.40030	$0 \cdot 41175$	0.41709	0.42136	0.42120		0.42008
γ_{4}	$0 \cdot 38002$	0.38820	0.39209	0. 39528	$0 \cdot 39521$	$0 \cdot 39461$	$0 \cdot 39459$
y_{5}	$0 \cdot 32530$	0. 33125	$0 \cdot 33400$	0. 33620	0. 33618		0.33553
γ_{6}	0. 23638	$0 \cdot 24022$	$0 \cdot 24204$	0. 24354	0. 24324	$0 \cdot 24301$	0. 24291
y_{7}	$0 \cdot 12408$	0. 12597	$0 \cdot 12684$	$0 \cdot 12755$	0. 12782		$0 \cdot 12759$
μ	-0.04990	-0.04373	-0.03630	-0.02710	-0.02688	-0.03100	-0.03366
μ_{1}	-0 01336	-0.01150	-0.01009	-0.00979	-0.00961		-0.00815
μ_{3}	$0 \cdot 00042$	$0 \cdot 00032$	0.00016	-0.00035	-0.00019	-0.00060	-0.00100
μ_{3}	$0 \cdot 00271$	0.00321	0.00352	0.00381	0.00393		0.00378
μ_{4}	$0 \cdot 01202$	0.01208	0.01206	0.01197	0.01197	0.01185	0.01158
μ_{5}	0.02151	0.02202	0.02228	0.02253	$0 \cdot 02252$		$0 \cdot 02260$
μ_{6}	0.02797	0.02828	0.02840	0.02846	0.02852	0.02836	0.02840
μ_{7}	$0 \cdot 01972$	$0 \cdot 02005$	$0 \cdot 02020$	0.02034	0.01944		0.01948
K_{0}	004200	0.02294	0.01212	0.00530	$0 \cdot 00439$	0.00083	-0.00273
K_{1}	-0.01365	-0.01429	-0.01310	-0.01056	-0.01032		-0.00896
K_{2}	-0.00196	-0.00187	-0.00225	-0.00370	-0.00322	-0.00463	-0.00479
K_{3}	-0.00661	-0.00688	-0.00670	-0.00610	-0.00610		-0.00596
K_{4}	-0.00758	-0.00751	-0.00770	-0.00826	-0.00735	-0.00767	-0.00836
κ_{5}	0.00088	0.00032	$0 \cdot 00042$	0.00076	0.00135		$0 \cdot 00169$
$K_{\text {g }}$	0.03752	0.03808	0.03832	0.03829	0.03438	0.03395	0.03405
K_{7}	$0 \cdot 04830$	0.04879	0.04908	$0 \cdot 04940$	$0 \cdot 04250$		0.04263
λ_{0}	-0.03204	-0.01803	-0.01116	-0.00630			
λ_{1}	0.00304	0.00213	0.00144	0.00087			
λ_{2}	-0.00161	-0.00147	-0.00127	-0.00105			
λ_{3}	0.00064	0.00047	0.00029	0.00011			
λ_{4}	-0.00217	-0.00205	-0.00192	-0.00179			
λ_{5}	-0.00627	-0.00602	-0.00617	-0.00632			
λ_{6}	$0 \cdot 00477$	0.00486	0.00500	0.00513			
λ_{7}	0.02589	0.02612	0.02634	$0 \cdot 02641$			
${ }^{\text {c }}$ L	2•74359	$2 \cdot 89280$	$2 \cdot 96314$	3.02217	$3 \cdot 02152$	$3 \cdot 00800$	3.00424
- $\mathrm{C}_{\text {m }}$	3-32468	$3 \cdot 44054$	3-49677	3-55583	3. 55438	$3 \cdot 53227$	3. 52926
\bar{n}	$0 \cdot 48320$	$0 \cdot 47254$	0.46786	0.46397	0.46395	0.46487	$0 \cdot 46525$
x_{ac}	1-21180	$1 \cdot 18935$	1-18009	1-17658	1-17636	1-17429	$1 \cdot 17476$
$\overline{\mathrm{c}}$							

*The subscripts to $\gamma_{1} \mu$, etc., refer to the $m=15$ collocation sections.

TABLE 10
Solutions for Cropped Delta Planform $8(A=1.9704, M=0.8)$ at Unit Incidence.

$\begin{aligned} & \mathrm{m} \\ & \mathrm{~N} \\ & \frac{\mathrm{q}}{\mathrm{~m}} \end{aligned}$	15 2 1 15	$7 *$ 3 4 31	15 3 2 31	$\begin{gathered} 31 * \\ 3 \\ 1 \\ 31 \end{gathered}$	$\begin{array}{r} 15 \\ 4 \\ 1 \\ 15 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 2 \\ 31 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 4 \\ 63 \end{array}$
Yo	0.87369	$0 \cdot 86600$	0.86912	0.87143	0.87740	0.86840	0.86946
γ_{1}	0.85544		0. 85286	0.85522	0.86062	0.85220	0.85321
γ_{8}	0.80560	0.80165	$0 \cdot 80447$	0.80644	0.81147	0.80380	0.80475
γ_{3}	$0 \cdot 72598$		$0 \cdot 72550$	0.72715	0.73172	0.72507	0.72594
γ_{4}	$0 \cdot 61886$	$0 \cdot 61712$	0.61894	0.62019	0.62414	0.61866	0.61941
γ_{5}	0.48718		0.48818	0.48912	0.49228	0.48814	0.48872
γ_{6}	0.33534	0.33719	0.33796	0.33856	0.34040	0.33764	0.33795
γ_{7}	0.17050		0.17328	0.17358	0.17371	$0 \cdot 17240$	0.17260
${ }^{\mu}$	-0.08488	-0.09624	-0.09915	-0.09269	-0.08542	-0.10218	-0. 10291
μ_{1}	-0.04845		-0.05189	-0.04581	-0.03768	-0.05688	-0.05338
${ }_{2}$	-0.02034	-0.02318	-0.01833	-0.01640	-0.00322	-0.02294	-0.01806
μ_{3}	-0.00107		0.00154	0.00273	0.01906	-0.00199	$0 \cdot 00247$
μ_{4}	0.01520	0.01803	0.01751	0.01792	0.03443	0.01590	0.01910
μ_{5}	0.02998		0.03079	0.03110	0.04412	0.02949	0.03205
μ_{5}	0.03698	0.03669	0.03781	0.03801	$0 \cdot 04493$	0.03672	0.03870
μ_{7}	0.02598		0.02735	$0 \cdot 02742$	0.03159	$0 \cdot 02872$	0.02907
κ_{0}		-0.14120	-0. 17908	-0. 18493	-0. 21492	-0. 17424	-0.18038
K_{1}			-0.11026	-0.10233	-0.09639	-0.12444	-0. 11169
K_{2}		-0.08827	-0.07098	-0.07151	-0.02893	-0.08857	-0.06619
K_{3}			-0.06534	-0.06298	0.00816	-0.08011	-0.05851
K_{4}		-0.04428	-0.05267	-0.05398	0.03083	-0.05737	-0.04225
K_{5}			-0.02195	-0.02060	0.05306	-0.02880	-0.01613
K_{6}		0.03497	0.04433	0.04372	0.08445	0.03511	0.04782
K_{7}			0.06588	0.06669	0.09433	0.07495	0.07708
λ_{0}					-0.05411	0.01506	0.00696
λ_{1}					-0.00562	-0.00009	0.00463
λ_{a}					0.01936	-0.00334	0.01054
λ_{3}					0.03286	-0.01688	-0.00218
λ_{4}					0.03206	-0.02427	-0.01424
λ_{5}					0.01706	-0.04136	-0.03384
λ_{6}					0.02110	-0.01962	-0.00863
λ_{7}					0.05762	0.03705	0.03940
$\mathrm{C}_{\text {L }}$	2.70319	2. 69118	2•70002	2.70652	2.72352	2. 69809	2.70130
$-\mathrm{C}_{\mathrm{m}}$	2. 37747	$2 \cdot 39703$	2. 38487	2. 37318	2. 34649	2. 39743	2. 38801
\bar{n}	0.42474	0.42556	$0 \cdot 42546$	0.42538	0.42532	0.42548	0.42547
${ }^{\mathrm{x}}{ }_{\mathrm{ac}}$	$0 \cdot 87950$	$0 \cdot 89070$	$0 \cdot 88328$	0.87684	$0 \cdot 86157$	$0 \cdot 88857$	$0 \cdot 88402$
$\overline{\mathrm{c}}$							
*The subscripts to γ, μ, etc., refer to the $m=15$ collocation sections.							

TABLE 11
Solutions for Arrowhead Planform $9(A=2 \sqrt{2}, M=0$ and $0 \cdot 6)$ at Unit Incidence.

M m N N q q	0 15 2 4 63	0 15 3 6 95	0 15 4 8 127	$\begin{array}{cc}\text { \% } & 0.6 \\ 15 \\ 2 \\ 4 \\ 4 \\ & 63\end{array}$	$\begin{gathered} 0 \cdot 6 \\ 15 \\ 3 \\ 6 \\ 95 \end{gathered}$	$\begin{gathered} 0.6 \\ 15 \\ 4 \\ 8 \\ 127 \end{gathered}$
yo	0.56616	0.56842	0. 56877	0.60266	0.60620	0.60693
y_{1}	0.57519	0.57531	0.57532	0.61461	0.61515	0.61529
y_{1}	0.55772	0.55787	0. 55788	0.59807	0. 59834	$0 \cdot 59841$
γ_{3}	0.51760	0. 51798	0.51805	if 0.55690	0.55749	0.55767
y_{4}	0.45682	0.45712	0.45718	0.49217	0.49250	0.49257
y_{5}	0.37464	0.37448	0.37449	i1 0.40239	0.40192	$0 \cdot 40191$
γ_{6}	0. 26640	0. 26629	0.26652	$0 \cdot 28413$	0.28390	$0 \cdot 28427$
γ_{7}	$0 \cdot 13757$	0.13892	0.13872	$0 \cdot 14587$	0. 14757	0.14733
Ho	-0.06364	-0.06841	-0.06911	-0.07904	-0.08487	-0.08584
μ_{2}	-0.02805	-0.02847	-0.02846	-0.03821	-0.03914	-0.03917
$\mu \mathrm{L}$	-0.00899	-0.00838	-0.00836	-0.01417	-0.01340	-0.01333
μ_{3}	-0.00111	-0.00122	-0.00125	II -0.00302	-0.00311	-0.00307
${ }_{4}$	0.00659	0.00672	0.00673	0.00764	0.00804	0.00816
μ_{5}	0.01580	0.01603	0.01607	0.01968	0.02035	0.02048
μ_{6}	0.02410	0.02540	0.02533	0.02901	0.03086	0.03072
μ_{7}	0.01932	0.02038	0.02119	0.02224	0.02341	0.02448
κ_{0}		-0.01686	-0.01411		-0.00810	-0.00214
k_{1}		-0.02380	-0.02369		-0.02882	-0.02853
k_{2}		-0.00761	-0.00725	,	-0.01346	-0.01332
K_{3}		-0.01157	-0.01147	I	-0.01834	-0.01776
K_{4}		-0.01038	-0.01024		-0.01854	-0.01850
κ_{5}		-0.01230	-0.01347	II	-0.01877	-0.02023
K_{6}		0.01914	0.01973	守	0.02475	0.02589
K_{7}		$0 \cdot 04288$	0.05003		0.05118	0.06070
λ_{0}			-0.01505			-0.01835
λ_{1}			$0 \cdot 00039$			0.00253
λ_{2}			0.00195	,		0.00325
λ_{3}			0.00048			$0 \cdot 00219$
λ_{4}			-0.00002			0.00084
λ_{5}			-0.00629			-0.00982
λ_{6}			-0.00715			-0.01026
λ_{7}			0.02421			0.03009
$\mathrm{C}_{\text {L }}$	$2 \cdot 72437$	$2 \cdot 72665$	2.72704	$2 \cdot 91950$	2.92312	$2 \cdot 92408$
$-C_{\text {min }}$	3.09773	$3 \cdot 10294$	3. 10379	$3 \cdot 34758$	3. 35443	3.35579
\bar{n}	$0 \cdot 43932$	0.43920	0.43918	0.43998	0.43971	0.43967
${ }^{x_{a c}}$	$1 \cdot 13705$	$1 \cdot 13800$	$1 \cdot 13815$	$1 \cdot 14663$	$1 \cdot 14755$	$1 \cdot 14764$
$\overline{\mathrm{c}}$						

TABLE 12
Solutions for Arrowhead Planform $9(A=2 \sqrt{2}, M=0.8)$ at Unit Incidence $(N=2,3)$.

$\begin{aligned} & \mathrm{m} \\ & \mathrm{~N} \\ & \frac{\mathrm{q}}{\mathrm{~m}} \end{aligned}$	$\begin{array}{r} 15 \\ 2 \\ 1 \\ 15 \end{array}$	15 2 2 31	15 2 4 63	$\begin{array}{r} 15 \\ 3 \\ 1 \\ 15 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 2 \\ 31 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 4 \\ 63 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 6 \\ 95 \end{array}$
yo	$0 \cdot 64730$	0.64526	0.64156	0.67364	0.64605	0.64814	$0 \cdot 64702$
y_{1}	0.65644	0.65944	0.65754	0.67915	$0 \cdot 65660$	0.65971	0.65901
γ_{2}	0.64012	0.64365	0.64239	0.66052	0.64068	0.64359	0.64306
y_{3}	0. 59724	0.60085	0.60001	0.61476	0.59889	0.60143	0.60105
γ_{4}	0.52897	0.53114	0.53057	$0 \cdot 54162$	$0 \cdot 52935$	0.63118	0.53090
y_{5}	0.43063	0.43230	$0 \cdot 43198$	0.4 .3772	0.42970	0.43109	0.43089
y_{6}	0.30196	0.30299	0. 30274	$0 \cdot 30706$	$0 \cdot 30157$	0. 30239	$0 \cdot 30224$
γ_{7}	0.15413	0.15465	$0 \cdot 15453$	0.15885	$0 \cdot 15625$	$0 \cdot 15669$	C. 15662
μ	-0.09149	-0.09566	-0.09888	-0.09736	-0.10293	-0.10525	-0.10586
μ_{1}	-0.05362	-0.05066	-0.05218	-0.04,883	-0.05655	-0.053 99	-0.05416
μ_{2}	-0.02952	-0.02085	-0.02192	-0.01183	-0.02601	-0.02049	-0.02118
H	-0.01394	-0.00532	-0.00625	0.00589	-0.01156	-0.00562	-0.00639
μ_{4}	0.00126	0.00922	0.00853	0.01935	$0 \cdot 00484$	0.01006	0.00948
μ_{5}	0.02011	0.02467	0.02429	0.03236	0.02289	0.02613	0.02584
μ_{6}	0.03357	0.03490	0.03475	0.03912	0.03654	0.03751	0.03747
μ_{7}	0.02532	0.02565	0.02558	0.02814	0.02672	0.02691	0.02688
K_{0}				-0.06408	0.01406	0.01087	0.01303
K_{1}				-0.03214	-0.03558	-0.03093	-0.03071
K_{2}				-0.00404	-0.03374	-0.02039	-0.02164
K_{3}				0.01080	-0.04373	-0.02714	-0.02915
K_{4}				0.00630	-0.04814	-0.03029	-0.03237
K_{5}				-0.00062	-0.04233	-0.02747	-0.02882
k_{6}				0.03972	0.02635	0.03188	0.03160
K_{7}				0.06864	0.05990	0.06116	0.06106
$\mathrm{C}_{\text {L }}$	3. 12597	3.13836	$3 \cdot 13137$	$3 \cdot 21994$	$3 \cdot 12757$	$3 \cdot 14019$	$3 \cdot 13750$
$-\mathrm{C}_{\mathrm{m}}$	$3 \cdot 63730$	$3 \cdot 62714$	3.62863	$3 \cdot 66767$	$3 \cdot 64287$	3.63772	3.63848
\bar{n}	0.43990	0.44021	$0 \cdot 44055$	0.43824	0.44003	0.43995	$0 \cdot 44004$
x_{ac}	$1 \cdot 16357$	7.15574	$1 \cdot 15880$	$1 \cdot 13905$	$1 \cdot 16476$	1-15844	1.15968

TABLE 13
Solutions for Arrowhead Planform $9(A=2 \sqrt{2}, M=0.8)$ at Unit Incidence $(N=4)$.

m N q q	$\begin{array}{r} 15 \\ 4 \\ 1 \\ 15 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 2 \\ 31 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 4 \\ 63 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 6 \\ 95 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 8 \\ 127 \end{array}$
yo	0.67685	0.65370	0.64800	$0 \cdot 64897$	$0 \cdot 64842$
y_{1}	0.68097	0.66324	0.65853	0.65973	0.65937
γ_{2}	0.66171	0.64669	0.64244	0.64351	0.64321
γ_{3}	0.61568	0.60398	0.60075	0.60161	0.60138
γ_{4}	0.54218	0.53287	0.53048	0.53110	0.53092
y_{5}	0.43836	0.43211	0.43051	0.43096	0.43084
γ_{6}	0. 30801	0.30371	0.30264	0. 30291	0. 30284
γ_{7}	0.15838	0.15675	$0 \cdot 15627$	$0 \cdot 15641$	0.15637
μ_{0}	-0.08321	-0.10657	-0.10647	-0.10705	-0.10743
μ_{1}	-0.03198	-0.05487	-0.05477	-0.05389	-0.05440
${ }^{\mu}$	-0.00387	-0.02044	-0.02276	-0.02073	-0.02120
$\mu 3$	0.01170	-0.00425	-0.00839	-0.00594	-0.00634
μ_{4}	0.02526	0.01152	0.00797	0.01004	0.00972
μ_{5}	0.03897	0.02619	0.02531	0.02632	0.02606
μ_{6}	0.04338	0.03593	0.03714	0.03721	0.03717
μ_{7}	0.03083	$0 \cdot 02818$	$0 \cdot 02824$	0.02827	0.02826
κ_{0}	-0.00779	0.00590	0.02692	0.02392	0.02496
K_{1}	0.04631	-0.03943	-0.03013	-0.02867	-0.02988
K_{2}	0.07009	-0.02004	-0.02801	-0.02108	-0.02306
K_{3}	0.07424	-0.01850	-0.03722	-0.02696	-0.02846
K_{4}	0.05745	-0.02037	-0.04,311	-0.03230	-0.03370
K_{5}	0.04761	-0.02689	-0.03587	-0.02940	-0.03094
K_{6}	0.07476	0.02530	0.03386	0.03405	0.03386
K_{7}	0.08856	0.07267	0.07387	0.07385	0.07383
λ_{0}	-0.05595	-0.02444	-0.02239	-0.02427	-0.02386
λ_{1}	0.04432	0.00017	0.00758	0.00804	0.00743
λ_{2}	0.07393	0.00379	0.00343	0.00751	0.00616
λ_{3}	0.08565	0.00856	0.00064	0.00677	0.00568
λ_{4}	0.07997	0.00927	-0.00335	0.00349	0.00271
λ_{5}	0.04285	-0.01003	-0.02034	-0.01495	-0.01609
λ_{6}	0.01910	-0.02143	-0.01548	-0.01478	-0.01509
λ_{7}	$0 \cdot 05528$	0.03527	0.03706	0.03700	0.03699
	3. 22693	3-15520	13612	14077	13931
$-\mathrm{C}_{\mathrm{m}}$	3.62379	$3 \cdot 65324$	$3 \cdot 64260$	$3 \cdot 64042$	$3 \cdot 64127$
$\bar{\eta}$	$0 \cdot 43801$	0.43956	$0 \cdot 43997$	0.43990	0.43994
${ }^{\mathrm{x}}{ }_{\text {ac }}$	$1 \cdot 12298$	1-15785	1-16150	1-15909	$1 \cdot 15989$

TABLE 14
Solutions for Planform $9(A=2 \sqrt{2}, M=0, \alpha=1)$ with Different Rounding.

Rounding m N q q	$\begin{gathered} m=\infty \\ 15 \\ 4 \\ 8 \\ 127 \end{gathered}$	$\begin{gathered} m_{1}=31 \\ 15 \\ 4 \\ 8 \\ 127 \end{gathered}$	$m=15$ 15 4 8 127	$\begin{array}{r} m=7 \\ 15 \\ 4 \\ 8 \\ 87 \end{array}$	$\begin{gathered} m=7 \\ 7 \\ 4 \\ 16 \\ 127 \end{gathered}$	$\begin{gathered} m_{31}=15 \\ 3 \\ 2 \\ 63 \end{gathered}$
y_{0}	$0 \cdot 49918$	0.54959	0.56877	0.58284	0.56495	0.57894
γ_{1}	$0 \cdot 53645$	0.56447	$0 \cdot 57532$	0. 58247		0.58162
γ_{2}	0.53332	0. 55092	0. 55788	$0 \cdot 56239$	0.55532	0.56216
y_{3}	0.50125	0. 51332	0. 51805	$0 \cdot 52106$		0.52072
γ_{4}	0. 414499	0.45371	$0 \cdot 45718$	0.45945	0.45476	0.45935
γ_{5}	$0 \cdot 36623$	0. 37217	$0 \cdot 37449$	0. 37595		0.37578
γ_{6}	0.26097	0.26494	0. 26652	0.26757	0.26647	0.26732
γ_{7}	0.13615	0.13800	0.13872	0.13918		$0 \cdot 13931$
μ_{0}	-0.10797	-0.08536	-0.06911	-0.05198	-0.05686	-0.06018
μ_{1}	-0.03906	-0.03247	-0.02846	-0.02628		-0.02470
μ_{2}	-0.00959	-0.00879	-0.00836	-0.00854	-0.01241	-0.00858
${ }_{3}$	-0.00257	-0.00170	-0.00125	-0.00096		-0.00090
μ_{s}	0.00681	0.00676	0.00673	0.00662	$0 \cdot 00811$	0.00626
$\mu_{\text {s }}$	0.01530	0.01583	0.01607	0.01626		0.01625
μ_{6}	0.02512	0.02529	0.02533	0.02532	0.02293	0.02534
μ_{7}	0.02065	0.02102	0.02119	0.02132		0.02053
K_{0}	0.06188	$0 \cdot 00180$	-0.01411	-0.01475	0.00840	-0.03023
K_{1}	-0.02218	-0.02604	-0.02369	-0.01898		-0.01743
κ_{2}	-0.00774	-0.00707	-0.00725	-0. 00869	-0.01909	-0.01008
K_{3}	-0.01290	-0.01240	-0.01147	-0.01014		-0.00948
K_{4}	-0.00949	-0.00968	-0.01024	-0.01128	-0.00807	-0.01293
K_{5}	-0.01387	-0.01389	-0.01347	-0.01267		-0.01107
κ_{6}	0.01968	0.01996	0.01973	0.01912	0.01474	0.01810
K_{7}	0.04906	$0 \cdot 04958$	0.05003	0.05060		0.04379
λ_{0}	-0.04179	-0.02027	-0.01505	-0.00991	-0.00704	
λ_{1}	$0 \cdot 00510$	$0 \cdot 00171$	0.00039	-0.00015		
λ_{2}	0.00202	0.00209	0.00195	0.0014	0.00264	
λ_{3}	0.00133	$0 \cdot 00064$	$0 \cdot 00048$	0.00064		
λ_{4}	-0.00082	-0.00021	-0.00002	-0.00006	-0.00285	
λ_{5}	-0.00541	-0.00606	-0.00629	-0.00632		
λ_{6}	-0.00777	-0.00732	-0.00715	-0.00712	-0.00113	
λ_{7}	0.02436	$0 \cdot 02426$	$0 \cdot 02421$	$0 \cdot 02420$		
C	2. 58774	$2 \cdot 68807$	2. 72704	$2 \cdot 75328$	$2 \cdot 70807$	2. 74991
$-\mathrm{C}_{\text {m }}$	3001907	$3 \cdot 08217$	3. 10379	$3 \cdot 12600$	$3 \cdot 09472$	3-11289
\bar{n}	0.44674	$0 \cdot 44118$	0.43918	0.43777	$0 \cdot 44014$	$0 \cdot 43805$
$\frac{\mathrm{x}_{\text {ac }}}{\overline{\mathrm{c}}}$	1-16668	$1 \cdot 14661$	$1 \cdot 13815$	$1 \cdot 13537$	1-14278	1-13199

TABLE 15
Solutions for Arrowhead Planform $12(A=8, M=0, N=3)$ at Unit Incidence.

TABLE 16
Solutions for Complete Delta Wing ($A=1 \cdot 5, M=0$) at Unit Incidence.

m i q m	$\begin{array}{r} 11 \\ 2 \\ 12 \\ 143 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 4 \\ 47 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 8 \\ 95 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 10 \\ 119 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 12 \\ 143 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 12 \\ 143 \end{array}$
yo	0.78099	$0 \cdot 77708$	$0 \cdot 77750$	0.77753	0.77746	0.77745	$0 \cdot 77707$
y_{2}	0.74935	$0 \cdot 74654$	0. 74688	0.74696	$0 \cdot 74690$	$0 \cdot 74689$	0. 74688
y_{2}	0.65931	0.65796	0.65810	0.65326	0.65824	0.65822	0.65818
y_{3}	0. 52086	0.52005	0.51976	0.51989	0.51985	0.51984	0.51996
y_{4}	0.34674	0. 34764	0. 34645	$0 \cdot 34607$	0. 34586	0. 34586	0. 34623
y_{5}	$0 \cdot 16160$	0.16385	$0 \cdot 16258$	$0 \cdot 16097$	0. 16023	0.16027	0. 16124
μ_{0}	-0.11823	-0.11396	-0.11525	-0.11554	-0.11572	-0.11580	-0.11448
μ_{1}	-0.05931	-0.05473	-0.05563	-0.05568	-0.05570	-0.05572	-0.05601
μ_{2}	-0. 02638	-0.02437	-0.02265	-0.02322	-0.02323	-0.02324	-0.02297
μ_{3}	-0.01327	-0.01649	-0.01206	-0.01136	-0.01169	-0.01164	-0.01154
H_{4}	-0.00630	-0.00614	-0.00843	-0.00581	-0.00476	-0.00484	-0.00592
μ_{5}	-0.00315	0.00386	-0.00030	-0.00354	-0.00495	-0.00485	-0.00288
K_{0}		-0.07139	-0.07350	-0.07270	-0.07304	-0.07300	-0.06461
K_{1}		-0.03406	-0.04190	-0.04050	-0.04048	-0.04046	-0.04593
K_{2}		-0.00114	-0.00378	-0.00654	-0.00551	-0.00568	-0.00818
K_{3}		-0.02506	-0.00606	-0.00915	-0.01243	-0.01212	-0.01039
K_{4}		-0.00833	-0.01000	0.00072	0.00447	0.00421	-0.00324
K_{5}		$0 \cdot 02524$	0.00326	-0.00368	-0.00679	-0.00677	-0.00181
λ_{0}							0.03281
λ_{1}							0.00462
λ_{12}							$0 \cdot 00761$
λ_{3}							$0 \cdot 00583$
λ_{4}							-0.00122
λ_{5}							0.00263
CL	$1 \cdot 78190$	$1 \cdot 77767$	$1 \cdot 77731$	$1 \cdot 77708$	$1 \cdot 77674$	$1 \cdot 77673$	1.77694
$-\mathrm{C}_{\mathrm{m}}$	$2 \cdot 17764$	$2 \cdot 16575$	2.16427	2. 16388	2.16351	2.16358	$2 \cdot 16340$
$\bar{\eta}$	0.41474	0.41536	0.41508	$0 \cdot 41496$	$0 \cdot 41489$	0.41490	0.41503
$\frac{x^{2 c}}{}$	$1 \cdot 22209$	$1 \cdot 21831$	$1 \cdot 21773$	$1 \cdot 21766$	$1 \cdot 21768$	$1 \cdot 21773$	1. 21748

TABLE 17
Solutions for Slender Delta Wing ($A=0.0001, M=0$) at Unit Incidence.

$\begin{aligned} & \mathrm{m} \\ & \mathrm{~N} \\ & \frac{\mathrm{q}}{\mathrm{~m}} \end{aligned}$	$\begin{array}{r} 11 \\ 2 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 1 \\ 11 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 2 \\ 23 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 4 \\ 47 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 6 \\ 71 \end{array}$
γ_{0}	$0 \cdot 94128$	$0 \cdot 98408$	0.99193	0.98125	0.97986	0.99306
γ_{1}	$0 \cdot 91921$	0.95074	0.95794	0.94888	0.94733	0.95908
y_{3}	0.82759	0.85267	0.85671	0.85208	0.84913	0.85886
y_{3}	0.67406	0.69200	0.69574	0.69753	0.69366	$0 \cdot 70096$
γ_{4}	0.47392	0.50032	0.48694	0.49337	0.48992	0.49428
γ_{5}	$0 \cdot 24268$	$0 \cdot 25970$	$0 \cdot 24832$	0.25524	0.25281	$0 \cdot 25428$
H	-0.06920	-0. 20997	-0. 23848	-0.23137	-0.23492	-0.21540
μ_{1}	-0.08681	-0.11122	-0.17859	-0.16091	-0.16331	-0.14519
${ }^{1}$	-0.06787	-0.02916	-0.11830	-0.10037	-0.10221	-0. 10685
${ }^{+}$	-0.04085	0.02386	-0.05170	-0.07327	-0.06287	-0.07707
μ_{4}	-0.02425	0.01217	0.00575	-0.04745	-0.03930	-0.04553
μ_{5}	-0.01628	0.04200	0.00827	$0 \cdot 00086$	-0.01353	-0.00389
κ_{0}		-0.09969	$0 \cdot 41401$	0.33766	0.33275	0.18757
K_{1}		-0.06043	0.19567	0.20374	0.19162	0.36248
K_{3}		-0.00728	0.03534	0.16861	0.11694	$0 \cdot 26000$
K_{3}		0.08920	-0.01387	$0 \cdot 10256$	0.09923	0.11339
K_{4}		0.41664	0.03500	0.01593	0.05211	$0 \cdot 04117$
K_{5}		0.13783	0.19565	0.02261	0.01790	0.06645
λ_{0}						-0.74582
λ_{1}						-0.27653
λ_{2}						-0.05710
λ_{3}						-0.05819
λ_{4}						-0.00644
λ_{5}						-0.01153
$\mathrm{C}_{\mathrm{L}} / \mathrm{A}$	$1 \cdot 49312$	$1 \cdot 54750$	$1 \cdot 55138$	$1 \cdot 54518$	$1 \cdot 54003$	1. 55788
$-\mathrm{C}_{\mathrm{m}} / \mathrm{A}$	$1 \cdot 83920$	$1 \cdot 95535$	2.07726	$2 \cdot 05841$	2.05306	$2 \cdot 05462$
\bar{n}	$0 \cdot 42491$	0.42500	$0 \cdot 42294$	$0 \cdot 42491$	0.42438	$0 \cdot 42400$
$\mathrm{x}_{\mathrm{ac}} / \mathrm{c}$	1.23179	1.26356	1-33898	$1 \cdot 33216$	$1 \cdot 33313$	$1 \cdot 31885$

TABLE 18
Solutions for Slender Gothic Planform $15(A=0.0001, M=0)$ at Unit Incidence.

$\begin{aligned} & m \\ & N \\ & \mathrm{~N} \\ & \mathrm{q} \\ & \hline \mathrm{~m} \end{aligned}$	$\begin{array}{r} 11 \\ 2 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 1 \\ 11 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 2 \\ 23 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 4 \\ 47 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 6 \\ 71 \end{array}$
yo	1.00385	1.00044	$1 \cdot 00144$	$1 \cdot 00068$	0.99847	1.00117
y_{1}	0.96906	0.96510	0.96772	0.96678	0.96436	0.96722
γ_{2}	0.86847	0.86358	0.86760	0.86704	0.86478	0.86720
γ_{3}	$0 \cdot 70904$	0.70342	0.70577	0.70844	0.70536	0.70786
γ_{4}	0. 50121	0.50205	0.49607	0.50123	0.49900	0.50067
γ_{5}	$0 \cdot 25869$	$0 \cdot 26084$	0.25724	0.25955	0.25870	$0 \cdot 25927$
H	-0.15522	-0.13672	-0.14798	-0.15411	-0.15630	-0.15596
μ_{1}	-0.09837	-0.08295	-0.09098	-0.09189	-0.09355	-0.09411
μ_{3}	-0.05481	-0.01955	-0.05532	-0.04644	-0.04654	-0.04596
${ }^{+}$	-0.02756	0.02767	-0.03683	-0.02032	-0.02370	-0.02186
${ }_{4}$	-0.00957	0.03482	0.00425	-0.01105	-0.00724	-0.01173
μ_{5}	$0 \cdot 00070$	0.04437	0.01428	0.00386	-0.01347	0.00513
κ_{0}		-0. 28257	-0.02211	-0.10656	-0.11422	-0.10266
K_{2}		-0.23216	$0 \cdot 01670$	-0.04858	-0.06315	-0.05332
K_{2}		-0. 16255	-0.00595	-0.01007	-0.01150	0.00483
K_{3}		-0.03377	-0.11846	0.01313	-0.02445	0.00629
K_{4}		$0 \cdot 22198$	-0.04315	-0.01370	0.03080	-0.03576
κ_{5}		$0 \cdot 14505$	0.13372	-0.01273	-0.00504	-0.00226
						-0.03072
λ_{1}						-0.03097
λ_{3}						$0 \cdot 00055$
λ_{3}						0.02521
λ_{4}						-0.00623
λ_{5}						$0 \cdot 00595$
	1. 57551	$1 \cdot 56883$	$1 \cdot 57106$	1.57278	1. 56812	1.57281
$-\mathrm{C}_{\mathrm{m}} / \mathrm{A}$	1.47139	1-40978	$1 \cdot 45957$	$1 \cdot 45884$	$1 \cdot 45768$	1-46117
$\bar{\eta}$	$0 \cdot 42426$	0.42437	0.42380	0.42455	0.42436	0.42440
$\mathrm{x}_{\mathrm{ac}} /{ }^{\text {c }}$	0.93391	0.89862	$0 \cdot 92904$	0.92755	0.92957	0.92902

TABLE 19
Solutions for Complete Delta and Slender Gothic Wings with Different Rounding.

	Planform 13$(A=1 \cdot 5, M=0, \alpha=1)$				$\begin{gathered} \text { Planform 15 } \\ (A=0.0001, M=0, \alpha=1) \end{gathered}$		
$\begin{gathered} \text { Rounding } \\ \mathrm{m} \\ \mathrm{~N} \\ \frac{\mathrm{q}}{\mathrm{~m}} \end{gathered}$	$\begin{array}{r} \mathrm{m}=\infty \\ 11 \\ 3 \\ 8 \\ 95 \end{array}$	$\begin{gathered} m=23 \\ 11 \\ 3 \\ 8 \\ 95 \end{gathered}$	$\begin{gathered} m=11 \\ 11 \\ 3 \\ 8 \\ 95 \end{gathered}$	$\begin{array}{r} m=5 \\ 11 \\ 3 \\ 8 \\ 95 \end{array}$	$m=23$ 11 3 6 71	$\begin{gathered} m=11 \\ 11 \\ 3 \\ 6 \\ 71 \end{gathered}$	$\begin{gathered} m=5 \\ 11 \\ 3 \\ 6 \\ 71 \end{gathered}$
yo	$0 \cdot 75477$	0.77162	$0 \cdot 777$	$0 \cdot 78058$	0.99884	$0 \cdot 99847$	0.99868
y_{1}	0.72679	$0 \cdot 74158$	$0 \cdot 74696$	0.74973	0.96457	0.96436	0.96449
γ_{2}	0.64338	0.65427	0.65826	0.66026	0.86494	$0 \cdot 86478$	0.86478
γ_{3}	$0 \cdot 51022$	0.51727	0.51989	$0 \cdot 52122$	0.70544	$0 \cdot 70536$	0.70540
γ_{4}	$0 \cdot 34012$	0. 34441	0. 34607	0. 34700	0.49915	0.49900	0.49884
γ_{5}	$0 \cdot 15855$	$0 \cdot 16036$	$0 \cdot 16097$	0. 16121	0. 25895	$0 \cdot 25870$	0. 25844
μ_{0}	-0.19434	-0.14449	-0.11554	-0.08783	-0.19068	-0.15630	-0.12216
μ_{1}	-0.08166	-0.06410	-0.05568	-0.05035	-0.10803	-0.09355	-0.08436
μ_{2}	-0.02826	-0.02475	-0.02322	-0.02261	-0.05263	-0.04654	-0.04372
μ_{3}	-0.01372	-0.01202	-0.01136	-0.01096	-0.02659	-0.02370	-0.02235
μ_{4}	-0.00492	-0.00558	-0.00581	-0.00601	-0.00805	-0.00724	-0.00680
μ_{5}	-0.00414	-0.00374	-0.00354	-0.00334	-0.01389	-0.01347	-0.01314
Ko	0.08954	-0.05626	-0.07270	-0.05883	-0.09436	-0.11422	-0.07425
K_{1}	-0.02350	-0.04247	-0.04050	-0.03436	-0.05562	-0.06315	-0.05180
K_{2}	0.00049	-0.00428	-0.00654	-0.00961	-0.00693	-0.01150	-0.01117
κ_{3}	-0.014.59	-0.01160	-0.00915	-0.00609	-0.02580	-0.02445	-0.02075
K_{4}	0.00338	$0 \cdot 00220$	$0 \cdot 00072$	-0.00141	0.03384	0.03080	0.02648
K_{5}	-0.00393	-0.00418	-0.00368	-0.00275	-0.00573	-0.00504	-0.00290
$\mathrm{C}_{\text {L }}$	$1 \cdot 73453$	1.76574	$1 \cdot 77708$	$1 \cdot 78290$	1-56849	$1 \cdot 56812$	1.56817
$-\mathrm{C}_{\mathrm{m}}$	2-19901	$2 \cdot 17704$	2. 16388	2. 15922	$1 \cdot 48259$	$1 \cdot 45768$	1.44439
万	0.41608	0.41523	0.41496	0.41482	0.42436	0.42436	0.42432
$\frac{x_{a c}}{\bar{c}}$	$1 \cdot 26778$	$1 \cdot 23293$	$1 \cdot 21766$	$1 \cdot 21107$	$0 \cdot 94523$	0.92957	0.92106

TABLE 20
Solutions for Curved Planform $16\left(A=3 \cdot 8993, \Lambda=60^{\circ}, M=0\right)$ at Unit Incidence $(N=2,4)$.

$\begin{aligned} & \mathrm{m} \\ & \mathrm{~N} \\ & \mathrm{q} \\ & \mathrm{~m} \end{aligned}$	15 2 1 15	$\begin{array}{r} 15 \\ 2 \\ 2 \\ 31 \end{array}$	$\begin{array}{r} 15 \\ 2 \\ 8 \\ 127 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 1 \\ 15 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 2 \\ 31 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 4 \\ 63 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 8 \\ 127 \end{array}$
yo	0. 30491	0.27392	0. 27286	0. 30024	0.28636	0. 27679	0.27381
γ_{1}	0. 33750	$0 \cdot 31441$	0.31501	0.33488	0. 32755	0.31933	$0 \cdot 31594$
γ_{2}	0. 35767	$0 \cdot 33580$	0. 33670	0. 35696	0. 34964	0.33989	0.33693
y_{3}	0. 35734	0.33596	0. 33905	0.35799	0. 35165	0. 34176	0. 33959
y_{4}	0. 33441	0. 31126	0. 31665	0.33531	0. 32819	0.31852	0. 31654
γ_{5}	0. 28651	0.26328	0. 26965	O. 28650	0.27925	0.27226	0. 26940
γ_{6}	0.21214	0. 19414	0. 19752	$0 \cdot 21281$	0.20332	$0 \cdot 20006$	0.19658
y_{7}	0.11273	0.10486	$0 \cdot 10567$	0.11413	$0 \cdot 10772$	0. 10686	0.10482
${ }^{\mu}$	-0.02957	-0.03321	-0.03392	-0.02375	-0.03068	-0.03564	-0.03524
μ_{1}	0.00178	-0.01233	-0.00914	0.00292	-0.00376	-0.00968	-0.01107
μ_{2}	0.00655	-0.00369	-0.00034	0.00868	0.00578	0.00027	-0.00046
μ_{3}	0.00707	-0.00041	0.00206	0.01146	0.00779	$0 \cdot 00067$	0.00118
H_{4}	0.00660	0.00165	0.00388	0.01300	0.01035	0.00270	0.00419
μ_{5}	0.00772	$0 \cdot 00027$	0.00353	$0 \cdot 01461$	0.01074	0.00154	0.00303
μ_{6}	0.01288	-0.00131	0.00406	$0 \cdot 01642$	0.01244	0.00556	0.00356
μ_{7}	$0 \cdot 02010$	0.00387	0.00233	$0 \cdot 02225$	$0 \cdot 00892$	0.00689	$0 \cdot 00050$
Ko				$0 \cdot 04342$	0.02630	0.02662	0.03164
K_{1}				0.04764	0.02943	-0.00789	-0.01602
K_{2}				0.05974	0.04690	0.00541	-0.00431
K_{3}				0.06378	0.03709	-0.00189	-0.00395
K_{4}				0.07248	0.03918	-0.00212	-0.00061
k_{5}				0.07687	0.03589	-0.00669	-0.00191
K_{6}				0.08916	0.04430	-0.00294	-0.00501
K_{7}				0.05909	0.04566	0.01772	-0.00463
				0.03021	-0.00286	-0.01641	-0.01621
λ_{1}				0.01397	0.03131	$0 \cdot 00359$	0.00128
λ_{2}				0.02530	0.03252	-0.00094	-0.004.77
λ_{3}				0.03886	0.02596	0.00004	-0.00005
λ_{4}				0.05531	0.02306	-0.00440	-0.00186
λ_{5}				0.06931	0.02587	-0.00120	0.00136
λ_{5}				0.04830	0.03563	-0.00235	-0.00236
λ_{7}				0.03158	0.05309	0.00951	-0.00168
${ }^{\text {C }}$ L	$2 \cdot 46507$	$2 \cdot 29017$	$2 \cdot 30956$	$2 \cdot 45916$	2. 39772	2.33308	$2 \cdot 31153$
-C	4062727	4.37158	$4 \cdot 40506$	$4 \cdot 59775$	$4 \cdot 51734$	$4 \cdot 45080$	$4 \cdot 41059$
$\bar{\eta}$	0.47032	0.47085	0.47287	0.47170	0.47187	0.47239	$0 \cdot 47237$
${ }_{\text {x }}^{\text {ac }}$	$1 \cdot 87713$	$1 \cdot 90884$	1.90732	$1 \cdot 86965$	1.88402	1.90769	$1 \cdot 90808$

TABLE 21

Solutions for Curved Planform $16\left(A=3.8993, \Lambda=60^{\circ}, M=0\right)$ at Unit Incidence.

$\begin{aligned} & m \\ & \mathrm{~N} \\ & \mathrm{q} \\ & \mathrm{q} \end{aligned}$	$\begin{array}{r} 15 \\ 3 \\ 1 \\ 15 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 2 \\ 31 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 4 \\ 63 \end{array}$	$\begin{array}{r} 31 \\ 3 \\ 2 \\ 63 \end{array}$	$\begin{array}{r} 15 \\ 2 \\ 8 \\ 127 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 8 \\ 127 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 8 \\ 127 \end{array}$
yo	0.30580	0.28543	$0 \cdot 27354$	0.27305	$0 \cdot 27286$	$0 \cdot 27441$	$0 \cdot 27381$
γ_{1}	$0 \cdot 34052$	0. 32733	0.31509	0. 31642	$0 \cdot 31501$	0.31616	$0 \cdot 31594$
γ_{2}	0.36266	0. 34812	0.33612	0.33770	0.33670	0.33688	0.33693
γ_{3}	0. 36367	0. 34890	0.33752	0.33906	0.33905	0. 33940	0. 33959
y_{4}	0. 34027	0. 32460	0. 31214	0.31632	0. 31665	0.31661	0. 31654
γ_{5}	0. 28898	0. 27788	0. 26497	0. 26816	0. 26965	0.26988	0. 26940
y_{6}	0.21559	0. 20245	0.19362	0. 19739	0.19752	0.19708	0. 19658
y_{7}	$0 \cdot 11562$	0.10709	0.10264	0.10575	0.10567	0. 10518	$0 \cdot 10482$
μ_{0}	-0.02375	-0.03416	-0.03468	-0.04175	-0.03392	-0.03476	-0.03524
μ_{1}	0.00354	-0.00636	-0.01211	-0.00820	-0.00914	-0.00987	-0.01107
μ_{3}	0.00940	0.00297	-0.00197	-0.00306	-0.00034	$0 \cdot 00059$	-0.00046
μ_{3}	0.01209	0.00336	0.00011	0.00099	0.00206	0.00175	0.00118
μ_{4}	0.01359	0.00502	0.00326	0.00233	0.00388	$0 \cdot 00437$	$0 \cdot 00419$
μ_{5}	0.01504	$0 \cdot 00466$	$0 \cdot 00128$	$0 \cdot 00214$	0.00353	0.00335	0.00303
μ_{s}	0.01281	0.01105	0.00147	0.00016	0.00406	0.00502	0.00356
${ }^{\mu}$	$0 \cdot 02062$	0.00874	0.00328	$0 \cdot 00436$	0.00233	0.00125	$0 \cdot 00050$
κ_{0}	0.05922	0.01328	0.02923	0.01571		0.03035	0.03164
K_{1}	0.07004	$0 \cdot 00231$	-0.01790	-0.01169		-0.01464	-0.01602
K_{3}	0.07938	0.02069	-0.00640	-0.00732		-0.00035	-0.00431
K_{3}	0.07433	$0 \cdot 00790$	-0.00738	-0.00556		-0.00318	-0.00395
K_{4}	0.07543	$0 \cdot 00847$	-0.00304	-0.00408		0.00074	-0.00061
K_{5}	0.08258	-0.00006	-0.00534	-0.00471		-0.00294	-0.00191
κ_{6}	$0 \cdot 10927$	0.00317	-0.01285	-0.00956		$0 \cdot 00090$	-0.00501
K_{7}	$0 \cdot 04915$	0.04717	-0.00390	-0.01087		-0.00211	-0.00463
$\begin{aligned} & \lambda_{0} \\ & \lambda_{1} \end{aligned}$							$\begin{array}{r} -0.01621 \\ 0.00128 \end{array}$
λ_{2}							-0.00477
λ_{3}							-0.00005
λ_{4}							-0.00186
λ_{5}							0.00136
λ_{6}							-0.00286
λ_{7}							-0.00168
	$2 \cdot 49672$	$2 \cdot 38527$	$2 \cdot 29504$	$2 \cdot 31746$	2•30956	2. 31290	2. 31153
	$4 \cdot 66180$	$4 \cdot 51805$	4-37512	$4 \cdot 41884$	$4 \cdot 40506$	$4 \cdot 40757$	$4 \cdot 41059$
$\overline{7}$	0.47117	0.47130	0.47095	0.47134	0.47287	0.47239	0.47237
${ }^{\mathrm{xac}}$	$1 \cdot 86717$	$1 \cdot 89414$	$1 \cdot 90634$	$1 \cdot 90676$	$1 \cdot 90732$	$1 \cdot 90564$	$1 \cdot 90808$

TABLE 22
Solutions for Curved Planform $17\left(A=3 \cdot 5564, \Lambda=55^{\circ}, M=0.8\right)$ at Unit Incidence.

Rounding m N $\frac{q}{m}$	$m=11$ 11 3 1 11	$m=23$ 23 3 1 23	$m=23$ 23 3 4 95	$\begin{gathered} m=15 \\ 15 \\ 3 \\ 6 \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} m=11 \\ 11 \\ 3 \\ 8 \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} m=11 \\ 15 \\ 3 \\ 6 \\ 95 \\ \hline \end{gathered}$	$\begin{gathered} m=11 \\ 23 \\ 3 \\ 4 \\ 95 \\ \hline \end{gathered}$
yo	0.44690	0.41654	0.38630	0.38512	$0 \cdot 38548$	0.40462	0.41720
γ_{1}		0.44232	0.42050				0.43622
y_{2}	0.48610	0.46122	0.44026		0.43868		0.45080
y_{3}		0.46595	0.44681	0.44474		0.45030	$0 \cdot 45453$
y_{4}	0.48299	0.45859	0.43915		0.43634		0.44530
γ_{5}		0.43889	$0 \cdot 42025$				0.42500
γ_{6}	$0 \cdot 42765$	0.40751	$0 \cdot 38864$	0.38782	$0 \cdot 38852$	$0 \cdot 39061$	0. 39256
γ_{7}		0. 36421	$0 \cdot 34642$				0. 34941
y_{8}	0. 32871	0. 30907	0.29266		$0 \cdot 29112$		- 29508
y_{9}		0. 24020	$0 \cdot 23070$	0. 22837		0.22965	0. 23234
y_{10}	$0 \cdot 17983$	0. 17020	0.15955		$0 \cdot 15829$		0. 16085
γ_{11}		0.08754	0.08195				$0 \cdot 08254$
μ	-0.04664	-0.06364	-0.06682	-0.06175	-0.05592	-0.05854	-0.05718
μ_{1}		-0.02502	-0.03091				-0.03027
μ_{2}	$0 \cdot 00254$	-0.00638	-0.00706		-0.01489		-0.00778
${ }^{3}$		0.00122	-0.00057	$0 \cdot 00217$		$0 \cdot 00200$	-0.00012
μ_{4}	0.01480	0.00372	$0 \cdot 00243$		0.00424		0.00235
μ_{5}		0.00617	$0 \cdot 00249$				0.00281
μ_{6}	0.01704	0.00895	0.00429	0.00498	$0 \cdot 00182$	$0 \cdot 00489$	0.00422
μ_{7}		0.01223	$0 \cdot 00436$				$0 \cdot 00459$
μ_{8}	0.01860	0.01595	0.00571		0.00713		0.00562
μ_{9}		0.02000	0.00356	$0 \cdot 00583$		0.00567	0.00378
μ_{10}	0.03340	0.01148	$0 \cdot 00214$		$-0 \cdot 00010$		0.00189
μ_{12}		0.01529	$0 \cdot 00209$				0.00233
K_{0}	0.09548	-0.01934	0.03754	0.05341	0.05797	$0 \cdot 04212$	0.02007
K_{1}		-0.02423	-0.03515				-0.02951
K_{3}	$0 \cdot 12558$	-0.00723	-0.02194		-0.03155		-0.02307
K_{3}		0.00318	-0.00915	-0.00573		-0.00610	-0.00895
K_{4}	0.16210	0.00561	-0.00214		-0.00086		-0.00272
K_{5}		$0 \cdot 00756$	-0.00335				-0.00291
K_{6}	0. 19117	0.00953	-0.00015	0.00001	-0.00405	-0.00014	-0.00058
K_{7}		0.01227	-0.00174				-0.00128
K_{8}	0.19229	0.01758	0.00303		0.00258		$0 \cdot 00255$
K_{s}		0.02784	$0 \cdot 00225$	0.00326		0.00346	0.00282
K_{10}	$0 \cdot 08025$	0. 10213	-0.00899		-0.00454		-0.00908
K_{11}		$0 \cdot 04055$	-0.00352				-0.00416
C_{L}	3.02517	2•86766	$2 \cdot 73191$	2•72135	2•71057	2•76421	$2 \cdot 79176$
$-\mathrm{C}_{\text {m }}$	4. 50467	4.32481	4. 15612	$4 \cdot 14903$	4-14377	4-19662	4. 22267
$\bar{\eta}$	0.45636	0.45605	0.45674	0.45724	0.45798	0.45454	0.45300
$\frac{\mathrm{x}_{\text {ac }}}{\overline{\mathrm{c}}}$	$1 \cdot 48906$	$1 \cdot 50813$	1. 52132	1-52462	1-52874	$1 \cdot 51820$	1. 51255

TABLE 23
Local Aerodynamic Centres of Rectangular Wings at $M=0$.

Eolutionm, N, q	Values of $X_{\text {ac }}$ for $n=$							
		$0 \cdot 1951$	0. 3827	0.5556	0.7071	0.8315	0.9239	0.9808
$\begin{array}{r} 7,2,1 \\ 7,2,2 \\ 7,2,4 \\ 15,2,1 \end{array}$	$\begin{aligned} & 0.2169 \\ & 0.2195 \\ & 0.2200 \\ & 0.2195 \end{aligned}$	0.2183	$\begin{aligned} & 0 \cdot 2122 \\ & 0 \cdot 2148 \\ & 0 \cdot 2152 \\ & 0 \cdot 2149 \end{aligned}$	0. 2090	$\begin{aligned} & 0.1985 \\ & 0.2011 \\ & 0.2013 \\ & 0.2011 \end{aligned}$	$0 \cdot 1920$	$\begin{aligned} & 0.1817 \\ & 0.1832 \\ & 0.1834 \\ & 0.1832 \end{aligned}$	0.1769
$\begin{array}{rll} 7, & 3, & 1 \\ 7, & 3, & 2 \\ 7, & 3, & 4 \\ 7, & 3, & 6 \\ 15, & 3, & 1 \end{array}$	$\begin{gathered} 0.2181 \\ 0.2177 \\ 0.2197 \\ 0.2199 \\ 0.2177 \end{gathered}$	$0 \cdot 2165$	$\begin{aligned} & 0.2121 \\ & 0.2129 \\ & 0.2147 \\ & 0.2149 \\ & 0.2129 \end{aligned}$	$0 \cdot 2068$	$\left\lvert\, \begin{aligned} & 0 \cdot 1952 \\ & 0 \cdot 1984 \\ & 0 \cdot 1996 \\ & 0 \cdot 1997 \\ & 0 \cdot 1984 \end{aligned}\right.$	$0 \cdot 1884$	$\begin{aligned} & 0.1753 \\ & 0.1786 \\ & 0.1792 \\ & 0.1792 \\ & 0.1786 \end{aligned}$	0.1714
$\begin{aligned} & 7,4,1 \\ & 7,4, \\ & 7,4,4 \\ & 7,4,6 \\ & 7,4,8 \\ & 7,4,16 \\ & 15,4,1 \\ & 15,4,2 \\ & 15,4,8 \end{aligned}$	$0 \cdot 2250$ 0.2173 $0 \cdot 2190$ 0.2197 0.2199 $0 \cdot 2199$ 0. 2173 0.2190 0.2199	$\begin{aligned} & 0.2161 \\ & 0.2178 \\ & 0.2187 \end{aligned}$	$\begin{array}{\|c\|} 0.2181 \\ 0.2123 \\ 0.2141 \\ 0.2148 \\ 0.2149 \\ 0.2149 \\ 0.2123 \\ 0.2141 \\ 0.2149 \end{array}$	$\begin{aligned} & 0.2059 \\ & 0.2079 \\ & 0.2085 \end{aligned}$	$\begin{aligned} & 0.1982 \\ & 0.1972 \\ & 0.1991 \\ & 0.1995 \\ & 0.1995 \\ & 0.1995 \\ & 0.1972 \\ & 0.1991 \\ & 0.1996 \end{aligned}$	$\left\|\begin{array}{l} 0.1867 \\ 0.1883 \\ 0.1886 \end{array}\right\|$	$\begin{aligned} & 0.1727 \\ & 0.1759 \\ & 0.1771 \\ & 0.1773 \\ & 0.1773 \\ & 0.1773 \\ & 0.1759 \\ & 0.1771 \\ & 0.1773 \end{aligned}$	$\begin{aligned} & 0.1674 \\ & 0.1683 \\ & 0.1685 \end{aligned}$

(b) $A=4$

Solutionm, N, q	Values of X_{ac} for $n=$							
	0	0.1951	0. 3827	0.5556	0.7071	0.8315	0.9239	0.9808
15, 2, 1	0.2377	0.2371	0.2349	0.2307	0.2234	0.2126	- 1998	0.1888
15, 2, 2	$0 \cdot 2407$	$0 \cdot 2400$	0.2376	0.2330	0. 2252	0. 2139	0. 2005	$0 \cdot 1892$
15, 2, 4	0. 2411	0.2403	0.2379	0.2332	0.2253	0.2139	$0 \cdot 2005$	0.1892
15, 3, 1	0.2380	0.2372	0.2344	0.2292	0. 2209	$0 \cdot 2091$	0.1951	$0 \cdot 1832$
15, 3, 2	0. 2389	0.2382	- 2360	0. 2316	0.2239	$0 \cdot 2121$	$0 \cdot 1974$	0. 1845
15, 3, 4	$0 \cdot 2409$	$0 \cdot 2402$	0. 2378	$0 \cdot 2330$	0. 2249	$0 \cdot 2127$	0. 1977	$0 \cdot 1847$
15, 3, 6	0. 2411	$0 \cdot 2404$	0.2379	- 2331	0. 2249	0.2127	- 0.1977	$0 \cdot 1847$
7, 3,12	0. 2411		0.2380		0.2249		$0 \cdot 1977$	
7, 4, 1	$0 \cdot 2673$		0.2609		0. 2364		0.1892	
7, 4, 2	0. 2438		0.2393		0.2232		0. 1936	
7, 4, 4	0.2383		0.2352		$0 \cdot 2227$		0. 1961	
7, 4, 8	0. 2402		0. 2372		0. 2246		- 1970	
7, 4,12	0. 2409		0. 2378		0. 2249		- 1971	
7, 4,16	0. 2411		$0 \cdot 2379$		0. 2249		- 1971	
15, 4, 1	O-2438	$0 \cdot 2427$	0.2393	0.2331	0. 2232	0. 2095	$0 \cdot 1935$	$0 \cdot 1795$
15, 4, 4	$0 \cdot 2402$	0. 2395	- 23372	O-2326	O. 2246	0. 2125	0. 1969	0. 1821
15, 4, 8	0. 2411	0. 2403	0. 2379	0. 2331	0. 2249	O 2126	0. 1969	0. 1821

TABLE 24
Spanwise Loading and Local Aerodynamic Centres of Rectangular Wing $(A=8, M=0)$.

$\mathrm{m}, \mathrm{N}, \mathrm{q}$	21, 3, 1	21, 3, 2	21, 3, 4	21, 3, 6
n	Values of $\mathrm{cC}_{\text {LI }} / \mathrm{cC}_{L}$			
0	1.1533	$1 \cdot 1607$	$1 \cdot 1623$	1-1622
0. 1423	1-1495	$1 \cdot 1563$	$1 \cdot 1577$	1-1576
$0 \cdot 2817$	1-1375	$1 \cdot 1423$	1. 14.33	$1 \cdot 1432$
0.4154	1-1149	1.1170	$1 \cdot 1173$	1.1172
0.5406	$1 \cdot 0785$	$1 \cdot 0771$	1.0767	1.0767
0.6549	$1 \cdot 0218$	$1 \cdot 0177$	$1 \cdot 0168$	$1 \cdot 0168$
0.7557	0.9395	0.9326	0.9313	0.9314
0.8413	0.8216	$0 \cdot 8148$	0.8134	0.8136
0.9096	$0 \cdot 6662$	$0 \cdot 6591$	0.6580	0.6582
0.9595	0.4697	0.4657	0. 4649	0.4651
0.9898	0. 2443	$0 \cdot 2416$	0. 2412	$0 \cdot 2413$
$\partial \mathrm{C}_{\mathrm{L}} / \partial \alpha$	$4 \cdot 4864$	$4 \cdot 5912$	4-5950	4. 5909
$-\partial \mathrm{C}_{\mathrm{m}} / \partial \alpha$	$1 \cdot 0848$	$1 \cdot 0972$	1-1097	$1 \cdot 1110$
η	Values of $X_{\text {ac }}$			
0	$0 \cdot 2498$	$0 \cdot 24.1$	$0 \cdot 2470$	0.2478
0.1423	$0 \cdot 2495$	$0 \cdot 2440$	$0 \cdot 2469$	$0 \cdot 2477$
$0 \cdot 2817$	0. 2484	$0 \cdot 2437$	0. 2466	$0 \cdot 2473$
0.4154	$0 \cdot 2466$	$0 \cdot 2430$	0. 2458	$0 \cdot 2464$
$0 \cdot 5406$	$0 \cdot 2436$	$0 \cdot 2417$	0.2444	$0 \cdot 2448$
0.6549	0. 2401	0.2393	0.2418	$0 \cdot 2421$
0.7557	0.2337	0.2350	$0 \cdot 2370$	0.2372
$0 \cdot 8413$	0.2270	0. 2276	0.2289	$0 \cdot 2290$
0.9096	0. 2144	$0 \cdot 2158$	0. 2166	$0 \cdot 2166$
0.9595	$0 \cdot 2055$	$0 \cdot 2009$	0. 2013	$0 \cdot 2013$
$0 \cdot 9898$	0. 1902	$0 \cdot 1875$	0.1878	$0 \cdot 1878$

TABLE 25
Local Aerodynamic Centres of Unswept Planforms 4 and 5 at $M=0$.
(a) Circular $(A=1 \cdot 2732)$

Solution	Values of $\mathrm{X}_{\text {ac }}$ fox $7=$					
m, N, q	0	$0 \cdot 2588$	$0 \cdot 5000$	$0 \cdot 7071$	$0 \cdot 8660$	0.9659
$11,2,4$ $5,2,8$	$\begin{aligned} & 0.1958 \\ & 0.1960 \end{aligned}$	$0 \cdot 1945$	$\begin{aligned} & 0.1904 \\ & 0.1905 \end{aligned}$	0. 1828	$\begin{aligned} & 0.1702 \\ & 0.1724 \end{aligned}$	0.1515
$\begin{array}{r} 11,3,6 \\ 5,3,12 \end{array}$	$\begin{aligned} & 0.1981 \\ & 0.1982 \end{aligned}$	$0 \cdot 1971$	$\begin{aligned} & 0.1939 \\ & 0.1940 \end{aligned}$	$0 \cdot 1880$	$\begin{aligned} & 0.1780 \\ & 0.1795 \end{aligned}$	$0 \cdot 1603$
$11,4,4$ $11,4,6$ $11,4,8$ $5,4,16$	$\begin{aligned} & 0.1981 \\ & 0.1980 \\ & 0.1980 \\ & 0.1982 \end{aligned}$	$\begin{aligned} & 0.1971 \\ & 0.1970 \\ & 0.1970 \end{aligned}$	$\begin{aligned} & 0.1939 \\ & 0.1938 \\ & 0.1938 \\ & 0.1938 \end{aligned}$	$\begin{aligned} & 0.1879 \\ & 0.1877 \\ & 0.1876 \end{aligned}$	$\begin{aligned} & 0.1783 \\ & 0.1769 \\ & 0.1764 \\ & 0.1784 \end{aligned}$	$\begin{aligned} & 0.1702 \\ & 0.1597 \\ & 0.1551 \end{aligned}$

(b) Symmetrically tapered ($A=4^{\circ}$.3292)

Solution	Values of $x_{\text {ac }}$ for $=$						
	0	0.2588	0.5000	0.7071	0.8660	0.9659	
$11,3,1$	0.2506	0.2349	0.2354	0.2341	0.2202	0.1806	
$11,3,2$	0.2559	0.2368	0.2331	0.2300	0.2182	0.1896	
$11,3,4$	0.2581	0.2394	0.2362	0.2333	0.2216	0.1928	
$11,3,8$	0.2583	0.2396	0.2366	0.2340	0.2223	0.1932	
$23,3,1$	0.2514	0.2356	0.2331	0.2298	0.2183	0.1896	
$23,3,2$	0.2548	0.2384	0.2363	0.2332	0.2218	0.1926	
$23,3,4$	0.2553	0.2386	0.2367	0.2338	0.2224	0.1930	

TABLE 26
Local Aerodynamic Centres of Constant-Chord Sweptback Wings $(A=4, M=0)$.

Solution	Values of X_{ac} for $\eta=$							
m, N, q	0	0-1951	0. 3827	0. 5556	0.7071	0.8315	0.9239	0. 9808
15, 2, 1	0. 2718	0. 2636	0. 2507	0.2395	0. 2215	0. 1870	0. 1408	$0 \cdot 1032$
15, 2, 2	0.2737	0. 2671	0. 2557	$0 \cdot 2431$	0. 2229	$0 \cdot 1882$	$0 \cdot 1430$	0. 1047
$15,2,4$	0. 2732	0. 2660	$0 \cdot 2540$	0. 2415	0. 2220	C. 1880	$0 \cdot 1430$	$0 \cdot 1048$
7, 2, 8	$0 \cdot 2736$		$0 \cdot 2543$		$0 \cdot 2217$		$0 \cdot 1427$	
15, 3, 1	0.2675	0. 2574	$0 \cdot 2422$	$0 \cdot 2293$	0.2108	0.1767	$0 \cdot 1304$	0.0958
15, 3, 2	0. 2724	0. 2650	0.2530	0. 2417	0. 2227	0.1854	0.1355	0.0992
15, 3, 4	0.2740	0. 2669	0.2552	0. 2429	0. 2222	$0 \cdot 1845$	0.1351	0.0992
15, 3, 6	0.2739	0. 2665	0.2543	0. 2420	$0 \cdot 2217$	$0 \cdot 1843$	0.1351	$0 \cdot 0992$
7, 3,12	0. 2742		$0 \cdot 2550$		0.2205		0.1370	
15, 4, 1	$0 \cdot 2712$	0. 2614	$0 \cdot 2462$	0.2320	$0 \cdot 2104$	0.1731	$0 \cdot 1266$	0.0845
15, 4, 2	$0 \cdot 2703$	$0 \cdot 2614$	0. 2477	$0 \cdot 2355$	0. 2169	$0 \cdot 1824$	0.1351	0.0915
$15,4,4$	$0 \cdot 2734$	0. 2663	$0 \cdot 2548$	$0 \cdot 2432$	0. 2229	$0 \cdot 1851$	0.1357	0.0921
15, 4, 6	0.2739	0.2667	$0 \cdot 2550$	$0 \cdot 2428$	0. 2221	$0 \cdot 1845$	0.1355	0.0920
15, 4, 8	0.2739	$0 \cdot 2665$	$0 \cdot 2545$	$0 \cdot 2422$	$0 \cdot 2217$	$0 \cdot 1843$	0.1354	0.0920
7, 4,16	$0 \cdot 2743$		$0 \cdot 2552$		$0 \cdot 2204$		0.1378	

(b) Planform 7 with straight edges

Solution	Values of X_{ac} for $\eta=$								
	$\mathrm{m}, \mathrm{N}, \mathrm{q}$	0	0.1951	0.3827	0.5556	0.7071	0.8315	0.9239	0.9808
$15,2,1$	0.3897	0.2604	0.2445	0.2362	0.2197	0.1852	0.1389	0.1013	
$15,2,2$	0.4050	0.2766	0.2529	0.2424	0.2211	0.1868	0.1408	0.1030	
$15,2,4$	0.4070	0.2737	0.2498	0.2401	0.2200	0.1866	0.1408	0.1030	
$7,2,8$	0.4471		0.2556		0.2185		0.1419		
$15,3,1$	0.3746	0.2499	0.2343	0.2250	0.2082	0.1746	0.1284	0.0940	
$15,3,2$	0.4062	0.2703	0.2472	0.2406	0.2204	0.1844	0.1329	0.0981	
$15,3,4$	0.4132	0.2764	0.2510	0.2425	0.2198	0.1835	0.1324	0.0982	
$15,3,6$	0.4133	0.2748	0.2492	0.2413	0.2192	0.1833	0.1323	0.0982	
$7,3,12$	0.4491		0.2570		0.2165		0.1375		
$15,4,1$	0.3769	0.2544	0.2387	0.2280	0.2079	0.1709	0.1245	0.0826	
$15,4,2$	0.3992	0.26344	0.2405	0.2332	0.2142	0.1811	0.1326	0.0901	
$15,4,4$	0.4133	0.2749	0.2501	0.2427	0.2207	0.1841	0.1330	0.0909	
$15,4,6$	0.4145	0.2762	0.2506	0.2424	0.2197	0.1834	0.1327	0.0908	
$15,4,8$	0.4144	0.2753	0.2496	0.2416	0.2192	0.1833	0.1327	0.0908	
$7,4,16$	0.4495		0.2574		0.2167		0.1383		

TABLE 27
Local Aerodynamic Centres of Tapered Sweptback Wings at $M=0.8$.
(a) Cropped delta Planform 8 ($A=1.9704$)

Solution	Values of $x_{\text {ac }}$ for $\eta=$							
	$\mathrm{m}, \mathrm{N}, \mathrm{q}$	0	0.1951	0.3827	0.5556	0.7071	0.8315	0.9239
$15,2,1$	0.3641	0.3066	0.2752	0.2515	0.2254	0.1885	0.1397	0.0976
$7,3,4$	0.3937		0.2789		0.2208		0.1412	
$15,3,2$	0.3806	0.3108	0.2728	0.2479	0.2217	0.1869	0.1381	0.0922
$31,3,1$	0.3648	0.3036	0.2703	0.2462	0.2211	0.1864	0.1377	0.0920
$15,4,4$	0.3848	0.3126	0.2724	0.2466	0.2192	0.1844	0.1355	0.0816

(b) Arrowhead Planform $9(A=2 \sqrt{2})$

Solution	Values of $\mathrm{X}_{\text {ac }}$ for $\eta=$							
$\mathrm{m}, \mathrm{N}, \mathrm{q}$	0	0.1951	0.3827	0.5556	0.7071	0.8315	0.9239	0.9808
$15,2,1$	0.4244	0.3317	0.2961	0.2733	0.2476	0.2033	0.1388	0.0857
$15,2,2$	0.4311	0.3268	0.2824	0.2589	0.2326	0.1929	0.1348	0.0842
$15,2,4$	0.4369	0.3294	0.2841	0.2604	0.2339	0.1938	0.1352	0.0845
$15,3,1$	0.4275	0.3145	0.2679	0.2404	0.2143	0.1761	0.1226	0.0729
$15,3,2$	0.4419	0.3361	0.2906	0.2693	0.2409	0.1967	0.1288	0.0790
$15,3,4$	0.44449	0.3312	0.2818	0.2594	0.2311	0.1894	0.1259	0.0783
$15,3,6$	0.4461	0.3322	0.2829	0.2606	0.2321	0.1900	0.1260	0.0784
$15,4,1$	0.4063	0.2970	0.2558	0.2310	0.2034	0.1611	0.1092	0.0554
$15,4,2$	0.4456	0.3327	0.2816	0.2570	0.2284	0.1894	0.1317	0.0702
$15,4,4$	0.4468	0.3332	0.2854	0.2640	0.2350	0.1912	0.1273	0.0693
$15,4,6$	0.4475	0.3317	0.2822	0.2599	0.2311	0.1889	0.1272	0.0692
$15,4,8$	0.4482	0.3325	0.2830	0.2605	0.2317	0.1895	0.1273	0.0693

TABLE 28

Spanwise Loading and Local Aerodynamic Centres of Planform $10(A=1 \cdot 4503, M=0.8)$.

$\begin{aligned} & m \\ & \mathrm{~N} \\ & \mathrm{q} \\ & \mathrm{~m} \end{aligned}$	$\begin{array}{r} 7 \\ 4 \\ 12 \\ 95 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 8 \\ 95 \end{array}$	15 4 6 95	m N q q	$\begin{array}{r} 7 \\ 4 \\ 12 \\ 95 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 8 \\ 95 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 6 \\ 95 \end{array}$		
η	Values of $\mathrm{cC}_{L \mathrm{LI}} / \overline{\mathrm{c} \mathrm{C}_{L}}$			η	Values of $\mathrm{X}_{\text {ac }}$				
0	$1 \cdot 2590$	$1 \cdot 2595$	1-2597	0	0.3108	$0 \cdot 3050$	0. 30		
0.1951			$1 \cdot 2407$	0.1951			0.2389		
0.2588		1. 2239		0.2588		0. 2269			
$0 \cdot 3827$	$1 \cdot 1749$		$1 \cdot 1747$	0.3827	0. 2052		0. 1993		
0. 5000		$1 \cdot 1050$		0. 5000		0.1789			
0.5556			$1 \cdot 0626$	0. 5556			$0 \cdot 1687$		
0.7071	$0 \cdot 9084$	0.9080	0.9077	0.7071	$0 \cdot 1403$	0. 1404	0.1395		
0.8315	$0 \cdot 4943$	$\begin{aligned} & 0.6447 \\ & 0.3341 \end{aligned}$	0.7156	0.8315	$0 \cdot 0900$	$\begin{aligned} & 0.1038 \\ & 0.0780 \end{aligned}$	0.1121		
0.8660				0.8660					
0.9239			$0 \cdot 4937$	0.9239			$0 \cdot 0886$		
0.9659 0.9808			0. 2518	0.9659 0.9808			0.0736		
			,				0.0736		
$\partial C_{L} / \partial \alpha$	$2 \cdot 1270$	$2 \cdot 1314$	$2 \cdot 1335$						
$-\partial C_{m} / \partial \alpha$	0.9791	0.9739	0.9708						
\bar{n}	0.4266	0.4264	0.4264						
${ }^{7}$	0.4603	0.4569	0.4550						
c									

TABLE 29
Spanwise Loading of Arrowhead Planform $12(A=8, M=0)$.

$\mathrm{m}, \mathrm{N}, \mathrm{q}$	15, 3, 1	23, 3, 1	31, 3, 1	41, 3, 1
η	Values of $\mathrm{cC}_{L L} / \mathrm{cC}_{L}$			
0	1.0707	1.0818	1.0806	1.0776
0.1305		1-1371		
0.1490				1.1446
0. 1951	$1 \cdot 1445$		$1 \cdot 1526$	
0.2588		1-1529		
$0 \cdot 2948$				$1 \cdot 1513$
0.3827	$1 \cdot 1327$	$1 \cdot 1305$	$1 \cdot 1320$	
0.4339				1.1164
0.5000		1.0876		1.0894
0.5556	$1 \cdot 0648$		$1 \cdot 0613$	
0.5633		$1 \cdot 0316$		$1 \cdot 0581$
0.6088 0.6802		1.0316		0.9862
0.7071	0.9735	0.9679	0.9670	
0.7818				0.9036
0.7934		0.8960		
0.8315	0.8610		0.8516	
0.8660		0.8069		$0 \cdot 8012$
0.9239	0.6850	0.6774	0.6736	
0.9309				$0 \cdot 6490$
0.9659 0.9749		0.4895		0.4235
0.9749 0.9808	$0 \cdot 3810$		0.3751	$0 \cdot 4235$
0.9914		0.2567		
0.9972				$0 \cdot 1473$

$\mathrm{m}, \mathrm{N}, \mathrm{q}$	7, 3,12	11, 3, 8	15, 3, 6	23, 3, 4
η	Values of $\mathrm{cC}_{\text {LL }} /{ }^{\text {c }} \mathrm{C}_{L}$			
0	$1 \cdot 1125$	1.0819	1.0686	1.0606
$0 \cdot 1305$				1.1321
0.1951			1-1482	
0.2588		1.1518		1-1520
0.3827	$1 \cdot 1297$		$1 \cdot 1334$	$1 \cdot 1339$
0.5000		1.0919		$1 \cdot 0903$
0.5556			$1 \cdot 0656$	
0.6088				1.0354
0.7071	0.9719	0.9718	0.9710	0.9702
0.7934				0.8989
0.8315			0.8592	
0.8660		0.8104		0.8096
0.9239	0.6776		0.6819	0.6820
0.9659		0.4956		0.4937
0.9808			03819	
$0 \cdot 9914$				02594

TABLE 30
Local Aerodynamic Centres of Arrowhead Planform $12(A=8, M=0)$.

m, N, q	15, 3, 1	23, 3, 1	31, 3, 1	41, 3,
η	Values of $X_{a c}$			
\bigcirc	$0 \cdot 3764$	0.3733	0.3746	0.3777
0.1305 0.1490		0. 2498		$0 \cdot 2584$
0.1951	0.2378		$0 \cdot 2452$	
0.2588		0.2351		
0.2948 0.3827				0.2444
0.3827 0.4339	0.2335	0.2312	0.2356	$0 \cdot 2405$
0.4827 0.5000		0. 2297		0.2395
0.5556 0.5633	$0 \cdot 2334$		0.2331	
0.5633 0.6088		0.2289		0.2387
0.6802				0.2376
0.7071 0.7818	0.2316	0.2278	0.2315	0.2358
0.7934		0.2250		
0.8315	0.2235		0.2265	
0.8660 0.9239	$0 \cdot 1878$	$0 \cdot 2164$ $0 \cdot 1917$	0.1983	$0 \cdot 2283$
0.9309				$0 \cdot 1995$
0.9659 0.9749		$0 \cdot 1448$		0.1400
0.9808	$0 \cdot 1060$		$0 \cdot 1237$	
0.9914 0.9972		$0 \cdot 0982$		
$0 \cdot 9972$				$0 \cdot 0965$

$m, N, . q$	$7,3,12$	$11,3,8$	$15,3,6$	$23,3,4$
η	Values of $x_{a c}$			
0	0.4891	0.4459	0.4275	0.4119
0.1305			0.2699	0.2802
0.1951		0.2647	0.2538	0.2580
0.2588	0.253			
0.3827	0.2593	0.2522		0.2554
0.5000	0.2534			
0.5556			0.2540	
0.6088			0.2498	0.2534
0.7071	0.2499	0.2506		
0.7934			0.2450	0.2482
0.8315		0.2339	0.2059	0.2359
0.8660	0.2130°	0.1619	0.1295	0.1546
0.9239	0.9659		0.1291	0.1065
0.9808			0.9914	
				0.

TABLE 31
Local Aerodynamic Centres of Planform $12(A=8, M=0)$ with Fixed \bar{m}, q or Rounding.

TABLE 32
Local Aerodynamic Centres of Slender Wings.

Solution m, N, q $n n y y y y y y$	Values of $X_{a c}$ for $n=$						
	0	0.2588	0.5000	0.7071	0.8660	0.9659	
$11,2,1$	0.4198	0.3393	0.2988	0.2527	0.1907	0.1658	
$11,2,8$	0.4262	0.3285	0.2896	0.2749	0.2678	0.2770	
$11,2,12$	0.4272	0.3292	0.2900	0.2755	0.2682	0.2695	
$11,3,1$	0.4004	0.2940	0.2436	0.2169	0.1860	0.1829	
$11,3,2$	0.4231	0.3329	0.2904	0.2579	0.2202	0.1811	
$11,3,4$	0.4227	0.3233	0.2870	0.2817	0.2677	0.2265	
$11,3,6$	0.4242	0.3245	0.2844	0.2732	0.2743	0.2518	
$11,3,8$	0.4245	0.3245	0.2853	0.2719	0.2668	0.2720	
$11,3,10$	0.4248	0.3246	0.2853	0.2725	0.2638	0.2809	
$11,3,12$	0.4249	0.3246	0.2853	0.2724	0.2640	0.2803	
$11,4,1$	0.3794	0.2826	0.2492	0.2239	0.1900	0.1982	
$11,4,8$	0.4227	0.3245	0.2844	0.2760	0.2713	0.2465	
$11,4,12$	0.4233	0.3250	0.2849	0.2722	0.2671	0.2679	

(b) Complete delta $(A=0.0001, M=0)$

Solution	Values of X_{ac} for $\eta=$						
$\mathrm{m}, \mathrm{N}, \mathrm{q}$	0	0.2588	0.5000	0.7071	0.8660	0.9659	
$11,2,6$	0.3527	0.3444	0.3320	0.3106	0.3012	0.3171	
$11,3,1$	0.4865	0.3670	0.2842	0.2155	0.2257	0.0883	
$11,3,2$	0.5124	0.4364	0.3881	0.3243	0.2382	0.2167	
$11,3,4$	0.5080	0.4196	0.3678	0.3550	0.3462	0.2466	
$11,3,6$	0.5118	0.4224	0.3704	0.3406	0.3302	0.3035	
$11,4,6$	0.4899	0.4014	0.3744	0.3599	0.3421	0.2653	
Exact	0.5000	0.4203	0.3802	0.3568	0.3430	0.3357	

(c) Gothic Planform $15(A=0.0001, M=0)$

| Solution | Values of $X_{a c}$ for $n=$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m, N, q | 0 | 0.2588 | 0.5000 | 0.7071 | 0.8660 | 0.9659 |
| $11,2,4$ | 0.4167 | 0.3451 | 0.3077 | 0.2809 | 0.2648 | 0.2900 |
| $11,2,6$ | 0.4226 | 0.3515 | 0.3131 | 0.2889 | 0.2691 | 0.2473 |
| $11,3,1$ | 0.4052 | 0.3360 | 0.2726 | 0.2107 | 0.1806 | 0.0799 |
| $11,3,2$ | 0.4159 | 0.3440 | 0.3138 | 0.3022 | 0.2414 | 0.1945 |
| $11,3,4$ | 0.4220 | 0.3450 | 0.3036 | 0.2787 | 0.2720 | 0.2351 |
| $11,3,6$ | 0.4244 | 0.3470 | 0.3038 | 0.2836 | 0.2645 | 0.3021 |
| $11,4,4$ | 0.4189 | 0.3422 | 0.3028 | 0.2894 | 0.2696 | 0.2022 |
| $11,4,6$ | 0.4237 | 0.3473 | 0.3030 | 0.2809 | 0.2734 | 0.2302 |
| Exact | 0.4000 | | | 0.2808 | | |

TABLE 33
Local Aerodynamic Centres of Planforms 16 and 17 with Curved Tips.
(a) $A=3.8993, \Lambda=60^{\circ}, M=0$

Solution	Values of $\mathrm{X}_{\text {ac }}$ for $\eta=$							
$\mathrm{m}, \mathrm{N}, \mathrm{q}$	0	0.1951	$0 \cdot 3827$	0.5556	0.7071	0.8315	0.9239	0.9808
15, 2, 1	0.4498	0.2447	0.2317	0.2302	0.2303	0.2231	0.1893	0.0717
15, 2, 2	0.4740	0.2892	0.2610	0.2512	$0 \cdot 2447$	$0 \cdot 2490$	0.2567	0.2131
15, 2, 8	0.4771	0.2790	$0 \cdot 2510$	$0 \cdot 2439$	$0 \cdot 2378$	0.2369	$0 \cdot 2294$	$0 \cdot 2280$
15,3,1	0.4304	0.2396	0. 2241	0.2168	0.2100	0. 1979	0.1906	0.0716
15, 3, 2	$0 \cdot 4725$	0.2694	$0 \cdot 2415$	$0 \cdot 2404$	0. 2346	0.2332	0.1954	$0 \cdot 1684$
15, 3, 4	0.4796	0.2884	0.2558	$0 \cdot 2497$	0.2396	$0 \cdot .2452$	0. 2424	$0 \cdot 2180$
31, 3, 2	0.4546	0.2759	0.2591	$0 \cdot 2471$	0. 2426	$0 \cdot 2420$	$0 \cdot 2492$	$0 \cdot 2088$
15, 3, 8	0.4794	$0 \cdot 2812$	$0 \cdot 2483$	$0 \cdot 2449$	0.2362	0.2376	$0 \cdot 2245$	$0 \cdot 2381$
15, 4, 1	$0 \cdot 4319$	$0 \cdot 2413$	0. 2257	0.2180	0.2112	0.1990	$0 \cdot 1728$	0.0551
15, 4, 2	0.4599	0.2615	0.2335	$0 \cdot 2279$	$0 \cdot 2185$	0.2115	0.1888	0.1672
15, 4, 4	$0 \cdot 4815$	0.2803	0. 2492	$0^{\circ} 2480$	0. 2415	$0 \cdot 2443$	$0 \cdot 2222$	0. 1856
15, 4, 8	0.4815	0.2850	0.2514	$0 \cdot 2465$	0.2368	0.2388	0.2319	0. 2452
15, 4, 8*	$0 \cdot 5449$	$0 \cdot 2851$	0.2530	$0 \cdot 2451$	$0 \cdot 2376$	0.2377	0.2334	$0 \cdot 2426$

(b) $A=3.5564, \Lambda=55^{\circ}, \mathrm{M}=0.8$

Solution	Values of						
	m, N, q	0	0.2588	0.5000	0.7071	0.8660	0.9659
$11,3,1$	0.4521	0.2448	0.2194	0.2101	0.1934	0.0643	
$11,3,2$	0.4947	0.2780	0.2374	0.2339	0.1856	0.1790	
$11,3,4$	0.4898	0.2904	0.2479	0.2604	0.2534	0.2160	
$11,3,6$	0.4924	0.2835	0.2389	0.2447	0.2314	0.2663	
$11,3,8$	0.4928	0.2840	0.2403	0.2453	0.2255	0.2506	
$23,3,1$	0.4521	0.2638	0.2419	0.2280	0.1984	0.1825	
$23,3,2$	0.4697	0.2739	0.2523	0.2537	0.2589	0.1998	
$23,3,4+4$	0.4723	0.2660	0.2445	0.2390	0.2305	0.2366	
$23,3,4$	0.4847	0.2673	0.2447	0.2393	0.2309	0.2382	

* $m=7$ rounding is used with the $m=15$ collocation sections.
${ }^{+} m=11$ rounding is used with the $m=23$ collocation sections.

TABLE 34

Spanwise Loading and Aerodynamic Centres of Planform $17\left(A=3 \cdot 5564, \Lambda=55^{\circ}, M=0.8\right)$.

$\begin{aligned} & \mathrm{m} \\ & \mathrm{~N} \\ & \mathrm{q} \\ & \mathrm{q} \end{aligned}$	$\begin{array}{r} 71 \\ 3 \\ 8 \\ 95 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 6 \\ 95 \end{array}$	$\begin{array}{r} 23 \\ 3 \\ 4 \\ 95 \end{array}$	m N q m	$\begin{array}{r} 11 \\ 3 \\ 8 \\ 95 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 6 \\ 95 \end{array}$	$\begin{array}{r} 23 \\ 3 \\ 4 \\ 95 \end{array}$
η	Values of $\mathrm{cC}_{L L} / \mathrm{cc}_{L}$			7	Values of $\mathrm{X}_{\text {ac }}$		
$\begin{gathered} 0 \\ 0 \cdot 1305 \end{gathered}$	1.0115	1.0066	$\begin{aligned} & 1.0058 \\ & 1.0948 \end{aligned}$	$\begin{gathered} 0 \\ 0.1305 \end{gathered}$	$0 \cdot 4928$	$0 \cdot 4839$	$\begin{aligned} & 0.4723 \\ & 0.3235 \end{aligned}$
0.1951 0.2588	$1 \cdot 1511$	$1 \cdot 1283$	1-1463	0.1951 0.2588	$0 \cdot 2840$	0.2993	0.2660
- 3827		$1 \cdot 1624$	$1 \cdot 1633$	$0 \cdot 3827$		0.2451	0.2513
$0 \cdot 5000$	$1 \cdot 1450$		$1 \cdot 1434$	$0 \cdot 5000$	$0 \cdot 2403$		0. 2445
0.5556 0.6088		$1 \cdot 1266$		0.5556 0.6088		$0 \cdot 2476$	
0.6088 0.7071	$1 \cdot 0195$	$1 \cdot 0137$	$1 \cdot 0942$ $1 \cdot 0119$	0.6088 0.7071	$0 \cdot 2453$	$0 \cdot 2372$	0.2441 0.2390
0.7934			0.9019	0.7934			0.2374
0.8315		0.8387		0.8315		0.2368	
$0 \cdot 8660$	$0 \cdot 7639$		$0 \cdot 7620$	0.8660	$0 \cdot 2255$		0.2305
$0 \cdot 9239$		$0 \cdot 5969$	$0 \cdot 6006$	$0 \cdot 9239$		$0 \cdot 2245$	$0 \cdot 2346$
0.9659	$0 \cdot 4154$		$0 \cdot 4154$	$0 \cdot 9659$	0.2506		0.2366
$0 \cdot 9808$		0.3133		0.9808		$0 \cdot 2674$	
0.9914			0.2134	$0 \cdot 9914$			$0 \cdot 2245$

$\begin{gathered} \text { Rounding } \\ \mathrm{m} \\ \mathrm{~N} \\ \frac{\mathrm{q}}{\mathrm{~m}} \end{gathered}$	$\begin{gathered} m=11 \\ 11 \\ 3 \\ 8 \\ 95 \end{gathered}$	$\begin{gathered} m=11 \\ 15 \\ 3 \\ 6 \\ 95 \end{gathered}$	$\begin{gathered} m=11 \\ 23 \\ 3 \\ 4 \\ 95 \end{gathered}$	Rounding m N $\frac{q}{m}$	$\begin{gathered} m=11 \\ 11 \\ 3 \\ 8 \\ 95 \end{gathered}$	$\begin{array}{\|c\|} \hline m=1 \cdot 1 \\ 15 \\ 3 \\ 6 \\ 95 \end{array}$	$\begin{gathered} m=11 \\ 23 \\ 3 \\ 4 \\ 95 \end{gathered}$
η	Values of $\mathrm{cC}_{\text {LI }} / \mathrm{c}_{\text {L }}$			η	Values of ${ }^{\text {ac }}$		
$\begin{gathered} 0 \\ 0.1305 \end{gathered}$	$1 \cdot 0115$	$1 \cdot 0412$	1.0629 1.1114	$\stackrel{0}{0} 0.1305$	0.4928	0.4924	$\begin{aligned} & 0.4847 \\ & 0.3209 \end{aligned}$
$0 \cdot 1951$		$1 \cdot 1343$		$0 \cdot 1951$		$0 \cdot 2967$	
0.2588	1-1511		$1 \cdot 1485$	0. 2588	$0 \cdot 2840$		$0 \cdot 2673$
$0 \cdot 3827$		$1 \cdot 1587$	$1 \cdot 1580$	O. 3827		$0 \cdot 2456$	0.2503
0.5000	$1 \cdot 1450$		$1 \cdot 1345$	O. 0.5000	$0 \cdot 2403$		$0 \cdot 2447$
0. 5556		1.1191		0.5556 0.6088		$0 \cdot 2469$	
0.6088 0.7071	$1 \cdot 019$	$1 \cdot 0051$	1.0828 1.0002	0.6088 0.7071	$0 \cdot 2453$	0. 2375	0.2434 0.2393
0.7071 0.7934	$1 \cdot 019$	$1 \cdot 0051$	0.8902	0.7934	- 2453		0.2369
0.8315		0.8305		i1 0.8315		$0 \cdot 2362$	
0.8660	$0 \cdot 7639$		0.7518	0.8660	$0 \cdot 2255$		0.2309
0.9239		0. 5909	0.5919	0.9239		$0 \cdot 2253$	0.2337
0.9659	$0 \cdot 4154$		0.4098	II 0.9659	$0 \cdot 2506$		0.2382
0.9808		$0 \cdot 3102$		0.9808		0. 2663	
0.9914			$0 \cdot 2103$	0.9914			$0 \cdot 2217$

TABLE 35
Coefficients for Unswept Planforms 2, 4 and 5 in Oscillatory Motion.

m N ¢ m	15 2 1 15	15 2 2 31	15 3 1 15	15 3 2 31	15 3 4 63	$\begin{array}{r} 15 \\ 3 \\ 6 \\ 95 \\ \hline \end{array}$	7 3 12 95
I	$3 \cdot 62517$	$3 \cdot 61734$	$3 \cdot 60000$	$3 \cdot 61900$	$3 \cdot 61517$	3.61340	$3 \cdot 61338$
$\mathrm{I}_{\mathrm{L} 2}$	2.77908	$2 \cdot 78285$	$2 \cdot 73255$	2. 77839	$2 \cdot 77924$	$2 \cdot 77663$	$2 \cdot 77660$
$\mathrm{I}_{\mathrm{L} 3}$	-0.31439	-0.31356	-0.33022	-0.31296	-0.31414	-0.31534	-0.31536
$\mathrm{I}_{\text {L }}$	2. 34099	2. 34815	2. 29239	2. 34891	2. 34952	2. 34581	2.34575
$\mathrm{I}_{\mathrm{L} 5}$	-0.61521	-0.60933	-0.60892	-0.60749	-0.60729	-0.60735	-0.60737
- $\mathrm{I}_{\text {m }}$	0.83280	0.83957	0.82266	0.83382	0.83843	0.83838	0.83835
$-I_{\text {m }}$	1-00988	$1 \cdot 01455$	0.98859	1.01201	1.01473	$1 \cdot 01366$	1.01363
$-\mathrm{I}_{\mathrm{m} 3}$	0. 29864	0.29464	0.28298	0. 29587	$0 \cdot 29310$	$0 \cdot 29196$	$0 \cdot 29195$
$-I_{m 4}$	1-00209	$1 \cdot 00582$	0.97509	$1 \cdot 00674$	$1 \cdot 00899$	1-00727	1-00722
$-\mathrm{I}_{\text {m }}$	$0 \cdot 08948$	$0 \cdot 08828$	$0 \cdot 08204$	0.09022	0.08869	$0 \cdot 08800$	0.08798
- $\mathrm{I}_{\text {* }}$	$0 \cdot 39803$	$0 \cdot 40359$	$0 \cdot 39502$	0.40363	$0 \cdot 40645$	0.40635	0.40633
$-\mathrm{I}_{\text {m }}$	$0 \cdot 58371$	0. 58698	0.57022	0. 58739	0.59918	$0 \cdot 58840$	0.58838

(b) Circular $(A=1 \cdot 2732, M=0)$

m	11	11	11	5
N	2	3	4	4
q	4	6	8	16
q_{I}	47	71	95	95
$\mathrm{I}_{\mathrm{L} 1}$	1.78878	1.79057	1.79028	1.79216
$\mathrm{I}_{\mathrm{L} 2}$	1.73248	1.73376	1.73357	1.73824
$\mathrm{I}_{\mathrm{L} 3}$	0.93945	0.93285	0.93345	0.94084
$\mathrm{I}_{\mathrm{L} 4}$	1.78391	1.78608	1.78596	1.79134
$\mathrm{I}_{\mathrm{L} 5}$	0.54990	0.54612	0.54650	0.55078
$-\mathrm{I}_{\mathrm{m} 1}$	0.53940	0.54653	0.54592	0.54664
$-I_{\mathrm{m}}$	0.89898	0.90379	0.90341	0.90597
$-I_{\mathrm{m} 3}$	0.64617	0.64136	0.64189	0.64639
$-I_{\mathrm{m} 4}$	1.12178	1.12903	1.12876	1.13184
$-\mathrm{I}_{\mathrm{m} 5}$	0.45110	0.45170	0.45200	0.45473
$-\mathrm{I}_{\mathrm{m}}^{*}$	0.26646	0.27466	0.27387	0.27409
$-\mathrm{I}_{\mathrm{m}}^{*}$	0.63273	0.63578	0.63536	0.63694

TABLE 35-continued

Coefficient for Unswept Planforms 2, 4 and 5 in Oscillatory Motion.
(c) Symmetrically tanered $\quad(A=4 \cdot 3292, M=0)$

m	11	11	11	11	23	23	23
N	3	3	3	3	3	3	3
q	1	2	4	8	1	2	4
m	11	23	47	95	23	47	95
$I_{L 1}$	3.82039	3.85786	3.85505	3.85124	3.85987	3.85517	3.85144
$I_{L 2}$	4.05122	4.15371	4.16424	4.15792	4.14995	4.15958	4.15347
$I_{L 3}$	-0.41536	-0.34173	-0.33358	-0.33425	-0.37299	-0.35626	-0.35604
$I_{L 4}$	4.62196	4.79860	4.81981	4.80852	4.78734	4.80816	4.79731
$I_{L 5}$	-0.86904	-0.82901	-0.82286	-0.82250	-0.85040	-0.83798	-0.83708
$-I_{m 1}$	1.91069	1.93356	1.94384	1.94310	1.92985	1.94083	1.94032
$-I_{m 2}$	2.48319	2.56099	2.57762	2.57399	2.55395	2.57103	2.56774
$-I_{m 3}$	0.21580	0.27799	0.27945	0.27697	0.26353	0.26819	0.26610
$-I_{m 4}$	3.15210	3.29861	3.32429	3.31644	3.28625	3.31225	3.30489
$-I_{m 5}$	-0.03099	0.01873	0.01981	0.01760	0.00924	0.01223	0.01022
$-I_{m 1}^{*}$	1.26491	1.28539	1.29757	1.29737	1.28117	1.29434	1.29429
$-I_{m 2}^{*}$	1.92797	2.00255	2.02002	2.01677	1.99553	2.01349	2.01049

TABLE 36
Coefficients for Planform 6 with Hyperbolic Edges ($A=4, M=0$) in Oscillatory Motion.

$\begin{aligned} & \mathrm{m} \\ & \mathrm{~N} \\ & \mathrm{q} \\ & \mathrm{q} \\ & \hline \end{aligned}$	$\begin{array}{r} 15 \\ 2 \\ 1 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 15 \\ 2 \\ 2 \\ 21 \end{array}$	$\begin{array}{r} 15 \\ 2 \\ 4 \\ 63 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 2 \\ 8 \\ 63 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 6 \\ 95 \\ \hline \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 1 \\ 15 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 6 \\ 95 \end{array}$
$\begin{aligned} & I_{L 1} \\ & I_{L 2} \\ & I_{L 3} \\ & I_{L 4} \\ & I_{L 5} \end{aligned}$		$\begin{aligned} & 3 \cdot 23454 \\ & 3 \cdot 95396 \end{aligned}$ -0.35390	$\begin{array}{r} 3 \cdot 23089 \\ 3.93994 \\ -0.35857 \\ 5.48373 \\ -0.51502 \end{array}$	$\begin{array}{r} 3.22967 \\ 3.93716 \\ -0.35251 \\ 5.48280 \\ -0.50981 \end{array}$	$\begin{array}{r} 3 \cdot 23298 \\ 3 \cdot 94374 \\ -0.35670 \\ 5 \cdot 48901 \\ -0.51477 \end{array}$	$\begin{array}{r} 3 \cdot 22444 \\ 3 \cdot 91073 \\ -0.35253 \\ 5 \cdot 44338 \\ -0.48916 \end{array}$	$\begin{array}{r} 3 \cdot 23422 \\ 3 \cdot 94804 \\ -0.35545 \\ 5.49857 \\ -0.51373 \end{array}$
$\begin{aligned} & -I_{m 1} \\ & -I_{m 2} \\ & -I_{m 3} \\ & -I_{m 4} \\ & -I_{m 5} \\ & -I_{m} \end{aligned}$	$\begin{array}{r} 2.49307 \\ 3.72458 \\ -0.04475 \end{array}$	$\begin{array}{r} 2.48547 \\ 3.69483 \\ -0.06820 \end{array}$	$\begin{array}{r} 2.47938 \\ 3.67910 \\ -0.07182 \\ 5.88338 \\ 0.02390 \end{array}$	$\begin{array}{r} 2.47881 \\ 3.67866 \\ -0.06863 \\ 5.88322 \\ 0.02781 \end{array}$	$\begin{array}{r} 2.47941 \\ 3.68105 \\ -0.06592 \\ 5.88962 \\ 0.03105 \\ \hline \end{array}$	$\begin{array}{r} 2.45347 \\ 3.63631 \\ -0.04401 \\ 5.83784 \\ 0.07463 \end{array}$	$\begin{array}{r} 2.48161 \\ 3.68664 \\ -0.06423 \\ 5.90169 \\ 0.03316 \end{array}$
$\begin{aligned} & \hline-I_{m 1}^{*} \\ & -I_{m 2}^{*} \\ & \hline \end{aligned}$		$\begin{aligned} & 2 \cdot 59413 \\ & 4 \cdot 31540 \end{aligned}$	$\begin{aligned} & 2 \cdot 58596 \\ & 4 \cdot 29646 \end{aligned}$	$\begin{aligned} & 2 \cdot 58605 \\ & 4 \cdot 29526 \end{aligned}$	$\begin{aligned} & 2 \cdot 58105 \\ & 4 \cdot 29245 \end{aligned}$	$\begin{aligned} & 2 \cdot 53449 \\ & 4 \cdot 23164 \end{aligned}$	$\begin{aligned} & 2 \cdot 58385 \\ & 4 \cdot 29967 \end{aligned}$

m N q q	$\begin{array}{r} 15 \\ 3 \\ 1 \\ 15 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 2 \\ 31 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 4 \\ 63 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 6 \\ 95 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 3 \\ 12 \\ 95 \end{array}$
$\mathrm{I}_{\mathrm{L} 1}$	$3 \cdot 25878$	3. 24466	3.23449	3. 23298	3. 23201
$\mathrm{I}_{\mathrm{L} 2}$	3.96455	3.96604	3.94937	3.94374	3.94135
I_{L}	-0.34144	-0.34881	-0.35512	-0.35670	-0.35090
$\mathrm{I}_{\text {L }}$			5. 50134	5-48901	5. 48849
$\mathrm{I}_{\mathrm{L} 5}$			-0.51379	-0. 51477	-0.51017
${-I_{\text {m }}}$	2.46998	$2 \cdot 48651$	$2 \cdot 48227$	$2 \cdot 47941$	2.47892
$-\mathrm{I}_{\mathrm{m} 2}$	$3 \cdot 68294$	$3 \cdot 70463$	3.68807	$3 \cdot 68105$	$3 \cdot 68080$
-I	-0.02922	-0.05504	-0.06449	-0.06592	-0.06291
$-I_{\text {m }}$			$5 \cdot 90414$	5.88962	$5 \cdot 88946$
$-I_{\text {m }}$			0.03247	0.03105	0.03419
$-\mathrm{I}_{\mathrm{m} 1}^{*}$	$2 \cdot 55510$	2. 59047	2•58503	2. 58105	2. 58108
$-\mathrm{Im}_{\text {m }}{ }^{*}$	4-28990	4-32517	$4 \cdot 30154$	4.29245	$4 \cdot 29152$

TABLE 37
Coefficients for Planform $7\left(A=4, \Lambda=45^{\circ}, M=0\right)$ in Oscillatory Motion.

m N 年 m	$\begin{array}{r} 15 \\ 2 \\ 1 \\ 15 \end{array}$	15 2 2 31	15 2 4 63	7 2 8 63	$\begin{array}{r} 15 \\ 3 \\ 6 \\ 95 \end{array}$	$\begin{array}{r} 15 \\ 4 \\ 1 \\ 15 \end{array}$	15 4 6 95
I_{1}	3.04301	2.96838	2.95962	2.95345	2.96296	$3 \cdot 01519$	$2 \cdot 96430$
$\mathrm{I}_{\mathrm{L} 2}$	4•81615	4-69471	$4 \cdot 66353$	$4 \cdot 65673$	$4 \cdot 67057$	$4 \cdot 74238$	$4 \cdot 67740$
$\mathrm{I}_{\mathrm{L} 3}$	-0.31971	-0.27629	-0. 27200	-0.19912	-0.26878	-0.31876	-0.26751
$\mathrm{I}_{\mathrm{L} 4}$			8. 33354	8. 35376	8. 34417	$8 \cdot 45565$	8.36267
$\mathrm{I}_{\mathrm{L} 5}$			-0.37126	-0.30521	-0.36982	-0.41880	-0.36853
$-I_{m 1}$	3. 55371	3. 50520	3.49192	3-49281	$3 \cdot 49550$	3. 50157	3-49999
$-\mathrm{I}_{\mathrm{m} 2}$	6. 47725	$6 \cdot 36293$	6. 32362	$6 \cdot 33616$	$6 \cdot 33111$	6354.73	$6 \cdot 34395$
$-\mathrm{I}_{\mathrm{m} 3}$	-0.23057	-0. 20379	-0.19974	-0.12680	-0.19101	-0.21656	-0.18840
$-I_{m 4}$			12. 53971	12. 58562	12.55405	12.62271	12. 58616
$-I_{\text {m } 5}$			0.04503	0-11719	$0 \cdot 05458$	$0 \cdot 05160$	$0 \cdot 05807$
$-\mathrm{I}_{\text {m }}$	5.07490	5.02898	5.00627	5.01949	5.00365	$4 \cdot 97812$	5.01142
$-\mathrm{I}_{\mathrm{m} 2}$	$10 \cdot 11892$	9.97076	9.90926	9.93639	$9 \cdot 91017$	9.90088	9.93187

m	15	15	15	15	7
N	3	3	3	3	3
q	1	2	4	6	12
m	15	31	63	95	95
$I_{\mathrm{L} 1}$	3.05183	2.99198	2.96534	2.96296	2.95601
$I_{\mathrm{L} 2}$	4.80837	4.72904	4.68077	4.67057	4.66299
$I_{L 3}$	-0.31230	-0.27076	-0.26913	-0.26878	-0.19666
$I_{L 4}$			8.36947	8.34417	8.36529
$I_{L 5}$			-0.37069	-0.36982	-0.30333
$-I_{m 1}$	3.53251	3.51940	3.50105	3.49550	3.49546
$-I_{m 2}$	6.43229	6.39749	6.34715	6.33111	6.34250
$-I_{m 3}$	-0.20551	-0.18640	-0.19083	-0.19101	-0.11995
$-I_{m 4}$			12.59292	12.55405	12.59884
$-I_{m 5}$			0.05452	0.05458	0.12388
$-I_{m 1}^{*}$	5.02065	5.03654	5.01367	5.00365	5.01746
$-I_{m 2}^{*}$	10.02059	10.01328	9.93689	9.91017	9.93945

TABLE 38
Coefficients for Arrowhead Planforms 10 and 9 in Oscillatory Motion.

m N q m	$\begin{array}{r} 7 \\ 4 \\ 12 \\ 95 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 8 \\ 95 \\ \hline \end{array}$	15 4 6 95	m N q q	15 3 1 15	$\begin{array}{r} 15 \\ 3 \\ 2 \\ 31 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 4 \\ 63 \end{array}$
$\mathrm{I}_{\mathrm{L} 1}$	$1 \cdot 27618$	1.27886	$1 \cdot 28011$		$2 \cdot 79562$	$2 \cdot 72847$	$2 \cdot 72743$
$\mathrm{I}_{\mathrm{L} 2}$	1-40638	$1 \cdot 41251$	$1 \cdot 41541$	${ }_{\text {I }}$	4. 55539	4.44966	$4 \cdot 43656$
$\mathrm{I}_{\mathrm{L} 3}$	0.76379	0.75794	0.75539	$\mathrm{I}_{\mathrm{L} 3}$	0.31604	$0 \cdot 32090$	$0 \cdot 33046$
I ${ }_{\text {4 }}$	1.60764	1.61616	1.62030	I^{L}	7.79674	7.62431	7. 58813
$\mathrm{I}_{\mathrm{L} 5}$	0.56333	0.56193	0.56124	I ${ }_{\text {L } 5}$	0.12177	0.13800	0.14614
$-\mathrm{I}_{\mathrm{m} 1}$	0.58747	0.58434	O 58247	${ }^{\prime \prime}$	3. 11765	3.11066	3.10369
$-I_{\text {m2 }}$	0.92456	0.92261	0.92148	- $\mathrm{I}_{\text {m2 }}$	$5 \cdot 67319$	5.63463	$5 \cdot 61348$
$-I_{m 3}$	0.60680	$0 \cdot 60171$	0.59933	- $\mathrm{I}_{\mathrm{m} 3}$	0.43298	0.42222	0.43213
$-I_{\text {m }}$	$1 \cdot 23471$	1.23477	1-23467	${ }^{11} \mathrm{I}^{1} \mathrm{I}_{4}$	10.41763	10.32702	10.27236
$-I_{m}$	0.49724	0.49533	$0 \cdot 49440$	${ }^{-1 . m 5}$	$0 \cdot 38531$	0.37110	$0 \cdot 38044$
$-\mathrm{I}_{\mathrm{m} 1}^{*}$	0.33882	0.33457	0.33237		4-13629	4-17935	4-16485
$-\mathrm{I}_{\mathrm{m} 2}^{*}$	0.72175	0.71745	$0 \cdot 71527$	$-\mathrm{I}_{\mathrm{m} 2}$	7-99757	8.01972	7-98278

(c) $A=2 \sqrt{2}, M=0.8$

m	15	15	15	15	15	15
N	3	3	3	4	4	4
q	1	2	4	1	2	4
q	15	31	63	15	31	63
$\mathrm{I}_{\mathrm{L} 1}$	1.93197	1.87654	1.88411	1.93616	1.89312	1.88167
$\mathrm{I}_{\mathrm{L} 2}$	3.18877	3.08709	3.09063	3.19536	3.11500	3.09058
$\mathrm{I}_{\mathrm{L} 3}$	0.57013	0.55079	0.56780	0.60202	0.57006	0.56439
$\mathrm{I}_{\mathrm{L} 4}$	5.47405	5.29084	528655	5.48591	5.34031	5.29063
$\mathrm{I}_{\mathrm{L} 5}$	0.63463	0.60569	0.62195	0.66347	0.62849	0.61717
$-\mathrm{I}_{\mathrm{m} 1}$	2.20060	2.18572	2.18263	2.17427	2.19195	2.18556
$-\mathrm{I}_{\mathrm{m} 2}$	4.06147	4.00127	3.99271	4.04093	4.02101	4.00078
$-\mathrm{I}_{\mathrm{m} 3}$	0.72374	0.69282	C .71502	0.75514	0.72150	0.71131
$-\mathrm{I}_{\mathrm{m} 4}$	7.48721	7.33900	7.31557	7.46933	7.38608	7.33353
$-\mathrm{I}_{\mathrm{m} 5}$	0.93422	0.88387	0.90752	0.96991	0.92012	0.90209
$-\mathrm{I}_{\mathrm{m}}^{*}$	2.92488	2.95194	2.93382	2.88113	2.94368	2.94362
$-\mathrm{I}_{\mathrm{m} 2}^{*}$	5.75222	5.73211	5.70261	5.70953	5.74088	5.72208

TABLE 39
Coefficients for Direct and Reversed Planform $11(A=2, M=0.7806)$ in Oscillatory Motion.

m	15	15	15	13	15	15	31^{+}
N	3	3	3	3	3	4	3
q	1	2	4	6	8	6	2
m	15	31	63	95	127	95	63
$\mathrm{I}_{\mathrm{L} 1}$	1.60072	1.57616	1.58065	1.57982	1.57971	1.58128	1.59065
$\mathrm{I}_{\mathrm{L} 2}$	2.61862	2.57048	2.57412	2.57259	2.57227	2.57603	2.60056
$\mathrm{I}_{\mathrm{L} 3}$	0.65493	0.65923	0.67118	0.67152	0.67176	0.67346	0.65112
$\mathrm{I}_{\mathrm{L} 4}$	4.38293	4.29460	4.29672	4.29417	4.29351	4.30088	4.34959
$\mathrm{I}_{\mathrm{L} 5}$	0.76019	0.75151	0.76423	0.76427	0.76450	0.76564	0.74878
$-I_{\mathrm{m} 1}$	1.72638	1.72155	1.72169	172169	1.72181	1.72286	1.71989
$-\mathrm{I}_{\mathrm{m} 2}$	3.16868	3.14880	3.14791	3.14762	3.14757	3.15201	3.15783
$-\mathrm{I}_{\mathrm{m} 3}$	0.81971	0.81960	0.83643	0.83684	0.83724	0.83999	0.80924
$-\mathrm{I}_{\mathrm{m} 4}$	5.67414	5.61774	5.61362	5.61274	5.61237	5.62329	5.64848
$-\mathrm{I}_{\mathrm{m} 5}$	1.04352	1.02825	1.04706	1.04711	1.04749	1.05015	1.02395
$-\mathrm{I}_{\mathrm{m} 1}^{*}$	2.13742	2.15966	2.15092	2.15186	2.15205	2.15289	2.14293
$-I_{\mathrm{m} 2}^{*}$	4.19911	4.21220	4.20135	4.20256	4.20263	4.20871	4.20161

(b) Reversed wing

m	15	15	15	15	15	15	$31+$
N	3	3	3	3	3	4	3
q	1	2	4	6	8	6	2
$\overline{\mathrm{~m}}$	15	31	63	95	127	95	63
$\overline{\mathrm{I}}_{\mathrm{L} 1}$	1.59960	1.60063	1.59854	1.59915	1.59984	1.59884	1.59160
$\overline{\mathrm{I}}_{\mathrm{L} 2}$	0.88600	0.87743	0.87132	0.87407	0.87610	0.87373	0.85146
$\overline{\mathrm{I}}_{\mathrm{L} 3}$	0.67414	0.65246	0.64334	0.64531	0.64694	0.64774	0.64317
$\overline{\mathrm{I}}_{\mathrm{L}}$	0.78499	0.77910	0.77551	0.77991	0.78246	0.77777	0.74072
$\overline{\mathrm{I}}_{\mathrm{L} 5}$	0.26282	0.25189	0.24389	0.25067	0.25172	0.24999	0.24031
$-\overline{\mathrm{I}}_{\mathrm{m} 1}$	-0.02405	-0.03564	-0.03675	-0.03694	-0.03691	-0.04050	-0.03220
$-\overline{\mathrm{I}}_{\mathrm{m} 2}$	0.34516	0.32965	0.32547	0.32645	0.32708	0.32553	0.32741
$-\overline{\mathrm{I}}_{\mathrm{m} 3}$	0.31581	0.30178	0.29724	0.29828	0.29891	0.29870	0.29954
$-\overline{\mathrm{I}}_{\mathrm{m} 4}$	0.43192	0.41506	0.41240	0.41476	0.41592	0.41287	0.40296
$-\bar{I}_{\mathrm{m} 5}$	0.22027	0.21016	0.20831	0.20963	0.21028	0.20912	0.20347
$-\overline{\mathrm{I}}_{\mathrm{m} 1}^{*}$	0.09907	0.09463	0.09464	0.09456	0.09459	0.09246	0.09641
$-\overline{\mathrm{I}}_{\mathrm{m} 2}^{*}$	0.23636	0.22273	0.21940	0.22011	0.22050	0.21930	0.22274

${ }^{m}=15$ rounaing is used with the $m=31$ collocation sections.

TABLE 40
Coefficients for Arrowhead Planform $12(A=8, M=0)$ in Oscillatory Motion.

m	15	23	31	41
N	3	3	3	3
q	1	1	1	1
q_{m}	15	23	31	41
$\mathrm{I}_{\mathrm{L} 1}$	$3 \cdot 78526$	$3 \cdot 80421$	$3 \cdot 82004$	$3 \cdot 80436$
$\mathrm{I}_{\mathrm{L} 2}$	$9 \cdot 28996$	$9 \cdot 37563$	$9 \cdot 42324$	$9 \cdot 39283$
$\mathrm{I}_{\mathrm{L} 3}$	$-1 \cdot 90009$	$-1 \cdot 89103$	$-1 \cdot 91614$	$-1 \cdot 91496$
$\mathrm{I}_{\mathrm{L} 4}$	$26 \cdot 54324$	$26 \cdot 82521$	$26 \cdot 96339$	$26 \cdot 88033$
$\mathrm{I}_{\mathrm{L} 5}$	$-4 \cdot 18363$	$-4 \cdot 20574$	$-4 \cdot 26574$	$-4 \cdot 26436$
$-\mathrm{I}_{\mathrm{m} 1}$	$8 \cdot 17964$	$8 \cdot 19481$	$8 \cdot 24075$	$8 \cdot 22893$
$-\mathrm{I}_{\mathrm{m} 2}$	$23 \cdot 35384$	$23 \cdot 50402$	$23 \cdot 63626$	$23 \cdot 59934$
$-\mathrm{I}_{\mathrm{m} 3}$	$-4 \cdot 94786$	$-4 \cdot 91054$	$-4 \cdot 97419$	$-4 \cdot 97844$
$-\mathrm{I}_{\mathrm{m} 4}$	$74 \cdot 42268$	$7 \cdot 06482$	$75 \cdot 47354$	$75 \cdot 33802$
$-\mathrm{I}_{\mathrm{m} 5}$	$-10 \cdot 13499$	$-10 \cdot 14691$	$-10 \cdot 31067$	$-10 \cdot 34665$
$-\mathrm{I}_{\mathrm{m} 1}^{*}$	$22 \cdot 27321$	$22 \cdot 26277$	$22 \cdot 39012$	$22 \cdot 3769$.
$-\mathrm{I}_{\mathrm{m} 2}^{*}$	$69 \cdot 02922$	$69 \cdot 35102$	$69 \cdot 75066$	$69 \cdot 69991$

m N q in	7 3 12 95	$\begin{array}{r} 11 \\ 3 \\ 8 \\ 95 \end{array}$	$\begin{array}{r} 15 \\ 3 \\ 6 \\ 95 \end{array}$	23 3 4 95
$\mathrm{I}_{\mathrm{L} 1}$	$3 \cdot 70248$	$3 \cdot 69185$	3.69228	$3 \cdot 69788$
$\stackrel{L}{L}$ 2 $^{\text {L }}$	9-16025	9.14628	9•14862	9.15952
$\mathrm{I}_{\mathrm{L} 3}$	-1. 59159	-1.67928	$-1 \cdot 72368$	$-1 \cdot 77126$
$\mathrm{I}_{\text {L }}$	26.42059	26. 32185	$26 \cdot 30473$	26.30862
$\mathrm{I}_{\text {L5 }}$	-3.80720	$-3 \cdot 88693$	-3.93798	$-4 \cdot 00041$
$-\mathrm{I}_{\mathrm{m} 1}$	$8 \cdot 09149$	$8 \cdot 08062$	8.07993	8.08394
$-\mathrm{I}_{\mathrm{m} 2}$	23.27614	$23 \cdot 22472$	23. 21636	$23 \cdot 21918$
$-\mathrm{I}_{\mathrm{m} 3}$	$-4 \cdot 46445$	$-4 \cdot 58034$	$-4 \cdot 64520$	$-4 \cdot 71971$
$-\mathrm{Im}_{4}$	$74 \cdot 52614$	74.31138	$74 \cdot 26697$	74. 24980
$-\mathrm{I}_{\mathrm{m} 5}$	-9.60185	-9.71397	-9.79510	-9.89912
$-\mathrm{I}_{\mathrm{m} 1}^{*}$	$22 \cdot 17816$	22.08754	22.07341	22.07538
- $\mathrm{Im}_{\text {\% }}$	69.11261	$68 \cdot 88316$	68.85689	68.85592

TABLE 41
Coefficients for Slender Planforms 13, 14 and 15 in Oscillatory Motion.
(a) Complete delta $(A=1 \cdot 5, M=0)$

m N q q	$\begin{array}{r} 11 \\ 2 \\ 12 \\ 143 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 1 \\ 11 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 2 \\ 23 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 4 \\ 47 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 8 \\ 95 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 12 \\ 143 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 12 \\ 143 \end{array}$
$\mathrm{I}_{\mathrm{L} 1}$	$1 \cdot 78190$	$1 \cdot 82891$	$1 \cdot 79115$	$1 \cdot 77767$	$1 \cdot 77708$	1.77673	1.77694
$\mathrm{I}_{\mathrm{L} 2}$	$3 \cdot 22896$	$3 \cdot 31482$	3. 25175	$3 \cdot 22480$	3. 22268	3.22190	3. 22203
I_{L}	0.81459	0.82890	0.80752	$0 \cdot 82070$	0.82520	0.82566	0.82634
$\mathrm{I}_{L_{4}}$	5.94293	6. 11610	6.00732	$5 \cdot 95546$	5.95000	$5 \cdot 94837$	5.94786
$\mathrm{I}_{\mathrm{L} 5}$	$0 \cdot 96087$	1-02508	0.98487	0. 99100	0.99716	0.99768	0.99869
$-I_{m 1}$	$2 \cdot 17764$	2. 15880	$2 \cdot 18775$	2•16575	$2 \cdot 16388$	$2 \cdot 16358$	$2 \cdot 16340$
$-I_{m 2}$	$4 \cdot 40365$	4-39113	$4 \cdot 41578$	4-38268	$4 \cdot 37755$	$4 \cdot 37670$	4.37612
$-I_{\text {m }}$	1-10011	1-12868	1.10324	1-114,06	1.12222	$1 \cdot 12298$	1-12323
$-\mathrm{I}_{\mathrm{m}}$	$8 \cdot 57446$	8. 63703	8.64344	$8 \cdot 58378$	8.57124	$8 \cdot 56911$	8.56924
$-I_{\text {m } 5}$	1.45781	$1 \cdot 52101$	$1 \cdot 46864$	$1 \cdot 46906$	$1 \cdot 48042$	$1 \cdot 48127$	$1 \cdot 48267$
$-I_{\text {m }}^{*}$	$3 \cdot 05227$	2.93675	$3 \cdot 04774$	$3 \cdot 02240$	3.01476	$3 \cdot 01419$	3.01433
$-I_{\text {m }}$	$6 \cdot 47631$	$6 \cdot 37639$	6. 51247	$6 \cdot 48062$	6-1/6566	$6 \cdot 46424$	$6 \cdot 46363$

TABLE 41-continued
Coefficients for Slender Planforms 13, 14 and 15 in Oscillatory Motion.
(b) Complete delta ($A=0.0001, M=0$)

m N q m	$\begin{array}{r} 11 \\ 2 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 1 \\ 11 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 2 \\ 23 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 4 \\ 47 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 6 \\ 71 \end{array}$
$I_{L 1} / \mathrm{A}$	1.49312	$1 \cdot 54750$	$1 \cdot 55138$	$1 \cdot 54518$	1.54003	1.55788
$I_{L 2} / \mathrm{A}$	2.80550	$3 \cdot 04113$	3.03929	3.02787	$3 \cdot 01834$	3.09702
$\mathrm{I}_{\mathrm{L} 3} / \mathrm{A}$	1.08366	$1 \cdot 08284$	1.03192	1.04942	104678	$1 \cdot 13118$
$\mathrm{IL}_{\mathrm{L}_{4} / \mathrm{A}}$	5.28094	$5 \cdot 95596$	5.94195	5.91969	$5 \cdot 90172$	$6 \cdot 13178$
$\mathrm{I}_{\mathrm{L} 5} / \mathrm{A}$	1.99318	$1 \cdot 60136$	$1 \cdot 51019$	1.51782	1.51710	$1 \cdot 87884$
$-I_{m 1} / A$	$1 \cdot 83920$	$1 \cdot 95535$	2.07726	2.05841	2.05306	$2 \cdot 05462$
$-I_{m 2} / A$	3.53770	4.36438	$4 \cdot 53503$	4. 51826	$4 \cdot 50395$	$4 \cdot 41960$
$-\mathrm{I}_{\mathrm{m} 3} / \mathrm{A}$	1.05571	$1 \cdot 60246$	1.53043	1.54867	$1 \cdot 54948$	$1 \cdot 45400$
$-I_{m+} / A$	$6 \cdot 78904$	9.17043	9.38720	9.37158	9. 34176	$9 \cdot 20699$
$-I_{m 5} / 4$	$1 \cdot 92907$	$2 \cdot 51424$	$2 \cdot 38170$	$2 \cdot 38246$	2. 38745	$2 \cdot 42526$
$-\mathrm{I}_{\mathrm{m} 1}^{*} / \mathrm{A}$	$2 \cdot 63155$	$2 \cdot 75634$	3.09752	3.07234	3.05903	3.06421
$-\mathrm{P}_{\mathrm{m} 2}^{*} / 4$	$5 \cdot 18576$	6.67078	7-16978	$7 \cdot 16850$	$7 \cdot 13734$	$6 \cdot 94545$

(c) Gothic Planioem 15 (A $=0.0001, \mathrm{~W}=0$)

m N q m	$\begin{array}{r} 11 \\ 2 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 1 \\ 11 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 2 \\ 23 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 4 \\ 47 \end{array}$	$\begin{array}{r} 11 \\ 3 \\ 6 \\ 71 \end{array}$	$\begin{array}{r} 11 \\ 4 \\ 6 \\ 71 \end{array}$
$\mathrm{I}_{\mathrm{L}, 1} / \mathrm{A}$	1.57551	$1 \cdot 56883$	1.57106	1.57278	$1 \cdot 56812$	1.57281
$\mathrm{I}_{\mathrm{L} 2} / \mathrm{A}$	$2 \cdot 49843$	2. 56642	2.56370	2.56804	2. 56092	2. 58818
$\mathrm{I}_{\mathrm{L} 3} / \mathrm{A}$	$1 \cdot 08921$	1-15266	1-14286	1-15681	1-15186	$1 \cdot 17776$
$\mathrm{I}_{\mathrm{L} 4} / \mathrm{A}$	3.92420	$4 \cdot 18350$	4-17248	4-18052	4-16946	$4 \cdot 25789$
$\mathrm{I}_{\mathrm{L} 5} / \mathrm{A}$	$1 \cdot 22804$	1.36058	1-32426	1.33758	1.33341	$1 \cdot 37192$
-I	$1 \cdot 47139$	1-40978	$1 \cdot 45957$	1-458814	$1 \cdot 45768$	$1 \cdot 46117$
-I	$2 \cdot 78803$	$2 \cdot 82766$	$2 \cdot 89700$	2.90194	$2 \cdot 89609$	2.93970
$-I_{m} /$ A	1.23781	$1 \cdot 35841$	1.33649	$1 \cdot 35829$	$1 \cdot 35405$	1.39654
$-I_{m L} /$ A	$4 \cdot 73537$	$5 \cdot 09820$	5.17368	5-18968	5-17708	5.32993
$-I_{m 5} / \mathrm{A}$	1.53679	1-72275	$1 \cdot 67665$	1.69644	$1 \cdot 69182$	$1 \cdot 75986$
$-I_{m 1}^{*} / \mathrm{A}$	$1 \cdot 61405$	$1 \cdot 46352$	$1 \cdot 59582$	1.58452.	1-53392	1-58851
$-\mathrm{I}_{\mathrm{m} 2}^{*} / 4$	$3 \cdot 31873$	3. 38261	$3 \cdot 55611$	3.56079	3. 55415	3-62715

TABLE 42
Coefficients for Curved Planform $17\left(A=3 \cdot 5564, \Lambda=55^{\circ}, M=0.8\right)$ in Oscillatory Motion.

m	11	11	11	11	11
N	3	3	3	3	3
q	1	2	4	6	8
m	11	23	47	71	95
$\mathrm{I}_{\mathrm{L} 1}$	1.81510	1.68403	1.61672	1.62651	1.62634
$\mathrm{I}_{\mathrm{L} 2}$	3.32355	3.07132	2.93000	2.93494	2.93551
$\mathrm{I}_{\mathrm{L} 3}$	0.22810	0.23111	0.19900	0.20799	0.20690
$\mathrm{I}_{\mathrm{L} 4}$					
$\mathrm{I}_{\mathrm{L} 5}$					
$-\mathrm{I}_{\mathrm{m} 1}$	2.70280	2.56266	2.48546	2.48350	2.48626
$-I_{\mathrm{m} 2}$	5.80744	5.44215	5.24803	$5 \cdot 22633$	5.23309
$-\mathrm{I}_{\mathrm{m} 3}$	0.16233	0.19135	0.11600	0.13464	0.13431
$-\mathrm{I}_{\mathrm{m} 4}$					
$-\mathrm{I}_{\mathrm{m} 5}$					
$-\mathrm{I}_{\mathrm{m} 1}^{*}$	5.13689	4.86806	4.78543	4.74991	4.75729
$-\mathrm{I}_{\mathrm{m} 2}^{*}$	12.05945	11.30461	11.03937	10.93474	10.95281

Rounding	$\mathrm{m}=15$	$\mathrm{~m}=11$	$\mathrm{~m}=23$	$\mathrm{~m}=23$	$\mathrm{~m}=23$	$\mathrm{~m}=11$
m	15	15	23	23	23	23
N	3	3	3	3	3	3
q	6	6	1	2	4	4
m	95	95	23	47	95	95
$I_{L 1}$	1.63281	1.65853	1.72060	1.63121	1.63915	1.67505
$I_{\mathrm{L} 2}$	2.94453	2.99545	3.13298	2.95190	2.95291	3.02777
$I_{L 3}$	0.18376	0.17608	0.17791	0.15970	0.16800	0.16017
$I_{L_{4}}$						
$I_{L 5}$						
$-I_{m 1}$	2.48942	2.51797	2.59488	2.49533	2.49367	2.53360
$-I_{m 2}$	5.23438	5.29365	5.50819	5.25976	5.24037	5.32800
$-I_{m 3}$	0.09703	0.07956	0.09784	0.05446	0.07271	0.05233
$-I_{m 4}$						
$-I_{m 5}$						
$-I_{m 1}^{*}$	4.75764	4.79973	4.92976	4.79617	4.76669	4.82638
$-I_{m 2}^{*}$	10.94722	11.03580	11.43812	11.05332	10.96430	11.09639

TABLE 43
Oscillatory Pitching Derivatives of Wings with Streamwise Symmetry.
(a) Rectangular $\left(A=4, \mathrm{M}=0, \mathrm{x}_{0}=0.5 \mathrm{c}\right)$

Solution $\mathrm{m}, \mathrm{N}, \mathrm{q}$	$-\mathrm{z} \theta$	$-\mathrm{m}_{\theta}$	$-z_{\dot{\theta}}$	$-\mathrm{m}_{\theta}$
$15,2,1$	1.81259	-0.48990	0.32606	0.28303
$15,2,2$	1.80867	-0.48456	0.33032	0.27955
$15,3,1$	1.80000	-0.48867	0.30117	0.27954
$15,3,2$	1.80950	-0.4884	0.32797	0.28150
$15,3,4$	1.80758	-0.48458	0.32976	0.27994
$15,3,6$	1.80670	-0.48416	0.32729	0.27957
$7,3,12$	1.80669	-0.48416	0.32728	0.27956
$7,3,12^{*}$	1.80669	-0.48496	0.32648	0.27960

(b) Circular ($A=1 \cdot 2732, M=0, x_{0}=0.6366 \bar{c}$)

Solution m, N, q	$-z_{\theta}$	$-m_{\theta}$	$-z_{\dot{\theta}}$	$-\mathrm{m}_{\dot{\theta}}$
$11,2,4$	0.89439	-0.29968	0.76657	0.11286
$11,3,6$	0.89529	-0.29669	0.76335	0.11265
$11,4,8$ $11,4,8 *$	0.89514			
0.89514	-0.29690	0.76365	0.11272	
3xact	0.89693	-0.2969	0.7632	0.1128

(c) Planiorm 5 ($A=4 \cdot 3292, \bar{h}=0, x_{0}=0 \cdot 7900 \bar{c}$)

Solution $\mathrm{m}, \mathrm{N}, \mathrm{q}$	$-\mathrm{z}_{\theta}$	$-\mathrm{m}_{\theta}$	$-\mathrm{z}_{\theta}$	$-\mathrm{m}_{\theta}$
$11,3,1$	1.91020	-0.55371	0.330887	0.35076
$11,3,2$	1.92893	-0.55708	0.38213	0.35385
$11,3,4$	1.92752	-0.55082	0.39259	0.35057
$11,3,8$	1.92562	-0.54969	0.39059	0.34939
$11,3,8^{*}$	1.92562	-0.55772	0.38256	0.35810
$23,3,1$	1.92993	-0.55972	0.35363	0.35902
$23,3,2$	1.92758	-0.55237	0.37887	0.35367
$23,3,4$	1.92572	-0.55116	0.37740	0.35235
$23,3,4^{*}$	1.92572	$-0.5554+1$	0.37315	0.35657

*Derivatives are calculated from coefficients for the wing in reverse filow.

TABLE 44
Oscillatory Pitching Derivatives of Constant-Chord Sweptback Wings ($x_{0}=0.5 \bar{c}$).
(a) Planform 6 with hyperbolic edges $(A=4, M=0)$

Solution $\mathrm{m}, \mathrm{N}, \mathrm{q}$	$-z_{\theta}$	$-\mathrm{m}_{\theta}$	$-z_{\theta}$	$-\mathrm{m}_{\theta}^{*}$
$15,2,1$	1.62853	0.43228	1.00874	0.71227
$15,2,2$	1.61727	0.43410	0.99140	0.69625
$15,2,4$	1.61544	0.43197	0.98297	0.69231
$7,2,8$	1.61483	0.43200	0.98490	0.69285
$15,3,1$	1.62939	0.42030	0.99686	0.71094
$15,3,2$	1.62233	0.43210	0.99744	0.70445
$15,3,4$	1.61725	0.43252	0.98850	0.69697
$15,3,6$	1.61649	0.43146	0.98528	0.69507
$7,3,12$	1.61601	0.43146	0.98722	0.69560
$15,4,1$	1.61222	0.42063	0.97299	0.69628
$15,4,6$	1.61711	0.43226	0.98774	0.69693
$15,3,6 *$	1.61624	0.43107	0.98456	0.69480

(b) Planform 7 with straight edges $\left(A=4, A=45^{\circ}, \mathrm{M}=0\right)$

Solution $\mathrm{m}, \mathrm{~N}, \mathrm{q}$	${ }^{-2} \theta$	m_{θ}	-2i	$-\mathrm{m}^{\circ}$
15, 2, 1	$1 \cdot 52150$	1.01610	$1 \cdot 48747$	$1 \cdot 49118$
15, 2, 2	$1 \cdot 48419$	$1 \cdot 01050$	$1 \cdot 46712$	1.46971
15, 2, 4	$1 \cdot 47981$	$1 \cdot 00606$	$1 \cdot 45586$	$1 \cdot 46103$
7, 2; 8	1.47672	$1 \cdot 00805$	1-49044	$1 \cdot 48626$
15, 3, 1	$1 \cdot 52592$	1-00329	$1 \cdot 48508$	1.48772
15, 3, 2	1.49599	1.01170	$1 \cdot 48114$	$1 \cdot 48512$
15, 3, 4	$1 \cdot 48267$	$1 \cdot 00918$	$1 \cdot 46448$	$1 \cdot 47065$
15, 3, 6	$1 \cdot 48148$	$1 \cdot 00701$	1.46016	1.46610
7, 3,12	$1 \cdot 47800$	$1 \cdot 00873$	$1 \cdot 49416$	1.49032
15, 4, 1	$1 \cdot 50760$	0.99698	$1 \cdot 45801$	1-46469
15, 4, 6	$1 \cdot 48215$	$1 \cdot 00892$	$1 \cdot 46388$	$1 \cdot 47084$
15, 3, 6*	1. 52345	$1 \cdot 00741$	$1 \cdot 42000$	$1 \cdot 43008$

*Derivatives are calculated from solutions for the wing in reverse flow.

TABLE 45
Oscillatory Pitching Derivatives of Arrowhead Planforms 9, 10 and 12.

$$
\text { (a) } A=2 \sqrt{2}, x_{0}=0.75 \overline{\mathrm{c}}
$$

$M=0 \quad\left\{\begin{array}{cc|c|c|c|c|}\hline \begin{array}{c}\text { Solution } \\ m, N, q\end{array} & -z_{\theta} & -m_{\theta} & -z_{\dot{\theta}} & -\mathrm{m}_{\dot{\theta}} \\ \hline \begin{array}{l}15,3,1 \\ 15,3,2 \\ 15,3,4\end{array} & 1.39781 & 0.51047 & 1.38736 & 0.84345 \\ \hline 15,36372 & 0.53215 & 1.36211 & 0.84035 \\ \hline 15,3,1 & 1.60997 & 0.62636 & 1.30562 & 1.02146 \\ 15,3,2 & 1.56379 & 0.64859 & 1.33934 & 1.01299 \\ 15,3,4 & 1.57009 & 0.64129 & 1.36712 & 1.02418 \\ \hline 15,4,1 & 1.61347 & 0.60179 & 1.33355 & 1.03814 \\ 15,4,2 & 1.57760 & 0.64342 & 1.36472 & 1.03142 \\ 15,4,4 & 1.56806 & 0.64525 & 1.36511 & 1.02457 \\ \hline\end{array}\right.$
(b) $A=1 \cdot 4503, M=0.8, x_{0}=0.5848 \bar{c}$

Solution m, N, q	$-z_{\theta}$	$-m_{\theta}$	$-z_{\theta}$	$-m_{\dot{\theta}}$
$7,4,12$	1.06349	-0.13242	1.10483	0.37485
$11,4,8$	1.06572	-0.13633	1.08139	0.37328
$15,4,6$	1.06676	-0.13850	1.07022	0.37270

(c) $A=8, M=0, x_{0}=0.6897 \mathrm{c}$

Solution $\mathrm{m}, \mathrm{N}, \mathrm{q}$	$-\mathrm{z}_{\theta}$	$-\mathrm{m}_{\theta}$	$-z_{\dot{\theta}}$	$-\mathrm{m}_{\dot{\theta}}$
$15,3,1$	$1 \cdot 89263$	$2 \cdot 78454$	$2 \cdot 38965$	$4 \cdot 73433$
$23,3,1$	$1 \cdot 90210$	$2 \cdot 78559$	$2 \cdot 43049$	$4 \cdot 79468$
$31,3,1$	1.91002	$2 \cdot 80310$	$2 \cdot 43628$	$4 \cdot 80914$
$41,3,1$	$1 \cdot 90218$	$2 \cdot 80260$	$2 \cdot 42707$	$4 \cdot 79899$
$7,3,12$	$1 \cdot 85124$	$2 \cdot 76901$	$2 \cdot 50760$	$4 \cdot 88624$
$11,3,8$	$1 \cdot 84593$	$2 \cdot 76724$	$2 \cdot 46043$	$4 \cdot 83886$
$15,3,6$	$1 \cdot 84614$	$2 \cdot 76675$	$2 \cdot 43925$	$4 \cdot 81709$
$23,3,4$	$1 \cdot 84894$	$2 \cdot 76682$	$2 \cdot 41898$	$4 \cdot 79385$

TABLE 46
Oscillatory Pitching Derivatives of Slender Planforms 13, 14 and 15.
(a) Complete celta $\left(A=1 \cdot 5, N=0, x_{0}=\bar{c}\right)$

Solution $\mathrm{m}, \mathrm{N}, \mathrm{q}$	$-\mathrm{z}_{\theta}$	$-\mathrm{m}_{\theta}$	$-z_{\theta}$	$-\mathrm{m}_{\theta}$
$11,2,1$	0.90823	0.20572	1.11151	0.50634
$11,2,8$	0.89097	0.19702	1.13159	0.53115
$11,2,12$	0.89095	0.19787	1.13083	0.53223
$11,3,1$	0.91445	0.16494	1.15740	0.52310
$11,3,2$	0.89558	0.19830	1.13406	0.53157
$11,3,4$	0.88884	0.19404	1.13392	0.53158
$11,3,6$	0.88865	0.19348	1.13503	0.53229
$11,3,8$	0.88854	0.19340	1.13540	0.53255
$11,3,10$	0.88837	0.19338	1.13540	0.53258
$11,3,12$	0.88836	0.19342	1.13542	0.53264
$11,4,1$	0.90745	0.15396	1.15608	0.51517
$11,4,8$	0.88855	0.19326	1.13564	0.53198
$11,4,12$	0.88847	0.19323	1.13572	0.53226

(v) Complete delta $\left(A=0.0001, M=0, x_{0}=\bar{c}\right)$

Solution $\mathrm{m}, \mathrm{N}, \mathrm{q}$	$-z_{0} / \mathrm{A}$	$-\mathrm{m}_{0} / \mathrm{h}$	$-z_{\theta} / \mathrm{A}$	$-\mathrm{m} \cdot \mathrm{A}$
$11,2,6$	0.74656	0.17304	1.19802	0.17907
$11,3,1$	0.77375	0.20393	1.28823	0.71751
$11,3,2$	0.77569	0.26294	1.25991	0.73418
$11,3,4$	0.77259	0.25662	1.26606	0.73820
$11,3,6$	0.77001	0.25621	1.26255	0.73764
$11,4,6$	0.77894	0.24837	1.33515	0.57434
Exact	0.78540	0.26180	1.30900	0.78540

(c) Gothic Planform 15 ($A=0.0001, H=0, x_{0}=0.83330$)

Solution m, N, q	$-z_{\theta} / 4$	$-m_{\theta} / A$	$-z_{\theta} / 4$	$-\mathrm{m}_{\theta} / \mathrm{A}$
$11,2,4$	0.78574	0.07356	1.13978	0.45052
$11,2,6$	0.78775	0.07923	1.13736	0.43205
$11,3,1$	0.78442	0.05121	1.20586	0.50075
$11,3,2$	0.78553	0.07518	1.19867	0.50970
$11,3,4$	0.78639	0.07409	1.20710	0.51635
$11,3,6$	0.78406	0.07546	1.20301	0.31519
$11,4,4$	0.78621	0.07302	1.22907	0.53584
$11,4,6$	0.78640	0.07525	1.22764	0.53627
Exact	0.78540	0.06545	1.24355	0.54542

TABLE 47
Oscillatory Pitching Derivatives of Curved Planform $17\left(A=3 \cdot 5564, \Lambda=55^{\circ}, M=0.8, x_{0}=0.5606 \bar{c}\right)$.

Solution $\mathrm{m}, \mathrm{N}, \mathrm{q}$	$-\mathrm{z}_{\theta}$	$-\mathrm{m}_{\theta}$	$-\mathrm{z}_{\theta}$	$-\mathrm{m}_{\dot{\theta}}$
$11,3,1$	1.51259	$1 \cdot 40437$	$1 \cdot 53003$	2.10147
$11,3,2$	1.40335	1.34883	1.55412	2.05912
$11,3,4$	1.34727	1.31594	1.48847	1.96098
$11,3,6$	1.35542	1.30973	1.49859	1.96079
$11,3,8$	1.35528	1.31211	1.49986	1.96459
$15,3,6$	1.36068	1.31172	1.44211	1.90889
$15,3,6 *$	1.38210	1.32350	1.42162	1.89053
$23,3,1$	1.43383	1.35860	1.42167	1.95046
$23,3,2$	1.35934	1.31740	1.39115	1.87678
$23,3,4$	1.36596	1.31231	1.40355	1.88174
$23,3,4^{*}$	1.39588	1.32880	1.37927	1.86115

${ }_{m}=11$ rounding is used.

TABLE 48
Oscillatory Pitching Derivatives of Arrowhead Planform $11\left(A=2, M=0.7806, x_{0}=0.8080 \bar{c}\right)$.
(a) Direct flow

Solution m, N, q	$-z_{\theta}$	$-m_{\theta}$	$-z_{\theta}^{\circ}$	$-\mathrm{m}_{\theta}^{\circ}$
$15,3,1$	1.28057	0.34638	1.28796	0.77006
$15,3,2$	1.26093	0.35840	1.32819	0.77711
$15,3,4$	1.26452	0.35561	1.34830	0.78473
$15,3,6$	1.26386	0.35614	1.35021	0.78534
$15,3,8$	1.26377	0.35631	1.35106	0.78565
$15,4,6$	1.26503	0.35613	1.35316	0.78794
$31,2,2^{*}$	1.27056	0.34793	1.27354	0.74557
$31,3,2^{*}$	1.27252	0.34770	1.28666	0.76560
$15,3,6^{+}$	1.27502	0.34873	1.28313	0.76765

(b) Reverse flow

Solution $\mathrm{m}_{2} \mathrm{~N}, \mathrm{q}$	$-z_{\theta}$	$-\mathrm{m}_{\theta}$	$-z_{\theta}^{\theta}$	$-\mathrm{m}_{\theta}$
$15,3,1$	1.27968	0.32520	1.29814	0.76297
$15,3,2$	1.28051	0.33272	1.25990	0.75961
$15,3,4$	1.27883	0.33626	1.24700	0.75667
$15,3,6$	1.27932	0.33445	1.24791	0.75703
$15,3,8$	1.27987	0.33327	1.24917	0.75750
$15,4,6$	1.27907	0.33452	1.25153	0.75929
$31,2,2^{*}$	1.27194	0.34836	1.25108	0.74459
$31,3,2^{*}$	1.27328	0.34766	1.26899	0.76055
$15,3,6^{*}$	1.27444	0.34977	1.28002	0.76697

*

$m=15$ rounding is used with the $m=31$ collocation sections.
${ }^{+}$Rounding from equation (48), based on Ref. 23.

TABLE 49
Solutions for Planforms 13 and $16(M=0, \alpha=1)$ with Double Rounding
(a) Complete delta $(A=1 \cdot 5)$

Rounding	$\begin{aligned} & m=11 \\ & 23,3,4 \end{aligned}$	$\begin{aligned} & m=5 \\ & 11,3,8 \end{aligned}$
yo	$0 \cdot 781: 26$	$0 \cdot 78058$
y_{1}	0.77352	
y_{2}	0.75042	0.74973
γ_{3}	$0 \cdot 71249$	
y_{4}	0.66073	0.66026
y_{5}	0.59646	
y_{6}	0.52137	0. 52122
γ_{7}	0.43751	
γ_{8}	0.34734	$0 \cdot 34700$
γ_{9}	0.25393	
y_{10}	$0 \cdot 16078$	r. 16121
y_{12}	0.07317	
μ_{0}	-0.10073	-0.08783
μ_{1}	-0.07509	
μ_{2}	-0.04936	-0.05035
μ_{3}	-0.03319	
μ_{4}	-0.02258	-0.02261
μ_{5}	-0.01556	
${ }^{\text {s }}$	-0.01060	-0.01096
μ_{7}	-0.00761	
μ_{8}	-0.00661	-0.00601
${ }^{\mu}$	-0.00634	
μ_{1}	-0.00254	-0.00334
μ_{11}	0.00193	
Ko	-0.08229	-0.05883
K_{1}	-0.05552	
K_{3}	-0.03065	-0.03436
K_{3}	-0.01938	
K_{4}	-0.01226	-0.00961
κ_{5}	-0.00859	
K_{6}	-0.00287	-0.00609
K_{7}	-0.00036	
K_{8}	-0.00132	-0.00141
κ_{0}	-0.01043	
K_{1}	-0.00475	-0.00275
K_{11}	0.01198	
c_{L}	$1 \cdot 78406$	$1 \cdot 78290$
-C ${ }_{\text {m }}$	$2 \cdot 15280$	2•15922
\bar{n}	0.41473	0.41482
$\mathrm{xac}^{\text {c }} / \overline{\mathrm{c}}$	1-20669	$1 \cdot 21107$

(b) Curved tip $\left(A=3.8993, A=60^{\circ}\right)$

Rounding $\mathrm{m}, \mathrm{N}, \mathrm{q}$	$\begin{aligned} & m=7 \\ & 15,4,8 \end{aligned}$	$\begin{aligned} & m=15 \\ & 31,3,2 \end{aligned}$
yo	- 31041	0. 29224
y_{1}	$0 \cdot 33117$	0.32256
y_{2}	- 344537	0. 34131
γ_{3}	$0 \cdot 34528$	0. 34149
y_{4}	$0 \cdot 32062$	0.31803
y_{5}	$0 \cdot 27214$	0.26936
γ_{6}	$0 \cdot 19851$	$0 \cdot 19818$
y_{7}	$0 \cdot 10585$	$0 \cdot 10622$
μ_{0}	-0.02895	-0.03535
μ_{1}	-0.01068	-0.00874
${ }^{\mu}$	-0.00102.	-0.00315
μ_{3}	$0 \cdot 00168$	$0 \cdot 00096$
${ }_{4}$	0.00399	0.00230
μ_{5}	0.00336	$0 \cdot 00210$
μ_{5}	0.00329	$0 \cdot 00011$
μ_{7}	$0 \cdot 00078$	0.00428
K_{0}	0.01900	0.01178
K_{1}	-0.01424	-0.01296
K_{2}	-0.00553	-0.00786
K_{3}	-0.00363	-0.00584
K_{4}	-0.00082	-0.00429
K_{5}	-0.00183	-0.00492
κ_{6}	-0.00481	-0.00981
κ_{7}	-0.00539	-0.01105
λ_{0}	-0.00941	
λ_{1}	0.00081	
λ_{2}	-0.00425	
λ_{3}	-0.00055	
λ_{4}	-0.00146	
λ_{5}	0.00092	
$\lambda_{\text {s }}$	-0.00244	
λ_{7}	-0.00179	
$\mathrm{C}_{\text {L }}$	2. 38982	$2 \cdot 35002$
$-6_{\text {m }}$	$4 \cdot 52205$	4.46051
n	0.46547	$0 \cdot 46843$
$\mathrm{xac}^{\text {/ }}$	$1 \cdot 89222$	$1 \cdot 89807$

TABLE 50
Effect of Rounding on the Aerodynamic Loading of Planforms 7, 9, 13 and $16(M=0, \alpha=1)$.
a) Constant-chord $\left(A=4, A=45^{\circ}\right)$

Rounding m, N, q n	$\begin{gathered} m=15 \\ 31,3,2 \\ \text { Values } \end{gathered}$	$\begin{aligned} & m=7 \\ & 15,4,8 \\ & { }^{15} C_{L L} \end{aligned}$
0	$3 \cdot 0460$	3. 1321
$0 \cdot 1951$	$3 \cdot 2518$	3. 2815
0. 3827	3.3755	3.3873
0.5556	3.3607	3. 3709
0. 7071	3-1567	3-1623
0.9239	1.9433	1.9483
η	Values of X_{ac}	
0	0.4034	0. 4468
0. 1951	0.2701	$0 \cdot 2739$
0. 3827	0. 2524	$0 \cdot 2508$
$0 \cdot 5556$	$0 \cdot 2410$	$0 \cdot 2410$
$0 \cdot 7071$	0. 2206	$0 \cdot 2197$
0.9239	0.1331	0.1331
C_{L}	3-0042	$3 \cdot 0222$
$\bar{\eta}$	$0 \cdot 4653$	0.4640
$\mathrm{xac}^{\text {/ }}$	1-1748	1-1766

(c) Complete delta $(A=1 \cdot 5)$

$\begin{aligned} & \text { Rounding } \\ & m, N, q \\ & n \end{aligned}$	$\begin{aligned} & m=11 \\ & 23,3,4 \\ & \text { Values } \end{aligned}$	$m=5$ $11,3,8$ $C_{\text {LJ }}$
0	$1 \cdot 1719$	$1 \cdot 1709$
0.2588	$1 \cdot 1256$	1-1246
$0 \cdot 5000$	$0 \cdot 9911$	0.9904
$0 \cdot 7071$	$0 \cdot 7821$	0. 7818
0.8660	0. 5210	0.5205
0.9659	0. 2412	0.2418
η	Values of $x_{\text {ac }}$	
0	$0 \cdot 4057$	0.4156
$0 \cdot 2588$	0.3158	$0 \cdot 3172$
0.5000	0. 2842	$0 \cdot 2842$
0.7071	0.2703	$0 \cdot 2710$
0.8660	0.2690	0.2673
0.9659	0.2658	$0 \cdot 2707$
$\mathrm{C}_{\text {L }}$	$1 \cdot 7841$	1.7829
$\bar{\eta}$	0.4 .147	0.4148
$\mathrm{x}_{\mathrm{a} \cdot \mathrm{c}} / \mathrm{c}$	1-2067	1. 2111

(b) Arrowhead wing $(A=\sqrt{2})$

$\begin{aligned} & \text { Rounding } \\ & m_{2} N, q \end{aligned}$ η	$\begin{aligned} & m=15 \\ & 31,3,2 \\ & \text { Values } \end{aligned}$	$\begin{aligned} & m=7 \\ & 15,4,8 \\ & \text { of } \quad C_{L L} \end{aligned}$
0	2.1833	2. 1980
0. 1951	$2 \cdot 1934$	2.1966
0. 3827	$2 \cdot 1200$	$2 \cdot 1209$
0.5556	$1 \cdot 9638$	1.9650
0.7071	$1 \cdot 7323$	1-7327
0.9239	1-0081	1-0091
n	Values of $\mathrm{x}_{\text {ac }}$	
0	$0 \cdot 3878$	0.4062
0. 1951	$0 \cdot 2925$	0. 2951
$0 \cdot 3827$	0.2653	- 2652
0. 5556	0.2517	- 22518
0.7071	0.2364	0.2356
0.9239	0.1552	0-1554
$\mathrm{C}_{\text {L }}$	2.7499	2.7533
-	$0 \cdot 4380$	$0 \cdot 4378$
$\mathrm{xac}^{\text {c }}$	$1 \cdot 1320$	$1 \cdot 1354$

(d) Curved $\operatorname{tip}\left(A=3.8993, A=60^{\circ}\right)$

$\begin{aligned} & \text { Rounding } \\ & \text { m, N, q } \\ & \eta \end{aligned}$	$\begin{aligned} & m=15 \\ & 31,3,2 \\ & \text { Vailues } \end{aligned}$	$\begin{aligned} & m=7 \\ & f=c_{L L} \\ & f, 4,8 \end{aligned}$
0	$2 \cdot 1334$	2. 2660
0. 1951	$2 \cdot 3547$	2.4175
$0 \cdot 3827$	$2 \cdot 4915$	2. 5212
0.5556	$2 \cdot 4929$	2. 5205
$0 \cdot 7071$	$2 \cdot 3216$	2.3406
0.9239	$1 \cdot 4467$	1.4492
η	Values of X_{ac}	
\bigcirc	0.4737	0.5449
0.1951	0.2771	- 2851
- 38227	0.2592	- 25350
0. 5556	0.2472	0. 2451
$0 \cdot 7071$	0.2428	0. 2376
0.9239	0.2494	0.2334
$\mathrm{C}_{\text {L }}$	$2 \cdot 3500$	2. 3898
$\bar{\eta}$	0. 4684	0.4655
$\mathrm{xac}_{\text {c }} / \overline{\mathrm{c}}$	1•8981	1-8922

TABLE 51
Constant-Chord Wing ($A=4, \Lambda=45^{\circ}, M=0$) with Double Rounding in Oscillatory Motion.
(a) Coefficients in airect filow

Rounding m, N, q	$m=7$ $15,3,6$	$\begin{aligned} & m=11 \\ & 23,3,4 \\ & \hline \end{aligned}$	$\begin{aligned} & m=15 \\ & 31,3,2 \end{aligned}$
$\mathrm{I}_{\mathrm{L} 1}$	$3 \cdot 02152$	$3 \cdot 00800$	3.00424
$\mathrm{I}_{\mathrm{L} 2}$	$4 \cdot 78363$	$4 \cdot 74831$	4-74408
I_{L}	-0.32363	-0. 33111	-0.33374
${ }_{\text {L }}$	$8 \cdot 51511$	8. 45181	8.45275
$\mathrm{I}_{\mathrm{L} 5}$	-0.46302	-0.45721	-0.45477
- ${ }_{\text {m1 }}$	$3 \cdot 55438$	3-53227	3. 52927
$-\mathrm{I}_{\text {m2 }}$	$6 \cdot 43946$	6. 39549	6. 39485
$-I_{\text {m }}$	-0. 24771	-0.25582	-0. 25785
-I	12.72098	12.64651	12.65811
$-I_{\text {m } 5}$	-0.05144	-0.04078	-0.03547
$-\mathrm{I}_{\mathrm{m}}^{*}$	5.06766	$5 \cdot 04313$	$5 \cdot 04386$
$-\mathrm{Im}_{\text {m }}$	10.03470	9•98231	9-98954

(b) Coefficients from reverse flow
(m, $N, q)=(31,3,2)$ with $m=15$ rounding

Reversed wing	
$\bar{I}_{L 1}$	3.01224
$\bar{I}_{L 1}$	-0.50932
$\bar{I}_{L 3}$	-0.35382
$\bar{I}_{L 4}$	0.99704
$\bar{I}_{L 5}$	-0.07477
$-\bar{I}_{m 1}$	-1.73151
$-\bar{I}_{m 2}$	1.11936
$-\bar{I}_{m 3}$	0.12424
$-\bar{I}_{m 4}$	-0.94930
$-\bar{I}_{m 5}$	0.34458
$-\bar{I}_{m 1}^{*}$	1.95710
$-\bar{I}_{m 2}^{*}$	-1.41991

Reverse flow	
$I_{L 1}$	3.01224
$I_{L 2}$	$4 \cdot 74375$
$I_{L 3}$	-0.35382
$I_{L 4}$	8.43236
$I_{I 5}$	-0.47806
$-I_{m 1}$	3.52156
$-I_{m 2}$	6.37243
$-I_{m 3}$	-0.27905
$-I_{m 4}$	12.60031
$-I_{m 5}$	-0.05871
$-I_{m 1}^{*}$	5.02792
$-I_{m 2}^{*}$	9.94745

[^2]TABLE 51-continued

Constant-Chord Wing ($A=4, \Lambda=45^{\circ}, M=0$) with Double Rounding in Oscillatory Motion.
(c) Pitching derivatives $\left(x_{0}=0.5 \mathrm{c}\right)$

	Direct flow			Reverse flow
$m_{9} \mathrm{~N}, \mathrm{q}$	$15,3,6$	$23,3,4$	$31,3,2$	$31,3,2$
$-z_{\theta}$	1.51076	1.50400	1.50212	1.50612
$-m_{\theta}$	1.02181	1.01414	1.01357	1.00772
$-z_{\theta}^{\circ}$	1.47462	1.45660	1.45411	1.44190
$-m_{\theta}^{\cdot}$	1.46997	1.45847	1.45913	1.44535

Fig. 1. Convergence of local aerodynamic centres on rectangular wings with respect to \bar{m} and N.

Fig. 2. Convergence of lift slope and centres of lift on a curved-tip wing with respect to \bar{m} and N.

Fig. 3. Convergence of pitching derivatives for a constant-chord wing with hyperbolic leading edge.

Fig. 4. Convergence of pitching stiffness and damping with respect to m for a sweepback wing of hieh asject ratio.

Fig. 5. Correlation of convergence with respect to \bar{m} for rectangular wings in steady flow $(N=3)$.

Fig. 6. Convergence of aerodynamic centres of wings with streamwise symmetry from direct and reverse flow ($M=0$).

Fig. 7. Convergence of pitching damping derivatives about axis of streamwise symmetry from direct and reverse flow.

Fig. 8. Effect of m and q on spanwise distributions of $X_{a c}$ for three constant-chord wings of aspect ratio $4(M=0)$.

FIG. 9. Pitching damping against axis position for sweptback wings of constant chord with and without central kink.

$\stackrel{\rightharpoonup}{n}$

Fig. 10. Effect of q on lift slope and aerodynamic centre of an arrowhead wing in compressible flow

$$
(m=15) .
$$

Fig. 11. Convergence of lift slope and aerodynamic centre with respect to m for a sweptback wing of high aspect ratio.

Fig. 12. Convergence of local lift and $X_{a c}$ at centre section of a sweptback wing of high aspect ratio.

Fig. 13. Effect of m on damping derivatives against axis position for a sweptback wing of low aspect ratio at $M=0.8$.

Fig. 14. Effect of N on spanwise distributions of $X_{a c}$ on slender delta and gothic wings ($A=0.0001$).

Fig. 15. Effect of N on central chordwise loadings of delta wings of aspect ratios $0 \cdot 0001$ and $1 \cdot 5$.

Fig. 16. Effect of N on pitching damping against axis position for slender delta and gothic wings ($A=0.0001$).

\&

Fig. 17. Convergence of lift slope and pitching damping on a curved-tipped wing at $M=0.8$ with respect to \bar{m} and m.

Fig. 18. Effect of q on spanwise distributions of $X_{a c}$ for two curved-tipped wings and comparison with experiment.

Fig. 19. Approximate criterion for selecting \bar{m} for a given planform, Mach number and number of chordwise terms.

Fig. 20. Comparisons with exact theory of central chordwise loadings of a slender gothic wing with various amounts of rounding.

Fig. 21. Calculated effect of m as a rounding parameter on central $X_{a c}$ and total lift of four
wings ($M=0$).

Fig. 22. Convergence of pitching damping derivatives of an arrowhead wing with fixed rounding from direct and reverse flow.

Fig. 23. Approximate effect of rounding on total and locals loads from solutions for sweptback wings with twice the standing rounding.
(C) Crown copyright 1970

Published by
Her Majesty's Stationery Office

To be purchased from 49 High Holborn, London WC1 13a Castle Street. Edinburgh EH2 3AR I09 St Mary Street, Cardiff CF1 JJW
Brazennose Street, Manchester M60 8AS 50 Fairfax Street, Bristol BS 1 3DE
258 Broad Street, Birmingham 1
7 Linenhall Street, Belfast BT2 8AY or through any bookseller

SBN 114703345

[^0]: *Replaces N.P.L. Aero Report 1278-A.R.C. 30607.

[^1]: + Table includes solutions with non-standard central rounding.
 *Table includes results calculated from solutions for the wing in reverse flow.

[^2]: ${ }^{+}$The coefficients are evaluated from those for the reversed wing by equations (33) and (34).

