
AERONAUTICAL RESEARCH COUNCIL 
REPORTS AND MEMORANDA 

By H. C. GARNER 
Aerodynamics Division N.F.L. 

LONDON : HER MAJESTY’S STATIONERY OFFICE 
1970 

PRICE &2 12\ Ot/ !f2’60] NET 



Numerical Appraisal of Multhopp’s Low-Frequency 
Subsonic Lifting-Surface Theory 

By H. C. GARNER 
Aerodynamics Division N.P.L. 

Reports and Memoranda No. 3634* 
October, 1968 

Summary. 
A brief review of oscillatory theories reveals that some of these suffer from a defect that has been 

corrected in the Algol programme now subject to critical examination. Its features in steady and low- 
frequency subsonic flow are outlined, and extensive tabulated results are presented for seventeen plan- 
forms. The accuracy and convergence of solutions are studied in relation to arbitrary parameters re- 
preauiitiiig chordwise and spanwise collocation positions, spanwise integration points and the essential 
central rounding of sweptback wings. Rectangular and other wings with streamwise symmetry, untapered 
and tapered sweptback wings, slender and curved-tipped wings show progressively slower convergence, 
and they are examined in respect of overall forces, spanwise loading, local aerodynamic centres, central 
chordwise loading and oscillatory pitching derivatives. Some new general criteria are recommended for 
selecting the arbitrary parameters. 

Serious inaccuracy arising from the original defect is established, and hence the need to examine 
theories for general frequency. The residual errors in the Algol programme may stem from high or low 
aspect ratio demanding extra spanwise or chordwise terms, but the most elusive cause of collocation 
error in the standard solutions is found to be insufficient central rounding of highly sweptback wings. It is 
demonstrated, however, that the rounding itself often influences the aerodynamics as much as the standard 
collocation error and in the opposite sense, so that one correction is useless without the other. Approxi- 
mate results with both effects taken into account provide a few examples of improved comparisons with 
exact theory and experiment. 

*Replaces N.P.L. Aero Report 1278-A.R.C. 30 607. 
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1. Introduction. 
Consider a planform S in oscillatory vertical motion relative to a free stream of density p, subsonic 

Mach number M and of velocity U parallel to the positive x-axis. Let the real part of Z(x, y) exp(iot) 
denote the upward displacement of the surface at time t, and let the load distribution per unit area over the 
planform be written as the real part of 

Then under the usual linearizing assumptions a double integral equation 

dz ioi! 
Z(X’,~’)K(X’-X, y’-y, 0, M)dx’dy’ = -----, s s- dx U 

s 

with a complicated kernel function K ,  relates the complex loading function I to the instantaneous flow 
dircctinn at (x, y) on the planform. Oscillatory lifting-surface theory poses the problem of evaluating 7, 
when 2 is given. With very few exceptions (see Section 3) mathematical solutions are unobtainable and 
recourse to numerical analysis is essential. 

Garrick’ has described the historical background to the subject from the earliest theoretical methods to 
those available some twelve years ago. He remarks that the problem of three-dimensional flow about 
wings must be considered to be in a state of continuing development, and the statement remains true. 
Williams’ has contributed a later account of theoretical progress with emphasis on the mathematical 
formulation. Theoretical methods differ according to whether exponential factors are inserted in the 
expression (1) or whether the velocity potential over the wing and wake is used in place of7 in equation (21. 
The corresponding changes in the kernel function transform the analysis, but of perhaps greater import- 
ance are the basic distinctions in the technique of evaluating equation (2) as exemplified in the different 
classes of solution, viz., strip theory, vortex lattice, box grid, low aspect ratio, high aspect ratio and exact 
kernel. 

The most simple procedure with its powerful empirical capability is strip theory. Van de Vooren and 
Eckhaus3 have developed this for tapered swept wings, and their method has been extended by Eckhaus4 
to compressible subsonic flow. Such methods are known to give inaccurate aerodynamic damping forces 
at low frequencies, and their main application is to cases of high aspect ratio and frequency. Vortex 
lattice and box grid methods for unsteady flow have been developed since the publication of Ref. 1. These 
exploit changes in mathematical model involving discrete elements of vorticity to simplify the evaluation 
of equation (2) or some corresponding double integral. LehrianV vortex lattice method for incompressible 
flow and its further development for subsonic and sonic flow by Runyan and Woolston6 have been widely 
used. The chief disadvantage of such methods is the uncertainty resulting from the extra parameters that 
define the lattice, and there is the burden of proof that the results converge as the lattice spacing is reduced. 
Although a box method, such as that due to Stark7, is probably more promising from the standpoint of 
establishing accuracy, the same disadvantages have to be overcome. The whole problem of accuracy stems 
from the fact that there are no exact mathematical solutions for practical planforms, and the change of 
mathematical model requires justification by numerical analysis alone. 

Other methods involve simplifications to the kernel function. One extreme is slender wing theory, 
formulated for incompressible flow by Garrick8 and for compressible flow by Mazelskyg. Lawrence and 
Gerber” have treated wings of low aspect ratio in incompressible flow by splitting the downwash integral 
into a slender wing term and a residual part in which an approximation is made. The counterparts for 
wings of high aspect ratio are Cicala’s’’ lifting line theory and the extension for subsonic compressible 
flow by Reissner” who splits the downwash integral into a two-dimensional term and a residual part with 
a suitable approximation. Theories such as Refs. 10 and 12 lead to interesting mathematics, but suffer from 
restricted applicability. Moreover, they stem from the decade before the intensive development of com- 
puters and the readjustment of theoretical methods that has ensued. 
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The use of the exact kernel function is no longer inhibited by computational demands. The basic 
methods of Watkins et d 1 3  and R icha rd~on’~  differ in that RcC 13 makes no concessions to expediency 
of computation, while Ref. 14 implies greater numerical approximation in the pursuit of economy. The 
latter has been developed by Wsu”, and both Lashka“ and Davies” have fully mechanized applications 
of equation (2) with K as formulated in equation (22) of Ref. 13. The procedure is first to evaluate the 
chordwise integral with respect to x’, and then to integrate across the span. This latter spanwise integration 
turns out to be crucial and represents a considerable threat to accuracy. 

All the theoretical methods mentioned above (Refs. 3 to 17) apply to general frequencies of oscillation. 
The mathematical formplation is of course much simpler when only first order effects of frequency are 
sought. The low-frequencymethod ofRef. 18 has been developed with a view to the reduction of numerical 
errors from spanwise integration. In the present report extensive calculations for a wide range of planforms 
are analysed in order to demonstrate the errors and how they are reduced. The uncertainties that remain 
are probably no greater than those due to the initial lincarization. The convergence of solutions for the 
aerodynamic loading has been studied with more success for some planforms than others, but the less 
amenable ones are of more practical interest. Although the primary purpose of the investigation is the 
appraisal of Ref. 18 as a numerical technique, perhaps of greater importance is the implication that the 
methods of Refs. 13 to 17 for general frequency are capable of significant improvement by straightforward 
modification. 

2. Steady-Flow and Low-Frequency Theories. 
Before the essential features of Ref. 18 are described, a brief account of the historical development of 

Multhopp’s low-frequency subsonic lifting-surface theory is desirable. The original steady-flow theory of 
Ref. 19 was extended to slow pitching oscillations in Ref. 20. The chordwise integration of equation (2)  is 
carried out first. Although Multhopp recognized the need for care in the subsequent spanwise integration 
and paid attention to the logarithmic singularity in the integrand, his treatment was promptly improved 
by Mangler and Spencer2’ ; with this refinement Multhopp’s theory has been widely used for many years. 
The same basic technique of spanwise integration is carried over into Refs. 16 and 17. Multhopp’s original 
theory was wisely restricted to N = 2 chordwise terms in the load distribution, and subsequent extensions 
to larger N have been made without due care. These applications entail collocation points at chordwise 
positions 

which extend closer to the leading edge x = x1 as N increases. Let E denote an odd number of spanwise 
integration points between the wing tips, viz., 

with n = 0, f 1,. . . *+(E- (4) 

Then it is shown in Ref. 22 that, to ensure 1 per cent accuracy in the calculated steady downwash at the 
centre of simply loaded rectangular wings of aspect ratio A, it is necessary to take (%+ 1) > 4A. The 
analysis of Ref. 22 has been extended to downwash points towards the leading edge of the centreline (y = 0) 
and reveals inaccuracies greater than 1 per cent if (m+ 1) < 2A/& An increase in N with fixed 2 must 
ultimately lead to divergent results, and it is tentatively recommended in Ref. 18 that 

7t 
E+ 1 3 2A sec A, cosec’ ~ 2N+1’ 

where A ,  is the angle of trailing-edge sweepback. Thus for A = 6, A ,  = 30’ and N = 4, say, equation (5) 
would require that E > 117. 
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Ref. 18 meets this demand by an increase in the number of spanwise integration points to 

Ei = q(m+ 1)- 1 ,  (6) 

where m is the number of collocation sections and q is either unity or an even integer which will need 
to be increased as N is increased. When q = 1, the summation of downwash takes the form of equation (22) 
of Ref. 18 and the calculation is simply that of Ref. 20. As described in Section 2.4 of Ref. 18, the procedure 
for spanwise integration for q 2 2 is to evaluate the downwash at the same collocation sections 

(7) 
7tV 

y,, = cos 9, = sin - with v = 0, 2 1 , .  . . k$m- 1) 
m + l  

in terms of the loading coefficients at the Ei sections of equation (4). Then Multhopp’s interpolation 
polynomial 

with z = &(m- 1) is applied to each loading coefficient at every value of 

that occurs from equation (4) in the summation of downwash. Thus the downwash is expressed more 
accurately as a linear combination of the coefficients in the load distribution 

imM2 x’ 
yn cot 34 + 4pn (cot &6 - 2 sin 4)  

+ IC, (cot 46 -2 sin 4 - 2 sin 2 4 )  

+An (cot 36-2 sin 4 - 2  sin 24 -2 sin 3#) . (10) 1 
Here the number of functions yn, pn ,  etc., is equal to N ,  pz = 1 - M 2 ,  the subscript n denotes that 

(1 1) 
. nn y‘ = y; = s sin - with n = 0, )1,. . . f$m-1) 

m +  1 

and the angular chordwise co-ordinate 4 is given by 

x’ = xln+;cn(l-cos4). (12) 

The boundary conditions (2) at the m N  collocation points, defined by equations (3) and (7), become 
ordinary linear simultaneous equations to determine the unknowns yn, p,, etc. 

More recent developments in steady subsonic lifting-surface theory are described in Refs. 23 and 24. 
Zandbergen et a123 use a parameter such as 4 in equation (6), but couple this with a refined technique for 
spanwise integration. Hewitt and KellawayZ4 offer a different approach in which the spanwise integration 
of equation (2) precedes the chordwise integration. Although both these methods have certain advantages 
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in numerical technique, Ref. 18 is adequate for many purposes and has the additional facility for treating 
low-frequency oscillations. 

The present applications are to wings at a steady uniform incidence a or in oscillatory pitching motion. 
In steady flow the single solution 

is required, and the load distribution I = 1,  is obtained in the form of equation (10) without its exponential 
factor. In most of the oscillatory cases four additional solutions are obtained with 

a = u2 = x/C giving 1 = 1, 

a = a3 

a = a4 = 

from equation (23) of Ref. 18 with 1 = I ,  

giving 1 = 1, 

J a = a5 from equation (23) of Ref. 18 with 1 = I 2  

where 2 is the geometric mean chord and a full derivation of a3 is given in Ref. 20. To each incidence 
a = a, there corresponds a steady wing loading 

from which are calculated the coefficients of lift and pitching moment 

and also the second moment coefficients 

n7c 

m + l '  
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These coefficients determine the four pitching derivatives as formulated in equations (39) of Ref. 18 and 
also those for the reversed planform by equations (38) of Ref. 18. 

In the treatment of swept wings major uncertainty arises from the central kink in the planform. Although 
the form of load distribution (10) or (15) is acceptable for smooth planforms, it is known to lead to logarith- 
mically infinite downwash along a section where a kink occurs. The common practice is therefore to 
smooth the planform by means of artificiaI rounding. In order to define the planform at the sections (4), 
the rounding is formulated according to equatipn (28) of Ref. 18. When both leading and trailing edges have 
straight portions in the range 

n: 
0 < y  < y1 = ssin- m+I’ 

the leading edge and chord in  thc range I,I.\ < y1 become 

1 .  
Here c, is the true central chord and the origin is chosen at the leading apex so that 

where A. is the angle of leading-edge sweepback. The factor 1/6 in equations (19) is chosen to be consistent 
with Multhopp’s rule in Appendix VI of Ref. 19. Although this standard rounding is controlled by the 
value of m through equation (18), there is provision for any other desired rounding. 

For a given planform, including any artificial rounding and the usual lateral scaling factor j3 in cases of 
compressible flow, there are only the three integers m, N and q to specify the matrices that govern the 
simultaneous equations for y., pn, etc. The programme of Ref. 18 limits the number of chordwise terms to 
N < 4 and there are interdependent restrictions on m, N and q imposed by the capacity (32K) of the 
N.P.L. KDF9 computer and an arbitrary maximum running time of 45 minutes. The tables in Section 1 of 
Ref. 18 illustrate the restrictions and typical running times. In the present applications it is possible to 
study the convergence of the theoretical results with respect to each of the parameters. The extent to which 
full convergence is frustrated by the restrictions is dependent on the planform and the aerodynamic 
quantity being considered. To be necessary, the method must show inadequate convergence with respect 
to N when q = 1. To be successful, it must show convergence with respect to q, m and N .  

3. Numerical Results. 
Calculations have been made for the seventeen planforms listed in Table 1. When both leading and 

trailing edges are straight, the planform is defined by the tabulated values of aspect ratio A = 2s/E, 
cJE, tan A. and tan A,, themselves related by 

cr/E = 1 ++ A (tan A,, - tan A,) .  (21) 

The exceptions are Planforms 4,6,15, 16 and 17 for which additional formulae or data are included. The 
final column ofTable 1 gives references to earlier work on some of the planforms. Stark’s2’ theory has been 
applied to the rectangular wing ( A  = 2). The circular planform is one example of an exact solution by 
Van SpiegelZ6, whose theory and corrected results are preseqted by Benthem and WoutersZ7. Other 
examples where exact theory is available are the very slender delta and gothic planforms ( A  = 0.0001) to 
which Garrick’s* theory is applicable. Planforms 10,l l  and 17 are chosen because they have formed the 
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subjects of earlier theoretical and experimental research (Refs. 30,31 and 35). Although comparison with 
experimental results forms a very minor part of the present investigation, five of the remaining planforms 
have been chosen because measured aerodynamic data were available in Refs. 28,29,32,33 and 34. These 
represent a wide range of shapes and offer the opportunity to examine the difficulties associated with high 
and low aspect ratio, leading-edge and trailing-edge sweepback and curved tips. 

The tabulated theoretical results for each of the planforms are summarized in Table 2. Tables 3 to 34 
concerning steady flow (a = 1) are sub-divided into complete solutions and total forces (Tables 3 to 22) 
and into spanwise distributions of lift and aerodynamic centre (Tables 23 to 34). The next sequence 
involves oscillatory pitching motion, the coefficients being given in Tables 35 to 42 and the pitching 
derivatives in Tables 43 to 48. As the discussion unfolds, it will become clear that one crucial source of 
inaccuracy is associated with the need for artificial central rounding of sweptback wings, as defined in 
equations (18) to (20). Some attempts have been made to reduce these errors and to evaluate the effect of 
rounding, and Tables 48 to 50 are included primarily for this purpose. 

3.1. Steady Flow. 
In  the case of7cro frequency Ref. 18 reduces to steady flow, and nl to~ethcr  o\er  200 wlutions have been 

obtained for the planforms listed in Table 1 at unit incidence. The non-dimen\ional loading 

7cn 

m + l  
at the sections q = sin ~ are given by equation (15) where the subscript r( = 1) may be omitted. The 

solutions in Tables 3 to 22 are N sets of functions yn, fin,. , . , e.g. when N = 4, 

where z = $(m - 1). The local lift coefficient and aerodynamic centre are given by 

and 

The total lift and moment about the origin at the leading edge of the root chord are evaluated as coefficients 
C, = C,, and C, = C,, from equations (16). The centre of lift or aerodynamic centre acts at a distance 
x,, downstream of the origin and is readily evaluated as 

The spanwise centre of pressure of the half wing is defined as 
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where cC,,/Z C ,  represents the spanwise loading and the distribution of y satisfies equation (8). For 
symmetrical spanwise loading we may write 

Thus CL = $nAa,, and it follows from equations (8), (25) and (26) that 

- 4 i ( - l ) k " u Z k + l  

(2k - 1) (2k + 3) ' 
k = O  

where 

a2k+  1 = - m+ 1 
y v  sin (2k + 1) 8, , 

v =  - 2  

A typical result, for m = 11, is 

0.02671 yo+O.24372yl t0.43514 y~+O*49904~3+0.43349~4+O*24980 y s  q =  (29) 0.50000 yo + 0.96593 7, +0.86603 yz  + 0.7071 1 y 3  + 0.50000 y4 +0.25882 y s  ' 

Nearly every solution that has been obtained with E = m or q = 1 is seen to be inadequate. There are 
examples in Tables 3,4,5,7,8,10,12,13, 17,18,20,21 and 22, and the behaviour of IC, or I ,  with increasing 
q illustrates the point at once. In some cases C ,  and C,,, prove to be unacceptable, and there is no doubt 
that the method of Ref. 18 (with q 2 2) is necessary. More careful study is required to establish whether 
the method converges satisfactorily. Fig. 1 shows the behaviour of local aerodynamic centres from 
equation (23) for simple rectangular planforms. Convergence with respect to m is so perfect that X,, can 
be plotted against a logarithmic scale of (%+ 1) with insignificant changes as m is increased from 7 to 15. 
The horizontal lines joining points corresponding to the larger values of (E+ 1) show convergence with 
respect to % or q. The separate results for N = 2,3 and 4 chordwise terms show perfect convergence for the 
centre section when A = 2 and satisfactory, but slower, convergence with respect to N near the tip when 
A = 4. The results for the smaller aspect ratio when E = m = 7 illustrate, perhaps surprisingly, how the 
previous method (Ref. 18 with q = 1) diverges with respect to N .  A less favourable example is the highly 
swept Planform 16 with curved tips considered in Fig. 2 where, as in Fig. 1, the false zeros and large scale 
tend to exaggerate the discrepancies. The lift slope aC,/aa and the overall centres of pressure f and x& 
are plotted against (%+l). The effect of increasing m from 15 to 31 is now discernible, but not large. 
Convergence with respect to E is slower, but satisfactory. Convergence with respect to N would appear to 
be fairly good for q = 1 and q = 8 (respectively E+ 1 = 16 and 128 when m = 15), but this is illusory in 
the former case and the resulting lift slope is about 7 per cent too high and the aerodynamic centre nearly 
0.042 too far forward. 

These examples serve as preliminary illustrations. The different types of planform, in steady and 
oscillatory flow, will be considered in Section 4 where each sheds new light on the numerical appraisal. 
An attempt is made in Section 5 to recommend a suitable choice of m, N and E. A critical study of the use of 
artificial central rounding is deferred until Section 6. 
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3.2. Oscillatory Flow. 
The output from the Algol programme of Ref. 18 can give the coefficients 

I,, (r = 1,2,. . . 5 ) ,  - I , ,  (r  = 1,2,. . .5)  and -Zkr (r  = 1,2) (30) 

from equations (16) and (17). The coefficients are listed from various solutions for thirteen of the planforms 
in Tables 35 to 42, but in the last instance and in a few other solutions not all twelve coefficients are 
available. But there are always sufficient to determine the pitching derivatives defined by 

(31) 
Lift = Real part of - pU2S(ze + iVz&B0 eiwr 

Moment = Real part of pU2SZ(me + i i j ~ , # ~ )  eio* 

where the frequency parameter V = oZ/U,  Bo is the amplitude of pitching oscillation and the pitching 
moment is nose-up and about the axis x = xo. In terms of the coeficients (30) 

1 - z, = - I , ,  
2P 

1 -m --[ 1 --IL,+(-Iml) xo 
e - 2 p  c 

where P2 = 1 - M 2 .  

Among the various applications of the reverse-flow theorem considered by Lehrian and the present 
author, Section 5.1 of Ref. 36 gives the formulation for low-frequency pitching oscillations. The derivatives 
(32)  may be expressed in terms of the coefficients (30) for the reversed wing, i.e. the given planform in a 
stream of reversed direction and unchanged Mach number. These coefficients are denoted by I,*, - I r n ,  
and - Z m r .  It can be shown that there are precise relationships between the two sets of coefficients, which 
are conveniently expressed in matrix form as follows. 

-* 

1 

1 

22 

1 

A2 

/I3 

0 0  0 0 

- 1 0  0 0 

-22 1 0 0  

0 0 - 1  0 

-1 0 -1 1 

-212 1 - 1 2  21 

0 0 -21 0 

-A2  0 -2A2 21 

0 0  0 

0 0  0 

0 0  0 

0 0  0 

0 0  0 

-1 0 0 

0 1  0 

0 1 - 1  

(33) 
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and 

where I = cr/C and the length c, enters in as the displacement between the origins of the two co-ordinate 
systems. Both square matrices have the property of self-inversion, so that the column matrices on the two 
sides of equation (33) or (34) can be interchanged. The numerical results do not satisfy these equations 
exactly, and proof of inaccuracy due to inadequate collocation or spanwise integration can often be 
established. 

Woodcock37 and Dat et aE38 have considered the accuracy of collocation solutions to oscillatory 
problems in subsonic lifting-surface theory. Ref. 37 reveals large discrepancies for the present Planforms 
1,4 and 11 at high frequency parameter, and it is important to resolve any similar discrepancies at low 
frequency. Ref. 38 suggests that lifting-surface theory can be optimized in aeroelastic applications with the 
aid of the reverse-flow theorem, and it will be relevant to study the convergence of the pitching derivatives 
from equations (32), not only with the usual coefficients from direct flow but also by reverse flow with the 
aid of equations (33) and (34). 

The peculiar problems of the various types of planform will be discussed in Sections 4.1 to 4.6. But, as 
for steady flow, two figures have been prepared to illustrate the convergence of pitching derivatives under 
favourable and adverse circumstances. In Fig. 3 all four pitching derivatives are plotted against a logarith- 
mic scale of (E+ 1 )  for Planform 6 having a smooth hyperbolic leading edge and constant chord. The 
small slopes of the lines joining points corresponding to the larger valuec of iii 4 1 0 ~  satkfactory con- 
vergence, although the damping derivatives are somewhat slower to settle. The results for Ei = 95 indicate 
satisfactory convergence with respect to m and N .  The points (0) for m = Ei = 15 show relatively poor 
convergence with respect to N when q = 1, but the discrepancies for N = 4 nowhere exceed 0.02. Plan- 
form 12 has high aspect ratio A = 8 and a central kink typical of sweptback wings, and both these features 
would be expected to aggravate convergence. Figure 4 shows the direct pitching derivatives for an axis 
x,, = 2C against a logarithmic scale of (m + 1). With N = 3 throughout, convergence is sought firstly with 
q = 1 and secondly with Ei = 95 up to the limit of rn imposed by the KDF9 computer. The two processes 
show a tendency to approach a common limit, but for neither m, nor me do the respective curves come 
within 0.03 of each other. The comparable discrepancies in Fig. 3 for the smooth edges and lower aspect 
ratio are of order 0.002. 

4. Convergence of Solutions. 
The planforms of Table 1 have been chosen from different standpoints, and it is convenient to group 

them in the following sub-sections. The rectangular wings (Planforms 1,2,3) cover a range of aspect ratio, 
and the rate of convergence with respect to Ei shows an inverse correlation with A. The wings with stream- 
wise (fore-and-aft) symmetry for which oscillatory calculations have been made (Planforms 2,4,5) form a 
natural group and are used for studying numerical results from direct and reverse flow. The three wings of 
constant chord with A = 4 (Planforms 2, 6, 7) show the separate effects of sweepback and the central 
kink. Planforms 8 to 12 constitute an assortment of tapered sweptback wings; the effect of Mach number 
is considered, and the problems posed by Fig. 4 are elaborated. The slender wings (Planforms 13, 14, 15) 
include one that is nosso-slender with better convergence properties illustrated by the chordwise loading ; 
the results for the really slender wings ( A  = O*OOOl) are subjected to comparison with exact theory. Wings 
with curved tips (Planforms 16, 17) show the greatest discrepancies when q = 1 and peculiarly slow 
convergence associated with the tips. 

4.1. Rectangular Wings. 
Selected solutions for the rectangular wings of aspect ratios 2 and 4 at. unit incidence are given in 
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Tables 3,4 and 5. In Table 3 the subscript rz of the four loading functions y,,, p,,, K,, and I,,, relates to equations 
(10) and (1 1) with m = 15. It is seen that the outermost values rc6 and A, converge more rapidly with respect 
to q than I C ~  and i, do ; the more central sections of the wing show discrepancies in the fourth decimal 
place up to Tii = 127, while by E = 47 these have practically disappeared near the tip. The last two 
columns of Table 3 are in remarkable agreement, showing little change as m is increased from 7 to 15. 
Furthermore, unpublished solutions for m, N ,  q = 15,4,2 and 31,4, 1 are identical to six decimal places. 
An independent check from Table 3 of Ref. 25 gives in the present notation C, = 2.471 and x,, = 0.2089?, 
which are in very satisfactory agreement with values in the present Table 3. 

In Table 4 the major part of the error with q = 1 is eliminated as q is increased to 2. It will be found that 
the spanwise integration in Hsu's'' theory is virtually equivalent to that from Ref. 18 with q = 2 and is 
commended thereby. Solutions for A = 4, N = 4 and the same value of Tii in Tables 4 and 5 show surpris- 
ingly little effect of increasing m from 7 to 15. The first two and last columns of Table 5 demonstrate 
excellent convergence with respect to N at the centre section and slower convergence near the tip as in 
Fig. 1. 

Table 23 presents material for a fuller analysis of local aerodynamic centres on the two rectangular 
wings, and Table 24 gives further results for the high aspect ratio A = 8. Unless the consequences of Ref. 
18 are fully appreciated, a solution for this wing with m, N ,  q = 23,3, 1 and 36 collocation points on the 
half wing might seem to promise good accuracy. Yet Table 24 shows that the lift slope X , / a a  is more 
than 2 per cent low when q = 1, while the local X,, at y = 0 is 0-002c too far aft when q = 1 and nearly 
0.004~ too far forward when q = 2. These findings are rationalized in Fig. 5,  where the errors in the two 
quantities are plotted convincingly against (E + 1)/PA from the available data for N = 3. Similar curves 
with slower convergence can be drawn for N = 4. As foreshadowed in Ref. 22, wings of high aspect ratio 
pose a major problem, especially when larger numbers of chordwise terms are needed. 

Results for oscillatory flow in Tables 35 and 43 will be discussed in Section 4.2. 

aC,lda 

1.7888 
1.7906 

N = 4 1.7903 
Exact 1.7902 

4.2. Wings with Streamwise Symmetry. 
The oscillating circular planform in incompressible flow is a notable exception to the intractable 

methematical problems of lifting-surface theory. The analysis is due to Van Spiege12' and a correction to 
his numerical result for the pitching damping is given by Benthem and Wouters in Table 2 of Ref. 27. We 
consider first the solutions by the collocation method of Ref. 18 for steady flow in Table 6. Convergence 
with respect to q is very good, except near the tip as indicated by the values of when m = 11 and N = 4. 
The solutions with N = 2 and 3 show a small effect of reducing m to 5. The results for the largest values of q 
arc tabulated below and show remarkable convergence with respect to N in perfect agreement with exact 
theory. 

X,JZ 

0.3015 
0.3052 
0.3049 
0-3049 

The aerodynamic centre is plotted against q at the top of Fig. 6. It must be admitted that the circular 
planform is a favourable case with smooth edges and low aspect ratio. 

Table 25 gives the local aerodynamic centres for circular and symmetrically tapered planforms. The 
results for the circular planform ( A  = 1.27) show excellent convergence with respect to m, N and q except 
near the tip where in no respect is the convergence quite complete. Unfortunately there are no reliable 
numerical results from exact theory to form a basis for comparison. The symmetrically tapered wing 
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(A = 4.33) shows good convergence with respect to q and, except near the centre section, little effect of 
increasing m from 11 to 23. Although (m+ 1) = 2A is acceptable for rectangular wings, (m+ 1) > 4A 
seems desirable for both the others. 

Wings with streamwise symmetry present a convenient opportunity to use the relationships in direct 
and reverse flow, since the coefficients I,, = I,, and I,, = Zm,.. Thus by equations (33) the aerodynamic 
centre may be calculated from reverse ff ow to be 

This is compared with equation (24) for direct flow against the logarithmic scale of q in Fig. 6. The results 
with N = 3 are shown to converge to good accuracy within 0.0005 for the rectangular wing (A = 4, 
m = 15), but for the symmetrically tapered wing the discrepancies between equations (24) and (35) are 
0.004 when m = 11 and 0.002 when m = 23 and show little sign of disappearing as q is increased. Such 
uncertainty, though tolerable, is a danger signal. 

The coefficients for the three wings in oscillatory flow are given in Table 35 and the derivatives have 
been calculated for pitching motion about the axes of symmetry from equations (32) with /? = 1. Table 43b 
shows excellent results for the circular wing, good convergence of zg and me with respect to N close to 
exact theory and reverse-flow checks that only reveal errors in the fifth decimal place. Damping derivatives 
for the rectangular and symmetrically tapered wings with N = 3 from Tables 43a and 43c are plotted 
against q in Fig. 7 together with the corresponding results when the reverse-flow equations (33) and (34) 
are used for the coefficients. The upper diagram shows - zg for the rectangular wing with good correlation 
when q = 4 and 6, but a substantial error of 8 per cent when q = 1. The lower diagram shows -me for 
the symmetrically tapered wing with a persisting discrepancy of nearly 0.01 between direct and reverse 
flow for m = 11, that is halved when m = 23 and is compatible with eventual convergence with respect 
to m. 

4.3. Wings of Constant Chord. 
Planforms 2, 6 and 7 all have constant chord and aspect ratio 4 and are considered in incompressible 

flow. The first two have smooth edges and illustrate the effect of sweepbaA without the complication of a 
central kink. The last two have 45 deg of sweepback at the tip and illustrate the effect of the kink. 

From the solutions for steady flow in Tables 4,5,7 and 8 there is found to be no appreciable worsening 
of the convergence with respect to q due to the sweepback or kink. Neither of the swept wings exhibits the 
same remarkahlc conlcrgcnce with rccpcct to 171 as is noted for thc rcctangular wing in Section 4.1 : the 
last two columns of Table 8 show somewhat poorer con\ crycnce for the skinked straight-edged planform. 
Moreover, the larger values of ,Io suggest that there could be a local problem of convergence with respect 
to N at the central kink as well as near the tip. The local aerodynamic centres for the three wings are 
fully listed in Tables 23b, 26a and 26b, and some of the spanwise distributions with N = 4 are plotted in 
Fig. 8. For the rectangular wing there is no effect of m and the small effect of q barely exceeds 0.003. In the 
case of hyperbolic edges there is a minor effect of m and that of q exceeds 0.01 locally. When there is 
the central kink, the effect of q is similar near the tip, but near the centre section both m and q produce 
changes of 0.035 in X ,  and its distribution, referred to the planform without artificial rounding, is less well 
defined. 

The coefficients for oscillatory motion are given in Tables 35a, 36 and 37. Convergence with respect to q 
is evidently less sensitive to sweepback than to aspect ratio (Section 4.1), but the kinked wing introduces a 
marked deterioration in convergence with respect to m. The four pitching derivatives for the swept wings 
have been calculated from equations (32), and their convergence for the hyperbolic-edged wing has 
already been demonstrated in Fig. 3. The results for both wings in Table 44 include sets of derivatives 
calculated from solutions with m, N ,  q = 15,3,6 in reverse flow. The pitching damping derivative -me is 
plotted against axis position xo/E in Fig. 9. The effect of N is indiscernible, and for each wing the full 
curve represents N = 3 and N = 4. But, whereas for the hyperbolic edges the curve from reverse flow is 
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also indiscernible. the broken curve for the kinked wing reveals discrepancies in mng of order 10 per cent 
and exceeding 0.1 for rearward axes. This is an order of magnitude greater than likely residual errors 
from insufficient q and N and still several times what would be expected from the poorer convergence 
with respect to m. For conventional sweptback wings this aspect of numerical solutions needs more 
detailed study. 

4.4. Tapered Sweptback Wings. 
The five planforiiis in this catcg!orv wcrc all chosen for comparison with other work beyond the scope o f  

the present report. Planforms 8, 9 and 12 relate to < t c b a d !  measurements of prc.;surc distribution, and 
Planforms 10 and 1 I to particular oscillatory applications (Refs. 28 to 32). It will not be necessary to 
discuss all the tabulated results, and we shall now concentrate mainly on the effects of m and M .  

The solutions for the cropped delta wing at M = 0.8 in Table 10 include a set of three with N = 3, 
I% = 31 and m = 7,  15 and 31. Although the effect of m is quite small, the convergence with respect to WI 
is unconvincing. Tables 11 to 13 give results, all with m = 15, for an arrowhead wing of identical leading- 
edge sweepback at A4 = 0,0.6 and 0.8. Table 11, comprising solutions for the two lower Mach numbers 
with N = 2,3,4 and q = Z N .  shows cuccllcnt convergence with respect to N and no adverse effect of 
compressibility. Figure 10 is preparcd from the more comprehensive results for M = 0.8. The lift slope 
and aerodynamic centre are plotted against N for three conditions, q = 1 showing errors of about 3 
per cent, q = 2 showing great improvement, and q = 2N when the convergence is really convincing. For 
N = 3, x,,/L: is plotted against M in the lower part of Fig. 10; although the correct trend is predicted with 
q = 1, the curve for q = 6 shows that the error is of the same order as the effect of compressibility. Tables 
27 and 28 give the calculated local aerodynamic centres at M = 0.8 for these wings and Planform 10 of 
lower aspect ratio and sweepback. The latter with N = 4, fixed E = 95 and m = 7,  11 and 15 shows no 
alarming effects on spanwise loading or X,,, but it is the use of the parameter m for high aspect ratio and 
sweepback that needs critical examination. 

Planform 12 has aspect ratio A = 8 and quarter-chord sweepback of 45 deg. As has already been seen 
in Fig. 4 (Section 3.2), oscillatory pitching derivatives for this wing at M = 0 converge inconsistently with 
respect to m ;  no common limit is approached with q = 1 and E = 95 before the capacity of the KDF9 
computer is exceeded. Results for steady flow are contained in Tables 15,29,30 and 31. The overall forces 
from eleven solutions with N = 3 are plotted against the same logarithmic scale of (m+ 1) in Fig. 11, where 
besides the values for q = 1 and G = 95 there are some further results in which the artificial rounding is 
defined by equations (18) to (20) with m = 15, i.e. with y ,  = s sin (n/16), while the number of collocation 
sections m is increased. Under these conditions both the lift slope and aerodynamic centre lie between 
the best values obtainable with q = 1 and G = 95 and the uncertainties appear to be reduced to f 1 i  per 
cent in aC,/aa and f0.015 in x&. The local load gradingcC,JZ;C, and X, ,  at = 0 are plotted similarly 
in Fig. 12, where by contrast the uncertainties are broadened when the fixed m = 15 rounding is con- 
sidered and reach respective values 4 per cent and 0.04. 

The coefficients and pitching derivatives about the mid-root-chord axis are given for four of the swept- 
back tapered wings in Tables 38,39,40,45 and 48. The typical effect of m is illustrated in Fig. 13 by curves 
of the damping derivatives against axis position for Planform 10 at M = 0.8. The factors such as 
inside the square brackets of the appropriate equations (32) may not improve convergence, and there is 
evidence in Table 45b to this effect ; nevertheless, with N = 4 and I% = 95 the curves in Fig. 13 for m = 11 
and m = 15 are close enough to allay serious doubts. It remains to look more closely at the separate 
effects of m as collocation parameter and rounding parameter, and the results for Planform 11 in Tables 48 
are used for this purpose in Section 6. 

4.5. Slender Wings. 
Let s(x) be the local semi-span of a slender planform. Then, provided that the gradient 

ds/dx = s’(x) 3 0 ,  

the trailing edge is unswept and the incidence is uniform, slender-wing theory gives a load distribution 
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Planforms 13 and 14 are complete delta wings of contrasting aspect ratios 1.5 and 0.0001. In the latter case 
equation (36) is applicable, but ACp remains non-zero along the trailing edge x = c,. Thus the assumed 
loading in equation (15), which behaves like O(C,-X)~/~, is incorrect for all q. The slender gothic Planform 
15 has been chosen to have 

so that equation (15) is no longer violated at the trailing edge when a is constant. In this case the singular- 
ities in chordwise loading at the leading and trailing edges are consistent with Multhopp's theory, except 
at the leading apex. 

Steady-flow solutions for these three wings are found in Tables 16 to 18. In Table 16 the not-so-slender 
wing shows good convergence with respect to q everywhere and with respect to N away from the tip. 
Table 17 reveals poorer convergence in both respects when A = 0*0001. Solutions for the slender gothic 
planform converge much better with respect to N ,  as demonstrated by the values of ,Io in Tables 17 and 18, 
but no satisfactory solutions could be obtained for q > 6, as there appears to be a sudden ill-conditioning 
of the equations. Fortunately there is exact theory (Ref. 8) with which to compare solutions with m = 11 
and q = 6 in the table below. 

Solution 

N = 2  
N = 3  
N = 4  
Exact 

Slender delta wing Slender gothic wing 

These overall aerodynamic characteristics are inaccurate by comparison with the corresponding table for 
the circular planform in Section 4.2, but this is perhaps to be expected in view of the sharp central kinks. 

The calculated local aerodynamic centres for the delta wing ( A  = 1.5) in Table 32a show rather poorer 
convergence with respect to N than with respect to q, but would meet normal practical requirements. 
Tables 32b and 33c include the exact values for the slender delta wing 

y2 sech- y x,, = - 4-q+ 
1 - Y  " 2(1- y2)1/2 

and for the slender gothic wing 

where c1 = 1 - (1 - I y p3. These are derived from equation (36) with s(x) = sx/c, and from equation (37) 
respectively. The spanwise distributions are drawn in Fig. 14 for N = 2,3 and 4. Although the solutions 
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become unreliable close to the tip, the results for both slender wings in the range 0.5 < y < 0.9 approach 
the exact curve as N increases. Near the centre the comparisons are less convincing; the delta wing shows 
poor convergence, and X,, at 11 = 0 for the gothic wing appears to converge to a value 0-424 instead of the 
exact 0.4. 

The central chordwise loadings on the two delta wings are plotted in Fig. 15. The trailing-edge con- 
dition is seen to have a dominant effect on the convergence with respect to N .  Such detailed aerodynamic 
characteristics demonstrate the wide gulf between the slender-wing and lifting-surface theories. Since 
Planform 13 is nearly as slender as planforms are likely to become, the divergence in the upper diagram 
is academic, but so also may be the slender-wing theory in this context. 

Garrick's' theory for oscillations of low frequency is formulated for pitching motion in Appendix 111 
of Ref. 20. Under the same conditions as equation (36) it can be shown that 

1 

-md = i n A [  7 1  G-XO 2 J 
Although negative damping is never predicted, -me falls to zero when the pitching axis coincides with the 
trailing edge. Now 

1 
c, 1 
: = 2 and ( $) d ( f ) = for the delta wing, 
C 

0 

1 
9 c. 2 3  = ?and 1 ( F)2 d (  a) = 2o for the gothic wing, 

0 

and hence the picthing derivatives are easily evaluated. Coefficients from the collocation solutions are 
given for the three wings in Table 41, where the delta wing ( A  = 1.5) is seen to provide excellent con- 
vergence with respect to q and N .  The derivatives, calculated from equations (32) for the mid-root-chord 
axis in Table 46, show good convergence with respect to N for the gothic wing, but not for the slender 
delta wing. Such is the effect of violating the condition of zero loading at the trailing edge. It is well sum- 
marized in Fig. 16 by the curves of -me/A against x&,. The discrepancies between N = 4 and exact 
theory are more than twenty times greater for the delta than for the gothic planform. 

4.6. Wings with Curved Tips. 
In Section 3.1 the lift slope and centres of lift of Planform 16 are used to illustrate a case in which 

the previous version of Multhopp's theory (q = 1) is in serious error. Moreover, Fig. 2 shows adequate 
convergence of overall forces with respect to the parameters m, N and q. From the full solutions in Tables 
20 and 21 for this wing at M = 0 the local convergence is less satisfactory, especially in the region of the 
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curved tip. Associated features in the last three columns of Table 21 (q = 8) are the irregular spanwise 
distributions of pn, IC, and An, which can be attributed partly to the high sweepback (A = 60') and partly 
to the curved tip. In Table 22 the same features are found for Planform 17, another curved-tipped wing of 
slightly lower sweepback (A = So) but at M = 0.8. Here the lift slope with m = 11 and N = 3 falls by 
over 10 per cent as q is increased from 1 to 8. Attention is also drawn to the third and last solutions in 
Table 22, which differ only in the amount of central rounding; this is seen to influence the lift slope by 
2 per cent and the local lift at y = 0 by 8 per cent. The behaviour of the calculated aC,/acc is plotted 
in the upper diagrams of Fig. 17, which demonstrate the effect of q and suggest that the aerodynamic 
effect of the artificial rounding may need to be taken into account (Section 6). 

There are eleven solutions with N = 3 for Planform 17 in low-frequency pitching motion at M = 0.8. 
The coefficients in Table 42 and the derivatives for the mid-root-chord axis in Table 47 show a marked 
effect of q with satisfactory convergence, but there are considerable differences between the five results 
with @ = 95 as the rounding and number of collocation sections are changed. The pitching damping 
about the axis x,, = 1.52 just forward of the aerodynamic centre is plotted against (@+ 1) and (m+ 1) in the 
lower part of Fig. 17. By increasing the parameter q the discrepancies are reduced from 30 per cent 
( E  = m = 11) to 5 3  per cent. 

A peculiarity of curved tips is the behaviour of local aerodynamic centres in Tables 33 and 34. Previous 
solutions with q = 1 had indicated a rapidly falling value of X ,  as y + 1 in common with the accepted 
characteristic of sweptback wings of non-zero tip chord, viz., Fig. 8. Spanwise distributions of X,, for the 
two curved-tipped wings are drawn in Fig. 18, where the upper diagram for Planform 17 shows a marked 
effect of q such that the fall in X,, virtually disappears; there remains, however, the irregular waviness 
already noted. The lower diagram supports the progressive effect of q on X,, by experimental data from 
Ref. 34 calculated from observed pressure distributions on two half-models of Planform 16 with different 
aerofoil thickness. Apart from the slender delta \viiig (Section 4 3 ,  planforms with curved tip< have pre- 
sented t he greatest difficulties regarding convergence. They have, nevertheless, pro\ ided convincing 
examples of the need for the improved programme of Ref. 18 and some experimental confirmation of its 
success. 

5. Criteria for Selecting m, N and E. 
The preceding sub-sections have demonstrated that the rate of convergence of solutions by the Algol 

programme of Ref. 18 is highly dependent on the type of planform. From the wide range of results avail- 
able it should be possible to recommend a suitable set of values of the parameters m, N and @ for other 
planforms, but discretion is needed according to the scope of the aerodynamic quantities to be evaluated 
and the required accuracy. 

The difficulty in choosing the number of collocation sections is that in the standard procedure for 
kinked planforms the odd integer m has the added role of defining the artificial central rounding. Where 
this complication does not arise, i.e. for Planforms 1, 2, 3, 4 and 6, (m+ 1) can safely be taken below the 
value 4A sec A, recommended as a minimum in Section 2.4 of Ref. 18, unless accurate results are required 
close to the wing tip. It is probably best to relate the choice of m to the length of the trailing edge and, 
in view of the factors p - 2  in the square brackets of the last two of equations (32), not to reduce its value in 
compressible flow. In general, the recommendation of Ref. 18 should be followed and the number of 
collocation sections should satisfy the condition 

m+l 2 4AsecA, (41) 

where for curved trailing edges sec A, may be regarded as the length of the trailing edge as a fraction of 
the span. However, it is undesirable to take m < 11, and this is the recommended minimum value when- 
ever A sec A, < 3. From Section 6 it will appear that, when artificial rounding is necessary, the standard 
y ,  in equations (18) to (20) should be replaced by 

2rL 
y 2  = ssin- 

m + l  ' 
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The results then involve smaller collocation error but need some allowance for the rounding itself. 
An increase in the number of chordwise terms causes slower convergence with respect to E. It is there- 

fore desirable to choose the smallest value of N that ensures theoretical data to the required accuracy. In 
practice the choice rests between N = 3 and N = 4. For the simple mode of rigid pitching oscillation 
there is little evidence in Tables 43 to 47 to suggest that appreciable errors would result from using N = 3. 
Only in the case of the slender gothic wing in Table 46c would N = 4 seem to be overwhelmingly advant- 
ageous. In steady flow at uniform incidence, however, it is essential to take N = 4 when the chordwise 
loading is to be calculated near a tip or a central kink. A glance at the magnitude of An, when it appears in 
Tables 3 to 22, gives the best indication of the importance of the fourth chordwise term. At the central 
section, for example, it is only for wings of leading-edge sweepback tan A, 3 /? that I A, I exceeds 0.01. For 
applications to more complicated oscillatory modes or camber distributions the four terms may prove 
inadequate and the method of Ref. 18 must be used with discretion. 

In the course of the present work convergence with respect to E or q has naturally been a major pre- 
occupation. One criterion embracing a wide range of planforms is that the lift slope X,/& should be 
within 4 per cent of its value for the highest attainable value of q. The upper part of Fig. 19 shows for ten 
planforms the roughly estimated values of the quantity 

above which this is achieved. The critical values depend to some extent on N, but the values are mainly 
for N = 3 and lie reasonably close to a curve against P-’ tan A,, where A, is the angle of mid-chord 
sweepback. In producing a criterion for selecting E, the compressibility factor is retained in the sweepback 
but, to ensure extra accuracy of the coefficients in equations (32), it is omitted in the aspect ratio. The full 
curves in the lower part of Fig. 19 give the corresponding critical values of (E+ 1)/A for N = 3 and 4 and 
offer one lower limit to E as an alternative to the tentative equation (5). Another consideration from 
Sections 4.1 and 4.4 is that there is usually a substantial improvement in a solution when q is increased 
from 1 to 2, and q = 2 should be regarded as a minimum value. It therefore follows from the recommended 
choice of m that 

E + l  3 24 

E+ 1 B 8A sec A, 
(43) 

which for N = 3 will usually be more restrictive than the condition set in Fig. 19. 

may be required by equation ( 5 )  or Fig. 19. 
The following table lists the minimum odd values of E from the conditions (43) and any larger values that 
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Plan form 

2 
3 
5 
7 
9 

10 
11 
12 
13 
16 
17 

I 

4-00 
8.00 
4.33 
4.00 
2.83 
1.45 
2.00 
8.00 
1.50 
3-90 
3.56 

m , 

4 
E 

A sec A, 

11 15 21 27 
14 8 4 2 

167 127 87 55 

4.00 
8-00 
4.48 
5.66 
3.37 
1.53 
2.24 

10.54 
1.50 
7.80 
6.20 

tan A, 

0 
0 
0 

1 *oo 
1 *oo 
0.5 8 
1.12 
0.95 
1.33 
1.73 
1 -43 

Eqn. (43) 

31 
63 
35 
45 
27 
23 
23 
85 
23 
63 
49 

Minimum E (N = 3) 

43 
85 
47 
61 
35 

23 
111 

83 
65 

- 

- 

Fig. 19 
M = O  

Fig. 19 
M = 0.8 

Equation (5)  usually overrides conditions (43) and can be recommended for M = 0. Thc larger valuez of 
E from Fig, 19 for M = 0.8 are thought to be essential. For the tapered sweptback wing5 0 1 '  moderately 
small aspect ratio the pitching damping derivatives tend to converge more slowly than the lift slope on 
which Fig. 19 is based. Table 45a for Planform 9 suggests that E = 63 is desirable when M = 0.8. This is 
met by modifying conditions (43) to become 

E +  1 2 24/p2 

E+ 1 2 8AsecA, 
(44) 

Then equations (5) and Fig. 19 only enter into consideration when both aspect ratio and sweepback are 
moderately high or when in applications to detailed load distributions in steady flow it is necessary to take 
N = 4. The following sets of maximum permissible values of m, q and E will then apply. 

I I I 

The tables in Section 1 of Ref. 18 indicate other upper restrictions on m, N and q, which are imposed 
to keep within the capacity of the KDF9 computer and an arbitrary maximum running time of 45 minutes. 
For planforms of high aspect ratio where these restrictions prohibit the use of the recommended values 
of m, N and E, N should be reduced to 3 or (m+ 1) should be lowered from 4A sec A, until a satisfactory 
value of E can be accommodated. 

6. Central Rounding of Sweptback Planforms. 
Earlier sections have foreshadowed the need to study the influence of the central rounding on the 

solutions. It may be asked what happens when the rounding in equations (18) to (20) is increased, reduced 
or removed. It may be wondered whether such a study can shed light on the discrepancy between direct 
and reverse flow in the lower half of Fig. 9. In Figs. 11,12 and 17 the rounding has been kept constant while 
the number of collocation sections has been increased, and crucial uncertainty lies in the aerodynamic 
influence of the rounding itself. It remains to clarify these three matters and to re-interpret certain of the 
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theoretical data already discussed. 
There are four planforms for which the rounding has been systematically varied without changing the 

collocation sections and spanwise integration points. The solutions at steady unit incidence in Tables 9, 
14 and 19 include a fixed value of m to denote the number of collocation sections and a variable m to 
define y ,  in equation (18); in Table 9, for example, m = cc denotes zero rounding and m = 7 is virtually 
twice the standard rounding m = 15, and their respective effects are to reduce C, by 74 per cent and to 
increase it by 2 per cent. Naturally there are marked changes in the loading functions yo,  po, x0 and 1, at 
the centre section. For the slender gothic wing there is no difficulty in computing the exact central chord- 
wise loading from equation (36) 

ACJa = 4 s'(x) at y = 0 (45) 

so as to include the effect of the rounding. Fig. 20 shows full curves from exact theory with the standard 
m = 11 rounding and also with m = 5 and m = 23, to compare with the distributions when yo, p o  and I C ~  

from Table 19 are substituted into equation (1 5). There is a remarkable diminution in collocation error 
with twice the standard rounding, and as decisive a worsening when the standard rounding is halved. It 
follows from equation (45) that the distance of the local aerodynamic centre from the trailing edge is 
precisely the geometric mean chord. Referred to the actual root chord c,, 

S' x = I - -  
2sc, ac 

where S' is the area of the rounded planform. The top left diagram of Fig. 21 compares the result 

x,, = " c, X,,+C, (;-;)I (47) 

from the solutions in Table 19 with equation (46) and shows that with twice the standard rounding 
(m + 1 = 6) the collocation and rounding errors are nearly equal. Against the same diagrammatic scale of 
the rounding parameter (rn + l), Fig. 21 shows for each of the four wings the central Xa,  and the ratio of 
C, to its value with the standard rounding. Especially for Planforms 7 and 9 with sweptback trailing edges, 
thcre is no sign of convergence at either end of the scale. The conclusion is reached that solutions with 
less than the standard rounding are useless, while those with greater rounding may need some correction 
to offset its genuine aerodynamic influence. 

Fig. 7 of Ref. 36 indicates excellent agreement between damping derivatives - zg and -me against 
pitching axis calculated from direct-flow and reverse-flow solutions for Planform 11 at A4 = 0.781. These 
calculations correspond to m, N ,  q = 15,3,1 in the present method and are now seen to give misleading 
satisfaction. The effects of q in direct and reverse flow are given by coefficients in Table 39, by derivatives 
in Table 48 and graphically in Fig. 22. Although both solutions converge with respect to q, they diverge 
from each other until with q >, 4 there are constant discrepancies of 0.1 in zg and 0.03 in me. These dis- 
crepancies are repeated when the number of chordwise terms is increased to N = 4. Spanwise collocation 
error due to the irregularity of the planform with m = 15 rounding is suspected, and further solutions have 
been obtained with the same rounding but in, N , q  = 31,3,2. The points (OandX) for E + l  = 64 in 
Fig. 22 show that the discrepancies between direct and reverse flow are reduced by the factor 0.18 to a 
satisfactory level. An even better result can be achieved with m, N ,  q = 15,3,6 and the rounding used in 
Ref. 23 which amounts to equations (19) with a different square bracket, viz., 

I. 
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The lower order of the polynomial in 1 y I/yl gives rounded leading and trailing edges with larger displace- 
ment and smaller curvature. The only misgiving is that the displacement may be influencing the answer 
and that the effect, though apparently small in Fig. 22, may be important for more highly swept trailing 
edges. 

An attempt has been made to estimate the genuine effect of the rounding by considering only solutions 
in which the standard rounding is doubled. Thus yz  in equation (42) is used in place of y, in equations (18) 
to (20). The ratio of the displacement of the leading edge to the root chord 

Rounding m = 15 
m, N ,  4 31’3’2 

t 0  0.0650 

is taken as a measure of the rounding. Such solutions are available for Planforms 7, 9, 13 and 16 each 
with two different roundings and will be found in Tables 9, 14 and 49. Corresponding values of overall 
forces, spanwise loading and local aerodynamic centres are presented in Table 50. For the Planform 7 of 
constant chord there are three solutions in Table 9 with N = 3 and the following results are obtained. 

m =  11 m = 7  
23,3,4 15,3,6 
0.0863 0.1276 

CL v 
xaclz 

3.0042 3.0080 3.0215 
0.4653 0.4649 0.4640 
1.1748 1.1743 1.1764 

C L L  at q = 0 3-0460 3.0740 3.1322 1 X,,atq = 0 1 0.4034 1 0.4170 I 0.4464 

Since the values tabulated above are roughly linear in to, it is permissible to think in terms of gradients 

and these are estimated for the four wings and plotted against A tan A, in Fig. 23. To the rough accuracy 
now envisaged the straight lines adequately represent the known data and can be used to re-interpret some 
of the discrepancies that have already arisen. 

First we consider Fig. 2 in relation to the appreciably different results in Table 50d with doubled 
rounding and small collocation error. When the overall forces in Table 50d for the m = 15 rounding are 
corrected by subtraction of the contributions from Fig. 23 with 5, = 0.103 and A tan A, = 6.75, the final 
values are 

ij = 0.4684+(0.032 x 0-103) .’ = 0.4717 

acL/aa = 2.3500 [i - ( o a  x o.io3)l = 2.306 

xac/Z = 1*8981+(0*06 x 0.103) = 1.904 

It may be concluded that in Fig. 2 there are opposing effects of collocation error and rounding error, so 
that the standard results with sufficient E are better than’would be expected. 

Next there is the discrepancy in pitching damping between direct and reverse flow for Planform 7 in 
Fig. 9. There are some further calculations for this wing with twice the standard rounding in Table 51, 
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which illustrate the transformation in equations (33) and (34) from coefficients ILr ,  -imp and -cr for the 
reversed wing to I,,r. - I,,,, a n d  - If,, from reverse flow. The worst discrepancies in m,, for the rearward 
axes are reduced from 10 per cent to an acceptablc 2 p ' i .  cent. Tables 51a and 51c siigpL\i t h ; t t  ille pitching 
derivatives are not linear in to, but that the corrections to allow for the smaller roundings are negligible 
in this case. 

From the solution in the last column of Table 15 and the last row of Table 31 we may comment on 
the results in Figs. 11 and 12 for Planform 12. Since to = 0.0988 and A tan A, = 6436, the final estimated 
theoretical values of total and local loads at y = 0 are 

ac,/aa = 3.7634 [I - ( o a  x 0.0988)l 

x,,/Z = 2.1745 + (0.055 x 0.0988) 

1 - (0.71 x 0.0988) 
1-(0*18 x 0'0988) 

cCLL/ZCL = 1.0981 x 

X,, = 0*4214-(0*85 x 0.0988) I = 3.696 

= 2.180 

= 1.040 

= 0.337 

The lift slope and aerodynamic centre in Fig. 11, corresponding to E = 95 and the standard rounding, are 
again fairly consistent with the new values. In the case of the lift slope the collocation and rounding errors 
due to m almost cancel, while the rounding correction to x,,/Z takes it half-way back to its value with the 
standard rounding. The load grading (cCL,/i;CL) at y = 0 in Fig. 12 is not improved by considering 
collocation error alone as the rounding error is now estimated to be larger and of opposite sign ; the new 
value is fairly consistent with the trend of the full curve for Fi = 95 and the standard rounding. It is perhaps 
premature to discuss the local X, ,  at the centre section, but the facts suggest that Fig. 12 is quite misleading 
and that the rapid increases as y -+ 0, plotted in Fig. 8 for example, are grossly exaggerated. Moreover, 
there is experimental evidence for this wing in Fig. 14 of Ref. 32 to support the new value X,, = 0.337. 

The next discrepancy to consider is that for the slender gothic planform at y = 0 in Fig. 14. The solution 
in Table 19 with twice the standard roundinggives the local X,, = 0.4110 when go = 0.0617. The corrected 
value is 

X,, = 0*4110-(0*28 x 0.0617) = 0.394 

in better agreement with the exact value 0.4 than the result X,, = 0-424 in Fig. 14. 
It is suggested in Section 4.6 that the behaviour of dCL/dol in the top right diagram of Fig. 17 is evidence 

that the aerodynamic effect of the artificial rounding may need to be taken into account. The solution with 
twice the standard rounding and to = 0.0977 for Planform 17 ( A  tan AI = 5.08) at M = 0.8 is now 
corrected to give 

a value in keeping with the trend of the results labelled Fi = 95 in Fig. 17. 
A final instance of the importance of considering both collocation and rounding error concerns the 

value of X,, at v] = 0.195 in the lower diagram of Fig. 18. The result in Table 50d for the smaller doubled 
rounding is now corrected to give 

X,, = 0*2771-(0.08 x 0.103) = 0.269 

which is seen to be in better agreement with experiment than the standard solution with m, N ,  q = 15,4,8. 
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7. Concluding Remarks. 
(1) A parallel investigation is reported in Ref. 39, where Planforms 1,4,6 and 9 in steady incompressible 
flow are treated by the methods of Refs. 18, 23 and 24. By comparison with the present investigation a 
higher degree of accuracy is sought and remarkably good agreement is found between the three methods. 
There is no doubt about the increasing superiority of Ref. 23 for wings of higher aspect ratio and of Ref. 
24 when much larger numbers of chordwise terms are necessary. 
(2) The present investigation establishes that large errors can result from previous extensions of the 
steady-flow theory of Ref. 19 or the low-frequency theory of Ref. 20 to three and four chordwise terms. 
The refinements in Ref. 18 reduce these errors to meet practical requirements in theoretical spanwise 
loading, local aerodynamic centres and oscillatory pitching derivatives. 
(3) The properties of numerical convergence differ throughout the range of planforms. Rectangular wings 
require remarkably few, say A = aspect ratio, collocation sections on the half-wing. For more general 
planforms, provided the leading and trailing edges are smooth and of low curvature, 2A collocation 
sections on the half-wing are adequate. The central kink of a sweptback wing leads to a situation in which 
the balance between artificial rounding and number of collocation sections becomes crucial, with further 
complication in the convergence of wing loading near curved tips. 
(4) To define a calculation for a particular planform and Mach number, the following choice of para- 
meters is recommended : 

m + l  2 4AsecA,, 

where sec A, is generalized to be the length of the trailing edge as a fraction of the span. 

N = 3 for calculations of pitching derivatives unless PA < 1, say, 

N = 4 for elastic modes of oscillation or detailed wing loading. 

q 2 2 and related conditions 

E +1 2 24/p2 1 
f i  + 1 2  8AsecA, 

J (E + 1) to satisfy Fig. 19 

(5) Errors are likely to persist near a kinked centre section or crank and near a tip. For chordwise loading 
the maximum N = 4 is inadequate locally if the kink is severe or the tip is too closely explored, but it 
should suffice elsewhere unless the camber or deformation of the wing warrants a larger value from two- 
dimensional considerations. Checks by reverse flow have proved that a severe central kink must be given 
adequate rounding if collocation error is to be acceptable; the standard rounding in Ref. 18 falls short in 
this respect. If the leading-edge sweepback is of order 45 deg, then the doubled extent 01 rounding 

2z 
0 c y  c y ,  = sin- 

m + l  

is recommended in place of equation (18) or, following Ref. 23, the rounding from equation (48) may be 
used. 
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(6) Fig. 23 has been prepared on the hypotheses that the doubled displacement of the leading edge 

to c, = xlo  = 6 y z  tan A. 

eliminates collocation error, and that the rounding itself introduces an aerodynamic effect proportional 
to to. Thus the solutions with doubled rounding may be corrected roughly for rounding error which is 
quite as important as the collocation error with the standard rounding. Section 6 includes several examples 
to suggest that the standard solutions with both collocation and rounding errors are closer to the true 
solution for the planform with leading apex than the others with only rounding error; local aerodynamic 
centres from the latter, corrected for rounding error, are found to lie closer to exact theory or experiment. 
(7 )  The method of Ref. 18 and the present results have been applied or developed along the following 
lines : 

(i) As suggested in Section 1, the same principles now under discussion apply equally to certain 
subsonic theories with general frequency parameter and have led to the significant improvements 
in Ref. 40. 

(ii) The present low-frequency method has been extended to treat slowly oscillating part-span control 
surfaces, in Darticular the derivatives of hinge moment {Ref. 41). 

(iii) The ACARD Manual on Aeroelasticity is to include an extra chapter, in which the results of 
numerous oscillatory theories are compared for wings including Planforms 4 ,510  and 11 (Ref. 42). 

(iv) The influence of central rounding on local loading is so large that it requires more systematic study ; 
the few solutions with doubled rounding in Tables 9, 14, 15, 19,22 and 49 are suitable for further 
analysis. 

(v) Half-models of Planforms 8, 9, 1 5  16 and 17 without twist or camber or fuselage have been ex- 
tensively pressure plotted, and theoretical solutions for these wings can be extended to include effects 
of aerofoil thickness. 
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LIST OF SYMBOLS 

A 

C 

I 

m 

m - 

n 

N 

4 
- r  
S 

S 

Aspect ratio ; 2s/Z 

Local chord 

Geometric mean chord ; S/2s 

Local chord at station n including any artificial rounding 

Root chord 

Lift coefficient ; lift/+pU2S 

Local lift coefficient ; local lift/+pU2c 

Nose-up pitching moment about root leading edge/+pU2SZ 

Pressure Coefficient ; AC, = pressure difference/+pU2 

Lift and pitching-moment coefficients in equations (16) 

Equivalent of ILr,  I,, for reversed planform 

Second moment coefficient in equation (17) for direct, reversed planform 

Kernel function 

Non-dimensional load distribution ; ACp 

Complex load distribution from expression (1) 

Loading 1 corresponding to a = a, in equations (13) and (14) 

Number of collocation sections; rounding parameter in equation (18) 

Number of spanwise integration points ; q(m + 1) - 1 

Oscillatory pitching-moment derivatives in equation (31) 

Mach number of free stream 

Subscript or integer denoting loading station in equation (11) 

Number of chordwise functions or collocation points 

Factor ; (E + l)/(m + 1) 

Subscript or integer denoting incidence in equations (13) and (14) 

Semi-span of wing 

Local semi-span of wing 

Area of planform 

Time 

Velocity of free stream 

Rectangular co-ordinates referred to root leading edge 

Location of pitching axis 

Aerodynamic centre referred to E ;  - C,/CL 

Ordinate of leading edge 
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LIST OF SYMBOLS-continued 

Y l ,  Y 2  

z 

z - 

ar 

P 
Y 

Ordinate of leading edge at station n including any artificial rounding 

Local aerodynamic centre referred to leading edge in equation (23) 

71 . 271 Semi-span of artificial rounding ; s sin s sin - 
m+ 1 

i ( m  - 1) 

Complex upward displacement of wing surface 

Lift derivatives for pitching oscillations in equation (31) 

Incidence of wing (radians) 

Distribution of incidence in equations (13) and (14) 

Compressibility factor; (1 - M 2 ) 1 / 2  
Non-dimensional circulation ; cCLL/s 

First chordwise loading function in equation (10) 

Spanwise ordinate; y/s 

Spanwise centre of pressure in equations (25) and (27) 

Spanwise parameter; c0s-I q 

Amplitude of pitching oscillation (radians) 

Third chordwise loading function in equation (10) 

C r / E  

Fourth chordwise loading function in equation (10) 

Angle of sweepback 

Local sweepback at chordwise position 5 = 0, $, 1 

Second chordwise loading function in equation (10) 

Subscript or integer denoting collocation section in equation (7) 

Frequency parameter ; oC/U 

Local chordwise position ; (x - xJ/c 

Leading-edge rounding parameter ; xlo/cr 

Density of free stream 

Chordwise parameter; cos- '(1 - 2t) 

Circular frequency of oscillation 
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TABLE 1 

Details of Planforms and Mach Numbers Used. 

q 0*5000 0.6088 0.7071 0.7934 0.8660 
c/cr 0.5947 0.9588 0.8954 0.8059 0.6916 - 

- 
No a 

I_ 

1 

2 

3 
4 

6 
7 
8 
9 
10 
I 1  

12 

13 
14 
15 

' 5  

16 

17 - 

Planf orm 

\ Rectangular 
Xec tangular 

Rectangular 

Circular  

Symmetrical tape] 

Hywrbolic edges 
Constant chord 
Cropped delta 

d r ro  whead 

Arr ovrhead 
Arrowhead 

Arrowhead 
Delta 

Slender delta 

Slender gothic 

Curved t i p  
Curved tip 

2s A = =  c 
_I_- 

20 00000 

4.00000 

8*00000 

1 27324 
4' 32921 
4.00000 

4.00000 

1 97035 
2.82843 

1.45033 
2' 00000 

8.00000 
I 50000 
0- 0001 0 

0*00010 

3' 899 27 
3- 55645 
1--- 

C r - - 
C 

1*ooooo 
I CQOOO 

I 00000 

1 27324 
1 58000 
I 00000 

1*ooO00 
I 66667 
1 50000 

I 16969 
I 061 603 

1.37931 
2. moo 
2*00000 
1 66667 
I * 06829 
1 - 1 21 20 

.-_.I- 

T--- 
tan ho 

0 
0 

0 
- 

0.26 79 5 - 
1 00000 

I 35340 
I 35355 
0*81000 

I 73205 
i 04741 
29 66667 
40000 

- 
- 
- 

2 i f 2  Planform 4 c = C r ( M  

n a n f o r a  6 c = cr(constant) 

x 3 c [(1&2)""-1] 

c = (I- lql)a'3 

4 = 4  r 

Planform 15 

Planform 16 c = cr(constant) 
I-,,, i / a -  8 

= crb -( 0.383562) J 
Planform I 7  c = cr(constant)  

and in following t ab l e  

0 

0 

0 
- 

-0.26795 
- 

I 00000 

0 

0.64645 
0.34200 
0. ~ 0 0 0  

O* 8.5776 
0 

0 

0 

1 73205 
1042815 

0 < q < 0*&15 
0.4415 < rl < 1 

--II 

-.- - 

_. 

Ref 
- 
25 - 
- 

27 - 
- 
- 

28 

29 
30 
31 
32 
33 - 
- 

34 
35 
I_ 
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TABLE 2 

Summary of Numerical Results. 

Planform 
(Table I) 
II 

No, 
y_ 

I 

2 

3 
4 
5 
6 

7 
8 

9 
9 
9 

10 

11 

12 

'15 
14 

15 

16 

1 7 
uI 

A 
- 
20000 

4" 000 

8*000 

1 273 
4.329 
4" 000 

4- 000 

1. 970 
2.828 
2.828 

20 828 

1 * 450 
2" 000 

8.00 

1 * 9 0  

0. ooo 
00 000 

30 899 
30 556 

M 
-. 

0 

0 

0 

0 

0 

0 

0 

0.8 

0 

0.6 
00 8 
0 8  

3.781 
0 

0 

0 

0 

0 
0.8 

_11- 

Solns . 
a = l  

3 
4,T 

6 

- 

- 
7 

8>9+ 
10 

11,14+ 

11 

92913 
- 
- 
15' 

I 6,19' 49' 

1i3,I9",4Yr 

20,21 

22+ 

17 

' Table inc ludes  so lu t ions  with non-standard c e n t r a l  rounding a 

* 
Table inc ludes  results ca lcu la t ed  f r o m  so lu t ions  for t h e  wing i n  

reverse f low 
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TABLE 3 

Solutions for Rectangular Wing (A  = 2, M = 0)  at Unit Incidence. 

7 
4 
6 

47 

CL 2.453985 
-Cm 0*518@6 
5 0.428613 
ac 
-=- O*2II283 
E 

C 

7 
4 
8 

63 

0.775504 0- 776399 

0.723068 0.723723 

0 565323 0.565551 

0*312161 0.312188 

0*025362 0.024073 

0.027271 0.025947 

0*029855 0- 028781 

0- 0231 26 0.022746 

0' 014748 0.01 5386 

0.021020 0.01 9551 

0*038961 0.0351 66 

0,&7712 0*046118 

'0. ooJG81 0. 001 687 

0.004599 0.001927 

O*OlOl& 0-007199 

0.01 9877 0.018726 

0. 776225 

0.723545 

0.565401 

0.3121 4 6 

0*023502 

0.025489 

0.028566 

0.022687 

0.01 3065 

0.01 7584 

0.0341 77 

0*045907 

O* OOOOI 3 

0.000553 

0.006620 

0.0186wC 

0.776098 

0- 723431 

0- 565324 

0.31 2083 

0.023366 

0.025389 

0.028526 

0.022675 

0.01 22.57 

0- 01 6955 

0.0339 09 

0.045850 

-0*000471 

0*000221 

0*006515 

00018628 

2.475294 
0*518W9 
0.428163 

0.209272 

2.474923 
0.518219 
0.428167 

0.209388 
--- 

7 
4 

16 
127 

00775928 

00723287 

0.565242 

0.31 2051 

0.023329 

0.025364 

0.02851 7 

0.022672 

0.01 I 661 

0 01 6501 

0.033722 

0.04581 0 

0.000656 

0.000093 

09006475 

0*018619 

2.474470 
0.518184 
0.428177 

0.20941 2 
_. - --- - 

15 
4 

1 27 
a 

0.775927 
0.762796 
0.723287 
0.657277 
a. 565240 
0. 448964 

0. I 60025 
0.31 2051 

0.023327 
0.023876 
0.025366 
0.027262 
0- 02851 1 
0.027 549 
O* 022672 
0.01 N.!g 

0.011633 
0.01 2786 
0- Of6536 
0.02351 9 
0.033666 
0.043842 
0.045834 
0- 03061 9 

0*000678 
0.000533 
0*000124 
0.002046 
000641 6 
0.01 3362 
00018688 
0*014607 

2- 474468 
0-518188 
0.4281 76 

0*209414 1 
--- 
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TABLE 4 

Solutions for Rectangular Wing ( A  = 4, M = 0)  at Unit Incidence ( m  = 7). 

7 7 
4 4 
1 2 

0.51 206 0- 53994 
O4 49030 00 51 308 
00 40776 00 4.2052 
00 23798 00 24336 

-0.08672 -00 02901 
-0' 07686 -0 02075 
-00 039 69 00 00240 
00 031 35 0- 02704- 

I 

-0.02583 -00 01 053 
-00 02509 -0' 00795 
-0' 01 923 -00 00060 
00 01 265 0.01 063 

3.41 936 3m 56408 
0.85458 0°82831 

0.43951 0.43689 

OQ 24992 00 23240 

7 
4. 
4 

31 

0*54890 
0 0  52051 
0- 42470 
Oo244Y 1 

00 006.44 
00 00770 
0- 01 153 
0.01 31 9 
-_I 

0*0031 1 
oo 004-9 7 
0.01 140 
00 0241 5 

00 0029 8 
0*00298 
00 00279 
00 00779 

3" 61085 
00 82866 
0.43607 

00 22949 
__I--- 

- 
7 
4 
8 

63 

0*55006 
00 521 33 
o04Uc94 
00 24492 

00 00540 
0.00666 
0- 01 080 
0.01 298 

0.0039 5 
o0o0439 
0.0091 7 
00 023311. 

00 001 36 
00 00095 
00 00075 
00 00730 

30 61 562 
00 83650 
0.43590 

o. 23136 

7 
4. 

12 
95 

00 %985 
00 521 13 
0.42477 
00 24434 

0.00 500 
0.00635 
00 01 067 
0.01 295 

_. 

0*00248 
00  0031 2 
0.00853 
0.02323 

Oe0O025 
0.00006 
00  00040 
00 007 27 

30 61 4-21 

0.83800 

00 43590 

00 23186 
I_-_- 

-.- 

7 
4 

16 
127 

00 54970 
00 52099 
0.42468 
00 244-80 

00 00491 
00 00629 
0.01 066 
0- 01 295 

-.. 

0- 001 94 
0*00269 
00 00835 
OvO2320 

-00 00003 
-00 00014 
00 00034 
00 007 27 

3.61 332 
0.8381 3 
oa43590 

00 231 96 
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TABLE 5 

Solutions for Rectangular Wing ( A  = 4, M = 0) at Unit Incidence (m = 15) 

i 

0.00392 
0*00401 
0- 00443 
0.00570 
0.00904 
0.01 590 
0.02382 
0.02098 

15 31 127 63 

0.55006 
0.54306 
0.521 33 
00 48287 
0.42495 
0.34550 
0.24493 
0.12727 

- 
0.54891 
0.54200 
0.52051 
0.48235 
0. 42470 
0.344542 
0.24492 
0.12726 

0*00644 
0°00675 
0*00771 
0.00937 
0.01156 
0.01346 
0.01 324 
0.00872 

Om54968 
0.542.68 
0.52095 
0- 43249 
0.62457 
0.34506 
0*2tb37 
0.12680 

0.54971 
0.54271 
0.5209 9 
0.48255 
0.42468 
0.34530 
0.24484 
0.12729 

0.54970 
0- 54270 
0.52099 
0.48255 
0.42468 
0.34531 

0.12721 

t--- 
~ 0.00490 

0.00524 
0- 00630 
0*00815 
0.01 064 
O*O-I29t 
0.01 299 
0.00863 

0.539 94 
0- 53344 
0.51 308 
0.47650 
0.42052 
0.34272 
0.24336 
0.12656 

0- 00334 
0.00388 
0- 00548 
0*00808 
0.01 127 
0.01 387 
0.01 375 
0.00892 

0- 00490 
0.00524 
0*00630 
0*00812 
0.01 049 
0. Of 246 
0.01 210 
0.00771 

0*00488 
0. 00522 
0. 00629 
0.0081 5 
0. 01 065 
0 01 289 
0.01 281 
0- 00831 

0-00539 
0- 00570 
0.00667 
0. O O W  
0.01 078 
0.01 297 
0.01 301 
0.00864 

-00 02902 
-0.02693 
-0*02074 
-0. O I  076 
0.00233 
0.01 687 
0- 02728 
0.02242 

0*00309 
0- 00358 

0.00738 
0-01127 
0.01 771 
0.02467 
0.021 19 

0.00500 

0.00191 
0.00208 
OS 00274 
0. CO439 
0*00821 
0.01 550 
0- 02368 
0.02094 

0.001 73 
0.00192 
0. 00262 
0- 00436 
0.00821 
0.01 5Q4 
0.021 57 
0.01 783 

-0.01053 
-0.00988 
-0.00796 
-0.00484 
-0.00062 
0.00487 
0*01085 
0. 01 070 

0- 00298 

0.00299 
0*00283 
00 00274 
0.00405 
0- 00821 
0*0095'; 

00 00300 

I 
0.001 36 
0. 00125 
0*00096 
0.00060 
0*00069 
o. 00270 
0.00770 
0.00946 

-0*00003 
-0*00006 
-0*00013 
-0* 0001 6 
0.00028 
0.00255 
000767 
0.00945 

3' 56408 
0.82830 

3.61 242 3' 61 340 
0' 83927 0. 83838 

0.43582 0.43591 

0.23233 0.23202 

I - 
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TABLE 6 

Solutions for Circular Wing ( A  = 1-2732, M = 0)  at Unit Incidence. 

5 
3 
12 
71 

11 
4 
4 
47 

Ad 
4 
6 
71 

1-1 
4 
8 
95 

m 11 
N 2 
q 4 

47 m - 

5 I1  
2 3 
8 6 
47 71 

OQ 90280 

0.77625 

0.43818 

0*90302 
0.87086 
00 77686 
0.62846 
0.43159 
00 22098 

0.90296 
0.87080 
00 77676 
00 62827 
0- 43727 
00 22070 

yo Oe90246 

Ya 0.77595 
~3 0.62742 
~4 Oe43690 
ys oe22142 

y1 0.87018 
0.90349 

0.7772b 

00 43902 

00 04677 

0*04355 

0- 03094 

0*00500 

0.0089 3 

00 01 268 

00 90300 
0.87086 
0.77684 
00 62832 
00 43726 
00 22063 

0.04692 
00 0461 3 
o. 04366 
00 0391 7 
0- 031 96 
0- 01 993 

0.04694 
0- 04614 
0- 04369 
0- 03921 
00 03218 
OeO2093 

00 04875 

00 04-61 6 

0003402 

0*0w5 
0*00508 
00 00689 
0*00908 
0- 01075 
0- 01 21 2 

0.00516 
0.00594 
0.00820 
0- 01 I 31 
0*014.41 I 0.0163 

O*00460 
0.00532 
0- 00694 
0- 00950 
0- 00983 

-0*00589 

-0*00737 
-00 00826 
-0.01 094 
-0- 01 367 
-00 O I  663 
-00 0251 9 

h5 1 
1.79019 I 1.79028 1 * 79057 

0.54653 
2.79248 
0.54.71 5 
04.2209 

00 30525 

4 a 79020 
0.54650 
0*42475 

00 30527 

0 56605 
0.421 74 
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TABLE 7 

Solutions for Plunforrn 6 with Hyperbolic Edges ( A  = 4, M = 0)  at Unit Incidence. 

m 15 
N 2 
9 4 

63 m - 

0.45324 

2 0.76740 
6 

X 

15 I 15 7 
4 4 4 

6 1 2 4 8 16 

I 5  
3 

95 15 31 63 127 127 

0.45642 0.65082 0.45767 0.45668 0.45642 0.45566 

0.45231 0.45099 0.45504 0.45293 0.45238 0.45262 

0.40719 0.4.0861 O*W947 0.40772 0.40725 0.40678 
I 0.34404 0.34518 0.36560 0.34435 0.34405 

0.24335 Oo24YZ4 0.uC956 0*26881 0.26865 0.24876 
0.13027 0*13014 0 . 1 3 W  0*13007 0.12999 

-0.01089 -0009% -o*ooggo -0~01068 -0.oiwi -0*01106 

i 0.45607 0.4.5204 0.45796 0-4564i3 0-4>609 ' 
~ 0.43931 0'43999 O-W+216 0.44001 0.43944 

-0*00751 -0*00514 -0.00523 -0.00744 -0°00754 
-0*00196 0.00173 0*00106 -0.00238 1-0*002Ol+ -0.00234 
0*00351 0.00793 0.00641 0 = 0 0 j O l  0*00342 
0-01152 0.01616 0.01354 0.01105 0.01.r53 0~0.1200 
0.02260 0.02653 0*02335 0*02236 0.02260 
0.028% 0*03074 0.02867 0.02844. 0.02849 0*02790 
0.019& 0.02154 0*02067 0.02054 0.020% 

0.001 75 -0.01858 0.00220 0.0031 7 0*00209 0*00279 
-O*OOl5O -0*01027 0-00585 OoOOOOO -O*OOIU+. 
-O-Oc&.o9 0.00324 0.01196 -0.00271 -O*00423 -0-004.81 
-0.00606 0.01 277 0.01 t 94 -0. OOm -0.061 5 
-0.00838 0-01630 0.00465 -0 .O lOjq  -0.00917 -0.00774 
0.001 57 0.02431 0.00641 -0.00017 0.00090 
0*034LB 005196 0. 03893 0.03783 O * O ~ o S  0.03308 

b 0.W86 0.05588 0*050W 0.04978 0.04978 

-0~00.118 0.00199 -0*00039 -0*00112 -0*OO110 
0.00207 0.00569 0.00oeto -O*OOOOO 

04 01 21 6 0. o i a o  -0- 00071 -0- ooO12 
o. 01406 o. OO~~J,. -00 00279 -00 001 60 -0- 0031s 

0-00701 0.00983 0~00006 0-00002 O.Oil0.58 

0.00783 -0.00280 -0.007j1 I-O.OO65i 
O * C l j j L ,  0.00>92 0 CO317 ! 0.C054.0 00072C 
0- 03333 0- 0271 I 0.026ijj 0.02655 

3-23673 , 'I 3-23347 3.23216 

2*413371 2.47990 2-47962 
0*4532% 0.45326 0.45336 

0- 76735 0.76693 0.76717 
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TABLE 8 

Solutions for Planform 7 ( A  = 4, A = 4 5 O ,  M = 0)  at Unit Incidence. 

15 
4 
4 

63 

N I I '5: 15 
4 
8 

127 
6 I 6% I 95 

0.36646 
0*40042 
0.41836 
0- 41807 
0.39286 
0.33448 
0.24233 
0.12697 

Y4 

Y5 

00 3651 6 
0.3991 5 
0.41712 
0.41 709 
0.39209 
0.33400 
0.24204 
0.12684 

pn 
pi 
pa 
~ 1 3  
1-14 
p5 

117 

KO 
1 KI 

Ka 
Its 

I K4 ' K5 

Ks 
K7 

h0 

x 
\, 
x., 
1.5 

\s 
A7 

CL 
-Cm 
? 

15 
4 
1 

15 

0.3781 0 
0- 40700 
0.42451 
0.42309 
0.39767 
0.33772 
00 24450 
0.12779 

-0.02339 
-00 001 80 
0.00478 
0.00932 
0.01673 
0.02672 
0- 03068 
OaO2140 

0.00556 
-.I_.__ 

0*00906 
0.01 616 
OoO1943 
0*019l j  
0*02518 
0.05207 
0*05!158 

0.01762 
0. CO91 9 
0.01 122 
0.01 %5 
a.01570 
$ 0  OCB36 
QeO1 538 
0*03310 

3-01 519 
3.501 57 
01 46639 

I 161 31 

-0.03334 -0.03589 
-Oe009wt -0.00988 
0400008 0*00032 
0*00410 0.00364 
0.01177 0.01206 
0*02120 0'02226 
Oa02640 0*028& 
0'01846 0*01930 

0.01 I 0 0  
-0.01 307 
-0.009 72 
-0.00673 
-O*oO676 
0*00098 
0.03445 
0.0421 9 

2.95962 2096296 

3.49192 3'49550 
0.46789 0.46782 

15 
4 
2 

31 

-0.03603 
-0' 00997 
-0.00004 
0*00305 
o. 01 I 52 
0.02203 
0.02835 
0~02020 

0.01005 
-0401051~ 
0.00036 

-0.00665 
-0'00897 
-O*OoO83 
0.0381 3 
0*04907 

0.37240 
0.40526 
0.42308 
0.42184 
0.39583 
0.33649 
0- 24362 
0.12754 

-0.03630 
-0.01009 
0.0001 6 
0.00352 
0.01 206 
0 0  02228 
0- 02840 
0*02020 

0.01212 
-0.01310 
-0.00225 
-0- 00670 
-0.00770 
0.00042 
0.03832 
0.04908 

-0. 031 35 
-0*00542 
0.00402 
0.00708 
0*01416 
00 0231 7 
0.02860 
0~02060 

0*00840 
0.01 028 
0,02308 
0.01 439 
0- 00763 
0*00570 
0.03956 
0.04964 

7 
4 

16 
127 

--- 
0.37308 

0.41 655 

0.39 150 

0.2421 9 

-0.02683 

-0' 00307 

0.01 305 

0*0270.5 

0.01 286 

-00 00927 

-00 00507 

0*03726 

-0-00630 

0*00080 

-0.00358 

0.00749 

2.95591 

3049657 
0*46836 

1.48291 
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TABLE 9 

Solutions for Planform 7 ( A  = 4, A = 45O, M = 0, a = 1) with Different Rounding. 

Rounding 
m 
N 
- q m 

Yo 
Yi 
Ya 
Y3 
Y4 
Y5 

Y7 

PO 

P l  
P3 
cL3 
i-4 
I45 

Pa 
P7 

KO 
KI 

K3 
K4 

Ka 

K5 
K G  

U7 

A0 
kr. 
A3 
k% 
h4 
1 5  

A7 

m = m  m = J I  U =  15 
15 15 15 
4 4 4 
8 8 8 

127 127 127 

0.2734i3 0.33564 0.36516 
0.35649 0.38558 0.39915 
0.39324 0.40939 0.41712 
0. W 3 0  0.41 175 0.41 709 
0.38002 0.38820 0.39209 
0- 32530 0.331 25 0*33400 
0.23638 0- 24022 0*24204 
0.12408 0.12597 0.12684 

-0*04990 -0*04373 -0*03630 
-0 01336 -0. O I  I 5 0  -O*01009 
0.oOo42 O-oOO32 0*00016 
0*00271 0.00321 0*00352 
0. 01 202 00 01 208 00 01 206 
0.021 51 0.02202 0.02228 
0.02797 0.02828 0*02840 
0.01 972 0*02005 0- 02020 

0 04200 0- 02294 0.01 212 
-0.01 365 -0.01429 -0.01 31 0 

-000661 -0.00688 -0.00670 
-0.00758 -0.00751 -00 00770 

-0~00196 -0.001 87 -0.00225 

0.OOOS8 0.00032 0.#042 
0.03752 0.03808 0.03832 
O M 3 0  0*04879 0.04908 

-0.03204 -0 01803 -0.01 116 
0~0030rc. 0.00213 o.ooiyc 

-0*00161 -0' 00147 -0*00127 
0*0006& O-OO047 0*00029 

-0.0021 7 -0.00205 -0.001 92 

@00&77 0.004.86 0*00500 
0.02589 0.0261 2 0.02634 

-0.00627 -0.00602 -0.0061 7 

CL' 
-C 

.? 
rn 

X 
BC 
C 
- 

m = 7  
15 
4 
8 

127 

2.74359 2- 89280 2.96314 
3* 32468 3'4.4054 3*49677 
0.48320 0.47254 0.46786 
1*21180 1.18935 1*18009 

0.391 52 
0.41 01 9 
0.42341 
0.421 36 
0.39 528 
0.33620 
0,24354 
0.12755 

-0.0271 0 
-0.00979 
-0. 00035 
0.00381 
0.01 197 
0.02253 
0.02846 
0.02034 

0*00530 
-0. 01 056 

-0 0061 o 
-0.00326 
0*00076 
0.03829 
o*ob940 

-0.00370 

-0.00630 
0.00087 
-0' 001 05 
0.0001 I 

-0*00179 
-0*#632 
0- 0051 3 
0.02641 

3- 0221 7 
P 55583 
0.46397 

m = 7  
15 

i :  
95 

0.39 -I 53 
, 0.41012 

0.42332 
0.421 20 
0.39521 
0.33618 
0.24324 
0. I 2782 

-0.02688 
-0.00961 
-0. 0001 9 
0*0039 3 
0*01197 
0.02252 
0- 02852 
0.01 944 

0.00439 
- 0 s  01 032 
-0.00322 
-0*00610 
-0.00735 
0.001 35 
0.03438 
0.04250 

3- 021 52 
3- 55438 
0.46395 

m = 11" 
23 
3 
4 

95 

0.38425 

00 42226 

0.39461 

0.24301 

-0.031 00 

-0.00060 

0.01 185 

0.02836 

0.00083 

-0.0046 3 

-0*00767 

0.03395 

30 00800 
3* 53227 
0*66487 
I- 17429 

m = '159 
31 
3 
2 

63 

0.38075 
0.40647 
0.421 94 
0.42008 
0.39459 
0,33553 
0.24291 
0.12759 

-0.03366 
-0.008 1 5 
-0*00100 
0*00378 
O - O I l ! j 8  
0. 02260 
0*02840 
0.01948 

-0.00273 
-0.00896 
-0.00479 
-0.00596 
-0.00836 
0- 00169 
0.03405 
0.0426 3 

3.00424 
3- 52926 
0.46525 
I 17476 

* 
The subsc r ip t s  to y A p ,  e tc . ,  refer t o  t h e  ID = 15 col locat ion sec t ions .  
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TABLE 10 

Solutions f or Cropped Delta Plun f orm 8 ( A  = 1,9704, M = 0.8) at Unit Incidence. 

7" 
3 
4 

31 

31 * 
3 
I 

31 

15 
2 
I 

15 

15 
3 
2 

31 

15 
4 
I 

15 

00 87740 
0.86062 
00 81 147 
0.731 72 
0.62414 
0.49228 
00 34040 
0.17371 

15 
4 
2 

31 

00 86840 
0.85220 
00 80380 
0.72507 
00 61 866 
0.48814 
00 33764 
0*17240 

15 
4 
4 

63 

0.86946 
0.85321 
0.80475 
00 72594 
00 6 I 944 
0.48872 
0.3379 s 
0. 17260 

00 87369 
0.85544 
00 80560 
0- 72598 
00 6 I886 
00 4871 8 
0°3353J4- 
00 17050 

00 8691 2 
0.85286 
0.804-47 
00 72550 
0.61 894 
0.48818 
00 33796 
On 17328 

00 87143 
0.85522 
0.80644. 
0.7271 5 
00 6201 9 
0°4i391 2 
0- 33856 
00 173% 

0- 86600 

0.80165 

0.61 71 2 

0.33719 

-00 096 24 

-00 02318 

00 01 803 

-0.08488 
-0.04845 
-OaO2034 
-00 001 07 
00 01 520 
00 02998 
0.03698 
0.02598 

-0.0991 5 
-0.051 89 
-00 01 833 

O * O o l 5 4  
O4 01 751 
0.03079 
0- 03784 
00 02735 

-00 09269 
-On 04581 
-00 01 64.0 

O4 00273 
0- 01 792 

0.03801 
00 02742 

0- 031 I 0 

-0*10218 
-00 05688 
-0.02294 
-0.001 99 
00 01 59 0 
0- 82949 
00 03672 
0.02872 

-00 10291 
-0' 05338 
-00 01 806 
00 00247 
00 01 910 
00 03205 
00 03870 
00 02907 

-00 08542 
-0.03768 
-0.00322 
0.01 906 
Oa03W+3 
0 s  04-41 2 
0. w 9 3  
0- 03.1 59 

-00 21492 
-0.09639 
-0.02893 

0- 03083 
00 05306 
0.08445 
0.09433 

00 0081 6 

-0. -I 7908 
-00 I 1026 
-0.07098 
-0.06534 
-00 05267 
-00 021 95 
0.04433 
0.06588 

-0 18493 
-0*10233 
-00 071 51 

-00 05398 
-0 02060 

- 0 4  06298 

0.04372 
0.06669 

-0*17@4 
-00 124Wt 
-0- 08857 
-0.0801 I 
-0' 05737 
-0.02880 
0*0351-l 
0.07495 

-00 18038 
-0.11169 
-0.0661 9 
-0.05851 
-00 04225 
-00 01 6 '1 3 
00 04782 
0.07708 

-00 141 20 

-00 08827 

-00 O M 8  

00 03497 

-00 0541 'I 
-0.00562 
0.01 936 
00 03286 
0- 03 206 
00 01 706 
oe02310 
0.05762 

0- 03506 
-00 00009 
-OeO03$+ 
-00 01 688 
-0*02427 

-0.01 962 
-00 04.1 36 

00 03705 

0*00696 
0 0  00463 
0.01 054 

-0*00218 
-04 01426 
-0.03384 
-0.00863 
0- 03940 

2.70319 
2.37747 
0.42474 
00 87950 

2- 691 18 

20 39703 
004-2556 
0.89070 

29 70652 
2037318 
00 42538 
00 87684 

2- 72352 
2.34649 
00 42532 
00 861 57 

20 69809 
2.39743 
Oe425L68 
00 88857 

2.701 30 
2.38801 
0- 42547 
0- 88402 

20 7OQ02 
20 38487 
0.42546 
0- 88328 

The subscripts to yI p 9  etc., refer to the m = '15 collocation 
sections 42 



TABLE 11 

Solutions for Arrowhead Planform 9 ( A  = 2,/2, M = 0 and 0.6) at Unit Incidence. 

C 

43 



TABLE 12 

Solutions for Arrowhead Planform 9 ( A  = 2 f i ,  M = 0.8) at Unit Incidence ( N  = 2,3). 

CL 3012597 
-% 30 63730 
*5 0.43990 

15 
2 
2 

34 

0.64526 
00 6 5944 
00 64365 
0- 60085 
0.531 14 
00 43230 
0.30299 
0.1 5465 

-00 09 366 

-00 02085 
-0*00532 

-0*O56'66 

0*00922 
0.02467 
00 03490 
0- 02565 

3* 13836 
30 62714 
0- 44021 

1 15574 

15 
2 
4 

63 

-0.098&3 
-0. o 5 a a  
-00 021 9 2 
-0- 00625 
0*00853 
80 024-29 
0.0347 5 
0- 02558 

30 131 37 
3* 62863 
00 We055 

1 15880 

15 
3 
I 

15 

-00 09736 
-0.o.b 583 
-00 O I  I83 
0*00589 
00 01 935 
0.03236 
00 0391 2 
00 0281 4 

-00 06408 
-0.03214 
-Oe0O404 
0" 01 080 
00 00630 

-0- 00062 
0.03972 
00 06864 

3- 21 9 94 
30 66767 
0.43824 

10 q3905 

15 
3 
2 

31 

0.64605 
0- 65660 
0- 64068 
0*59689 
0.529 35 
0- 42470 
00 jOl57 
0- 'i 5625 

-00 10293 
-0. S5655 
-00 02601 
-0- 01 I 56 
oaoo434 
0- 02289 
0.03654 
0.02672 

00 01406 
-00 03558 
-0.03374 
-0' 04373 
-00 04814 
-0.04233 

04 02635 
0.059 90 

3.12757 
30 64287 
00 44003 

'1 0 1 6476 

63 95 . 

-0. '10525 
-0.05379 
-0.02049 
-0. 0056 2 
00 01 006 
o. 0261 3 
00 03751 
0- 02691 

0.01 087 
-0.03093 
-00 02039 

-00 03029 
-00 02714 

0 0  03'1 
0.061 16 

30 14-01 9 
3.63772 
0-  43995 

1*15844 

00 601 05 
0- 53090 

44 
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TABLE 13 

Solutions.for Arrowhead Planform 9 ( A  = 2J5, M = 0.8) at Unit Incidence ( N  = 4). 

15 
4 
1 

15 

0.67685 
0*6d097 
0.661 71 
0.61 568 
0.54218 
0.43836 
0- 30801 
0.15838 

- 

-0+08321 

04 01 4 70 
0.02526 
0.03897 
0.04338 
0.03083 

-0*033 98 
-0*00387 

-0.00779 
00  04631 
0.07009 
0.07424 
0.05745 
0*04761 
0.07476 
0.08856 

-0.05595 
0- 044.32 
00 07393 
0.08565 
0.07997 
0.04285 
0*01910 
0.05528 

3.22693 
3.62379 
0.43801 
I 12298 

-0. I0657 
-OS05487 
-0*020& 
-0.00425 
0- 01 I 52 
0*0263 9 
0.03593 
0.0281 8 

0.00590 
-0.03943 
-0*02004 

-0' 02037 
-0.02689 

-0.01 850 

0.02530 
0-  07267 

-o*ozb4r, 
0*00017 
0*00379 
0.00856 
0.00927 
-01 01003 
-0*02143 
0.03527 

3.3 5520 
30 65324 
0.43956 
1*-i5785 

15 
4 
4 

63 

0*64.800 
0.65853 
0*64244 
0*60075 
0- 530.48 
0.43051 
0.30264 
0.15627 

-0.30647 
-0' 05477 
-0.02276 
-0.00839 
0.00797 
0.02531 
0.0371 4 
0*02824 

0.02692 
-Oe0301 3 
-0*02801 
-0' 03722 

-0.03587 
-0.04-31 4 

0*03386 
0.07387 

15 
4 
6 

95 

0444B97 
0.65973 
0°6&351 
0.601 61 
0.531 I 0  
0.43096 
0*30291 
0- 15641 

-0- 10705 
-0.05389 
-0.0207 3 
-0*00594 
0.01 004 

0.03721 
0.02827 

0 0  02632 

0.02392 
-0.02867 
-0.021 08 
-0.02696 
-0.03230 
-0*02940 
0.03405 
0.07385 

-0 02A-27 
0*00804 
0- 00751 
0.00677 
0*00349 

-0.01495 
-0.O.t 478 
0- 03700 

3.44077 
3- 64042 
0.43990 
'1.15909 

15 
4 
8 

127 
-u__I 

0.64842 
0.65937 
0- 64321 
0.601 38 
0.53092 
0.43084 
0.30284 
0.15637 

-0*10743 
-0*05&0 
-0.021 20 
-09 00634 
0.00972 
0.02604 
0.0371 7 
0.02826 

0- 02496 
-0- 02988 
-0.02306 
-0.02846 
-0*03370 
-0- 03094 
0.03386 
0.07383 

-0.02386 
0- 00743 
0*006.16 
0- 00568 
0.00271 

-0.01 609 
-0.01 509 
0.03699 

3.13934 
3* 641 27 
0.439 94 
4 15989 

45 
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TABLE 14 

Solutions for Planform 9 ( A  = 2 f i ,  M = 0, a = 1) with Different Rounding. 

Rounding m = a  
m 15 
N 4 
9 8 
m 4 27 - 

YQ 

Yi 
Ya 
Ys 
Y4 
Ys 
Y6 

Y7 

0.49918 
0.53645 
00 53332 
0.501 25 
0.44499 
0.36623 
0.26097 
0*13615 

I 

-0.10797 
-0.03906 
-0*00959 
-0°00257 
0.00681 
0- 01 530 
0.0251 2 
0.0206 5 

0.061 88 
-0.02218 
-0.00774 
-0.01 290 
-0.00949 
-0.01 387 
0.01968 
0.04906 

-0.041 79 

0.00202 
0- 001 33 

-0.00082 
-O.OO!&l 
-0.00777 

O n  024.36 

2- 58774 
3*01907 
0.44674 

I 0 16668 

0~00510 

m = 31 
I 5  
4 
8 

I 27 

0.54959 
0.56447 
0.55092 
0.51332 
0.45371 
0.37217 
0s 26494 
0*13800 

-O*08536 
-0.03247 
.0*00879 
*Oa 001 70 
0.00676 
0.01 583 
0.02529 
0.021 02 

0.001 80 
-0*02604 
*O* 00707 
-0-01 240 
*0-00968 
-04 01 389 
00 01 996 
0.04958 

-0.02027 
0.001 71 
0@00209 
0*00064 
-0*00021 
-0' 00606 
-0.00732 
0. 02426 

2' 68807 
3* 0821 7 
0.Jt4-118 

1*14661 

D = 15 
15 
4 
8 

127 

00 56877 
0.57532 
0.55788 
0.51 805 
0.4571 8 
0.37449 
0.26652 
0.13872 

0.0691 1 
0.02846 
0.00836 

0.00673 
0.01607 
0.02533 
0.021 19 

0. 001 25 

0.01411 
0.02369 
0*00725 
0.01 147 
0.01 024 
0.01 347 
0.01973 
0*05CQ3 

m = 7  
15 
4 
8 

127 

m = 7  
7 
4 

16 
1 27 

m = 15 
3'1 
3 
2 

63 

0.01 505 
0.00039 
0.00495 
00 00048 
0~00002 
0.00629 
0. 0071 5 
00 02J$2l 

-0.00991 -0- 00704 
-0- 0001 5 

O.OOI& 0.00264 
0- 00064 
-0. ooOO6 -00 00285 
-0.00632 

0.021: 20 
-0*00712 -0~00113 

2.72704 
3- 10379 
0.4391 8 

1' 13815 

2.74991 
30 1 1289 
0.43805 

1*13199 

46 



TABLE 15 

Solutions for Arrowhead Planform 12 ( A  = 8, M = 0, N = 3) at Unit Incidence. 

.. - 
m = 23 

m = 95 
U = 23 - 

m = 15 Rounding m = I 1  

m = 11 
m = 95 
- 

m = 15 m = 15 

U = 31 
Ei = 63 

m = 15 
m = 95 

0.24660 

0.26497 

0.261 54 

0' 24591 

0.22408 

0.19826 

0.45737 

0.08813 

- m = 23 
m = 95 

0*25410 
0.26542 

0.26833 
0.26338 
0,25294 

0.23993 
0,22472 
0.20783 

0.18731 
0.35779 
0*11423 

- 'l-; 

0 
0.13053 
0.19509 
0.25882 
0 38268 
o- 50000 
0.55557 
0*6C%76 
0.7071 1 
0.79335 
0.83147 
0.86602 
0.92388 
0.96593 
0,98078 

0.2 5744 

0.26142 

0.22490 

O* 15680 

0- 24963 

0. 26577 

0- 251 94 

0. 22424 

0.18699 

0.11436 

0.2451 3 
0.26166 

0.26626 
0.26206 
0- 251 98 

0.23929 
0*22422 
0.20776 

0.18712 
0.15763 
0*11410 

0- 25828 

0.27093 

0.26387 

0.2491 I 

0.22674 

0.19978 

0.15854 

0.08850 

Values 
of Y 

0 
0.13053 
0- I 9  509 
0,25882 
0.38268 
0- 50000 
0.55557 
0.60876 
0.7071 1 
0*79335 
0.83147 
0- 86602 
Og92388 
0.96593 
0.98078 

-0- 02090 

-0.00528 

-0.00101 

- O * o O l y +  

0.00002 

0-00099 

0*00694 

0.01066 

-CP 02077 
-0*00762 

-0- 00230 
-0.001 82 
-0. 00092 

-0. ooos9 
-0. OOO17 
0.00055 

0.00263 
0.00657 
0*01088 

-00 02029 

-O*00316 

-0*00046 

000024 

0*00059 

0*00163 

0.00658 

0.01 088 

-0.01 81 I 

-00 00390 

-0. oO054 

-0. 00076 

0.00300 

0~01008 

0.00725 

-0.00480 

-0.00006 

-0*00194 

-0~00300 

0.00718 

-0.02452 
-0*00791 

-0. 00214 
-0. 001 92 
-On 00086 

-0.00096 
-O*ooO14 
0~00037 

0.00264 
0.00654. 
0.01089 

0.00563 
-0.00817 

-00 000% 
-0.00244 
-0*OO039 

-0.001 78 
-0.00082 
-0. 00239 

-0*00290 
-0- 00346 
0. 00843 

-0.01444 

-0. 00244 

0. 00004 

0- 00580 

0.00566 

-0*00304 

~0~00106 

-0*00096 

Values 
of CI 

Values 
of K 

-1_1 

0.007 58 

-0.00628 

0*00010 

-0*00210 

-0*00063 

-0.0031 5 

-0.00243 

0 01518 

-0*00090 

0~00022 

0*00321 

0.00359 

0.00254 

-U. MOj3 

-0.00329 

0.01588 

0.00316 
-0*OO715 

-0*00108 
- 0 s  0021 6 
-0.00062 

-0. 001 61 
-0.001 02 
-0.00264 

-0.00298 
-0.00338 
0.00837 

0 
0.13053 
0*19509 
0.25882 
0 - 38268 
o~50000 
0.55557 
0.60876 
0*7071 I 
0.79335 

0.86602 
0.92388 
0 *96593 
0.9 8078 

0- a31 47 
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TABLE 16 

Solutions for Complete Delta Wing ( A  = 1.5, M = 0) at Unit Incidence. 

i1 
3 
6 

71 

-00 I -I 525 
-0.05563 
-0.02265 
-0~01206 
-00 00843 
-00 00030 

-00 07350 
-00 0419 0 
- 0 0  00378 
-00 00606 
-0.01 000 
00 00326 

1 77731 
2* 16427 

00 41 508 

1.21773 
P I 

48 



TABLE 17 

Solutions for Slender Delta W i n g  ( A  = 0-0001, M = 0) at Unit  Incidence. 

I1  I 1  
2 3 
6 I 

71 I 1  

0.9 41 28 0 98408 
0.91921 0- 9 5074 
0*82759 0.85267 
0- 67406 0.69200 
0.47392 0- 50032 
0.24268 0.25970 

-O*O692O 
-0.08684 
-0.06787 
-0*04085 
-0.02425 
-0.01 628 

-0.20997 
-0- 11122 
-0.029 t 6 
0.02386 
0.01 21 7 
0*04200 

-0.09969 

-0.00728 
-00 06045 

0.089 20 
0.41 664 
0.13783 

1*49312 1.54750 
1 83920 I 95535 
0.42491 0. U500 
9 * 23379 -l 26356 

-0.23848 
-0.17859 
-0.1 1830 
-0.051 70 
0- 00575 
0.00827 

0°41401 
0.19567 
0.03534 

-O*OI 387 
0*03500 
0- 19565 

-0.231 37 
-0. I 6091 
-0*10037 
-0.07327 
-0.04745 
00 00086 

0.33766 
0.20374 
0*16861 
0- I 0256 
O * O I  593 
00 02261 

-0- 21 54-0 
-0. 451 9 
-0.10685 
-0- 07707 
-0.04553 
-0- 00389 

0.38757 
0.36268 
0- 26000 
0. I 1  339 
0*0.!+117 
0.06645 

-0- 74582 
-0.27653 
- O * O g I  0 
-0.0581 9 
-O*OO6& 
-0.01 153 

1.55138 1*5&518 1*54003 1,55788 
2.07726 2*05841 2- 05306 2- 05462 
0*42291 0- 424.91 0.42438 0*42400 

7.33898 1*33246 1.33313 1.31885 

49 








































































































