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Summary. 
Section 1 gives some general concepts and definitions regarding heat transfer. 

In Section 2 a method is described for calculating the rates of heat transfer to the surface of an ideal 
flat plate or sharp cone in an airstream at Mach numbers up to 10, for both laminar and fully turbulent 
boundary layers. 

A system of predicting heat transfer to blunt-nosed bodies throughout the hypersonic speed range is 
given in Section 3, for laminar, transitional or turbulent boundary layers. 

The methods were previously described in data sheets which included comparisons with classified 
experimental results. These experimental data have been excluded from the present report in order to 
publish it in an unclassified form. 

It should be noted that no revision of the material presented has been done since 1962. Accordingly 
there may be parts of the report which have been out-dated to some extent by information published 
since that date. 
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Detachable Abstract Cards 

1. General Concepts of Aerodynamic Heating. 
(Note :--The appropriate units for dimensional quantities used in the following analysis are indicated 

in the list of symbols.) 
l 

1.1. Recovery Factors and the 'Intermediate Enthalpy' Method. 
The rate of convective heat transfer per unit area to or from a surface in an airstream of velocity u 

and density p is given by 

q = h(i,-iw) (1.1) 

T 

where i = f cp dT is the enthalpy of the air (cp being the specific heat of air at constant pressure) and h is 

o 
the heat-transfer factor .  

The subscript w denotes conditions at the wall (body surface) and subscript r denotes recovery con- 
ditions at the wall, i.e. for zero heat transfer• 

The wall enthalpy for zero heat transfer (or recovery enthalpy) is given by 

ru~ 
i, = ie-t 2J (1.2) 

where subscript e refers to local conditions at the edge of the boundary layer, r is an enthalpy recovery 
factor and J is the mechanical equivalent of heat. This equation should be compared with the expression 
for total or stagnation enthalpy 

2 
• U e  

1"It should be noted that h is a dimensional quantity. Non-dimensional heat transfer coefficients are also 
often used (see Section 1.2) but h is more convenient for some applications. In particular, it will transpire 
in Section 2.2.1 that a convenient way of presenting heat transfer data for flat plates and cones is to plot 
graphs of the quantity hx (where x denotes distance along the surface) against the Reynolds number 
Re* corresponding to 'intermediate' enthalpy i* as variable parameter. 



which for constant cp takes the form 

v-=  1+ M 2 . 
Ie 

Similarl\. t\w con~,t~nt or,. equation [1.21 may be w/']tten as 

ir l + r ~ . } _ M 2 .  
ie 

(1.2a) 

Eckert 1 and Monaghan 2 have shownt that, for a wide range of Mach numbers and temperatures, a close 
approximation is obtained for the heat transfer to an ideal fiat plate in both laminar and fully turbulent 
flow if the physical properties of air appearing in the incompressible flow formulae are evaluated at a 
temperature corresponding to an 'intermediate' enthalpy i* given by the simple formula 

i* = i e + 0.5 (iw - ie) + 0"22 (i r -- ie) (1.3) 

which, in virtue of (1.2a) may be written in the form 

i* f i '~- !e + 0"22"~ ~--~ M2 - =  1+ 0.5 r . 
ie Ir--I e J 

(1.3a) 

Usually ie and iw will be known and i, is given by equation (1.2) with, for laminar boundary layers 

r -"- (Pr*) "~ (1.4) 

which is the Pohlhausen formula with Prandtl number (see Section 1.2 below) evaluated at the temperature 
T* corresponding to i*. 

For turbulent boundary layers 

r = 0-89 (1.5) 

which is a mean of experimental values; a good approximation to these is also given by Squire's semi- 
empirical result that r = (Pr) 1/3. 

The intermediate enthalpy method can also be applied to the cylindrical parts of bodies of revolution 
at zero angle of attack, and to sharp cones (a) by use of a simple transformation of co-ordinates introduced 
by Mangler for the laminar case, and (b) by other theoretical considerations due to Young and to van 
Driest for the turbulent case. The cone results are discussed in Section 2.3.2. 

It has also been found that the intermediate enthalpy method gives useful results in cases where pressure 
gradients exist, provided that true local conditions are used in the formulae (see for example Refs. 7 and 8}. 

1.2 Non-Dimens io ,a l  Heat -Trans fer  Coefficients (Stanton amt Nussel t  Nm~Ther.s). 

The heat transfer factor h in equation (l.1) is dimensional and it varies considerably with flight con- 
ditions, so in aerodynamic calculations it is often more convenient to work with the non-dimensional 
heat-transfer coefficient or Stanton number St, defined by 

h 
St = Pe Ue (1.6) 

tFo r  a fuller discussion see E. L. Knuth 'Use of reference states and constant property solutions in 
predicting mass, momentum and energy-transfer rates in high speed laminar flows'. Int.  J. o f  Hea t  and 
Mass  Transfer.  Vol. 6, No. 1, p. 1. January 1963. 



Another non-dimensional quantity often used as an alternative to Stanton number is the Nusselt 
number, Nu, definea by 

N u =  q c p x  = h c p x  
k (¢ - i~) k (1.7) 

where k is the thermal conductivity of air; the values of k and cp are those appropriate to free-stream 
conditions. 

Stanton and Nusselt numbers are often defined on the basis of temperature differences instead of 
enthalpy differences. This implies the assumption of constancy of specific heat but the definitions are 
given here for the sake of completeness. Thus 

St' = q h' 
- - -  ( 1 . 6 a )  p~ u~ cp ( T , -  T,o) pe ue cp 

and 

Nu' - q x h'  x 

k (T r -  Tw) - k (1.7a) 

where h' is now defined from 

q = h ' ( T r - T w ) .  

From equations (1.6) and (1.7) it is seen that 

(1.1a) 

Nu 
St = Pr~ Re x 

where Pr e - #~ cp is the Prandtl number representing the ratio of rates of diffusion of vorticity and heat, k 

i.e. ratio of viscous and thermal diffusion rates. Also Rex - Pe u~ x is the local Reynolds number. 
kt~ 

1.3. Reynolds Analogy. 

The intermediate enthalpy method starts by assuming an expression for local skin friction in incom- 
pressible flow from which that heat transfer is obtained by an extended Reynolds analogy. In incompress- 

Sti ible flow the Reynolds analogy factor relating heat transfer to skin friction is given by ½cl, and theory 

indicates that this is equal to (Pr)-2/a for the flat-plate laminar boundary layer. For the turbulent case a 

mean value of available experimental results is Sh ½c f, = 1.22, but there is some indication of a variation 

with Reynolds number; a definite statement of such a variation must await further experiments however. 
In view of this Reynolds analogy, it is clear that values of skin-friction drag can also be obtained. 
Other methods which have been developed for the calculation of heat transfer to bluff bodies, including 

the effects of dissociation, are presented in data sheet form in Section 3. 

1.4. The Calculation of  Equilibrium Temperature. 

Now there are three other sources of heat transfer in addition to that produced by convection as 
considered above: 

(i) the surface will be losing heat by radiation to its surroundings at a rate 



q, = 2"78 x 10-12e(T~) 4C'H'U" 
ft 2 sec 

(1.8) 

according to the Stefan-Boltzmann law, where e is the surface emissivity factor (see Table 1) and Tw is the 
surface temperature in °K. 

(ii) The surface will be receiving back heat by radiation from the surrounding air of amount 

2"78 x 10 - 1 2  eeG(T) 4 C.H.U. 
ft 2 sec 

(1.9) 

where so is the gas emissivity and T is the temperature of the radiating gas. Some measurements of e~ are 
reported in Ref. 9; in many cases this source of heat transfer is small in comparison with the aerodynamic 
heat input. 

(iii) Heat will also be received by solar radiation to surfaces exposed to the sun's rays (and also by 
reflection from the earth or clouds). This amount of heat transfer is given by 

a~ Qs cos tO (1.10) 

where Q~ is the solar constant (at the outer limit of the atmosphere) = 6.82 × 10- 2 C.H.U. This is re- 
fE E sec " 

duced by about one-half by the time radiation reaches ground level. 
cq is the absorption factor for solar radiation, which differs from emissivity e. Some values of ~s are given 

in Table 1. ~ is the angle between the normal to the surface and the incident rays. 
The proportion of the incoming radiation reflected by earth or clouds is given approximately by 

Angstrom's formula 

As = 0-70c+0-17 (1 - c ) ,  

where c is the cloud amount. 
The heat received by solar radiation will usually be neglected. Note that it can be considerably reduced 

by suitable choice of surface finish. 
A complete heat balance equation should include, in addition to the above sources of heat transfer, the 

effects of conduction through the skin if it is not isothermal and also loss of heat to the interior by con- 
duction through joints and structural members, and by radiation to, and convection in, any interior air 
space. 

For many purposes it is sufficient to balance the aerodynamic heating of the surface and the radiative 
cooling effect of (i) above, and thus obtain an upper limit to the equilibrium temperature (providing the 
radiative heating effect of(ii) is negligible). An iteration procedure is necessary to determine the equilibrium 
temperature, T~e q. First an estimate of Tw is made and corresponding values of q and q, are calculated. 
The assumed value of Tw is then adjusted and the calculation of q and qr repeated until q = qr. The wall 
temperature for which this is achieved is then the equilibrium temperature under the above assumptions. 

A useful iteration formula for this process is obtained as follows : 
If q , - q  = v for an assumed T~ then 

T~o ~ ~ T~, + ATw 

and 

n ~  
AT w = , (1.11) 

4 q ~ +  rw h(cp)r~ 



where h is the heat transfer factor and (Cp)rw is the specific heat of air at constant pressure, evaluated at the 
assumed wall temperature, Tw. 

Throughout the calculations in this report the standard atmospheric data used are those of Ref. 3. 

TABLE 1 

Normal Total Emissivities of Various Substances. 

Metals 
Aluminium 

Polished 
Oxidised 
Polished 

Chromium 
Iron 

Pure Polished 
Red Iron Oxide 

Nickel 
Electrolytic 

Platinum Black 
Steel 

Polished 
Oxidised 

Alloys 
Nickel Coated Copper 
Duralumin 
FSA Dowmetal 
Monel Metal 
Monel Metal Oxidised 
Speculum Metal 
J.H.Mg. Alloy with Chrome Plated Surface 
Inconel 
350 Aluminium Alloy 
24 ST Aluminium 

Miscellaneous Materials 
Water 

Polished Glass 
White Paper 

56°C 

0"04 
0"11 

0'08 

0.06 
0.96 
0-35 
0.04 
0.93 

0.07 
0.79 

0.38 

0.38 

0.08 
0-50 
0-30 
0-25 
0.35 

0"67 - 
0.68 
0.90 
0.95 

560°C 

0.08 
0.18 

0.26 

0.13 
0.67 
0.35 
0.10 
0.97 

0.14 
0.79 

0.38 

0.38 
0-10 
0.46 
0.13 
0.46 
0.32 
0.25 
0.32 

0.82 

Solar 

0.10- 
0.40 
0.43 

0.35 
0.74 

0-28 
0.97 

0.37 

0.53 

0.43 

0.39 

0-28 

Ref. 

4 
4 



TABLE 1--continued 

Pigments 
Lampblack Paint 
Camphor Soot 
Acetylene Soot 
Platinum Black 
Lampblack 
Flat Black Lacquer 
Black Lacquer 
Blue (C0203) 
Black (CuO) 

Red  (Fe2Oa) 
Green (Cu203) 
Yellow (PbO) 
Yellow (PbCrO4) 
White (A1203) 
White (Y203) 
White (ZnO) 
White (CnO) 
White (MgCO3) 
White (ZrO2) 
White (ThO2) 
White (MgO) 
White (PbCO3) 
White Enamel 
Dark Glossy Varnish 
Spirit Varnish 

70°C 

0"96 
0"98 
0"99 
0"91 

416°C 

0"97 
0"99 
0"99 
0"95 

2780°C 

0"97 

0"99 
0"97 

Solar 

0"97 
0"99 
0"99 
0"98 

Ref. 

0.94 0-94 
0.96 0-98 
0"80 0'95 
0.87 0"86 

0'85 
0"96 0"70 
0"95 0-67 
0"74 0"49 
0.95 0"59 
0"98 0'79 
0"89 0"66 
0"97 0"91 
0"96 0"78 
0"96 0"89 
0"95 0"77 
0"93 0'53 
0"97 0"84 
0"89 0"71 
0"92 
0"89 
0"83 

0.97 0"97 
0-76 
0-59 0"74 
0"55 0"73 

0-48 
0"30 

0"12 0"16 
0'26 

0"04 0"18 
0'15 

0"11 0"15 
0"16 0"14 

0"14 
0"14 

0"80 0"12 

2. Flat Plates and Cones up to M = 10 Excluding Dissociation Effects. 

2.1. Introduction. 
This Section presents methods for calculating the local and mean skin-friction coefficients on, and rates 

of heat transfer to or from, the surface of an ideal flat plate or sharp cone in an airstream, for both laminar 
and fully turbulent boundary layers. The general theoretical background is that given in Section 1.1; 
further details relevant to the present case are given in Section 2.2 and ,2.3 while the recommended comput- 
ational procedures are given in Section 2.4. Where an accuracy within _ 10 per cent of the theoretically 
exact values is acceptable, the rapid approximate method of Section 2.4.1 may be employed. To obtain 
a more accurate solution, the routines set out in Section 2.4.2.1 (laminar boundary layers) or Section 
2.4.2.2 (turbulent boundary layers) should be followed. 

The basis of the computational procedures proposed in Section 2.4 for the calculation of heat-transfer 
rates and skin friction is the intermediate enthalpy method, of which a broad outline is given in Section 1.1. 
The detailed application of this method to the particular cases of flat plates and cones is described below 
in Sections 2.2 (laminar boundary layers) and 2.3 (turbulent boundary layers). 



2.2. Laminar Boundary Layers. 

2.2.1. Flat Plates. 

2.2.1.1. Local Stanton Numbers. The local skin-friction coefficients on a flat plate in incompress- 
• ible flow with laminar boundary layer is given by 

cy, = 0"664 Re;  1/2 

and the Reynolds analogy factor relating heat transfer to skin friction in this case is 

(2.1) 

Sti (Pre)- 2/a 
1 -~C f i 

SO that the local heat-transfer coefficient or Stanton number is 

(2.2) 

Sti = 0"332 (Pre)-2/3 (Rex)- 1/2. (2.3) 

The intermediate enthalpy method then gives the Stanton number in compressible flow as 

St* = 0-332 (Pr*)- 2/3 (Re*)- 1/2 (2.4) 
where 

st" = ,h = __h _P = s t  
P Ue Pe U~ p p 

St being the Stanton number appropriate to conditions at the edge of the boundary layer. 
However, since static pressure p is assumed constant across the boundary layer, the equation of state 

gives 

P 4 _ T *  
p T~' 

so that 

T* 
St* = S t - - .  (2.5) 

Te 

Similarly 

, p*UeX T~ Ig~ 
Rex = It* -- Rex T,  " (2.6) 

It 

Hence, substituting from equations (2.5) and (2.6) in equation (2.4), we obtain 

St = 0"332 (Pre)- 2/3 Re ;  1/2 
\ Pre]  

(2.7) 

Comparing this with equation (2.3) we see, that for the same free stream temperature (defining Pre) and 
Reynolds number, the ratio of Stanton numbers in compressible and incompressible flow is 

Sti \ Pre } Pc} " (2.8) 



The ratio - -  should be evaluated from Sutherland's formula 

T a/z ) slug 
# = 3.045 x 10- s \ T-7- ]-i-0.4 ft sec (2.9) 

giving 

110.4 

#e Te T* 110"4" 
Te Te 

(2.10) 

2.2.1.2. Mean Stanton numbers. The compressibility variation given by equation (2.8) does not 
involve Reynolds number so that it applies equally to mean heat-transfer coefficients (Stanton numbers), 
i.e. to coefficients based on the overall amount of heat being transferred between stations 0 and x, as 
distinct from the local heat transfer at the station x. In this case the incompressible flow formula is 

St---~ = 0"664 (Pre)-2/3 (Rex)- 1/2. (2.11) 

Thus the mean Stanton number up to a given position is just twice the local value at that position. 
It may also be seen that, due to the inverse square root variation with Rex, the mean Stanton number is 

equal to the local value evaluated at one-quarter the actual Reynolds number. 

2.2.2. Cones. Application of the Mangler transformation to the boundary-layer equations for 
axial flow over a sharp cone shows that the local Stanton number is ~/3 times that for a flat plate in 
laminar flow, for the same local Mach number, local Reynolds number and ratio of wall temperature to 
local free-stream temperature. Further, the mean Stanton number on a cone is 4/n/3 times the local 
flat-plate value under the conditions stated above. Alternatively the local and mean Stanton numbers for 
laminar flow on a cone may be obtained directly as being equal to the local Stanton number on a flat 
plate at Reynolds numbers of 1/3 and 3/16 respectively, times the cone Reynolds number, other local 
conditions being identical. These results also apply to skin-friction coefficients. 

The local velocity and density at the edge of the boundary layer, ue, Pe respectively, in terms of which 
the local Stanton number is defined may be known from surface pressure measurements. Alternatively 
they may be derived from the M.I.T. Supersonic Flow Tables, assuming the velocity and density at the 
edge of the boundary layer in the real (viscous) flow to be equal to the theoretical surface velocity and 
density in inviscid flow. 

2.3. Turbulent Boundary Layers. 
2.3.1. Flat plates. 

2.3.1.1. Local Stanton numbers. The formula for local turbulent skin friction in incompressible 
flow which is recommended as being the most suitable and convenient for application is that suggested 
by Wieghardt: 

cy, = 0"288 (loglo Rex) -2'45 • (2.12) 

Assuming an enthalpy recovery factor r = 0'89 (see equation (1.5)) and a Reynolds analogy factor of 
1-22 we obtain 

Sti = 0-176 (logto Rex)- 2.4s (2.13) 

10 



which, in compressible flow, becomes 

St* = 0.176 (loglo Re~) -2"4s (2.14) 

with density and viscosity evaluated at the temperature corresponding to intermediate enthalpy i*, as 
given by equation (1.3a): 

i* / " -- " 
- - :  1+ l 0"51~w" ;e - ' [ -0"22~r~--~M2'  
ie "r- "e i j 

where, in accordance with equation (1.2a) 

(2.15) 

7-= l + r  M~. (2.16) 
le 

The Stanton number appropriate to conditions at the edge of the boundary layer is given by 

r e .  St = ~ St = 0"176 (loglo Re*)-2"45, (2.17) 

so that 

S_.t_t Te { 1Oglo Rex ~ 2.45 

Sti = T* \ loglo Re~ ] " 
(2.18) 

2.3.1.2. Mean Stanton numbers. The overall heat transfer between station 0 and station x is 
given by the mean Stanton number 

Te R * 26 = 0"28 ~-~ (loglo e~)- " , (2.19) 

which is obtained from the Prandtl-Schlichting formula for mean skin friction : 

6y, = 0"46 (loglo Rex) -2"6 (2.20) 

by assuming a value of 1.22 for the Reynolds analogy factor (see Section 1.1). 
A useful approximation, which may be derived from equations (2.17) and (2.19), is that the values of the 

mean Stanton number (and mean skin-friction coefficient) between stations O and x are 1.25 times the 
local values at station x for turbulent flow on a flat plate. Alternatively stated, the mean coefficients are 
equal to local coefficients evaluated at a Reynolds number of one third the actual value. 

2.3.2. Cones. Theoretical considerations given independently by A. D. Young and Van Driest 
show that for a cone in axial flow the local Stanton number is 1.15 times as great as for a flat plate under 
the same local conditions. 

It may also be shown that the mean Stanton number for a turbulent boundary layer on a cone in axial 
flow is 1.28 times the local flat plate value for the same local conditions. 

Alternatively, the local and mean Stanton numbers for turbulent flow on a cone may be obtained 
directly as being equal to the local Stanton number on a flat plate at Reynolds numbers of 0-5 and 0.3 
respectively times the cone Reynolds number, other local conditions being identical. 

These factors also apply to the calculation of skin-friction coefficients. 

i1 



2.4. Application: Computational Procedures. 
2.4.1. Rapid approximate method. In incompressible flow, if the variation of Prandtl number with 

air temperature is neglected, the Stanton number is a function of Rex and the state of the boundary layer 
(i.e. laminar or turbulent) only. Accordingly, in Fig. 1, values of Sty, calculated for laminar and turbulent 
boundary layers respectively from equations (2.3) and (2.13) have been plotted against Rex, assuming in the 
laminar case that Pre = 0"72. 

From equations (2.8), (2.17), (2.6) and (2.10) it is seen that the ratio St/Sti depends on Te, T*, the state 
of the boundary layer and, in the case of turbulent flow, on Rex. Furthermore, it follows from equations 
(2.15) and (2.16) that T* depends on Me, Te and Tw. Hence the Stanton number St for compressible flow 
depends on Rex, Me, Tw, Te and the state of the boundary layer. It may be calculated by using Fig. 1 
in conjunction with Fig. 2, which shows the ratio St/St~ plotted against M e for various values of the 

parameter iw-. .ie assuming no dissociation. In the derivation of the two sets of curves, applicable to 
I r - -  I e 

laminar and turbulent boundary layers respectively, r has been taken equal to 0-89 for the turbulent case, 
while in the laminar case, an iterative procedure, starting with r = 0.85, has been employed to calculate r 
from the formula r = (Pr*) 1/z (see equation (1.4)). 

Strictly, separate sets of curves of St/St~ should be given for different values of T e, the local temperature, 
but in preparing Fig. 2, Te has been arbitrarily fixed at the value in the stratosphere (216.5°K), so that 

T* 

( )3122 65 +,104 326.9 
The use of this approximation results in errors of under 3 per cent in St for the range of ambient temper- 
atures encountered in flight up to an altitude of about 100 000 ft. 

The value of the enthalpy, i, corresponding to a given temperature, T, will be required in using Fig. 2. 
This may be obtained from Fig. 16. 

A further approximation was necessary to obtain the curves for St/Sti for a turbulent boundary layer, 
due to the logarithmic form of the variation of St with Rex. The curves have been plotted for Rex = 107; 
at other values of Rex within the range of Fig. 1, the curves of Fig. 2 give values of St to within _+ 15 per cent 
of the values given by the equations. 

2.4.2. Complete method. 
2.4.2.1. Laminar boundary layers. The local heat-transfer factor h defined by equation (1.1) is 

related to the Stanton number by the equation h -- St Pe Ue and from equations (2.6) and (2.7) it can be 
shown that 

hx = 0.332 (Re*) 1/2 #* (Pr*)- 2/3 = (Re*x)l/2 f(i*). 

Thus the heat transfer can be represented on a plot of hx against Re* where x is distance along the 
surface and Re* is given by equation (2.6). This is shown in Fig. 3 for various values of/*, the intermediate 
enthalpy of equation (2.15). 

The calculation of Re*~ is eased by the use of Figs. 5, 6, 7 and 8 ; the recommended routine is as follows : 
Assume Me, Rex, Te and T w are known, 
(il Read ie and i,. from Fig. 16 and calculate the ratio iw/i,.. 
(ii) Choose a value of recovery factor r (a value of 0-84 will usually be satisfactory as a first approxi- 

mation), read the value of (i~-ie) from Fig. 5 (which is derived from equation (1.2)) and hence obtain it. 
Calculate the ratio ir/i e. 

(iii) Determine {~/ie from the nomogram of Fig. 6 (or from equation (2.15)), and calculate i*, knowing ie. 
(iv) Read the recovery factor r = (Pr*) 1/2 from Fig. 7. If this differs from the assumed value, repeat (ii) 

and (iii) with the new value oft .  I f r  = 0.84, is taken as the first approximation, only one iteration will be 

12 



necessary in most cases. 

(v) Read the ratio Rex/Re*~ from Fig. 8 (equation (2.6)) and using the known value of Rex = pe ue X, 

calculate Re*. #~ 
(vi) Tile local heat-transfer factor h may now be obtained from the plot of hx ~ Re*~ in Fig. 3 and the 

heat-transfer rate calculated from the equation q = h ( i , -  iw) (equation (1.1)). 
(vii) To obtain the local skin-friction coefficient, first calculate the local Stanton number from the 

equation 

h 
S t -  

Pe Ue 

St = (Pr*)-2/a, from Fig. 7 knowing i*, and calculate c:. then determine the Reynolds analogy factor, 
~cf 

2.4.2.2. Turbulent boundary layers. Using the relationship h = St peU e in conjunction with 
equations (2.3), (2.5), (2.6) and (2.14), it can be shown that 

hx = 0"176 (loglo Re*~) -2"45 It* Re* 

so that the heat transfer can again be represented by curves of hx against Re* with i* as a parameter 
(see Fig. 4). The procedure for calculating Re* is however much simpler since the recovery factor r for a 
turbulent boundary layer on a flat plate is taken to be constant at r = 0"89 : 

(i) Read ie and iw from Fig. 16 and calculate the ratio i~/i,. 
(ii) Read the value o f ( i , -  ie) from the curve labelled r = 0.89 on Fig. 5 which is derived from equation 

(1.2) and hence obtain it. Calculate the ratio i,/ie. 
(iii) Determine i*/ie from the nomogram of Fig. 6 or from equation (2.15) and calculate i*, knowing i e.  

(iv) Read the value of the ratio Re=/Re* from Fig. 8 (equation (2.6)) and calculate Re*, knowing Rex. 
(v) The local heat-transfer factor h may now be obtained from the curves o f  hx ,,~ Re* in Fig. 4 for the 

appropriate value of i*. The heat-transfer rate is again calculated from the equation 

q = h (i r -  iw). 

(vi) To obtain the local skin-friction coefficient, first calculate the local Stanton number from the 
equation St = h/pe ue. Then since the Reynolds analogy factor is assumed constant, 

St 
½ c: 

- 1 . 2 2  

the value of c: may be calculated. 

2.5. Comments. 

The rapid approximate method of Section 2.4.1 gives results to within _+ 15 per cent of the values given 
by the equations for Mach numbers up to 10 and altitude up to about 150 000 ft assuming no dissociation. 

The complete method of Section 2.4.2 should be used if more consistently accurate results are desired. 
The accuracy of this method for Mach numbers up to about 5 is well established, but experimental data 
for higher Mach numbers is rather meagre. (see Fig. 9). 

The methods given in Section 2.4 are not restricted to the flat plate or sharp cone. They may also be 
applied to the cylindrical parts of bodies in axial flow. It has been shown (Refs. 12 and 13) that the method 
may be applied with some confidence even in cases involving pressure gradients, provided the true local 
conditions are used. 
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The results of Section 2.4 apply only to smooth surfaces. Roughness can cause appreciable increases in 
heat transfer and skin friction and it is also important in accelerating transition to turbulence. 

All of the methods and results given above are for the special case of an isothermal wall. Various 
schemes have been proposed for calculating heat transfer when longitudinal surface temperature gradients 
are present, but all involve a fair degree of computational effort. 

Particular reference may be made to the work of Eckert et a114'1s wherein details of earlier work by 
other investigators is quoted. The method of Spalding 16 is perhaps somewhat simpler. 

3. Heat Transfer to Blunt Bodies. 
3.1. Introduction. 

This Section describes methods of predicting heat transfer from laminar or turbulent boundary layers 
applicable to blunt-nosed bodies at hypersonic speeds. Formulae are given for the stagnation point 
heating and for the distribution of heating from laminar and turbulent boundary layers over blunt nosed 
two dimensional and axisymmetric bodies at zero incidence which are valid for air in dissociation equi- 
librium. A knowledge of the flow properties, pressure, velocity and temperature at the outer edge of the 
boundary layer and of the thermodynamic and transport properties of air is assumed. 

The possible effects arising from frozen flow with catalytic recombination at the wall are discussed. 
Other chemical reactions, with the wall material or in the boundary layer, transpiration and interaction 
with ablating surfaces are ignored. 

The possible application of the method of this section to more general three dimensional flows, such as 
occur over a body at incidence, is considered. 

In general it is impossible to reduce the methods to a series of graphs but design charts are provided for 
stagnation point heating and for the distribution of laminar boundary-layer heating over hemisphere- 
cylinders and spherically-capped-cone combinations. 

3.2. Methods of Estimation. 
3.2.1. Laminar boundary layers. 
(a) Stagnation point. 

A summary of early work on stagnation point heating has been made by Fay, Riddell and Kemp. The 
most widely used result is that developed from an expression due to Fay and Riddell 1 s. For general three 
dimensional stagnation points 19,z o this is 

=0"537a F D ~  ~ &fdue~ ~ [l+(Le,~ 1)iD,,-i~](i,._i~) 
where D~ = ratio of smaller to larger princilial diameters of curvature : 

for axisymmetric = I ; two-dimensional = 0. 

For axisymmetric boundary layers Fay and Riddell is gave 

a = (p,/h) °'4 (Pw #w) °' 1. 

For two dimensional boundary layers Kemp, Rose and Detra 21 gave 

a = 1.05 (Pt #t) °'42 (P~ #w) °'°s 

and Beckwith 22 gave 

a = 1.06 (Pt #,)0.44 (Pw #,~)o.o6. 
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It has been found that when a slight adjustment is made to give better agreement with the two dimensional 
stagnation point expressions, the use of a reference enthalpy method gives agreement with the above 
expression to better than 4 per cent for iw/it > 0.1. See for example Fig. 1 of Ref. 23. The recommended 
formula is 

E ,oi  0"537 ½ ~(due )  ½ ~l+(Le-1)--v----z-- .  ] ( i r - i~)  
q = ~ ( p * # * ) o . 5  1-1.+0.9 \~x,/x=o L . e - r . ,  _1 

where p* ~t* is evaluated at a reference enthalpy i*, given by 

(3.1) 

i* = 0.22r it + (0.5 - 0.22r) ie + 0.5 iw 

= 0.5 (it+ iw) at a stagnation point. 

The above expressions for the factor 'a' were derived from calculations which assumed the thermodynamic 
properties of air in dissociation equilibrium, a viscosity given by Sutherland's formula unaffected by 
dissociation, constant Prandtl and Lewis numbers and the ignoring of thermal diffusion. The Prandtl 
and Lewis numbers were defined in terms of a 'frozen conductivity' which represented energy transferred 
by conduction but not diffusion. In these circumstances d = 0.52. 

In general the thermodynamic and transport properties of high temperature air will already be available 
elsewhere. At high temperature there is some uncertainty in all estimated properties and the following 
approximations are adequate for engineering purposes, 

(i) Ref. 24 

p # =  

where Pb = 2"498 X 10 -3 slugs/ft 3 

#b = 3"584 X 10 -7 slugs/ft sec 

Pb = 2117 lb/ft 2 

i ~ 0.3329 

i b = 2"119 x 10 s ft2/sec 2 = 4703 CHU/Ib.  

(ii) (Pr) = 0.71 ; (Le) = 1.4 assumed constant. 

(iii) ioo- i1~, ~ (ie- i~,)- Cp (T e -  Tw) 
I e -  iw I e - -  i w 

where C v -"- 0"3 CHU/Ib°K. 

{ due ) 2 ~ x~ 
(iv) \-d--~x ] , = o  = ~-xN / ~-t if ~ i> 0.18 (Ref. 20), 

where D x = smaller principal diameter of curvature 

xs = axial distance of sonic point on body behind stagnation point (body profile convex) 

D~ = Diameter of body at sonic point. 
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An interpolation formula useful for making quick estimates has been proposed by Detra, Kemp and 
RiddelF s which fits the above formula and the AVCO shock tube data to 10 per cent is 

= 9780 F 1.1 +0.9 ( D ~  ½]~ | ~  l CHU/ft2 sec q ~ L  ) ( ply½( V ~3"5Vi : n 
poJ \26000} Lt,-~zA 

(3.2) 

where Po = sea level density. 
D is in feet ; V in ft/sec; enthalpies in CHIJ/lb. 
A better but more complex interpolation formula suitable for calculations based on a digital computer 

has been proposed by Scala 26. It is based on boundary-layer solutions which incorporated improved 
estimates of high temperature transport properties of air, treated as a multi-component mixture rather 
than a binary mixture as in the AVCO work and which included a proper variation of Prandtl and Lewis 
numbers with temperature and pressure. 

0'564 + 0 . 9 ( D ~ ) ½ ]  q~ b q=x/Dx [1'1 (10"0" ( V ) 

here a = -(0.9689+6.998 x 10 -5 Tw)(5"626+9"84 x 10-6H) 

b = (0.9793+4.672 x 10 -5 Tw) (2.830+ 3.00 x 10-TH) 

where T~ in deg K and H, altitude, in feet. 

CHU/ft 2 sec (3.3) 

(b) Distribution around blunt body. 
References 27-29 are recent examples of methods of calculating laminar boundary-layer characteristics 

with arbitrary external and wall conditions. However accuracy is achieved at the expense of complexity. 
Therefore much use has been made of the fact that boundary layers are insensitive to pressure gradients 

for highly cooled walls 3° and for 7v-~- ~ < <  131'32, Unfortunately available methods based on equivalent 

'flat-plate' solutions a°'31 or methods using some form of 'local-similarity' correction 21'32'aa do not 
reduce to both of the commonly used stagnation point or the flat plate expressions in the appropriate 
limits. Also they are usually only valid for low local Mach numbers, except for that of Kemp, Rose and 
Detra 21 which at one stage had a proposed first order correction to account for viscous dissipation which 
was valid for moderate Mach numbers. 

The proposed formula is 

a ue 1 + (Le d- 1) (i,-iw), 
q = ~  X "e-tw A 

(3.4) 

where a = 0.332 [1 +0.1853 x/fl]" 
p* #* are evaluated at a reference enthalpy i* given by 

i* = 0.22r it+(0"5-0"22r) i,,+0.5 i,,. 

and X is an equivalent length of boundary layer given by 

X = 

f p" p* Ue R 2~ dx 
0 

p* #* U e R 2K 
(3.5a) 

where K = 0 for 2 dimensional boundary layers 
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= 1 for axisymmetric boundary layers 

and fl is a pressure gradient parameter given by 

x 

f p* It* U e R 2K dx 

/3 = 2 X  due 2due o 
ue d X  - dx p, #, u2 R2 K (3.5b) 

For flat plate boundary layers due = 0,/3 = 0 , X  = x 
dx 

2 dimensional stagnation points 
X 

K = O,u e'. ,  x , /3  = 1 , X  = 2 

1 X x 
Axisymmetric stagnation points K = 1, ue ~ x ,  R ,,~ x,/3 = 2 '  4 

Equation (3.4) is a development of that originally proposed by Lees 30 incorporating 
(i) the usual Lewis number correction 34'35, 
(ii) evaluation of fluid properties at a reference enthalpy rather than wall 21'33 or stream conditions 3°, 

following Eckert and Tewfick 36 and Solomon z3, to allow for the effects of high local Mach numbers. 
Vaglio-Laurin 37'3s has shown that the choice of reference condition is arbitrary in the Lees approximation, 

(iii) a correction to the numerical factor, which involves a pressure-gradient parameter, of the same 
form as that of Kemp, Rose and Detra 21, such that equation (3.4) reduces to equation (3.1) at a stagnation 
point (except for the Prandtl number exponent) and to the flat plate and cone results of Section 2. 

It has been found from experience that the choice of reference condition for evaluating p# in the ex- 
pressions for X and/3 is not critical and that acceptable answers can often be obtained by using wall or 
edge of boundary-layer conditions. For example see the insensitivity shown in the distribution of the 
relative magnitude of heating to a blunt body in Fig. 2 of Ref. 23. The choice of wall conditions leads to  
particularly simple forms that are readily integrable 

x x 

fpe eR   x f eueR2K x 
o 2 du e o 

X = " 13 = - -  2 R2K (3.5c) 
Pe Ue R2 r  ' dx Pe Ue 

Thus near a stagnation point 

qstag _ _  2 - -  

q 

(c) Total l~eat transfer. 

K + I  

2 

Pe ue R 2K dx 

due ) 

~-x x=0 7e~-~-J 

It has been shown by Kemp 39 that simple exp?essions can be derived for the total heat transfer to a 
blunt body. Using an approximation to equation (3.4) and (3.5) he showed that 
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x 

I q  dA ~ Pw #w 
J qstag (Pw #w)x = o 
o 

A'ue V qstag 
(due~ L q(x) ] 

R \  dx /*=o 

(3.6a) 

or assuming a cool isothermal wall 

x 

f q dA.,,.P_2 
qstag Pt 

o 

a . u  e 

R \  dx / .=o q - ~ ]  

(3.6b) 

lf lhc local hoat-tr'<lnsfcr is not kn~x~n mw required then lhc t~lh~x~ ii~ can bc u,cd 

x 

qstag (due~ 
0 . \ c l x /  ~ = o 

(3.6c) 

3.2.2. Turbulent boundary layers. The effect of a pressure gradient on the characteristics of a 
turbulent boundary layer, especially the heat-transfer distribution, as measured by the deviation of the 
actual value from that of a zero pressure gradient boundary layer having the same external conditions, is 
much less than that for a laminar boundary layer. As a result predictions 4°-43 of heat-transfer rates using 
zero pressure gradient formulae evaluated at a reference enthalpy and at true local conditions have often 
proved satisfactorily accurate. The recommended expression is based on Ref. 44 which gives a correction 
for the degree of dissociation at both the outer and inner edges of the boundary layer. 
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1•' I " ' 
q = 0 " 5 p  ue(Pr*) -~ L-' \ 1 - - ~ /  - l + ( L e ~ - I  le-z~, / (3.7) 

where 

0.288 = 
C f, [ l °g l° (  p*ueXIA* )1  2-45"  

The use of a reference enthalpy has been justified empirically in the past but Ref. 45 gives some theoretical 
basis for its validity. 

An interpolation formula proposed by Detra and Hidalgo 46 is useful for quick estimates 

q =  2"809 x 105(P-~oo)°'8( V 2 ~ 1 -  ( ~ - t ) ~ l  ° ' 4 . p e  (3.8) 

This has a maximum error of about 5 per cent for 40000 ft < height < 200000 ft and 6000 ft/sec < 
velocity < 26 000 ft/sec and is about 15 per cent low at sea level. If the flow outside the boundary layer is 
almost completely dissociated it can be up to 20 per cent low. 

There have been many attempts ~7-s6 to improve on the 'equivalent flat plate' approach for turbulent 
boundary layers in the presence of a pressure gradient but the simpler methods have in general failed to 
give a consistent improvement and the methods that have not failed are too complex for general use. The 
simple approaches are usually too sensitive to variations in the external velocity but even amongst the 
possibilities that are reasonable a wide choice is possible. Fortunately the theoretical correction for the 
effect of pressure gradient on heat transfer is seldom greater than 40 per cent and an expression for an 
equivalent length of boundary layer is probably quite adequate. Typical of the expressions for the trans- 
formed co-ordinate to be found in the literature is 

X = 

p u~/  
XT' 

/~* )n  
- r - -  (ue pe Rx) 1 +" 
P Ue 

where n is of the order 0.2 to 0'25. It is convenient, and within the accuracy of the approach to ignore the 
dependence on reference enthalpy and take the limit of n ~ 0 which is equivalent to infinite Reynolds 
number. The resultant expression 

x 

r Ue Pe R r  dx 
XT 

X - Ue Pe Rr (3.9) 

can be obtained from several formulae to be found in the literature. 

3.2.3. Transition region. The state of knowledge about the occurrence and characteristics of 
regions of transition from laminar to turbulent boundary layers is such that only the most elementary 
analyses are justifiable for design work. It is conventionally assumed that transition occurs at a given 
value of Reynolds number based on local flow conditions and momentum thickness. To relate momentum 
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thickness Reynolds number With the previous work it is adequate to use 

FRx 
e 0 ~ - -  

1 - m  
(3.10) 

where F = cl ~- or St(Pr) ~ 

1 
and m = ~ for laminar boundary layers, 

1 
(log~o Rx) for turbulent boundary layers 

also X = equivalent length of boundary layer. 

For highly cooled blunt bodies the momentum thickness Reynolds number at transition has rarely been 
found experimentally 51 to be lower than 300 although it has sometimes been as high as 1000. Assuming a 
value of Ro, the start of the transition region is found by solving 

cz. R x = Ro (3.10a) 

for the effective length of laminar boundary layer, X, c s being the laminar s~in-friction coefficient corres- 
ponding to this length. The actual position on the body is then determined from equation (3.5a). The 
effective start of the turbulent boundary layer with the same Ro at the transition point, xr, is found by 
solving 

c s R  x = 2 ( 1 - m ) R o  (3.10b) 

for X, where c I is now the turbulent skin-friction coefficient corresponding to this length, and then using 
equation (3.9). 

Downstream of the start of transition the heat transfer can be obtained in accordance with the suggest- 
tions ofPersh 5°'57 and Lobb 51 but modified following Economos and Libby 58 from 

B 
St = S t x  (StxRx) 

where St x and R x are based on the effective length of turbulent boundary layer from Xr and B is chosen 
to make St continuous at the transition point. 

3.3. Application to Particular Cases. 

3.3.1. Laminar boundary layers. (a) Stagnation point. The heat-transfer rate for a laminar axi- 
symmetric stagnation point flow is given in Fig. 10 which shows 

q R 0"5 

as a function of flight speed for various surface temperature from the interpolation formula equation (3.2). 
As an insert the correction factor,f, for the general three-dimensional stagnation point is given where 
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° '  

For two-dimensional stagnation points the heating rates are 74 per cent of the axisymmetric values. 
If the body profile consists of a spherical or cylindrical segment cap followed by a discontinuity of slope 

such that the tangent to the surface immediately downstream of the shoulder is less than 45 degrees to the 
freestream theft the above expressions will not apply unmodified because the stagnation point velocity 
gradient is then no longer given by the Newtonian expression. Limited experimental data for these cases 
are given in Refs. 20 and 59. The heating to a flat-faced body has been found experimentally to be 67 
per cent of the heating to an equivalent hemisphere of the same radius as that of the flat face 6°. 

(b) Distribution around blunt body. 
Equations (3.4) and (3.5) have been evaluated for two particular families of axisymmetric bodies that are 

commonly met in i~r~ictice. Figs. 11 and 12 show the ratio of local heating to stagnation point heating 
q/q~ as a function of distance along the surface from the stagnation point for various Mach numbers for 
hemisphere-cylinders and hemispherically blunted cones respectively. A Newtonian type pressure 
distribution was assumed. Cone angles from 5 to 30 degrees were considered. 

313.2. Turbulent boundary layers. By ignoring the slight difference in the exponent of velocity 
between equations (3.2) and (3.8) the heating as predicted by the interpolation formula equation (3.8) can 
be obtained directly from Fig. 10 because in these circumstances 

qturb xO'2 
° ' 8  

Po/ 

qstag RO' 5 
(3.12) 

where ~b is a function of ~ and is shown in Fig. 13. 
Pt 

~b has a maximum value of 0.261 near the sonic point. For a hemispherical segment cap the sonic point 
is about the 45 degree point and if it is assumed that the turbulent boundary layer starts near the stagnation 
point then 

(qturb)max = 7"706 R qstag" (3.13) 

From this equation it can be seen that at any altitude there is a maximum value of nose radius for the 
stagnation point heating rate to exceed the maximum local turbulent heating rate. This radius is shown as 
a function of altitude in Fig. 14. 

3.4. Discussion. 
The experimental data on heat transfer from boundary layers in the presence of a pressure gradient is 

severely limited for positions on bodies away from stagnation points. There is a massive amount of data 
that confirms the predictions of Section 3.2.1(a) from shock tubes, 'hot shots' and other forms of hyper- 
sonic tunnel and from free flight tests. Confidence in the ability to predict stagnation point heating rates 
is such that measurements of it are now often used to calibrate high enthalpy facilities 61,62. Good agree- 
ment with shock tube and wind-tunnel measurements for the distribution of heating around blunt bodies 
when compared with the predictions of Section 3.2.1(b) has also been found (Refs. 21, 36, 56 and 64 for 
example). The free-flight data that has been obtained is meagre but it all shows that the method is satis- 
factory. 

There is very little data available for heat transfer from turbulent boundary layers under high stag- 
stagnation enthalpy conditions where dissociation is apt to occur. Equation (3.7) agrees well with the zero 
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pressure gradient shock tube measurements of Ref. 53, Rely, 42 and 56 compare "equi~:tlcnt flat pl:tlc" 
formulae with the available wind-tunnel measurements quite favourably. No extensive comparison of the 
many possible forms of theory for turbulent boundary layer with a pressure gradient with the experi- 

mental data has yet been made, but it has been done to some extent in Refs. 42 and 56. 
At present it may be considered that the status of methods for turbulent boundary layers in the presence 

of pressure gradients is not satisfactory. 

3.5. Further Comments. 

3.5.1. Swept cylinders. The most recent studies of the laminar boundary layer on a swept cylinder 
are by Reshotko and Beckwith 64, Beckwith 22 and Cohen and Beckwith 65, and the application of this 
work is discussed in detail by Beckwith and Gallagher 66 and Wisniewski 13. These latter papers should be 
consulted for details of determining the local flow properties as well. At large free stream Mach numbers 
the effect of yaw is approximately given by (cos A) m. 

At Reynolds numbers of the order of a few million and at yaw angles of 40 to 60 degrees Beckwith and 
Gallagher 6~' found that the boundarx laxer on a swept cylinder was completely turbulent even at the 
stagnation line. The level of heating rates and the nature of the chordwise distribution of heat transfer 
indic~tted that a flow mechanism different from the conventional transitional boundary layer may have 
existed at the intermediate yaw angles of 10 to 20 degrees. Ref. 66 presents a theory for the turbulent heating 
which is in reasonable agreement with its experimental data. Even with the turbulent boundary layer the 
peak heating rates occurred at the stagnation line. 

3.5.2. General three-dimensional flow and bodies at incidence. Vaglio-Laurin 37,38,5s has made a 
Study of the 'highly cooled wall' approximation to general three-dimensional boundary layers with 
emphasis on bodies of revolution at incidence. He found that cross-flow in the boundary layer is negligible 
even for large transversal pressure gradients. From this he showed that the heating could be determined 
from expressions similar to those of Section 3.2 evaluated along the inviscid streamlines at the outer edge 
of the boundary layer with the radius replaced by a general length element. In the more general case it has 
been shown 6~ that if cross-llow is small in an inviscid streamline co-ordinate system then the streamwise 
equations are independent of the cross-flow velocity and take the same form as the corresponding equa- 
tions for axisymmetric flow. 

For bodies at incidence the streamlines are not geodesics except for the most windward and leeward 
streamlines. In these particular cases which are often of practical importance, the expressions of Section 
3.2 can be used directly as a good first approximation. Elsewhere a technique such as that of Sanlorenzo 68 
must be followed to find the streamlines. However by a judicious combination of the results of Section 3.2 
with the theoretical results for cones at incidence 69,7° and for yawed cylinders (Section 3.5.1) sensible 
predictions for the areas of maximum heating can be produced for most bodies. 

3.5.3. Separated flow regimes. A considerable amount of effort 7 x-75 has been made in recent years 
to obtain some understanding of the heat transfer within separated flow regimes that have been produced 
by discontinuities in profile. There is a reasonable amount of literature on the problems of forward v 8 and 
rearward facing steps 71'74, rearward facing swept steps and cones mounted on stings 76'77. In general high 
local heating rates have been found at points of boundary-layer reattachment. 

The evidence as it stands at present gives little guide as to what to assume in making predictions. 
Following Powers, Stetson and Adams 73 it is suggested that the average heat-transfer rate to the surface 
covered by the bubble of a separating and reattaching flow be taken as 2/3 and 1/3 for laminar and turbu- 
lent boundary layers respectively of what the average heating would have been to a solid body replacing 
the separation bubble. Immediately downstream of the separation point the heating could be considerably 
less than this. The local heating downstream of the reattachment point may be assumed to be the same as it 
would have been if a solid body had replaced the separation region. At the reattachment point the heating 
may be somewhat higher. 

In the absence of information as to the point of reattachment it may be assumed that at hypersonic 
speeds the flow separates parallel to the free-stream for laminar boundary layers and turns in about 20 
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degrees for turbulent boundary layers. Stagnation points of the reversed flow on after bodies entirely 
immersed in the wake have been known 7~ to have heating rates of up to twice that predicted by the above 
proposal. Otherwise it is thought that the above rules of thumb will be conservative. 

3.5.4. W a l l  catalyt ic  efficiency. If much of the energy of a gas is absorbed in dissociation the heat 
transfer to a body in this gas will depend on details of rate chemistry, diffusion and wall catalytic efficiency. 
Heat transfer is still described by 

q o¢ f ir--iw) 

if the enthalpies include the heat of formation of every species i.e. 

u2 X I=i+T+ c, i!  °~ 
i 

thus 

where 

t r 2 i 4-  r u e _ i .4. i(°) - -  i(o) q oc - e -  2 v~,_.e ~w ] ,  

i ~°~ = ~ C i  i! °~ . 

i 

If the gas is near equilibrium at all points within the boundary layer the catalytic efficiency of the wall has 
negligible effect on i (°). However when the chemistry is frozen, due to extremely slow gas phase reaction 
rates, at some composition which is not the equilibrium state locally then the value of i~ ) can vary from 
i~ ) for an inert surface to zero for a perfect catalyst. Thus it is possible for the heat transfer to be consider- 
ably reduced in certain circumstances through having a surface of finite efficiency. 

Defining deficiency by 

F = 
Number of atoms reacting on impact with the wall 

total number of atoms impinging on the wall 

then i~ ) may be expressed 7s'sl in terms of F, i(fl ) and the transport properties of the boundary layer. 
The effect of wall catalytic efficiency for a frozen chemistry boundary layer on heat transfer at a stag- 

nation point is illustrated for a particular case by Fig. 15 which is derived from Ref. 78. Indicated are the 
ranges of F appropriate to various materials. The dependence of the reduction in heat transfer upon the 
value of catalytic efficiency is very sensitive to altitude. The curves of Fig. 15 move rapidly to the left with 
decreasing altitude and below 150 000 ft it is unlikely that materials exist with sufficiently low efficiency 
to produce significant reductions in heat transfer. 

There is now some experimental evidence 82 that reductions in stagnation point heating rates due to 
low catalytic efficiency can occur. 

There is not sufficient information available to make more than the most general comments about the 
occurrence of non-equilibrium, in particular frozen, flow in either the inviscid flow field or in boundary 
layer. Non-equilibrium effects can be expected in the whole flow field of a blunt body for altitudes above 
200 000 ft, but at lower altitudes it is more realistic to assume that the gas is in equilibrium as far down- 
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stream as the sonic line after which it may be assumed to be frozen at the composition at the sonic line. 
However downstream of the sonic point on the body the temperatures in the boundary layer can be 
higher than those in the external flow and as a consequence the composition near the surface will be 
nearer local equilibrium than the composition of the external flow will be. 

3.5.5. Radiation from gas cap. At very high speeds the energy carried to the body by radiation 
from the high temperature air outside the boundary layer must be considered. Typically, the radiative 
heat transfer to a stagnation point of a body from air between the body and the nose shock for a one foot 
radius nose is 10 per cent of the aerodynamic heating at a velocity of 10 000 ft/sec at sea level and at 
20 000 ft/sec at 100 000 ft altitude. The present status of knowledge of radiation from high temperature 
air is discussed in detail by Kive183. 

The data on radiation levels has been obtained in the region of temperature from 5000 to 9000°K and 
density ratios from 10 -2 to 10 atmospheres from shock-tube measurements. Within this region the 
experimental uncertainty indicated by the internal consistency of the measurements is about 30 per cent. 
Scaling laws based on statistical mechanics have been used to make predictions 84 at temperatures and 
densities where measurements have not been made. For temperatures above 10 000°K there is some 
uncertainty in the predictions which may over-estimate the radiation by a factor of up to two. 

Detra and Hidalgo 46 give an approximate correlation formula for stagnation point radiative heat 
transfer in the form 

/z V ~ 8"5 ( p l )  1"6 
qr.a = 187200 R ~ ~ ) Po CHU/ft a sec. 

Wick a5 discusses the application of the data of Ref. 84 to many blunt body problems and gives many 
numerical results of general value. 

If the radiation energy transfer becomes comparable to the aerodynamic heat transfer some allowance 
must then be made for self absorption processes within the gas layer along the lines of Ref. 86. 

Recently there has been considerable effort to obtain information on the radiation from gases not in 
equilibrium s7-9°. 
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A 

a,b,d 

C 

Cf 

Cp 

D 

f 

h 

H 

i 

i* 

i(o) 

I 

J 

k 

Le 

M 

m~ Tl 

Nu, Nu' 

P 

Pr 

Q~ 

q 

LIST OF SYMBOLS 

Surface area (ft 2) up to the point x, or surface area of blunt body 

Used as constants or exponents 

Concentration of a species in a gas 

Local skin-friction coefficient = %1½Pel ue2 
A 

if Mean skin-friction coefficient = ~ c: dA 

0 

_f ~C'H'U" ) 
Specific heat of air at constant pressure ~ ~ 0.24 × 32.2 

Diameter 

A function of Section 3.3.1 

Heat transfer factor--see (1 1) oquatioo ( ) 
Altitude 
T 

c dT: enthalpy of the air at temperature T 
0 

'Intermediate' enthalpy--see equation (1.3) 

Energy of formation of a species in a gas 

Total enthalpy 

ftlb 
Mechanical equivalent of heat \ C_H_U. ,] 

Thermal conductivity of air ( °KC'H'U'ft sec ] ) 

Lewis number 

Mach number 

Exponents in equations (3.10) and (3.14) 

Nusselt numbers, based on enthalpy difference and temperature difference respectively-- 
see equations (1.7) and (1.Ta) 

Pressure 

Prandtl number ( =  ~ ) .  

Solar radiation constant 

Rate of convective heat transfer per unit area \ ft 2 sec 
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qr 

R 

r 

LIST OF SYMBOLS---continued 

Rate of heat loss by radiation per unit area ft 2 sec 

Local radius of body (Section 3) 

Enthalpy recovery factor 

R e  

R~ 

Ro 

St, St' 

T 

u 

V 

x 

:( 

~s 

O~ 

3 

Y 

F 

8G 

9 

# 

P 

Subscripts 

b 

eq 

Reynolds number 

Local Reynolds number based on transformed distance X (Section 3) 

Local Reynolds number based on momentum thickness 

Local Stanton numbers (non-dimensional heat transfer coefficients) based on enthalpy 
difference and temperature difference respectively--see equations (1-6) and (1.6a) 

Temperature (°K) 

Local air speed (ft/sec) 

Free stream velocity 

Distance along surface (ft) along a geodesic or along inviscid streamline external to 
boundary layer 

Transformed distance of equations (3.5a) and (3.9) 

Absorption factor for solar radiation 

Proportion of atoms to total number of particles present 

Pressure-gradient parameter of equation (3.5b) 

Ratio of specific heats of air 

Catalytic efficiency of a surface 

Surface emissivity factor 

Gas emissivity factor 

Angle between normal to surface and incident rays of sun 

slug 
Viscosity of air \ ~ } 

_ / slug '~ 
Density ot air ~ ~ ) 

A function given in equation (3.12) and Fig. 13 

Surface shear stress ( f~2 ) 

Empirical values in formula for p~t, Section 3.2.1(a) 

Equilibrium conditions 
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i 

w 

r 

X 

e 

1 

s 

t 

K = 0  

= 1  

Superscript 

LIST OF SYMBOLS--continued 

Incompressible flow (Sections 1 and 2), or individual species of a gas (Section 3) 

Conditions at the wall 

Recovery conditions, i.e. conditions at the wall for zero heat transfer 

Conditions at distance x along surface 

Local conditions in external flow at edge of boundary layer 

Free stream conditions (ahead of bow shock) 

Stagnation conditions (Sections 1 and 2), or conditions at sonic point of body (Section 3) 

Conditions at sonic point of body (Section 3) total conditions (Section 3) 

For 2-dim. boundary layers 

For axisymmetric boundary layers 

Corresponding to the 'intermediate' enthalpy i* 
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FIG. 2. Ratio of Stanton numbers for a flat plate in compressible and incompressible flow assuming no 
dissociation. 
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FIG. 8. Reynolds number evaluated at the temperature corresponding to intermediate enthalpy. 
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