R. \& M. No. 3638

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

An Analysis of Oblique and Normal Detonation Waves

By L. H. Townend
Aerodynamics Dept., R.A.E., Farnborough

LONDON: HER MAJESTY'S STATIONERY OFFICE

An Analysis of Oblique and Normal Detonation Waves

By L. H. Townend
Aerodynamics Dept., R.A.E., Farnborough
Reports and Memoranda No. 3638*
March, 1966

Summary.

Plane detonation waves are analysed, on the assumption that the ratio of specific heats and the molecular weight are constants. Heat release is quoted in terms of a dimensionless parameter F, such that, for Chapman-Jouguet detonations $F=1$, for any strong detonation $1<F<2$, and for shock waves $F=2$. Wave properties are shown to be functions either of heat release and the component of upstream Mach number normal to the wave, or of heat release and both normal and streamwise components of upstream Mach number. The expressions can be used to generalise existing R.A.E. computer programmes for flows with two-dimensional or axisymmetric shock waves; they thus allow computation of two-dimensional or axisymmetric flow fields formed between a body and a detonation wave.

LIST OF CONTENTS

Section.

1. Introduction
2. Brief Survey of Selected Experimental and Analytic Work
3. Basic Equations for Supersonic Flow with Heat Release in an Inclined Plane
3.1. Choice of a heat release parameter
4. Presentation of Results
5. Wave Properties
5.1. Properties which depend on heat release and the normal component of upstream Mach number
5.2. Properties which depend on heat release and both normal and streamwise components of upstream Mach number
6. Final Comments

List of Symbols

[^0]
References

Appendix A Features of Fig. 7

Appendix B Flow deflection through oblique detonation waves
Appendix C Stagnation temperature ratio and stagnation pressure ratio for oblique detonation waves

Table $1 \quad$ Wave properties $(\gamma=$ constant $)$
Table 2 Maximum flow deflection ($M_{N 1}$ constant, $\gamma=1 \cdot 4, F=1$ and 2)
Table 3 Maximum flow deflection (M_{1} constant, $\gamma=1 \cdot 4, F=1$ and 2)
Table 4 Absolute maximum flow deflection and corresponding wave angle $(\gamma=1 \cdot 4, F=1(0 \cdot 01) 2)$

Table 5 Wave properties on envelope of Fig. $13(\gamma=1 \cdot 4, F=1)$
Table $6 \quad$ Wave properties at constant values of $M_{1}, M_{N 1}$ and δ (see Ref. No. 60)

Illustrations--Figs. 1 to 13

Detachable Abstract Cards

1. Introduction.

If a shock wave traverses a supersonic stream of pure gas, a rise in static temperature necessarily occurs; however, if real gas effects are negligible, then energy is neither lost nor gained and the stagnation temperature does not change. Conversely, in a flow of pre-mixed fuel and air (or of other gaseous or vaporised reactants) a shock wave may produce a rise in static temperature which exceeds that required for ignition of the mixture, and energy will then be released due to combustion of some or all of the fuel; the static temperature will be thereby increased still further, and the stagnation temperature at some station downstream will now be found to have risen. According to the distance between the shock and the flame front, such a process may be described as shock-induced combustion (in which combustion occurs some way downstream of the shock) or as a detonation wave (in which the effects of heat release act in full upon the shock).

Questions arising with regard to either type of reaction concern

1. the conditions (e.g. the pressure, temperature and velocity of the stream, and the nature of the reactants) for which an exothermic reaction can occur;
2. whether a detonation wave is ever obtained in practice, or merely forms a hypothetical limit to shockinduced combustion;
3. the manner in which such processes behave, and hence methods by which they may be controlled, and
4. the merits of such processes as practical means for the efficient release of heat to streams in which, initially or throughout the flow, velocities are required to be supersonic.

The present Report is mainly concerned with the third question, but the other questions receive some attention in Section 2 ; this comprises a brief survey of certain experimental studies, and of investigations into the performance and efficiency in practical applications of detonation waves or shock-induced combustion.

Nearly all these preliminary studies in fact relate to hypersonic ramjets in which heat addition is assumed to occur through a detonation wave. The performance of such engines should of course be assessed over appropriate ranges of Mach number and altitude, and in the context of relevant intake, nozzle and airframe designs; such an assessment should show how performance may be optimised (for example, by minimising specific fuel consumption or dissociation losses), and how such ramjets compare, in various types of mission, with optimised ramjets using other forms of heat release. The author does not know of any such published work. Even of papers which consider the behaviour of detonation waves in isolation, few have gone beyond a study of static pressure, density and temperature (and in some, of flow velocity and Mach number); furthermore, most analyses are restricted to normal waves. In the absence of more general analyses, a basic study of the general equations describing the detonation wave was thought to be justified.

This Report is concerned with the theoretical behaviour of the plane detonation wave which, from an initially uniform flow of pre-mixed combustible gases, produces a uniform flow of gaseous products of combustion, either aligned with or inclined to the upstream flow, depending on whether the wave itself is normal or oblique. In terms of heat release and the normal and streamwise components of upstream Mach number, the analysis deals with the following properties: the static pressure, density and temperature, stagnation pressure and temperature, entropy rise, wave angle and flow deflection, and normal and streamwise components of discharge Mach number and flow velocity. For normal and oblique waves it considers the general case of the strong detonation wave (in which the component of discharge Mach number normal to the wave is subsonic), and both limiting cases (i.e. the Chapman-Jouguet detonation, with which the flow is discharged at a velocity whose component normal to the wave is sonic, and the simple shock across which heat release is zero).

The effects of changes across a given wave in the ratio of the specific heats and in the molecular weight are not included.

2. Brief Survey of Selected Experimental and Analytic Work.

Since the earliest tests on gaseous detonation (by Berthelot and Vieille ${ }^{1}$, and Mallard and Le Chatelier ${ }^{2}$), most experiments have also concerned waves which advance supersonically up tubes filled with pre-mixed reactants. If such waves are normal to their direction of motion, they would be expected to reach a stable velocity at the Chapman-Jouguet condition ${ }^{3,4}$, at which the flow is discharged at sonic speed relative to the wave; however, actual tests on waves which move relative to their containers are complicated by wave/boundary layer interactions, and their velocities of propagation can be changed by experimental technique, for example, when the wave is 'driven' up the tube by means of a piston.

An alternative approach to the formation of moving waves was suggested in 1943 by Zeldovich and Leypunskiy ${ }^{5}$, who proposed that combustion might be stabilised by the shock wave produced by a bullet fired through a combustible mixture; the earliest demonstration of this technique was by Zeldovich and Shlyapintokh ${ }^{6}$, who reported preliminary tests in 1949. In 1960 experiments by Ruegg at the National Bureau of Standards ${ }^{7}$ were described as having established laminar combustion behind the curved shock wave ahead of a spherical missile fired down a range at supersonic speed; similar tests by Ruegg and Dorsey were reported ${ }^{8}$ in 1962 and comments on these tests have been made by Samozvantsev ${ }^{9}$. In 1964, tests of a similar type were reported by Behrens, Struth and Wecken ${ }^{10}$, and further tests (in which the missiles were cone-cylinders) were described by Behrens and Struth ${ }^{11}$. At the present time, Peckham and Crane are experimenting with the missile technique at R.A.E., Farnborough (1966).

No tests on moving waves can easily allow protracted or instrumented measurements to be made. However, recent tests by Voytsekhovsky et al ${ }^{12-15}$ and Nicholls et al ${ }^{16,17}$ have yielded photographs of a type of detonation wave which stably performs continuous circuits of a circular channel. Also, as early as 1941, Hoffmann ${ }^{18}$ was operating an engine in which an intermittent detonation wave was used for heat release and in 1952 Bitondo ${ }^{19,20}$ Bollay ${ }^{19,20}$ and Kendrick ${ }^{20}$ described analyses of related phenomena; in 1957, Nicholls, Wilkinson and Morrison ${ }^{21}$ reported analytic and experimental work on a pulsating detonation tube. At that time however a detonation wave had never been brought fully to rest under laboratory conditions.

The achievement of standing detonation waves was independently claimed, in 1958, by Nicholls et al ${ }^{22}$
of Michigan University, and by Gross ${ }^{23}$ of the Fairchild Engine Division, New York. Controversy regarding the nature of the combustion* which had been obtained ${ }^{24-29}$ led to further experiments by Rubins et al ${ }^{30-32}$, and by 1964, stable combustion had been produced behind stationary shock waves, both normal and oblique, in supersonic flows of high stagnation temperature. Rubins' experiments (and also those of Suttrop ${ }^{33}$) demonstrated shock-induced combustion, rather than standing detonation, since the reaction length was too great for the process to be regarded as a discontinuity: however, in some of Nicholls' experiments ${ }^{22,24}$, combustion produced a change in wave position which was consistent with detonation at the Chapman-Jouguet condition. It seems that the achievement of true detonation waves must await experiments in which temperatures accelerate the kinetic reactions to such an extent that the wave may be regarded as a discontinuity; only under these circumstances could the classical detonation theory be appropriately compared with experimental results.

Much more detailed reviews of research on detonation waves have been presented in 1959 and 1963 by Oppenheim et al ${ }^{34,35}$, and a review of Russian work in the period 1958-January 1964 has been published ${ }^{36}$ by the Library of Congress, U.S.A. Some attention has also been given to the evaluation of detonation waves as practical processes for releasing heat in flows having stream velocities which, either initially or throughout the flow, are required to be supersonic. For example, Gross has suggested their use in chemical processing plants, and studies have been made of the theoretical performance of engines which use intermittent detonation ${ }^{21}$, or waves which are stabilised ${ }^{37-40}$, or magnetically excited ${ }^{41}$, and of rockets based on rotating detonation waves ${ }^{16,17}$; a few investigations have also been made which are relevant ${ }^{42-46}$ to the use of detonation waves, stabilised by unspecified means in the external flow beneath a body so as to produce upon it, by external combustion, a propulsive and/or a lifting force. For even more advanced propulsion systems, the study of detonation waves has been recommended ${ }^{47}$ to assist in the eventual design of gaseous fission reactors and pulsed plasma accelerators.

Of analyses of detonation waves, most have been restricted (as mentioned in the Introduction) to a study of static pressure, density and temperature (and in some, of flow velocity and Mach number); in most of these analyses only normal waves were considered, but a few papers have dealt with plane, oblique detonation waves ${ }^{48-52}$ and waves which occur at other than the Chapman-Jouguet condition ${ }^{48-52}$. Only two papers have dealt with the analysis of conical or other axisymmetric detonation waves ${ }^{53,54}$ and of these, only the second ${ }^{54}$ presents quantitative results. In view of this, a basic study of the general equations describing detonation waves was thought to be justified.

The analysis (presented in Sections 3 to 5 and Appendices A to C) is based on the fact that any detonation wave can be regarded as a member of a family of flows, of which all members act as discontinuities in supersonic streams of pre-mixed reactants. At one extreme, such waves correspond to Chapman-Jouguet detonations and at the other, to simple shock waves. Heat release is quoted in terms of a parameter F, such that for Chapman-Jouguet detonations $F=1$, for strong detonations $1<F<2$, and for shock waves $F=2$. This parameter was originally derived, for the particular case of normal waves, by Adamson and Morrison ${ }^{55}$; its use as above allows emphasis on the thermodynamic nature of a detonation wave, and has since been used by Bartlett ${ }^{56}$ in computing the properties of conical detonations.

3. Basic Equations for Supersonic Flow with Heat Release in an Inclined Plane.

In Fig. 1a a sketch of the two-dimensional flow through a plane oblique detonation wave is shown. A uniform flow approaches the wave at velocity V_{1} and is discharged at velocity V_{2}, the wave inclination and flow deflection being the acute angles ζ and δ respectively. Note that the sketch of Fig. 1a represents the flow through any region on a plane wave (as in Fig. 1b), but that it also represents the flow through

[^1]an elemental area of a non-planar wave, for example, one of those in Figs. c to e. R.A.E. computer programmes already exist ${ }^{57,58}$ or are being developed ${ }^{58}$ to calculate the flow through two-dimensional or axisymmetric shock waves, on which any longitudinal curvature is, as in Figs. 1 c to e, in the attenuating sense; the two-dimensional analysis which follows can be used to generalise these programmes and so allow computation of axisymmetric flow fields ${ }^{56}$ formed between a body and a detonation wave.

If, in the flow of Fig. 1a the effects of dissociation and γ-variation are negligible, then the following equations apply:

$$
\left.\begin{array}{c}
\rho_{1} u_{1}=\rho_{2} u_{2} \\
p_{1}+\rho_{1} u_{1}^{2}=p_{2}+\rho_{2} u_{2}^{2} \\
v_{1}=v_{2} \\
\frac{1}{2}\left(u_{1}^{2}+v_{1}^{2}\right)+\frac{a_{1}^{2}}{\gamma-1}+q=\frac{1}{2}\left(u_{2}^{2}+v_{2}^{2}\right)+\frac{a_{2}^{2}}{\gamma-1} \\
a^{2}=\gamma p / \rho=\gamma R T \\
\frac{C_{p}}{C_{v}}=\gamma \tag{6}\\
C_{p}-C_{v}=R
\end{array}\right\} \text { Therefore } C_{p}=\frac{\gamma R}{\gamma-1} .
$$

From equations (1), (2) and (5) it follows that

$$
\begin{equation*}
\gamma M_{N 1}^{2}\left(\frac{u_{2}}{u_{1}}\right)^{2}-\left(1+\gamma M_{N 1}^{2}\right)\left(\frac{u_{2}}{u_{1}}\right)+\left(\frac{a_{2}}{a_{1}}\right)^{2}=0 . \tag{7}
\end{equation*}
$$

From equations (3), (4), (5) and (6) it follows that

$$
\begin{equation*}
\left(\frac{u_{2}}{u_{1}}\right)^{2}=1+\frac{2}{(\gamma-1) M_{N 1}^{2}}\left(1+\frac{q}{C_{p} T_{1}}-\left(\frac{a_{2}}{a_{1}}\right)^{2}\right) . \tag{8}
\end{equation*}
$$

If $\left(\frac{a_{2}}{a_{1}}\right)$ is eliminated between equations (7) and (8), the resulting quadratic equation in $\left(1-\frac{u_{2}}{u_{1}}\right)$ solves as

$$
\begin{equation*}
1-\frac{u_{2}}{u_{1}}=1-\frac{\rho_{1}}{\rho_{2}}=\frac{M_{N 1}^{2}-1}{M_{N 1}^{2}(\gamma+1)}\left[1+\sqrt{1-\frac{2(\gamma+1) M_{N 1}^{2}}{\left(M_{N 1}^{2}-1\right)^{2}} \frac{q}{C_{p} T_{1}}}\right] \tag{9}
\end{equation*}
$$

in which $q / C_{p} T_{1}$ (\equiv Damköhler's second parameter) quotes the heat released per unit mass of fluid in terms of the upstream value of specific static enthalpy; note that the sign of the square root has been chosen to give, for a normal shock wave (i.e. for $u_{1}=V_{1}, u_{2}=V_{2}, q=0$), the standard equation (e.g. equation (94) in Ref. 59):

$$
\frac{u_{2}}{u_{1}}=\frac{\rho_{1}}{\rho_{2}}=\frac{V_{2}}{V_{1}}=\frac{2+(\gamma-1) M_{1}^{2}}{(\gamma+1) M_{1}^{2}}=\frac{1}{\left(M_{1}^{*}\right)^{2}}\left[\frac{V_{1}}{M_{1}^{*}} \equiv a_{1}^{*} \equiv \text { critical velocity of sound }\right] .
$$

For oblique or normal plane waves, equation (9) may be re-written as

$$
\begin{equation*}
M_{N 1}^{2}\left(1-\frac{u_{2}}{u_{1}}\right)=M_{N 1}^{2}\left(1-\frac{\rho_{1}}{\rho_{2}}\right)=\left(\frac{M_{N 1}^{2}-1}{\gamma+1}\right) F, \text { in which } F \equiv 1+\sqrt{1-\frac{2(\gamma+1) M_{N 1}^{2}}{\left(M_{N 1}^{2}-1\right)^{2}} \frac{q}{C_{p} T_{1}}} . \tag{10}
\end{equation*}
$$

If only normal, plane waves are considered (i.e. $M_{N 1}=M_{1}$), then in equation (10), F takes the form derived by Adamson and Morrison, who showed for these conditions that $F=2$ for shock waves, $F=1$ for Chapman-Jouguet detonation waves and, for any strong detonation wave, $1<F<2$.

As an alternative to the use of F, heat release may be quoted in terms of the upstream stagnation enthalpy ($C_{p} T_{T 1}$), for example by use of a heat-release coefficient (as used by Weber ${ }^{52}$)

$$
\begin{equation*}
C_{q}=q / C_{p} T_{T 1}=q /\left[C_{p} T_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)\right] ; \tag{11}
\end{equation*}
$$

equation (10) then takes the form

$$
\begin{aligned}
M_{N 1}^{2}\left(1-\frac{u_{2}}{u_{1}}\right) & =M_{N 1}^{2}\left(1-\frac{\rho_{1}}{\rho_{2}}\right)=\left(\frac{M_{N 1}^{2}-1}{\gamma+1}\right) F, \\
F & =1+\sqrt{1-\frac{2(\gamma+1) M_{N 1}^{2}}{\left(M_{N}^{2}-1\right)^{2}} /\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right) C_{q}} \\
C_{q} & =\left[1-(F-1)^{2}\right] \frac{\left(M_{N 1}^{2}-1\right)^{2}}{2(\gamma+1) M_{N 1}^{2}} /\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right) \\
& =\frac{F(2-F)\left(M_{N 1}^{2}-1\right)^{2}}{2(\gamma+1) M_{N 1}^{2}} /\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right) .
\end{aligned}
$$

Equation (10) can then be written in the form given by Weber (see equation (7) of Ref. 52).
A choice between the various heat release parameters noted above is made in Section 3.1.

3.1. Choice of a Heat Release Parameter.

Heat release across oblique or normal detonation waves may be quoted as

$$
\begin{aligned}
& \text { (1) } q / C_{p} T_{1} \\
& \text { or (2) } C_{q}=q / C_{p} T_{T 1}=q /\left[C_{p} T_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)\right] \\
& \text { or (3) } F=1+\sqrt{1-\frac{2(\gamma+1) M_{N 1}^{2}}{\left(\mathrm{M}_{N 1}^{2}-1\right)^{2}} \frac{q}{C_{p} T_{1}}} .
\end{aligned}
$$

The parameter $q / C_{p} T_{1}$ has been used in most of the literature, presumably because it occurs explicitly in some forms of the energy equation. However, in performance work on, for example, a hypersonic ramjet operating at a free-stream Mach number of M_{∞} and using a detonation wave for heat release, the use of static enthalpy as a reference for q involves the need to specify the discharge Mach number of the associated intake (since for $T_{T 1}=T_{T \infty}$, it follows that $\frac{T_{1}}{T_{\infty}}=\frac{2+(\gamma-1) M_{\infty}^{2}}{2+(\gamma-1) M_{1}^{2}}$). If allowance is made for
varying the intake design, the reference temperature T_{1} may change simultaneously; the merit of Weber's choice ${ }^{52}$ of C_{q} is that, for flight at a given T_{∞} and M_{∞}, and for an adiabatic intake process ($T_{T 1}=T_{T \infty}$), heat release is quoted in terms of stagnation enthalpy $\left(C_{p} T_{T_{\infty}}\right)$ which is independent of both the extent and the efficiency of the intake compression.
Unfortunately, neither parameter gives a direct indication of the strength of the detonation, i.e. of its relationship to the limiting Chapman-Jouguet or shock wave conditions. To achieve such an indication for normal waves, Adamson and Morrison ${ }^{55}$ proposed the use of $F(1 \leqslant F<2$ for all possible thermodynamic types of detonation wave). In this Report, F has been shown to be applicable to both normal and oblique waves; since, in performance work, its adoption does not prevent simultaneous reference to free-stream conditions, it is used throughout this Report for quoting heat release.

4. Presentation of Results.

It is found that properties of detonation waves are functions either $f\left(F, \gamma, M_{N 1}\right)$ or $f\left(F, \gamma, M_{N 1}, M_{1}\right)$. Expressions of the first type are considered in Section 5.1 (and Appendix A), and those containing terms in M_{1} are considered in Section 5.2 (and Appendices B and C). Principal expressions are listed in Table 1, but instead of providing working charts for particular values of γ, F etc, the forms which such charts would take are illustrated diagrammatically in Figs. 2 to 13. Data which describe particular wave conditions (for example maximum flow deflection through waves at constant γ) are listed in Tables 2 to 5, and more data, from which working charts could be accurately plotted, are presented in Table 6; this last Table can be obtained separately ${ }^{60}$, by application to R.A.E., Farnborough and presents data for ChapmanJouguet detonations for $\gamma=1.4$ and Mach numbers in the ranges $1.5 \leqslant M_{N 1} \leqslant 6, M_{N 1} \leqslant M_{1} \leqslant 15$. Atlas and Mercury computer programmes for Tables 2 to 6 (all written by Mrs. Gaynor Joyce ${ }^{60}$) are also available from R.A.E., Farnborough.
5. Wave Properties.
5.1. Properties which depend on Heat Release and the Normal Component of Upstream Mach Number. From equation (10),

$$
\begin{equation*}
\frac{u_{2}}{u_{1}}=\left(\frac{\rho_{2}}{\rho_{1}}\right)^{-1}=1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}} . \tag{12}
\end{equation*}
$$

It follows from equations (2), (5) and (12) that

$$
\frac{p_{2}}{p_{1}}=1+\frac{p_{2}-p_{1}}{p_{1}}=1+\frac{\rho_{1} u_{1}\left(u_{1}-u_{2}\right)}{p_{1}}=1+\gamma M_{N 1}^{2}\left(1-\frac{u_{2}}{u_{1}}\right) .
$$

Therefore

$$
\begin{equation*}
\frac{p_{2}}{p_{1}}=1+\gamma F \frac{M_{N 1}^{2}-1}{\gamma+1} . \tag{13}
\end{equation*}
$$

Also, since the mean molecular weight of the mixture is assumed not to change across the wave,

$$
\begin{equation*}
\frac{T_{2}}{T_{1}}=\frac{p_{2}}{p_{1}} \frac{\rho_{1}}{\rho_{2}}=\left(1+\gamma F \frac{M_{N 1}^{2}-1}{\gamma+1}\right)\left(1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{M_{N 2}}{M_{N 1}}=\frac{u_{2}}{u_{1}} \frac{a_{1}}{a_{2}}=\sqrt{\frac{p_{1} \rho_{1}}{p_{2} \rho_{2}}}=\sqrt{\left(1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}}\right) /\left(1+\gamma F \frac{M_{N 1}^{2}-1}{\gamma+1}\right)} . \tag{15}
\end{equation*}
$$

The Rankine-Hugoniot equation may be derived from equations (12) and (13) as

$$
\begin{equation*}
\frac{\rho_{2}}{\rho_{1}}=\left[\left(\frac{\gamma F}{\gamma+1}-1\right)+\frac{p_{2}}{p_{1}}\right] /\left[(F-1)+\left(1-\frac{F}{\gamma+1}\right) \frac{p_{2}}{p_{1}}\right], \tag{16}
\end{equation*}
$$

or for Chapman-Jouguet waves as

$$
\begin{equation*}
\frac{\rho_{2}}{\rho_{1}}=1+\frac{1}{\gamma}\left(1-\frac{p_{1}}{p_{2}}\right) ; \tag{17}
\end{equation*}
$$

for shock waves $(F=2)$, equation (16) simplifies to the standard form,

$$
\begin{equation*}
\frac{\rho_{2}}{\rho_{1}}=\left(\frac{\gamma-1}{\gamma+1}+\frac{p_{2}}{p_{1}}\right) /\left(1+\frac{\gamma-1}{\gamma+1} \frac{p_{2}}{p_{1}}\right) . \tag{18}
\end{equation*}
$$

All the above expressions are independent of M_{1}, the free-stream Mach number. It can also be shown that one other important parameter, namely the entropy rise across the wave is independent of $M_{1}, v i z$:

$$
d s=\frac{d e}{T}+\frac{p}{T} d\left(\frac{1}{\rho}\right)=C_{V} \frac{d T}{T}+R \rho d\left(\frac{1}{\rho}\right)=\frac{R}{\gamma-1} \frac{d T}{T}+R \rho d\left(\frac{1}{\rho}\right) ;
$$

so, for constant R and γ,

$$
\begin{equation*}
\frac{\Delta s}{R}=\frac{1}{\gamma-1} \int_{1}^{2} \frac{d T}{T}+\int_{1}^{2} \rho d\left(\frac{1}{\rho}\right) \tag{19}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\frac{\Delta s}{R}=\frac{1}{\gamma-1} \log _{e}\left(\frac{T_{2}}{T_{1}}\right)+\log _{e}\left(\frac{\rho_{2}}{\rho_{1}}\right) \tag{20}
\end{equation*}
$$

or

$$
\begin{align*}
e^{-\Delta s / R} & =\left(\frac{\rho_{2}}{\rho_{1}}\right)^{\frac{\gamma}{\gamma-1}} /\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\gamma-1}}=f\left(F, \gamma, M_{N 1}\right) \\
& =\left[\frac{\gamma+1}{\gamma+1+\gamma F\left(M_{N 1}^{2}-1\right)}\right]^{\frac{1}{\gamma-1}}\left[\frac{(\gamma+1) M_{N 1}^{2}}{F+(\gamma+1-F) M_{N 1}^{2}}\right]^{\frac{\gamma}{\gamma-1}} . \tag{21}
\end{align*}
$$

Alternatively, equation (20) may be written

$$
\begin{aligned}
\frac{\Delta s}{R}= & \log _{e}\left(\frac{T_{2}}{T_{1}}\right)^{\frac{1}{\gamma-1}}+\log _{e}\left[\frac{R T_{2}}{R T_{1}} \frac{p_{T 1}}{p_{T 2}}\left(\frac{2+(\gamma-1) M_{2}^{2}}{2+(\gamma-1) M_{1}^{2}}\right)^{\frac{\gamma^{\prime}}{\gamma-1}}\right] \\
& =\log _{e}\left[\frac{p_{T 1}}{p_{T 2}}\left(\frac{T_{T 2}}{T_{T 1}}\right)^{\frac{\gamma}{\gamma-1}}\right]
\end{aligned}
$$

$$
\begin{equation*}
e^{-\Delta s / R}=\frac{p_{T 2}}{p_{T 1}} /\left(\frac{T_{T 2}}{T_{T 1}}\right)^{\frac{\gamma}{\gamma-1}} . \tag{22}
\end{equation*}
$$

Note that across a shock wave, stagnation temperature does not change (because $T_{T 2} / T_{T 1}=1+$ $\left(q / C_{p} T_{T 1}\right)$), so that for a given value of i, both the entropy rise and the stagnation pressure ratio are independent of M_{1}; however, across a detonation wave, the stagnation temperature rises due to the release of heat $(q \neq 0)$, so that the stagnation pressure ratio across a detonation is partially dependent on the rise in stagnation temperature and becomes a function of both normal and streamwise components of upstream Mach number. Study of stagnation pressure is therefore reserved for Section 5.2 (and Appendix C).

It has so far been shown that $u_{2} / u_{1}, \rho_{2} / \rho_{1}, p_{2} / p_{1}, T_{2} / T_{1}, M_{N 2} / M_{N 1}$ and $\Delta s / R$ are functions $f\left(F, \gamma, M_{N 1}\right)$. If, as an alternative to F, a parameter for quoting heat release is defined as

$$
A \equiv F \frac{M_{N 1}^{2}-1}{\gamma+1}
$$

then the above functions may be summarised as follows:

$$
\begin{align*}
\frac{u_{2}}{u_{1}} & =\left(\frac{\rho_{1}}{\rho_{2}}\right)^{-1}=1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}}=1-\frac{A}{M_{N 1}^{2}} \tag{23}\\
\frac{p_{2}}{p_{1}} & =1+\gamma F \frac{M_{N 1}^{2}-1}{\gamma+1}=1+\gamma A \tag{24}\\
\frac{T_{2}}{T_{1}} & =\left(1+\gamma F \frac{M_{N 1}^{2}-1}{\gamma+1}\right)\left(1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}}\right)=(1+\gamma A)\left(1-\frac{A}{M_{N 1}^{2}}\right) \tag{25}\\
\frac{M_{N 2}}{M_{N 1}} & =\sqrt{\left(1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}}\right) /\left(1+\gamma F \frac{M_{N 1}^{2}-1}{\gamma+1}\right)}=\sqrt{\left(1-\frac{A}{M_{N 1}^{2}}\right) /(1+\gamma A)} \tag{26}\\
e^{-\Delta s / R} & =\left[\frac{\gamma+1}{\gamma+1+\gamma F\left(M_{N 1}^{2}-1\right)}\right] \cdot \frac{1}{\gamma-1}\left[\frac{(\gamma+1) M_{N 1}^{2}}{F+(\gamma+1-F) M_{N 1}^{2}}\right] \frac{\gamma}{\gamma-1} \\
& =1 /\left[(1+\gamma A)^{\frac{1}{\gamma-1}}\left(1-\frac{A}{M_{N 1}^{2}}\right)^{\frac{\gamma}{\gamma-1}}\right] . \tag{27}
\end{align*}
$$

For a chosen value of γ, these relations (23) to (27) could be shown graphically as in Figs. 2 to 6, heat release being shown as F (or A) or as Damköhler's second parameter, $q / C_{p} T_{1}$; such charts would be valid for plane shocks or Chapman-Jouguet or strong detonations, which occur as normal or oblique waves in uniform supersonic streams of pure or pre-mixed gas.

Alternatively, these relations may be presented more compactly in the upper pair of the graphically inter-related charts of Fig. 7. In Fig. 7b as shown in Appendix A, lines of constant $M_{N 2} / M_{N 1}$ and constant $M_{N 1}$ form families of straight lines, each family with its own focal point; lines of constant T_{2} / T_{1} form a family of rectangular hyperbolae and lines of constant F are asymptotic to values of ρ_{2} / ρ_{1} given by

$$
\begin{equation*}
\frac{\rho_{1}}{\rho_{2}}=1-\frac{F}{\gamma+1} . \tag{28}
\end{equation*}
$$

Also as shown in Appendix A, the variables chosen in Fig. 7c allow it to show the variation of wave and deflection angles, and of the stream tube contraction ratio (A_{2} / A_{1}), which would occur with oblique shock or detonation waves. Finally as confirmed in Fig. 7c, a maximum deflection condition occurs for waves with which

$$
\begin{equation*}
\tan ^{2} \zeta=\rho_{2} / \rho_{1} . \tag{29}
\end{equation*}
$$

Figs. 7 a to c have been constructed without any reference to M_{1}, the up-stream Mach number. This is introduced in Fig. 7d in which lines of constant $M_{N 1}\left(=M_{1} \sin \zeta\right)$ are plotted on axes showing ζ and M_{1}. As explained in Appendix A, the condition for maximum deflection gives a single locus for each value of F in the range $1 \leqslant F \leqslant 2$; as $M_{1} \rightarrow \infty$, each locus is asymptotic to a line which corresponds to the asymptote for the same value of F in Fig . 7b, and in Fig . 7c would intersect that asymptote on the maximum deflection line (e.g. for $F=1$ and 2 , intersections occur at P_{1} and P_{2} respectively).
For many purposes it is more convenient to express wave and deflection angles respectively as functions of $M_{N 1}$ and M_{1}, and of $F, \gamma, M_{N 1}$ and M_{1}-discussion of these and other properties is presented in Section 5.2.

5.2. Properties which depend on Heat Release and both Normal and Streamwise Components of Upstream Mach Number.

It is shown in Appendix B that flow deflection δ is given by the expression,

$$
\begin{equation*}
\cot \delta=\left(\frac{M_{1}^{2}(\gamma+1)}{F\left(M_{N 1}^{2}-1\right)}-1\right) / \sqrt{\left(\frac{M_{1}}{M_{N 1}}\right)^{2}-1} \tag{30}
\end{equation*}
$$

it is further shown that for waves of a given F-value, the condition for maximum deflection for a given value of $M_{N 1}$ is

$$
\begin{equation*}
\tan ^{2} \zeta=\rho_{2} / \rho_{1} \tag{31}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left.\delta_{\max }\right]_{M_{N 1}}=2 \zeta-(\pi / 2) . \tag{A.6}
\end{equation*}
$$

For a given γ and F, all properties which are independent of M_{1} may be plotted against δ (as in Fig. 8) in the form of a 'scroll' or three-dimensional carpet showing M_{1} and $\zeta\left(\equiv \sin ^{-1}\left(M_{N 1} / M_{1}\right)\right)$; further since $M_{N 1}$ is an axis variable, the envelope to this carpet is given by equation (31). As an alternative to Fig. 8, ζ may be plotted against δ, as in Fig. 9. It is then seen that two $\delta_{\max }$ conditions exist, one for constant $M_{N 1}$ as expressed by equation (31) and one for constant M_{1}. On axes of ζ and δ the locus for $\left.\delta_{\max }\right]_{M_{N 1}}$ is a straight line (see equation (32) (B.5)) and that for $\left.\delta_{\max }\right]_{M_{1}}$ is known from Appendix B, that is,

$$
\begin{align*}
\sin ^{2} \zeta & =\left(\frac{M_{N 1}}{M_{1}}\right)^{2} \\
& =M_{N 1}^{2}\left(M_{N 1}^{2}+1\right)(\gamma+1) /\left[2(\gamma+1) M_{N 1}^{4}-F\left(M_{N 1}^{2}-1\right)^{2}\right] \\
& =\left[(\gamma+1) M_{1}^{2}-2 F \pm \sqrt{(\gamma+1)\left[(\gamma+1) M_{1}^{4}+8(\gamma+1-F) M_{1}^{2}+8 F\right]}\right] / 2[2(\gamma+1)-F] M_{1}^{2} . \tag{33}
\end{align*}
$$

Note that as M_{1} and $M_{N 1}$ increase to infinity, the difference between values of ζ for a given deflection
becomes infinitesimal. The line corresponding to $M_{1}=\infty$ is found from equation (30) (B.2) thus

$$
\begin{aligned}
\cot \delta & =\left(\frac{M_{1}^{2}(\gamma+1)}{F\left(M_{N 1}^{2}-1\right)}-1\right) / \sqrt{\left(\frac{M_{1}}{M_{N 1}}\right)^{2}-1} \\
& =\left(\frac{\gamma+1}{F\left(\sin ^{2} \zeta-\frac{1}{M_{1}^{2}}\right)}-1\right) / \sqrt{\operatorname{cosec}^{2} \zeta-1} ;
\end{aligned}
$$

hence if $M_{1}=\infty$,

$$
\cot \delta]_{M_{1}=\infty}=\tan \zeta\left(\frac{\gamma+1}{F \sin ^{2} \zeta}-1\right) .
$$

As further shown in Appendix B, the absolute maximum value of δ is given by the expression,

$$
\begin{equation*}
\underset{\max }{\cot \delta_{\mathrm{abs}}}=\frac{2(\gamma+1)}{F} \sqrt{1-\frac{F}{\gamma+1}}, \tag{34}
\end{equation*}
$$

for which

$$
\begin{equation*}
\zeta=\frac{1}{2} \delta_{\text {abs }}^{\max }+(\pi / 4) \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \zeta]_{\substack{\delta_{\mathrm{abs}} \\ \max }}=\sqrt{1 /\left(2-\frac{F}{\gamma+1}\right)} . \tag{36}
\end{equation*}
$$

Values of δ and ζ at this absolute maximum condition are given, for $\gamma=1.4$ and various values of F, in Table 4; it is seen that shock waves give the greatest deflection of all ($45 \cdot 5847^{\circ}$) and Chapman-Jouguet waves the least $\left(15 \cdot 2575^{\circ}\right)$.

Also shown in Fig. 9 are a few lines of constant discharge Mach number, M_{2}. From Fig. 1,

$$
M_{2}=M_{N 2} \operatorname{cosec}(\zeta-\delta) ;
$$

thus for the particular case of Chapman-Jouguet waves ($F=1=M_{N 2}$),

$$
\zeta=\delta+\operatorname{cosec}^{-1} M_{2}
$$

and for a given value of $M_{2}, d \zeta / d \delta=1=$ const. Thus for Chapman-Jouguet waves, lines of constant M_{2}, plotted on axes of ζ and δ, are parallel and straight. It is for the particular case of Chapman-Jouguet waves that lines of constant M_{2} are drawn in Fig. 9.

A more general expression for discharge Mach number can be derived from that for the velocity ratio, which from Fig. 1 is seen to be

$$
\frac{V_{2}}{V_{1}}=\frac{\cos \zeta}{\cos (\zeta-\delta)}=\sqrt{\frac{1+\tan ^{2}(\zeta-\delta)}{1+\tan ^{2} \zeta}}=\sqrt{\frac{1+\left(\rho_{1} / \rho_{2}\right)^{2} \tan ^{2} \zeta}{1+\tan ^{2} \zeta}},
$$

i.e.

$$
\begin{equation*}
\frac{V_{2}}{V_{1}}=\sqrt{1-\frac{F\left(M_{N 1}^{2}-1\right)\left[2(\gamma+1) M_{N 1}^{2}-F\left(M_{N 1}^{2}-1\right)\right]}{(\gamma+1)^{2} M_{N 1}^{2} M_{1}^{2}}} . \tag{37}
\end{equation*}
$$

In Fig. 10, velocity ratio is plotted against flow deflection as a carpet of $M_{N 1}$ and ζ; some lines of constant M_{1} and M_{2} are also shown. The line corresponding to $M_{1}=\infty$ is found from equation (37) thus:

$$
\frac{V_{2}}{V_{1}}=\sqrt{\frac{F\left(\sin ^{2} \zeta-\frac{1}{M_{1}^{2}}\right)\left[2(\gamma+1) \sin ^{2} \zeta-F\left(\sin ^{2} \zeta-\frac{1}{M_{1}^{2}}\right)\right]}{(\gamma+1)^{2} \sin ^{2} \zeta}}
$$

hence if $M_{1}=\infty$,

$$
\left.\frac{V_{2}}{V_{1}}\right]_{M_{1}=\infty}=\sqrt{1-\frac{F}{\gamma+1}\left(2-\frac{F}{\gamma+1}\right) \sin ^{2} \zeta} .
$$

The expression for stream Mach number ratio is then

$$
\begin{equation*}
\frac{M_{2}}{M_{1}}=\frac{V_{2}}{V_{1}} \frac{a_{1}}{a_{2}}=\sqrt{\frac{(\gamma+1)^{2} M_{N 1}^{2}-F\left(M_{N 1}^{2}-1\right)\left[2(\gamma+1) M_{N 1}^{2}-F\left(M_{N 1}^{2}-1\right)\right] / M_{1}^{2}}{\left(\gamma+1+\gamma F\left(M_{N 1}^{2}-1\right)\right)\left(F+(\gamma+1-F) M_{N 1}^{2}\right)}} \tag{38}
\end{equation*}
$$

In Fig. 11, discharge Mach number is plotted against flow deflection as a carpet of $M_{N 1}, \zeta$ and M_{1}; this is considered more useful than a plot of Mach number ratio $\left(M_{2} / M_{1}\right)$, but such a plot is possible and a sketch is shown inset.

In Appendix \mathbf{C}, it is shown that the stagnation temperature ratio across a wave is given by the expression

$$
\begin{equation*}
\frac{T_{T 2}}{T_{T 1}}=1+\frac{F(2-F)\left(M_{N 1}^{2}-1\right)^{2}}{(\gamma+1) M_{N 1}^{2}\left(2+(\gamma-1) M_{1}^{2}\right)} \tag{39}
\end{equation*}
$$

In Fig. 12, stagnation temperature ratio is plotted against flow deflection, as a three-dimensional carpet showing $M_{N 1}, \zeta, M_{2}$ and some lines of constant M_{1}. This carpet has an envelope given by the condition

$$
\begin{equation*}
M_{1}^{2}=\frac{\left(M_{N 1}^{2}+1\right)\left(M_{N 1}^{2}(2(\gamma+1)-F)+F\right)}{F(\gamma-1)\left(M_{N 1}^{2}-1\right)+(\gamma+1)\left(1+(2-\gamma) M_{N 1}^{2}\right)} . \tag{40}
\end{equation*}
$$

The remainder of the carpet boundary corresponds to $M_{1}=\infty$, i.e. from equation (39), to the condition

$$
\frac{T_{T 2}}{T_{T 1}}=1+\frac{F(2-F) \sin ^{2} \zeta}{(\gamma+1)(\gamma-1)} ;
$$

from this equation, the overall maximum value of $T_{T_{2}} / T_{T 1}$ is seen to result with a normal ChapmanJouguet wave $\left(\zeta=90^{\circ}, F=1\right)$, for which the stagnation temperature ratio reaches the value $\gamma^{2} /\left(\gamma^{2}-1\right)$ i.e. $2 \cdot 0416$ if $\gamma=1.4$.

For the more oblique wave solution at a given value of F and of flow deflection, values of $T_{T 2} / T_{T 1}$ lie within the narrow 'crescent' formed between the envelope and one end of the line for $M_{1}=\infty$; they are thus only weakly dependent on the particular combination of values chosen for $M_{N 1}$ and M_{1}.

The equation for stagnation pressure ratio is

$$
\begin{align*}
\frac{p_{T 2}}{p_{T 1}} & =\left(\frac{T_{T 2}}{T_{T 1}}\right)^{\frac{\gamma}{\gamma-1}} e^{-\Delta s / R} \\
& =\left[\frac{\gamma+1}{\gamma+1+\gamma F\left(M_{N 1}^{2}-1\right)}\right]^{\frac{1}{\gamma-1}}\left[\frac{(\gamma+1) M_{N 1}^{2}}{F+(\gamma+1-F) M_{N 1}^{2}}+\frac{F(2-F)\left(M_{N 1}^{2}-1\right)^{2}}{\left(F+(\gamma+1-F) M_{N 1}^{2}\right)\left(2+(\gamma-1) M_{1}^{2}\right)}\right]^{\frac{\gamma}{\gamma-1}} \tag{41}
\end{align*}
$$

In Fig. 13, the variation of stagnation pressure ratio with flow deflection is shown as a three-dimensional carpet of constant $M_{N 1}, \zeta, M_{1}$ and M_{2}; for Chapman-Jouguet waves the envelope condition for such a carpet is shown in Appendix C to be given by a cubic equation in p,

$$
p^{3}+C_{1} p^{2}+C_{2} p+C_{3}=0
$$

in which C_{1}, C_{2} and C_{3} are functions of γ and $M_{N 1}$, and

$$
\begin{align*}
p+2 & =2+(\gamma-1) M_{1}^{2}=\left(M_{N 1}^{2}-1\right)^{2}(\gamma+1)^{\frac{1}{\gamma}} /\left[\left(\frac{p_{T 2}}{p_{T 1}}\right)^{\frac{\gamma-1}{\gamma}}\left(1+\gamma M_{N 1}^{2}\right)^{\frac{\gamma+1}{\gamma}}-(\gamma+1)^{\frac{\gamma+1}{\gamma}} M_{N 1}^{2}\right] \\
& =f_{1}\left(\gamma, M_{1}\right)=f_{2}\left(\gamma, M_{N 1}, p_{T 2} / p_{T 1}\right) \tag{42}
\end{align*}
$$

Values of $p_{T 2} / p_{T 1}, \delta, M_{1}$ etc which correspond to this envelope condition (for Chapman-Jouguet waves and $\gamma=1.4=$ const.) are given in Table 5.

6. Final Comments.

For quoting the heat release across normal or oblique detonation waves, a parameter F has been introduced, F being a function of the ratio of specific heats, the upstream static enthalpy and the compoment of upstream Mach number normal to the wave; for Chapman-Jouguet waves $F=1$, for any strong detonation $1<F<2$, and for shock waves $F=2$.

For detonation waves in non-dissociating air properties are shown to be functions $f\left(F, \gamma, M_{N 1}\right)$ or $f\left(F, \gamma_{1}, M_{N 1}, M_{1}\right)$. The first group includes the ratios of static pressure, density and temperature, normal components of Mach number and velocity, and also the entropy rise; the second group includes the ratios of stream Mach number and of stream velocity, stagnation temperature and pressure, and the flow deflection angle.

It is noted that for shock waves (i.e. $F=2$), the stagnation pressure ratio can be expressed as a function of γ and $M_{N 1}$, but that for a detonation wave of specified type (i.e. having a specified F-value), the stagnation pressure ratio is a function of $\gamma, M_{N 1}$ and also M_{1}.

Formulae for maximising flow deflection at various conditions (constant $M_{N 1}$ or $M_{1}, p_{T 2} / p_{T 1}$ or $T_{T 2} / T_{T 1}$) have been derived; these may assist in minimising structural problems (such as flexing or heating) of bodies upon which detonations of chosen type (F) and of specified heat release ($F, \gamma, M_{N 1}$) are to be stabilised.

The analysis is performed for plane waves throughout. However, it may be combined with existing R.A.E. computer programmes (or those being developed) and so may allow computation of two-dimensional or axisymmetric flow fields formed between a body and a detonation wave.

LIST OF SYMBOLS

a	Velocity of sound
A	Defined as $A \equiv F \frac{M_{N}^{2}-1}{\gamma+1}$; or with suffix refers to cross-sectional area of streamtube
c_{p}	Specific heat at constant pressure
c_{q}	Coefficient of heat release (see equation (11) and Ref. 52)
c_{v}	Specific heat at constant volume
e	Specific internal energy (also used as the base for natural logarithms)
F	Heat release parameter (see equation (10))
m	Molecular weight
M	Mach number
M_{N}	Component of Mach number (M) normal to wave
p	Static pressure (also used as defined in equation (42) (C.4))
p_{T}	Stagnation pressure
q	Heat released per unit mass
R	Gas constant
R	Universal gas constant
Δs	Change in specific entropy
T	Static temperature
T_{T}	Stagnation temperature
u	Component of stream velocity (V) normal to wave
v	Component of stream velocity (V) parallel to wave
V	Stream velocity
γ	Ratio of specific heats (i.e. $\left.c_{p} / c_{v}\right)$
δ	Angle of flow deflection through wave
ζ	Angle of wave (\equiv sin ${ }^{-1} M_{N 1} / M_{1}$, i.e. $\zeta=90^{\circ}$ for normal wave)
θ	Molecular vibrational-energy constant (see Ref. 59 equation (180))
ρ	Static density
S_{2}	Refers to region 2 in Fig. 1 (i.e. region downstream of wave)
$*$	Refers to critical condition
Subscript	
∞	Restream conditions
1	

REFERENCES

No. Author(s)
1 M. Berthelot

2 E. Mallard and H. Le Chatelier

Title, etc.
Sur la vitesse de propagation des phénomenes explosifs dans les gaz.
C.R. Acad. Sci., Paris. 93, 18-22, 4 July 1881.

3 D. L. Chapman On the rate of explosion in gases.
Phil. Mag. 47, 5th series, 284, 90-104, January 1899.
4 E. Jouguet Sur la propagation des reactions chimiques dans les gaz.
J. Math. Pures et Appliqués, 6, Serie 1, 347-425, 1905, 5-86, 1906.

5 Y. B. Zeldovich and Acta physiochim. URSS. 18, 167 (1943).
O. I. Leypunskiy

6 Y. B. Zeldovich and Bosplameneniye Vzryvchatykh Gasovykh Smesey v Udarnykh I. Y. Shlyapintokh Volnakh.
Doklady Akademii Nauk. SSSR, 65, 6, 871-874, 1949. Available as 'Ignition of explosive gaseous mixtures in shock waves' from the Office of Technical Services U.S. Dept. of Commerce, Washington, D.C. OTS: 60-41, 533, 1960.

7 National Bureau of Standards A technique for studying supersonic combustion in the vicinity of a hypersonic missile.
Nat. Bur. of Std. and Tech. News Bull., 44, No. 11, 1960.
8 F. W. Ruegg and W. W. Dorsey A missile technique for the study of detonation waves.
J. Res., Nat. Bur. of Stand., 66C, No. 1, 1962.

9 M. P. Samozvantsev O Stabilizatsii Detonatsionnykh Voln Pri Pomoshchi Plokhoobtekaemykh Tel, PMTF, No. 4, 126-129, 1964. Available as 'The stabilisation of detonation waves by means of bluff bodies', translated by J. W. Palmer, R.A.E. Library Trans. 1088, 1964.

10 H. Behrens, W. Struth and .. Studies of hypervelocity firings into mixtures of hydrogen with air F. Wecken or oxygen.
Paper presented to the Tenth (International) Symposium on Combustion, Cambridge, England, 1964.

11 H. Behrens and W. Struth .. Verbrennungsvorgänge bei Hochgeschwindigkeitsschüssen mit Kegelgeschossen in Knallgas. Deut ich-Franzöisches Forschungsinstitut Saint-Louis.
T41/64, 1964.
12 B. V. Voitsekhovsky and .. Optical investigation of the front of spinning detonation wave.
B. E. Kotov

Izv Sibirsk. Otd. Akad. Nauk. SSSR4, 79, 1958.

REFERENCES-continued
No. Author(s) Title, etc.
13 B. V. Voitsekhovsky

14 B. V. Voitsekhovsky

15 B. V. Voitsekhovsky,
'Stazionarnaia detonatsia.'
Doklady Akad. Nauk. SSSR 129, 6, 1254-1256, 1959.
V. V. Mitrofanov and
. On the flow structure in a spinning detonation wave.
M. E. Topchian

16 J. A. Nicholls et al
Zh. Prikl. Meckh. I. Techn. Fiz. 3, 27-30, 1962.
'Spinovaia Statsionarnaia detonatsia'.
Zh. Prikl. Mekh. I. Techn. Fiz. 3, 157-164, 1960.
. A. Nicholls et al . . . The feasibility of a rotating detonation wave rocket motor.
Quarterly Progress Report No. 2, 05179-2-P, University of Michigan. 1962. AD414551.

17 J. A. Nicholls et al The feasibility of a rotating detonation wave rocket motor. Final Report R.P.L./TDR 64-113. 1964. Contract AF04(611)8503.

18 H. Hoffman Rückstossantrieb aus intermittierender detonativer Verbrennung. Deutsche Forschungsanstalt für Segelflug E.V., DarmstadtFlughafen. Volkenrode Translation by Ministry of Supply available as 'Reaction propulsion by intermittent detonative combustion' from Ministry of Aviation, England.

19 D. Bitondoand W. Bollay .. Preliminary performance analysis of the pulse-detonation-jet engine system.
Aerophysics Development Corp., Rept. ADC-102-1, 1952.
20 D. Bitondo, J. B. Kendrick . . Preliminary report on the application of the pulse-det-jet engine and W. Bollay to helicopter rotor propulsion.
Aerophysics Development Corp., Report ADC-102-3, 1952.

21 J. A. Nicholls, H. R. Wilkinson and J. B. Morrison

22 J. A. Nicholls, E. K. Dabora . and R. L. Gealer

Intermittent detonation as a thrust-producing mechanism.
Jet Propulsion, 27, 5, 534-541. 1957.
Studies in connection with stabilised gaseous detonation waves.
Seventh Symposium (International) on combustion, London and Oxford, 1958. Published by Butterworth's Scientific Publications, London, 1959.

23 R. A. Gross Research on supersonic combustion.
ARS Journal 29, 1, 63-64, 1959.
24 J. A. Nicholls Stabilised gaseous detonation waves.
ARS Journal 29, 8, 607, 1959.

25 J. A. Nicholls and E. K. Dabora Recent results on standing detonation waves.
University of Michigan. May 1960. AFOSR TN 60-441. ASTIA AD 238-393. P 92725.

REFERENCES-continued

No.
Author(s)
Title, etc.
26 R. A. Gross and W. Chinitz . . A study of supersonic combustion.
J. Aero/Space Sci., July 1960 27, 7, 517-524, 1960.

27 A. A. Kovitz Some comments on standing detonation waves in a combustion tunnel.
J. Aero/Space Sci. 28, 1, 75-76, 1961.

28 J. A. Nicholls Stabilisation of gaseous detonation waves with emphasis on the ignition delay zone.
Ph. D. Thesis, University of Michigan, 1960.
29 R. A. Gross and J. A. Nicholls . . Stationary detonation waves.
4th AGARD Combustion and Propulsion Colloquium on high Mach number air-breathing engines. Milan, April 1960, pp. 169-177.

30 R. P. Rhodes, P. M. Rubins and The effect of heat release on the flow parameters in shock induced D. E. Chriss combustion.
AEDC-TDR-62-78, 1962. See also SAE preprint 595P 1962.
31 P. M. Rubins and R. P. Rhodes Shock induced combustion with oblique shocks-comparison of experiment and kinetic calculations.
AEDC-TDR-63-103, 1963. Also AIAA preprint No. 63-117. Also AIAA Jl, 1, 12, 2778-2784, 1963.

32 P. M. Rubins and Shock induced combustion in a controlled area duct by means of T. H. M. Cunningham oblique shocks.

AIAA preprint No. 64-84, 1964.
33 F. Suttrop Tests on shock-induced combustion for application in hypersonic engines.
T.I.L. Translation TP.1507A, 1965.

34 R. A. Gross and Recent advances in gaseous detonation.
A. K. Oppenheim

ARS Journal, 29, No. 3, 173-179, 1959.

35 A. K. Oppenheim, N. Manson Recent progress in detonation research. and H. Gg. Wagner

AIAA Journal, 1, No. 10, 2243-2252, 1963.

36 Library of Congress, Aero/ .. New combustion processes: surveys of Soviet-bloc scientific and Space Technology Division technical literature (1958-January 1964).
Library of Congress, Washington, D.C., ATD-P-64-49, NASA 64-27342, 1964.

37 R. Dunlap, R. L. Brehm and . . A preliminary study of the application of steady-state detonative J. A. Nicholls combustion to a reaction engine.
Jet Propulsion, 28, 6, 451-456. 1958.

REFERENCES-continued
No. Author(s)

Title, etc.
38 W. H. Sargent and R. A. Gross Detonation wave hypersonic ramjet. ARS Journal, 30, 6, 543-549, 1960.

39 E. Larisch The ramjet with standing detonation wave.
Paper presented at the meeting of the Romanian Academy, Timisoara, 1958.

40 M. Arens The performance of a hypersonic ramjet using detonative combustion.
SAE preprint 419A. Paper presented to the National Aeronautic and Space Engineering and Manufacturing Meeting, Los Angeles, California, 1961.

41 K. M. Foreman Terrestrial hypersonic flight propulsion.
AIAA preprint No. 63-110, 1963.
42 A. Mager Supersonic airfoil performance with small heat addition.
IAS preprint No. 768, 1958. Also J. Aero/Space Sci., 26, No. 2, 1959.

43 H. Lomax Two-dimensional, supersonic, linearized flow with heat addition. NASA Memo. 1-10-59A. 1959. NASA TIL 6196.

44 R. W. Luidens and R. J. Flaherty Analysis and evaluation of supersonic underwing heat addition. NASA Memo 3-17-59E, 1959. NASA TIL 6345.

45 W. W. Willmarth The production of aerodynamic forces by heat addition on external surfaces of aircraft.
The Rand Corp. RM-2078, December 1957.
46 B. S. Baldwin, Jr. Application to fluid dynamics of the theory of reversible heat addition.
NASA TN D-93. 1959.
47 A. K. Oppenheim and . . Significance of detonation study to propulsion dynamics. A. J. Laderman

48 J. Rutkowski and Considerations for the attainment of a standing detonation wave. J. A. Nicholls. Gas Dynamics Symposium of Aerothermochemistry, Northwestern University, 243-253, 1955.
$\begin{array}{lll}49 & \text { R. Seistrunck, J. Fabri and } \\ \text { E. Le Grives }\end{array} \quad \begin{aligned} & \text { Some properties of stationary detonation waves. } \\ & \text { Fourth Symposium on Combustion, Williams and Wilkins Co., } \\ & \text { Baltimore, 498-501, } 1953 .\end{aligned}$

REFERENCES-continued

No. Author(s)
51 D. G. Samaras. Gas dynamic treatment of exothermic and endothermic discontinuities.
Canadian Journal of Research, 26A, No. 1, 1-21, 1948.
52 J. Weber Some diagrams of the flow properties behind oblique detonation waves.
R.A.E. unpublished.

53 S. S. Kvashnina and Ustanovivsheesia obtekanie Konusa potokom detoniruiuschG. G. Chernyi chego gaza.

PMM 23, No. 1 182-186, 1959. Available as 'Steady state flow of detonating gas around a cone' translated and published for ASME by the Pergamon Institute.

54 H. W. Woolard Analytical approximations for stationary conical detonations and deflagrations in supersonic flow. Applied Physics Lab., John Hopkins University, TG-446, 1963.

55 T. C. Adamson, Jr., and .. On the classification of normal detonation waves. R. B. Morrison

56 R. S. Bartlett Tables of supersonic symmetrical flow around right circular cones with and without the addition of heat at the wave. A.R.C. R. \& M. 3521, 1966.

57 F. Walkden and J. M. Howie. . A new method for calculating the supersonic flow past a body. R.A.E. Tech. Note. No. Maths 89, 1962. A.R.C. 24350.

58 F. Walkden and J. E. Sellars . . A 'pseudo-viscous' method for the calculation of two-dimensional supersonic flow fields.
R.A.E. Tech. Rpt. No. 65009, 1965. A.R.C. 26745.

59 Ames Aeronautical Laboratory, Equations, tables, and charts for compressible flow. Moffett Field

60 Gaynor Joyce and L. H. Townend

Flow tables for oblique and normal detonation waves. R.A.E. unpublished.

APPENDIX A

Features of Fig. 7.

For waves across which γ does not vary, it has been shown in equations (23) to (26) of Section 5.1 that

$$
\left.\begin{array}{rl}
\frac{u_{2}}{u_{1}} & =\left(\frac{\rho_{2}}{\rho_{1}}\right)^{-1}=1-\frac{A}{M_{N 1}^{2}},\left(A \equiv F \frac{M_{N 1}^{2}-1}{\gamma+1}\right) \\
\frac{p_{2}}{p_{1}} & =1+\gamma A \tag{A.2}\\
\frac{T_{2}}{T_{1}} & =(1+\gamma A)\left(1-\frac{A}{M_{N 1}^{2}}\right) \\
\frac{M_{N 2}}{M_{N 1}} & =\sqrt{\left(1-\frac{A}{M_{N 1}^{2}}\right) /(1+\gamma A)}
\end{array}\right\}
$$

It follows that, if plotted on axes of p_{2} / p_{1} and $\rho_{1} / \rho_{2}\left(\right.$ i.e. of $(1+\gamma A)$ and $\left.\left(1-\frac{A}{M_{N 1}^{2}}\right)\right)$, lines of constant T_{2} / T_{1} will be rectangular hyperbolae having the axes as asymptotes. Further

$$
\frac{\rho_{1}}{\rho_{2}}=\left(\frac{M_{N 2}}{M_{N 1}}\right)^{2} \frac{p_{2}}{p_{1}}
$$

hence lines of constant $M_{N 2} / M_{N 1}$ form straight lines through the point ($\rho_{1} / \rho_{2}=p_{2} / p_{1}=0$). Also from (A.1) and (A.2)

$$
\frac{p_{2}}{p_{1}}=1+\gamma A=\left(1+\gamma M_{N 1}^{2}\right)-\gamma M_{N 1}^{2}\left(\frac{\rho_{1}}{\rho_{2}}\right)\left(=1 \text { if } \frac{\rho_{1}}{\rho_{2}}=1\right) ;
$$

hence, lines of constant $M_{N 1}$, plotted on axes of p_{2} / p_{1} and ρ_{1} / ρ_{2} form a family of straight lines through the point ($p_{2} / p_{1}=1, \rho_{1} / \rho_{2}=1$). Lines of constant $T_{2} / T_{1}, M_{N 2} / M_{N 1}$ and $M_{N 1}$ are shown with others on axes of p_{2} / p_{1} and ρ_{1} / ρ_{2} in Fig. 7b. Also in this Figure, asymptotes may be drawn for any line along which F is constant, since the asymptote condition is

$$
\begin{equation*}
\underset{M_{N 1} \rightarrow \infty}{L t} \frac{\rho_{1}}{\rho_{2}}=\underset{M_{N 1} \rightarrow \infty}{L t}\left(1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}}\right)=1-\frac{F}{\gamma+1} . \tag{A.3}
\end{equation*}
$$

So for shock waves, the asymptotic value of ρ_{1} / ρ_{2} is

$$
\frac{\rho_{1}}{\rho_{2}}=\frac{\gamma-1}{\gamma+1}(=0.1666 \quad \text { for } \quad \gamma=1.4)
$$

and for Chapman-Jouguet detonations, the asymptotic value is

$$
\frac{\rho_{1}}{\rho_{2}}=\frac{\gamma}{\gamma+1}(=0.5833 \dot{3} \text { for } \gamma=1.4)
$$

Also from Fig. 1a,

$$
\tan (\zeta-\delta)=\frac{u_{2}}{v_{2}}=\frac{u_{2}}{v_{1}}=\frac{u_{1}}{v_{1}} \frac{u_{2}}{u_{1}}=\frac{\rho_{1}}{\rho_{2}} \tan \zeta
$$

and

$$
\frac{A_{2}}{A_{1}}=\frac{\sin (\zeta-\delta)}{\sin \zeta}=\cos \delta-\frac{\sin \delta}{\tan \zeta}
$$

thus

$$
\begin{equation*}
\frac{\rho_{1}}{\rho_{2}}=\frac{A_{2}}{A_{1}} \tan \delta /\left(\sec \delta-\frac{A_{2}}{A_{1}}\right) \tag{A.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\cot \zeta=\cot \delta-\frac{A_{2}}{A_{1}} \operatorname{cosec} \delta \tag{A.5}
\end{equation*}
$$

It is seen from equations (A.4) and (A.5) that a carpet of A_{2} / A_{1} and δ may be plotted on axes of ρ_{1} / ρ_{2} and ζ; this is shown in Fig. 7c, which like Figs. 7 a and b is valid for any normal or oblique, shock or detonation wave in any uniform flow having $M_{1}>1$. A final feature of Fig. 7 c is that from (A.4) and (A.5)

$$
\cot \delta=\tan \zeta\left(\frac{\operatorname{cosec}^{2} \zeta}{1-\left(\rho_{1} / \rho_{2}\right)}-1\right)
$$

so that maximum flow deflection, for given values of γ, F and $M_{N 1}$ (i.e. of ρ_{1} / ρ_{2}) occurs when

$$
\frac{\partial}{\partial \zeta}(\cot \delta)=\frac{\partial}{\partial \zeta}\left[\tan \zeta\left(\frac{\operatorname{cosec}^{2} \zeta}{1-\left(\rho_{1} / \rho_{2}\right)}-1\right)\right]=0
$$

i.e. when

$$
\begin{equation*}
\tan ^{2} \zeta=\rho_{2} / \rho_{1} \tag{A.6}
\end{equation*}
$$

$\operatorname{since} \sin \zeta=M_{N 1} / M_{1}$, this condition may be re-written from equation (A.1) as

$$
M_{1}^{2}=M_{N 1}^{2}\left(2-\frac{F}{\gamma+1}\right)+\frac{F}{\gamma+1}=2 M_{N 1}^{2}\left\{\begin{array}{l}
=\frac{2\left(1+\gamma M_{N 1}^{2}\right)}{(\gamma+1)} \text { for shock waves } \\
\frac{1+(2 \gamma+1) M_{N 1}^{2}}{\gamma+1} \text { for Chapman-Jouguet waves }
\end{array}\right.
$$

So for a given type of wave (i.e. a given F), a chosen value of $M_{N 1}$ yields a given value of M_{1} and loci describing waves for which $\tan ^{2} \zeta=\rho_{2} / \rho_{1}$ may be constructed on Fig. 7d. For a given type of wave, it is seen that ζ is nearly independent of M_{1}; a much fuller investigation of δ is presented in Appendix \mathbf{B} and Section 5.2.

APPENDIX B

Flow Deflection through Oblique Detonation Waves.
In Fig. 1a:

$$
\begin{aligned}
& u_{1}=V_{1} \sin \zeta, \quad u_{2}=V_{2} \sin (\zeta-\delta) \\
& v_{1}=V_{1} \cos \zeta=v_{2}=V_{2} \cos (\zeta-\delta) .
\end{aligned}
$$

Therefore

$$
\tan (\zeta-\delta)=\frac{u_{2}}{v_{2}}=\frac{u_{2}}{v_{1}}=\frac{u_{1}}{v_{1}} \frac{u_{2}}{u_{1}}=\frac{\rho_{1}}{\rho_{2}} \tan \zeta .
$$

Therefore

$$
\begin{equation*}
\cot \delta=\tan \zeta\left(\frac{\operatorname{cosec}^{2} \zeta}{1-\left(\rho_{1} / \rho_{2}\right)}-1\right) \tag{B.1}
\end{equation*}
$$

But
and

$$
\left.\begin{array}{rl}
\tan ^{2} \zeta & =\sin ^{2} \zeta /\left(1-\sin ^{2} \zeta\right) \\
\operatorname{cosec}^{2} \zeta & =1 / \sin ^{2} \zeta
\end{array}\right\} \sin ^{2} \zeta=\left(\frac{M_{N 1}}{M_{1}}\right)^{2} .
$$

Also

$$
\frac{\rho_{1}}{\rho_{2}}=1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}}
$$

(see equation (12)).
Thus

$$
\begin{equation*}
\cot \delta=\left(\frac{M_{1}^{2}(\gamma+1)}{F\left(M_{N 1}^{2}-1\right)}-1\right) / \sqrt{\left(\frac{M_{1}}{M_{N 1}}\right)^{2}-1} . \tag{B.2}
\end{equation*}
$$

It has already been shown that for given values of γ, F and $M_{N 1}$, maximum flow deflection occurs when

$$
\begin{equation*}
\tan ^{2} \zeta=\rho_{2} / \rho_{1} \tag{A.6}
\end{equation*}
$$

i.e.

$$
M_{1}^{2}=M_{N 1}^{2}\left(2-\frac{F}{\gamma+1}\right)+\frac{F}{\gamma+1}=2 M_{N 1}^{2}-\left\{\begin{array}{l}
=\frac{2\left(1+\gamma M_{N 1}^{2}\right)}{\gamma+1} \text { for shock waves } \\
=\frac{1+(2 \gamma+1) M_{N 1}^{2}}{\gamma+1} \text { for Chapman-Jouguet waves }
\end{array}\right.
$$

It can also be shown from equations (B.1) and (B.3), that

$$
\left.\cot \delta_{\max }\right]_{M_{N 1}}=\frac{2 \cot \zeta}{1-\cot ^{2} \zeta}=\frac{2 \tan \zeta}{\tan ^{2} \zeta-1}=-\cot 2 \zeta
$$

i.e.

$$
\tan 2 \zeta=-\frac{1}{\left.\tan \left(\delta_{\max }\right]_{M_{N 1}}+\frac{\pi}{2}-\frac{\pi}{2}\right)}=-\frac{\left.\tan \left(\delta_{\max }\right]_{M_{N 1}}+\frac{\pi}{2}\right)+\cot \frac{\pi}{2}}{\left.\tan \left(\delta_{\max }\right]_{M_{N 1}}+\frac{\pi}{2}\right) \cot \frac{\pi}{2}-1}
$$

Therefore

$$
\begin{equation*}
\left.\left.\zeta=\frac{1}{2} \delta_{\max }\right]_{M_{N 1}}+\frac{\pi}{4}, \frac{d}{d \zeta}\left(\delta_{\max }\right]_{M_{N 1}}\right)=2(\text { both expressions independent of } F) \tag{B.5}
\end{equation*}
$$

Further, from equations (B.2) and (B.4),

$$
\begin{equation*}
\left.\cot \delta_{\max }\right]_{M_{N 1}}=2 \frac{M_{N 1}^{2}}{A} \sqrt{1-\frac{A}{M_{N 1}^{2}}}=\sqrt{\left(\frac{M_{1}^{2}}{A}\right)^{2}-1} \tag{B.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.\cot \delta_{\max }\right]_{M_{N 1}}=\frac{2 M_{N 1}^{2}(\gamma+1)}{F\left(M_{N 1}^{2}-1\right)} \sqrt{1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}}}=\sqrt{\frac{M_{1}^{2}(\gamma+1)\left(2-\frac{F}{\gamma+1}\right)}{F\left(M_{1}^{2}-2\right)-\left(2-\frac{F}{\gamma+1}\right)}} \tag{B.7}
\end{equation*}
$$

Further formulae may be derived for those conditions at which δ is maximised for given values of γ and stream Mach number M_{1}, that is for the condition

$$
\frac{\partial}{\partial M_{N 1}}(\cot \delta)=0
$$

thus, differentiation of equation (B.2) yields the expression

$$
\begin{gather*}
\sin \zeta=\left(\frac{M_{N 1}}{M_{1}}\right)^{\left.\delta_{\max }\right]_{M_{1}}}=\sqrt{\frac{M_{N 1}^{2}\left(M_{N 1}^{2}+1\right)(\gamma+1)}{2(\gamma+1) M_{N 1}^{N}-F\left(M_{N 1}^{2}-1\right)^{2}}} \\
=\sqrt{\frac{(\gamma+1) M_{1}^{2}-2 F \pm \sqrt{(\gamma+1)\left[(\gamma+1) M_{1}^{4}+8(\gamma+1-F) M_{1}^{2}+8 F\right]}}{2(2(\gamma+1)-F) M_{1}^{2}}}
\end{gather*}
$$

and from these expressions and equation (B.2), $\left.\delta_{\max }\right]_{M_{1}}$ may be calculated (for values of $M_{N 1}, M_{1}, \zeta$
and $\left.\delta_{\text {max }}\right]_{M_{1}}$, see Table 3).
The wave angle for absolute maximum flow deflection is given by the limiting values of the expressions (B.8), that is

$$
\sin \zeta]_{\substack{\delta_{\text {abs }} \\ \max }}=\underset{M_{N 1} \rightarrow \infty}{ } L t \frac{1}{\sqrt{1+\left(\rho_{1} / \rho_{2}\right)}}=L_{M_{N 1} \rightarrow \infty} \sqrt{\frac{M_{N 1}^{2}\left(M_{N 1}^{2}+1\right)(\gamma+1)}{2(\gamma+1) M_{N 1}^{4}-F\left(M_{N 1}^{2}-1\right)^{2}}}
$$

or

$$
\sin \zeta]_{\substack{\delta_{\text {abs }} \\ \text { max }}}=\operatorname{Mit}_{M_{1} \rightarrow \infty} \sqrt{\frac{(\gamma+1) M_{1}^{2}-2 F \pm \sqrt{(\gamma+1)\left[(\gamma+1) M_{1}^{4}+8(\gamma+1-F) M_{1}^{2}+8 F\right]}}{2(2(\gamma+1)-F) M_{1}^{2}}}
$$

Therefore

$$
\sin \zeta]_{\substack{\delta_{\text {abs }} \max \tag{B.9}\\ \max }}=\sqrt{\frac{1}{2-\frac{F}{\gamma+1}}} \begin{cases}=\sqrt{\frac{\gamma+1}{2 \gamma}} & \text { for shock waves } \\ =\sqrt{\frac{\gamma+1}{2 \gamma+1}} & \text { for Chapman-Jouguet detonations }\end{cases}
$$

Also the absolute maximum flow deflection angle is given by the limiting values of the expressions (B.7) as

$$
\underset{\max }{\cot \delta_{\mathrm{abs}}}=\underset{M_{N 1} \rightarrow \infty}{L t} \frac{2 M_{N(}^{2}(\gamma+1)}{F\left(M_{N 1}^{2}-1\right)} \sqrt{1-F \frac{M_{N 1}^{2}-1}{(\gamma+1) M_{N 1}^{2}}}
$$

$$
\begin{align*}
& =\underset{M_{1} \rightarrow \infty}{L t} \sqrt{\left[\frac{M_{1}^{2}(\gamma+1)\left(2-\frac{F}{\gamma+1}\right)}{F\left(M_{1}^{2}-2\right)-\left(2-\frac{F}{\gamma+1}\right)}\right]^{2}-1} \\
& =\frac{2(\gamma+1)}{F} \sqrt{1-\frac{F}{\gamma+1}}\left\{\begin{array}{l}
=\sqrt{(\gamma+1)(\gamma-1)} \text { for shock waves } \\
=2 \sqrt{\gamma(\gamma+1)} \text { for Chapman-Jouguet detonations }
\end{array}\right. \tag{B.10}
\end{align*}
$$

For $\gamma=1.4$ and $F=1(0 \cdot 01) 2$, values of $\delta_{\text {abs }}^{\text {max }}, ~$ and $\left.\zeta\right]_{\substack{\delta_{\text {abs }}^{\max }}}$ are listed in Table 4.

$$
\begin{equation*}
=\left(\frac{\gamma+1}{\gamma+1+\gamma F\left(M_{N 1}^{2}-1\right)}\right)^{\frac{1}{\gamma-1}}\left(\frac{(\gamma+1) M_{N 1}^{2}}{F+(\gamma+1-F) M_{N 1}^{2}}+\frac{F(2-F)\left(M_{N 1}^{2}-1\right)^{2}}{\left(F+(\gamma+1-F) M_{N 1}^{2}\right)\left(2+(\gamma-1) M_{1}^{2}\right)}\right)^{\frac{\gamma}{\gamma-1}} \tag{C.3}
\end{equation*}
$$

If for a Chapman-Jouguet wave and constant $\gamma(=1 \cdot 4), p_{T 2} / p_{T 1}$ is plotted against δ as in Fig. 13, the envelope of the (three-dimensional) carpet showing $M_{N 1}$ and M_{1} represents the necessary relation between these two variables if flow deflection at a given value of $p_{T 2} / p_{T 1}$ is to be maximised; from Fig. 13 it can be seen that this envelope condition is

$$
\frac{\partial \delta}{\partial M_{N 1}}\left(\text { or } \frac{\partial}{\partial\left(M_{N 1}^{2}\right)} \cot \delta\right)=0,
$$

i.e.

$$
\frac{\partial}{\partial\left(M_{N 1}^{2}\right)}\left[\frac{(\gamma+1) p}{(\gamma-1)\left(M_{N 1}^{2}-1\right)}-1\right] / \sqrt{\frac{p}{(\gamma-1) M_{N 1}^{2}}-1}=0,
$$

in which

$$
\begin{equation*}
p+2=2+(\gamma-1) M_{1}^{2}=\left(M_{N 1}^{2}-1\right)^{2}(\gamma+1)^{\frac{1}{\gamma}} /\left[\left(\frac{p_{T 2}}{p_{T 1}}\right)^{\frac{\nu-1}{\gamma}}\left(1+\gamma M_{N 1}^{2}\right)^{\frac{\gamma+1}{\gamma}}-(\gamma+1)^{\frac{\gamma+1}{\gamma}} M_{N 1}^{2}\right] \tag{C.4}
\end{equation*}
$$

This envelope condition reduces to the form

$$
p^{3}+C_{1} p^{2}+C_{2} p+C_{3}=0,
$$

in which

$$
\begin{align*}
& C_{1}=3+\frac{1-\left(2 \gamma^{2}-\gamma-2\right) M_{N 1}^{4}}{(\gamma+1) M_{N 1}^{2}} \\
& C_{2}=-\frac{\gamma-1}{(\gamma+1)^{2} M_{N 1}^{2}}\left[M_{N 1}^{4}\left(6 \gamma^{2}+(2 \gamma+1)\left(M_{N 1}^{2}+5\right)\right)+\left(M_{N 1}^{2}-1\right)\right] \tag{C.5}\\
& C_{3}=\frac{2(\gamma-1)^{2}}{(\gamma+1)^{2}}\left(M_{N 1}^{2}-1\right)\left[(2 \gamma+1) M_{N 1}^{2}+1\right] .
\end{align*}
$$

Thus for a Chapman-Jouguet wave across which γ is constant, a chosen value of $M_{N 1}$ yields a particular cubic equation in p and, from the roots and equation (C.4), three possible combinations of $p_{T 2} / p_{T 1}$ and M_{1} : of these three combinations, that corresponding to the larger of the two positive roots of the cubic gives the point on the envelope which corresponds to the value of $M_{N 1}$ originally chosen. Values of $\mathrm{p}_{T 2} / p_{T 1}, M_{N 1}, M_{1}, \delta$, etc, which satisfy this envelope condition are listed in Table 5. It is seen that ζ hardly varies, being approximately 53°.

Table 1
Wave properties $\left(r_{1}=r_{2}=r=\right.$ constant $)$

Static pressure ratio, $\mathrm{p}_{2} \mathrm{p}_{1}$	$1+Y^{F} \frac{M_{N 1}^{2}-1}{Y+1}$	$1+{ }^{\text {a }}$	$\frac{1+\gamma \mathrm{m}_{\mathrm{N} 1}^{2}}{\gamma+1}$	$\frac{2 \gamma N_{N 1}^{2}-(r-1)}{r+1}$
Static density ratio, $\rho_{2} / p_{1}\left(=u_{1} / u_{2}\right)$	$\frac{(\gamma+1) M_{N 1}^{2}}{F+(\gamma+1-F) w_{N 1}^{2}}$	$\frac{1}{1-\left(A / M_{N 1}^{2}\right)}$	$\frac{(\dot{r}+1) m_{N 1}^{2}}{1+\gamma^{M_{N-1}^{2}}}$	$\frac{(\gamma+1) u_{N-1}^{2}}{2+(\gamma-1) k_{N 1}^{2}}$
Static temperature ratio, $\mathrm{T}_{2} / \mathrm{r}_{1}$	$\left.\frac{\left(\gamma+1+\gamma F\left(\mathrm{~K}_{\mathrm{N} 1}^{2}-1\right)\right)\left(\mathbb{P}+(\gamma+1-\mathrm{F}) \mathrm{M}_{\mathrm{N} 1}^{2}\right)}{(\gamma+1)^{2} \mathrm{~K}_{\mathrm{N} 1}^{2}} \quad\right\} \mathrm{P}\left(\gamma, \mathbb{F}, \mathrm{M}_{\mathrm{N} 1}\right)$	$(1+\mathrm{Y} A)\left(1-\left(A / M_{\text {Ni }}^{2}\right)\right)$	$\frac{\left(1+x x_{N 1}^{2}\right)^{2}}{(r+1)^{2} x_{N M}^{2}}$	$\frac{\left(2 \gamma \mathrm{M}_{\mathrm{N} 1}^{2}-(\gamma-1)\right)\left(2+(\gamma-1) \mathrm{u}_{\mathrm{N} 1}^{2}\right)}{(\gamma+1)^{2}{\frac{u_{N}^{2}}{2}}^{2}}$
Normal Mach number ratio, $\mathrm{M}_{\mathrm{N} 2}{ }^{\prime} \mathrm{K}_{\mathrm{N} 1}$	$\sqrt{\frac{\gamma+1-\left[F\left(M_{N 1}^{2}-1\right) / M_{N 1}^{2}\right]}{\gamma+1+\gamma F\left(M_{N 1}^{2}-1\right)}}$	$\sqrt{\frac{1-\left(A / y_{N 1}^{2}\right)}{1+Y A}}$	$\frac{1}{\mathrm{~m}_{\mathrm{N} 1}}\left(\text { i.e. } \mathrm{M}_{\mathrm{N} 2}=1\right)$	$\sqrt{\left.\frac{2+(r-1) y^{2}}{M_{N 1}^{2}\left(2 M^{2}\right.}{ }^{2}-(r-1)\right)}$
$\begin{aligned} & \text { Entropy rise, } \\ & e^{-\Delta s / R} \end{aligned}$	$\left.\left[\frac{\gamma+1}{\gamma+1+\gamma\left(M_{N 1}^{2}-1\right)}\right]^{\frac{1}{\gamma-1}}\left[\frac{(\gamma+1) M_{N 1}^{2}}{r+(\gamma+1-F) M_{N 1}^{2}}\right]^{\frac{\gamma}{r-1}}\right]$	$\frac{1}{(1+\gamma A)^{\frac{1}{\gamma-1}}\left(1-\left(A / x_{N 1}^{2}\right)\right)^{\frac{x}{\gamma-1}}}$	$\left[\frac{\gamma+1}{1+\gamma d_{N 1}^{2}}\right]^{\frac{\gamma+1}{\gamma-1}} M_{N 1}^{\frac{2 \gamma}{\gamma-1}}$	$\left[\frac{r+1}{2-2 M_{N 1}^{2}-(r-1)}\right]^{\frac{1}{\gamma-1}}\left[\frac{(\gamma+1) M_{N 1}^{2}}{2+(\gamma-1) M_{N 1}^{2}}\right]^{\frac{\gamma}{\gamma-1}}$
Stream velocity ratio, v_{2} / v_{1}	$\sqrt{1-\frac{F\left(x_{N 1}^{2}-1\right)\left[2(\gamma+1) y^{2} M^{2}-P\left(M_{N 1}^{2}-1\right)\right]}{(\gamma+1)^{2} \mu_{N 1}^{2} M_{1}^{2}}}$	$\begin{array}{\|} \sqrt{\left(1-\frac{A}{M_{1}^{2}}\right)-\frac{A}{M_{1}^{2}}\left(1-\left(A / M_{N-1}^{2}\right)\right)} \\ \sqrt{\frac{\left(1-\frac{A}{M_{1}^{2}}\right)-\frac{A}{M_{1}^{2}}\left(1-\left(A / M_{N 1}^{2}\right)\right)}{(1+Y A)\left(1-\left(A / M_{N 1}^{2}\right)\right) M_{1}^{2}}} \end{array}$	$\begin{aligned} & \sqrt{1-\frac{\left(u_{N 1}^{2}-1\right)\left(1+(2 \gamma+1) M_{N 1}^{2}\right)}{(\gamma+1)^{2} u_{N 1}^{2} u_{1}^{2}}} \\ & \frac{1}{1+\gamma y_{N 1}^{2}} \sqrt{(\gamma+1)^{2} u_{N 1}^{2}-\left(u_{N 1}^{2}-1\right)\left(1+(2 \gamma+1) u_{N N}^{2}\right) / x_{1}^{2}} \end{aligned}$	
stream Mach number ratio, H_{2} / H_{1}	$\sqrt{\frac{(\gamma+1)^{2} M_{N 1}^{2}-F\left(M_{N 1}^{2}-1\right)\left[2(\gamma+1) M_{N 1}^{2}-F\left(M_{N 1}^{2}-1\right)\right] / M_{1}^{2}}{\left(\gamma+1+\gamma \mathrm{P}\left(M_{N 1}^{2}-1\right)\right)\left(r+(\gamma+1-F) 4_{N 1}^{2}\right)}}$			$\sqrt{\frac{(r+1)^{2} M_{N 1}^{2}-4\left(M_{N 1}^{2}-1\right)\left(1+\gamma M_{N 1}^{2}\right) / M_{1}^{2}}{\left(2 r M_{N 1}^{2}-(r-1)\right)\left(2+(r-1) M_{N 1}^{2}\right)}}$
Stagnation temperature ratio, $\mathrm{T}_{\mathrm{T} 2} / \mathrm{T}_{\mathrm{T}}$	$1+\frac{F(2-F)\left(M_{N 1}^{2}-1\right)^{2}}{(\gamma+1) M_{N 1}^{2}\left(2+(\gamma-1) u_{1}^{2}\right)} \quad\left\{f \left(\gamma, F, \frac{\left.Y_{N 1}, M_{1}\right)}{}\right.\right.$		$1+\frac{\left(M_{N 1}^{2}-1\right)^{2}}{(\gamma+1) u_{N 1}^{2}\left(2+(\gamma-1) u_{1}^{2}\right)}$	1 (Therefore $\mathrm{p}_{\mathrm{T} 2} / \mathrm{p}_{\mathrm{T} 4}=e^{-\Delta s / R}$)
Stagnation pressure ratio, $\mathrm{P}_{\mathrm{T} 2} / \mathrm{p}_{\mathrm{T}}$		$\int \text { little simplification }$	$\left[\frac{\gamma+1}{1+\gamma m_{N 1}^{2}}\right]^{\frac{\gamma+1}{\gamma-1}}\left[y_{N 1}^{2}+\frac{\left(M_{N-1}^{2}-1\right)^{2}}{(\gamma+1)\left(2+(\gamma-1) M_{q}^{2}\right)}\right]^{\frac{\gamma}{\gamma-1}}$	$\begin{aligned} & \text { Identical with } e^{-\Delta s / R} \\ & \text { Therefore } f\left(\gamma, \mu_{N 1}\right) \end{aligned}$
Cotangent of deflection angle, cot δ	$\left[\frac{M_{1}^{2}(\gamma+1)}{F\left(M_{N 1}^{2}-1\right)}-1\right] / \sqrt{\left(\frac{M_{1}}{W_{N 1}}\right)^{2}-1}$	$\left[\frac{M_{1}^{2}}{A}-1\right] / \sqrt{\left(\frac{x_{1}}{X_{\mathrm{N} 1}}\right)^{2}-1}$	$\left[\frac{\frac{M}{1}_{2}(\gamma+1)}{\frac{m}{N 11}_{2}^{2}-1}-1\right] / \sqrt{\left(\frac{u_{1}}{M_{M 1}}\right)^{2}-1}$	$\left[\frac{M_{1}^{2}\left(r^{+1}\right)}{2\left(M_{N 1}^{2}-1\right)}-1\right] / \sqrt{\left(\frac{M_{1}}{M_{N 1}}\right)^{2}-1}$
	$\begin{aligned} & \left.\begin{array}{l} \text { Mave propertios } \\ \text { in general form } \end{array}\right\} \mathbb{F}=1+\sqrt{1-\frac{2(r+1) M_{N 1}^{2}}{\left(M_{N 1}^{2}-1\right)^{2}} \frac{q}{c_{p 1^{T}} T_{1}}} \end{aligned}$	$A=\frac{F\left(\mu_{N 1}^{2}-1\right)}{\gamma+1}$	Properties of Chapman-Jouguet detonations	Properties of shock waves

TABLE 2

1.0000	1-4743	45.0000	0.0000	4.1000	5.1993	52.0522	14.1043	1.0000	1.4142	45.0000	0.0000	3.1000	3.4706	63.2807	36.5613
1.0439	1.4636	45.5000	1.0000 2.0000	4.2000 4.3000	5.3242 5.4492	52.0788 52.5037	14.15976 14.3074	1.0212 1.0431	5.4318 1.4505	45.5000 46.0000	+.0000 2.0000	3.1895 3.2000	3.5639	63.5000 6.5247	37.0000 37.0494
1.0923 1.1000	צ.5185 1.5373	46.0000 46.0749	2.0000 3.1499	4.3000 4.4000	5.4491 5.5740	52.1837 53.1269	14.2074 14.2538	1.0431 1.0656	5.4505 $\mathrm{I} \cdot 469 \mathrm{I}$	46.5000	3.0000	3.2000 3.3000	3.5749 3.6794	63.5247 63.7501	37.0494 37.5003
1.1000 1.1461	1.5173 $=.5800$	46.0749 46.5000	3.1499 3.0000	$4 \cdot 5000$	5.6990	52.1486	14.2973	1.0888	1.44888 1.488	47.0000	4.0000	$3 \cdot 3000$ 3.4000	${ }_{3} \cdot 7843$	63.9587	37.9174
1.2000	-.6423	46.9491	3.8983	4.6000	5.8241	53.1690	14.3380	1.1000	1.4983	47.2354	4.4708	3.4207	3.8059	64.0000	$3^{8.0000}$
1.2065	1.6497	47.0000	4.0000	4.7000	5.9492	52.1881	14.3762	1.1128	1. 5093	47.5000	5.000	3.500	3.8891	64.1530	$3^{38.3041}$
1.2750	1.7293	47.5600	5.0000	4.7406	6.0000	53.1955	14.3910	1.1375	$\pm .5306$	48.0000	6.0000	3.6000	3.9942	64.3315	$3^{38.6630}$
1.3000 1.3536	Y .7586 T .8215	47.6672 48.0000	5.3343 6.0000	4.8000 4.9000	6.0743 6.1994	53.2060 53.2229	14.4120 14.4458	1.1630 1.1895	1.5539 I. 5761	48.5000 49.0000	7.0000	3.6056 3.7000	4.0000 4.0994	64.341 I 64.4984	38.6823 38.9968
1.3536		48.0000 48.2625	6.5250	5.0000	6. 3245	53.33^{88}	14.4775	1.2000	I. 5853	49.1944	8.3887	3.7010	4.1004	64.5000	39.0000
1.4455	I.9305	48.5000	7.0000	5.1000	6.4497	52.2537	14.5074	1.2169	1.6003	49,5000	9.0000	3.8000	4.3048	64.6538	39.3076
1.5000	1.9948	48.7605	7.5210	$5 \cdot 3000$	6.5750	52.2678	14.5357	1.2452	1.6255	50.0000	10.0000	3.9000	4.3103	64.7988	39.5976
1. 5044	2.0000	48.7804	7.5608	5.3000	6.7002	53.2812	14.5624	1. 2747	1.6520	50.5000	II.0000 if. 8290	000	4.4159	64.9342	39.8683
1.6080 1.6886	2.3207	49.5000	9.0000	5.5393	7.0000	52.3103	14.6206	1.3372	1.7086	51.5000	13.0000	4.2000	4.6375	65.1794	40.3588
1.7000	2.2344	49.537^{8}	9.0755	5.6000	7.0760	53.3171	14.6342	1. 3704	1.7391	53.0000	14.0000	$4 \cdot 3000$	4.7334	65.2906	40.5812
1.8000	3.3551	49.8436	9.6872	5.7000	7.2013	53.3378	14.6556	1.4000	1.7664	52.4286	14.8572	4.4000	4.8394	65.3950	40.7899
1.8576	2.4249	50.0000	10.0000	5.9000	7.3520	52.3477	4.6954	1.4050	1.718	55.50000	16.0000	4.50	4.95	65.5000	41.0000
1.9000	3.4764	50.1072 50.3360	10.2145 10.6719	6.0000	7.5774	52.3569	14.713^{18}	1.4413 1.4793	I. I.840I	530000 53.5000	17.0000	4.5073 4.6000	4.00917	65.5854	41.1709
2.0000 2.0812	2.5981 2.6972	50.5000	11.0000	6.1000	7.7028	52.3657	14.7314	I. 5000	ז. 8597	53.7650	17.5300	4.7000	5.1580	65.6724	41.3449
3.1000	2.7201	50.5355	If.0711	6.2000	7.8282	52.3740	14.7481	1.5189	1.8775	54.0000	18.6000	4.8000	5.2643	65.7545	41.5090
2.3000	2.8425	50.7106	If.42ra	6.3000	7.9536 8.0000	52.3820 52.3848	14.7640 14.7697	I. 5607	1.9171 I .9545 1095	54.5000	19.0000 19.8960	$4 \cdot 9000$ 50000	$5 \cdot 3708$ 5.4772	65.8320 65.9052	$4 \mathrm{41.8103}$
3.3000	2.9652 3.0000	50.0649 50.9053	1127299 15.8507	6.3370 6.400	8.0790	52.3896	14.7797	1.6000	1.99590 1.9590	554.94000	30.0000	5.1000	$5 \cdot 5838$	65.9744	41.9488
2.3987	3.0865	51.0000	12.0000	6.5000	8.2044	52.3968	14.7937	I. 6475	2,0000	55.4634	20.9248	$5 \cdot 13^{84}$	5.6347	66.0000	42.0000
2.4000	3.0881	51.0017	12.0034	6.6000	8.3299	52.4038	14.8075	1.6515	3.0034	55.5000	ar.0000		5.6903	66.0400	42.0799
2.7000	3.4582	51.3295	12.6590	6.9000	8.7063	53.4228	14.8456	1.7522	2.1012	56.5000	23.0000	$5 \cdot 4903$	6.0000	66.2117	42.4333
2.8000	3.5819	5 F 4172	12.8345	7.0000	8.8318	52.4286	14.8572	I. 8000	3.1479	56.933^{8}	23.8676	$5 \cdot 5000$	6.0104	66.3170	42.4340
3.9000	3.1957	57.4 .965	12.9930	7.1000	8.9573	52.4341	44.8583	1.8075	3.1553	57.0000	24.0000 250000	5.6000	6.1172	66.2703	${ }^{42.5403}$
2.9047 3.0000 3.000	3.7115 3.8297	51.5000 51.5683	13.0000 13.1366	7.2000	9.0838	S 52.4395	54.8790	r.8000	2.2138 2.2465	57.7693	25.5387	$5 \cdot 7000$ 5.8000	6.2240 6.3309	66.3688	42.7377
3.1000	3.9538	51.6335	13.2670	7.3000	9.2083	52.4446	14.8892	3.9297	2.2754	58.0000	26.0000	5.9000	6.4378	66.4147	42.8393
3.1372	4.0000	51.6563	13.3126	7.4000	9.3338	52.4495	14.8990	1.9975	2.3427	58.5000	27.0000	6.0000	6.5447	66.4583	42.9167 430000
3.2000	4.0780	57.693°	13.3859	7.5000 7.6000	9.4593	52.4548	14.9085 14.9176	2.0000 2.0706	2.3452 3.456	58.5178 590000	27.0357 28.0000	-1000	6.5517	66.5000	43.0000
$3 \cdot 5000$	4.451 I	51.8438	13.6855	7.8000	9.8360	52.4673	14.9347	2.1498	2.4951	59.5000	29.0000	6.4000	6.9728	66.6140	43.2380
3.6000	4.5757	51.8848	13.7697	7.9000	9.9616	52.4714	${ }^{14.9428}$	2.2000	2.5456	59.7962	39.5934	6.4254	7.0000	66.623°	43.2459
3.7000	4.7003	51.9236	\$3.8473	7.9306	$1 \begin{aligned} & 10.0000 \\ & 10.0875\end{aligned}$	52.4726	r 4.9485	2.2361	3.5830		30.0000 30.6871	6.5000	7.0799	66.6487 66.6819	43.2974 43.3638
3.8000	4.8249	51.9595	13.9190	8.0000	10.087	52.4753	4.9505	2.3000 2.3305	2.6467	60.3436	30.6000	\%.7000 6.0	7.1870 7.2943	66.08137	43.4274
3.9000	$4 \cdot 9497$	51.9927 52.0000	13.9854 14.0000					2.3305 2.4000	3.7483	60.8393	31.6786	6.8000	7.4014	66.7442	43.4884
3.923 3.9403	4.9784 5.0000	52.0000 52.0054	14.0000 14.0108					2.4346	2.783^{2}	61.0000	32.0000	6.9000	7.5086	66.7734	43.5468
4.0000	5.0744	52.0235	14.0470					3.5000	2.8504	61.2895	32.5790	7.0000	7.6158	66.8014	43.6028
								2.5502	2.9019	61.5000	33.0000	7.1000	7.7230 7.8303	66.8283 66.8541	$43+6568$ 43.7082
								3.6000 2.6458	2.9533° 3.0000	61.6992 61.8745	33.3985 33.7490	7.2000 7.3000	7.9376	66.8789	43.7578
								2.6797	3.0350	62.0000	34.0000	7.3582	8.0000	${ }^{66.8929}$	43.7858
								2.7000	3.0559	62.0731	34-1462	7.4000	8.0449 8.1522	66.9028 66.0357	43.8055 43.8514
								2.8000	3.1598	62.4150	34.8299 350000	7.5000 7.6000		66.0477	43.8955
								2.8263 3.9000	3.1863 3.2627	62.5000 62.7382	35.0000 35.4565	7.7000	8.2595 8.369	66.9690	43.9380
								2.9942	$3 \cdot 3605$	63.0000	36.0000	7.8000	8.4743	66.9894	43.9789
								3.0000	$3 \cdot 3665$	63.0159	36.0319	7.8532	8.5314	67.0000	44.0000
												7.9000 8.0000		67.0281	44.0963

TABLE 3

Meximum ilow deflection（ M_{1} constant，$r=1.4, F=1$ and 2 ）

$\mathrm{M}_{\mathrm{N} 1}$	M_{1}	ζ	δ	$\begin{aligned} & 2.4756 \\ & 2.5000 \\ & 2.6000 \\ & 2.7000 \end{aligned}$	$\begin{aligned} & 3.0000 \\ & 3.03 I 8 \\ & 3.1617 \\ & 3.2913 \end{aligned}$	$\begin{aligned} & 55 \cdot 6072 \\ & 55 \cdot 5472 \\ & 55 \cdot 3202 \\ & 55 \cdot 1391 \end{aligned}$	$\begin{aligned} & 12.0322 \\ & \pm 2.0936 \\ & 12.332 \\ & 42.5432 \end{aligned}$
				2.7652	3．3757	55.0000	12.6694
				2.8000	3.4207	54.9400	12．7331
				2.9000	$3 \cdot 5498$	54.7798	12．9039
I． 0000	1． 0000	90．0000	0.0000	2．9611	3.6287	54.6900	\％2．9999
1．0003	1.0005	89.0000	0.0003	300000	3.6788	54.6359	13.0580
1．0012	1．0018	88.0000	0.0020	3.1000	3.8075	$54.506 \pm$	13－1975
x．0028	1.0043	87.0000	0.0069	3.2000	$3 \cdot 936 x$	$54 \cdot 3886$	士3－3243
1.0049	1.0074	86.0000	0.0163	3．3497	4.0000	54.3342	13.3830
1.0077	I．0116	85.0000	0.0329	3．3000	4．0645	54.2819	$23.4 \$ 97$
1.0172	I． 0168	84.0000	0.0552	3.4000	4－1928	54.1846	23.5451
I．OIS 54	1.0230	83.0000	0.0879	3.5000	$4 \cdot 3210$	54.0958	13.6476
1.0203	1.0303	82.0000	0.1317	3.6000	4.4490	54.0144	13.7302
I． 0260	I． 0387	81．0000	0.188 I	3.6186	4.4729	54.0000	13.7459
I．0324	3.0484	80.0000	0.259°	3.7000	4.5770	53.9397	23．8xI7
I．0398	1.0593	79．0000	0.3461	3.8000	$4 \cdot 7048$	53.8708	± 3.8869
1.0481	1.0715	78.0000	0.4514	3.9000	4.8325	53.8073	r 3.9563
I．0574	1．0853	77.0000	0.5767	3.9670	4.9180	53.7674	14.0000
1.0678	1.1005	76.0000	0．7241	4.0000	4.9601	53.7485	14.0207
I． 0795	1．1175	75.0000	0.8955	4．0312	5.0000	$53 \cdot 7312$ 53.6941	14.0398
1.0864	1.1276	74.4543	1．0000	4.1000	5.0877	53.6941	14.0803
1.0924	I．I $3^{6} 5$	74.0000	1.0932	$4 \cdot 2000$	$5 \cdot 2152$	53.6435	14.1358
1.1000	1． 1475	73.4637	2．2108	4.3000	$5 \cdot 3426$	53.5965	1401874
r． 1069	I． 1575	73.0000	I．3593	4．4000	$5 \cdot 4699$	53.5527 53.5178	14.235^{6}
I． 1231	1． 1809	72.0000	I． $576 \pm$	4.5000	$5 \cdot 5972$	53.5218	14.2806
I．I41I	1． 2069	78.0000	1．8660	4.6000	$5 \cdot 7244$	$53 \cdot 4736$ 53.4378	$2403 k 26$
r．I495	I． 2188	70．5742	2.0000	407000	5.8525	53.4378	$34 \cdot 3^{6} 20$
I－16I3	I． 2359	70.0000	2.1913	4.8000 4.8168	5.9786 6.0000	$53 \cdot 4042$	I4.3990
I． 1840	1.2683	69．0000	2． 5544	4.8168	6.0000	$53 \cdot 3988$	1404050
1.2000	I．2910	68.36 ± 9	2．807I	4.9000	6.1057	53．3727	14.4337
I． 2096	I． 3046	68.0000	2.9579	500000	6.3327	$53 \cdot 343 \mathrm{I}$	14．4664
1．2123	1.3084	67.9013	3．0000	5.1000	6.3596	53－3152	14.4972
I． 23^{86}	1． 3455	67.0000	$3 \cdot 4042$	5.2000	6.4865	53.2889	14.5362
10275 5	I－ 3928	66．0000	3.8954	$5 \cdot 3000$	6.6134	53．2642	14．5535
1．2787	1．4029	$65 \cdot 7987$	4．0000	5.4000	6.7403	53.2407	14.5794
1．3000	I．4327	65.2325	$4 \cdot 3046$	5.5000	6.8671	53.2185	24.6039
1．3093	I． 4446	65.0000	4.4342	5.6000	6.993^{8}	53．1976	14.6270
1．3511	1．5028	64.0367	5.0000	5．6049	7.0000	53－1966	14.6281
r．3528	1．5052	64.0000	5.0224	5.7000	7.2306	53－1777	14.6490
1.4000	1.5703	63.0662	5.6 ± 81	508000	7.3473	53.5589	14.6698
I．4036	士． 5753	63.0000	5．663I	$5 \cdot 9000$	7.3740	53.1410	34.6896
1．432I	1．6145	62.5026	$5 \cdot 9999$	6.0000	7.5006	53.1240	14.7084
I．4635	I． 6576	62.0000	6． 3547	6.1000	7.6272	53．1078	14.7263
1．5000	I． 7074	61．468x	6.745°	6.2000	7.753^{8}	53.0924	2407433
1．5250	1－74 74	6x－1354	7．0002	6.3000	7.8804	53.0778	14.7595
1． 5352	I． 7553	61．0000	7.1012	6.3945	8.0000	53.0646	34．7741
1.6000	1.8431	60.2397	7.7053	6.4000	8.0070	53.0638	24.7750
1．6 626	1.8737	60.0000	7.9022	6.5000	8.1335	53．0505	1407897
I． 6342	1．8893	59.8823	8.0000	6.6000	8.3600	53－0378	14．8038
1．7000	1．9778	59.2672	8.5234	6.7000	8.3865	53．0256	1408572
エ・サエ66	2.0000	59.2253	8.6470	6.8000	8.5530	53．0140	34.8301
x．7317	2.0203	5900000	8.757°	6.9000	8.6394	53．0029	14.8424
1．7665	3．0668	58．7266	9.0000	6.9267	8.6737	53．0000	14.8456
1.8000	2.1515	58.4799	9．3226	7.0000	8.7658	52.9923	14.8542
1．8722	2.2076	58.0000	9.6645	7．1000	8.8923	52．9821	14.8655
F．9000	2.2446	57.832	9.8227	7.1852	9.0000	52.9737	14.8748
I．9326	2.2878	57．6439	10.0000	7.2000	9.0187	52.9723	14.8763
2.0000	2.3770	57．2889	10.3405	7.3000	9.1457	52.9629	14.8867
2．06II	2.4575	$57 \cdot 0000$	10．622I	7.4000	9.2714	52.9539	14.8967
2．1000	2．5088	56.8300	10.7895	7.5000	9．3978	52.9453	24.9062
2.1521	2.5773	56.6182	I2．0002	7.6000	9.524 I	52.9370	I4．9154
202000	2.6403	56.4377	I1． 18 ± 0	7.7000 7.8000	9.6505	52.9290	I409243
$2 \cdot 3000$	2．7712	56.0992	II． 524 I	7.8000	9.7768	53.9214	1409328
2.3322	2．813I	56．0000	II．6256	7.9000	9．903I	52.9140	14.9409
2.4000	2．9016	55.8049	xI．8263	$7 \cdot 9767$	10.0000	53.9085 53.9069	I4．9470
2.4636	2．9844	55.6372	II．9999		10．0294	52.9069	24.948

TABLE 3－continued

$\mathrm{M}_{\mathrm{N} 1}$	M_{1}	ζ	δ	$\begin{aligned} & 2.4000 \\ & 2.4736 \\ & 2.5000 \\ & 2.5870 \\ & 2.6000 \end{aligned}$	$\begin{aligned} & 2.6500 \\ & 2.7297 \\ & 2.7582 \\ & 2.8521 \\ & 2.8662 \end{aligned}$	$\begin{aligned} & 64 \cdot 9101 \\ & 6409834 \\ & 65.0102 \\ & 65.0994 \\ & 6501249 \end{aligned}$	$\begin{aligned} & 3102882 \\ & 3200000 \\ & 3203428 \\ & 3209999 \\ & 3301078 \end{aligned}$
3.0000	1.0000	90．0000	0.0000	2.7000	3.9739	65.2160	33.8938
1．0003	1．0005	88.999^{8}	0.0005	3.7143	2.9893	65.2306	3400000
1.0012	1．0018	87.9999	0.0041	2.7242	3.0000	65.2408	34.0734
1.0028	1．004 I	86.9999	0.0138	2.8000	300815	65.3 ± 80	34.6099
1.0049	1.0074	85.9999	0.0329	2.8586	3.1445	$65 \cdot 3767$	35.0000
I 0.0078	1.0116	8500000	0.0646	2．9000	301890	65.4177	35.3640
100113	100169	84.0000	0.1126	3.0000	3.2965	$65 \cdot 5145$	35.8626
I． 0156	100232	83.0000	0.1805	300242	3.3224	65.5375	36.0000
I． 0206	1.0307	82.0000	0.2725	3.1000	3.4038	65.6080	$36.4 \pi 22$
I． 0266	1．0393	8 I 00000	0.3930	3.2000	305111	65.6978	36.9175
I． 0334	I． 0493	80.0000	0.3472	3.2171	305295	$65 \cdot 7128$	37.0000
1.0412	1.0607	79.0000	0.7407	303000	3.6984	65.7837	$37.3^{8} 33$
1.0503	1.0737	78.0000	0.9799	3.4000	307257	65.8659	37－8132
100510	1.0748	77.9247	x．0000	3.4460	3.7750	65.9024	38.0000
I． 0606	1.0885	77.0000	102726	3.5000	3.8329	6509443	38.2×09
1．0724	1.1053	7600000	I． 6275	3.6000	309401	66.0189	$3^{8.5796}$
1.0842	1．1218	7501196	2.0000	3.6559	400000	66.0590	38.7739
1.0859	101242	7500000	2.0554	3.7000	4.0473	66.0899	38093I9
1.1000	1．I438	74.0874	2.5206	$3 \cdot 7239$	400729	66.1063	39．0000
Iolors	1．1458	7400000	2．5694	308000	401546	66.1574	39.2402
I．II4I	1.1633	7302825	300000	309000	$4 \cdot 2618$	66.2215	39.5366
1．1195	1.1706	73.0000	3.1856	400000	4.3690	66.2825	39.8532
I． 1406	I．I993	73.0000	3.9252	4.0716	4.445^{8}	66.3242	40.0000
I． 1427	1.2021	71.9083	400001	401000	4.4762	66.3404	40.0716
I． 1655	I． 2327	7500000	4.8156	4.2000	$4 \cdot 5^{8} 35$	66.3954	40.3233
1． 1706	1.2395	70.8147	500000	4.3000	4.6908	66.4476	40.5397
10 ± 955	${ }^{1} .2722$	70．0000	508952	404000	407980	66.4973	40.7521
I． 1984	1.2760	69.9127	6.0000	$4 \cdot 5000$	4.9053	66.5445	40.9516
I． 2000	1．2781	69.8660	6.0569	4.5252	4.9324	66.5561	4100000
I． 2263	1．3122	6901516	700000	$4 \cdot 5882$	500000	66.5842	4101577
I． 2324	1.3201	6900000	703195	4.6000	500126	66.5894	4101392
I． 2544	I． 3483	68.4993	8.0000	4．7000	5.1200	66.6321	4x－31． 8
工． 2795	1.3800	67.9998	8.8767	4.8000	5.2273	66.6728	41.4822
I． 2830	1．3844	67.9343	900000	409000	5．3346	66.7115	4106392
I． 3000	1.4057	67.6387	$9 \cdot 5^{8} 33$	500000	5.4420	66.7483	41.7875
I．3I23	I． 4210	67.4413	10.0000	5.1000	5.5494	60.7834	4109277
I． 3422	1．4580	67.0089	1100000	5－1538	5.6072	66.8016	4200000
I． 3429	1.4588	67.0000	1500259	5.2000	5.6568	66.8169	4200604
I． $373{ }^{\circ}$	צ．4957	66.6287	12.0000	5.3000	$5 \cdot 7642$	66.8488	42．9865
I． 4000	1． 5285	66.3409	12.8523	5.4000	5.87 ± 6	66.8793	42.3053
I． 04048 I． 4376	1.5342 I． 5737	66.2941 66.0000	1300000	$5 \cdot 5000$	5.9790	66.9084	4304184
1.4376 1.4376	1． 5737	66.0000	1309996	5.5295	6.0000	66.9139	4204398
1.4376 1.4717	1.5737 I．6I I．	6509999 6507418	1400000 1500000	5.6000	6.0865	66.9362	42.525^{8}
I． 5000	1.6476	65.5592	150．7995	5.7000 5.8000	6.1940 6.3014	66.9628 66.9882	42.6279 42.7251
I． 5072	3.6562	$65 \cdot 5164$	1600000	509000	6.4089	67.0125	42.8175
I． 5442	1.6995	65.3209	17.0000	6.0000	6.5164	67.0357	$42.90{ }^{4} 6$
I． 5829	I． 7444	65.1530	18.0000	6.1000	6.6240	67.0560	42.9896
$\pm .6000$	1．7641	65.0893	18．4361	6.1127	6.6376	67.0608	43.0000
工．6235	コロ7912	6500107	\＄900000	6.2000	6．73土5	67.0794	43.069^{8}
I． 6270	1．7952	6500000	19.0826	6.3000	6.8390	67.0998	43.1464
I． 6662	I． 8400	64.8923	20．0000	6.4000	6.9466	67．1395	43.2195
I．7000	1.8785	6408 ± 77	20.7570	6.4497	700000	67－4389	4362546
1．7112	1．89I2	64.7964	2500000	6．5000	7.0547	67.5363	43.2894
1．7587	I．9449	6407230	22.0000	6.6000	701617	6703564	43.3563
1.8000	1．9914	64.6759	23.824%	6.7000	7.2693	67.1737	43.4203
1.8077	20.0000	64.6690	22.9735	6.8000	7.3769	$67 \cdot 1904$	4304827
1.8091	2.0015	64.6678	23.0000	6.9000	7.4845	$67 \cdot 2064$	$43 \cdot 5405$
1.8627	2.0614	64.633 I	24．0000	7.0000	7－5921	67－2219	43.5969
1.9000	2.1030	64.6205	34.6602	7.1000	7.6997	67.2367	43.6510
I．9199	201250	64.6171	25.0000	7.2000	708074	67.2510	4307029
I．9811	201928	64．6191	26．0000	7.3000	709550	67.2647	$43 \cdot 7528$
2.0000	202I36	64.6235	26.2942	7.3790	8.0000	6702753	4307908
2.0470	2．2653	64.6386	2700000	7.4000	8.0236	67.2780	43.8007
2.1000	2.3235	64.6646	27.7529	$7 \cdot 5000$	8.1303	6702907	$43 \cdot 8.468$
2.1181	2．3433	64.6751	28.0000	7.6000	8.2380	67.3030	$430892 \pm$
201953	2.4276	6407282	29．0009	$7 \cdot 7000$	8.3456	67－3149	43.9339
2.2000	2.4328	64.73 ± 9	29.0588	7.8000	8.4533	67．3264	4309750
2.2794	2.5192	64.7975	30.0000	7.8627	8.5208	$67 \cdot 3333$	44.0000
3.3000	2.5416	64.8158	30．3356	7.9000	8．5610	67．3374	44.0146
2．3717	206194	6408827	3500000	8.0000	8.6687	$67 \cdot 3481$	44.0538

TABLE 4

Absolute maximum flow detlection and corresponding wave angle
$(r=1.4, F=1(0.01) 2)$

F	δ	ち	F	δ	ζ
I. 0000	15.2575	52.6288	I. 5100	27.3204	58.6602
1.0100	15.4556	52.7278	I. 5200	27.6077	$5^{8.8 .8039}$
1.0200	I 5.654^{8}	52.8274	I. 5300	27.8974	58.9497
1.0300	15.8553	52.7377	I. 5400	29.1897	59.0949
1.0400.	16.0571	53.0286	I. 5500	28.4846	59.2423
1.0500	16.2602	53.1301	I. 5600	28.7822	59.39 II
1.0600	16.464 ${ }^{6}$	53.2323	1.5700	29.0825	59.54 I 2
I. 0700	16.6703	53.3351	1. 5300	$29.3{ }^{8} 55$	59.6928
I.0300	16.8773	53.4386	1.5900	29.6913	59.8457
1.0900	17.085^{5}	$53 \cdot 5428$	1. 6000	30.0000	60.0000
1. 1000	17.2953	53.6477	1.6500	30.3116	60.155^{8}
I. I100	17.5054	53.7532	1.6200	30.6261	60.3531
I. 1200	17.7189	53.8595	1.6300	30.9437	60.4719
1. 1300	士7.9323	$53 \cdot 9664$	1.6400	31.2543	60.6322
I. I 400	I3. I482	54.0741	I. 6500	31.5885	60.7941
I. 1500	13.3649	54.1925	1.6600	3 I -915I	60.9576
I. I500	I8.5332	54.2916	1.6700	32.2454	61.1237
I. 1700	18.8029	$54 \cdot 4015$	I. 6900	32.5790	6I. 2895
I. 1300	19.0242	54.5121	I. 6900	32.9150	6 L .4580
1.1900 1.2000	19.2469	54.6235	1.7000	33.2564	61.6292
1. 2000	19.4712	54.735^{5}	I. 7100	33.6004	61.8002
1.2100 1.2200	19.6971	$54 \cdot 8495$	I. 7200	33.948 I	61.974°
I. 2200	19.9245	54.9623	I. 7300	34.2994	62.1497
I. 2300	20.1536	55.0768	1.7400	34.6546	62.3273
I. 2400	20.3943	55.1921	1.7500	35.013^{6}	62.5068
1.2500 1.2600	$\begin{aligned} & 20.6 I 66 \\ & 20.8506 \end{aligned}$	55.3083 55.4253	I. 7500	35.3765	52.6883
1.2600 1.2700	20.8505 21.0963	55.4253 55.5431	r. 7700 r. 7800	35.7436 36.1147	62.9718 63.0574
I. 2300	2I.3237	55.6618	1.7900	36.4901	63.2451
I. 2900	21.5623	55.7314	1.8000	36.8699	63.4349
I. 3000	21.8037	55.9019	1.8100	37.2541	63.6271
I. 3100	22.0465	56.0232	I. 8200	37.6429	63.3215
I. 3200	22.2910	55.1455	I. 8300	39.0364	64.0182
I. 3300	22.5373	56.2587	1.8400	39.4347	
I. 3400	22.7356	56.3928	I. 8500	39.8379	64.4189
1.3500	23.0357	56.5178	I. 8500	39.2451	64.623 I
I. 3600	23.2877	56.6439	1.8700	39.5596	64.8298
1.3700 I. 3800	23.5417	56.7799	1.8800	40.0734	65.0392
I. 3300	23.7977	56.8989	I. 8900	40.5027	65.2514
I. 3900 I. 4000	24.0557 24.357	57.0279	I. 9000	40.9327	65.4564
I. 4000	24-3157	57.1579	1.9100	41.3635	65.6843
I. 4100	24.5773	57.2889	1.9200	4 I .8103	$65 \cdot 9052$
I. 4200	24.842 I	57.4210	I. 9300	42.2533	66.1291
I. 4300	25.1094	57.5542	1.9400	42.7126	$66.35{ }^{5} 3$
I. 4400	25.3769	57.6885	1.9500	43.1735	66.5368
1.4500 I. 4600	25.6477 25.9306	57.9238	1.9600	43.6413	66.8206
I. 4600 I. 4700	25.9206	57.9603	I. 9700	44-1160	67.0580
$\begin{aligned} & \text { I. } 4700 \\ & \text { I. } 4300 \end{aligned}$	26.1959 26.4735	58.0979 58.2367	I. 9800	44.5930	67.2990
I. 4900	26.4735 26.7534	58.2367 58.3767	1.9900 2.0000	$45 \cdot 0374$ $45 \cdot 5347$	67.5437 67.7923
1. 5000	27.0357	58.5178			-7923

TABLE 5

Wave properties on envelope of Fig. $13(r=1.4 \mathrm{~F}=1)$

$\mathrm{M}_{\mathrm{N} 1}$	p	M_{1}	$\mathrm{V}_{2} / \mathrm{V}_{1}$	$\mathrm{T}_{\mathrm{T} 2} / \mathrm{T}_{1} 1$	M_{2}	$\mathrm{p}_{\mathrm{T} 2} / \mathrm{p}_{\mathrm{T} 1}$		ζ	δ
1.0070	0.6271	1.2524	1.0030	1.0000	1.2521	1.0000		53.0019	0.0000
1.0223	1]. 6545	1.2791	0.9886	1.0033	1.2596	9.9965.	-1	53.1530	0.5000
1.0394	0.6760	1.3000	0.9893	1.00199	1.2653	9.989?.	-1	53.0894	0.8709
1.0456	0.6838	1.3074	0.9774	$1.001 ?$	1.2673	9.9856.	-1	53.1017	1.0000
1.0730	0.7152	1.3372	0.9656	1.1028	1.2752	9.9660.	-1	53.1490	1.5000
1.17956	0.7490	1.3684	0.9560	1.0051	1.2833	9.9367.	-1	53.1947	2.0000
1.1215	0.7940	1.4050	0.9461	1.0079	1.2913	9.8983.	-1	53.2312	2.4804
ip1930	0.7549	2.3738	0.9543	1.0055	1.2847	9.9309.	-1	53.1997	2, 1831
1.1276	0.7655	1.4713	0.9457	1.0080	1.2917	9.8965.	-1	53.2327	2.9000
1.1510	0.8250	1.4361	0.9357	1. 11117	1.3533	9.8437.	-1	53.2719	3.0000
1.1811	0.8678	1.4730	0.9250	1.0162	1.3091	9.7769,	-1	53.3042	3.5000
1.2031	0.9000	1.5000	0.9192	1.0199	1.3155	9.7209,	-1	53.3289	3.A4A7
1.2010	0.8954	1.49 K 2	0.9201	1.0193	1.3146	9.7292.	-1	53.3259	3.8005
1.2129	0.9145	1.5121	0.9164	1.0216	1.3193	9.6941.	-1	53.33 A3	4.0000
1.2468	0.9056	1.5537	0.9071	1.0278	1.3277	9.5933.	-1	53.3671	4.5000
1.2829	1.021 .7	1.5982	0.8981	1.0349	1.3374	9.4723.	-1	53.3925	5.0000
1.2844	1.0240	1.6000	0.8977	1.0353	1.3378	9.4671.	-1	53.3934	5.1199
1.3010	1.0488	1.6192	0.9941	1.0385	1.3419	9.4105.	-1	53.4098	5.2254
1.3215	1.0835	1.6458	0.8893	1.0431	1.3474	9.3285.	-1	53.4142	5.5000
1.3630	1.1521	1.6971	0.8807	1.0524	1.3578	9.1590.	-1	53.4321	6.0000
1.3653	1.1560	1.7000	0.8803	1.0529	1.3584	9.1491.	$\bigcirc 1$	53.4330	6.0269
1.4070	1.2150	1.7429	0.8738	1.0699	1.3687	8.9963.	-1	93.4439	6.4158
1.4078	1.2285	1.7525	0.8724	1.0628	1.3685	8.960 \%	-1	53.4459	6.5000
1.4461	1.2959	1.8000	0.8660	1.0720	1.3773	8.7801.	-1	53.4538	6.8981
1.4563	1.3143	1.8126	0.8643	1.0745	1.3796	8.7304.	$\square 1$	53.4554	7.0000
1.5071	1.4111	1.8782	0.8565	1.0875	1.3911	8.4641.	-1	53.4803	7.5010
1.5265	1.4440	1.9000	0.8541	1.0919	1.3948	8.3729.	$\cdots 1$	53.46n9	7.4561
1.50 .10	1.3942	1.8670	0.8578	1.0852	1.3692	8.5108.	-1	53.4598	7.4972
1.5669	1.5214	1.9503	0.8488	1.1021	1.4030	8.1579.	-1	53.4604	8,0000
1.6068	1.5999	2.0000	0.8441	1.1122	1.4118	7.9403,	-1	53.4577	8,3483
1.6000	1.5864	1.9915	0.8449	1.1104	1.4095	7.9777.	-1	53.4583	8,2654
1.6307	1.6481	2.0298	0.8414	1.1183	1.4153	7.8076 ,	-1	53.4552	8.5000
1.6859	1.7640	2.1000	0.8357	1.1325	1.4255	7.4924.	-1	53.4472	A:9005
1.7010	1.7915	2.1163	0.8344	1.1358	1.4278	7.4187.	-1	53.4449	8.9AR7
1.7117	1.7951	2.1184	0.8343	1.1363	1.4231	7.4091.	-1	53.4446	9.0000
1.7669	1.9360	2.2000	0.8285	1.1527	1.4391	7.0395.	-1	53.434 .4	0,4140
1.7813	1.9678	2.2180	0.8273	1.1563	1.4414	6.9580°	-1	53.4211	9.5000
1.3457	2.1160	2.3000	0.8223	1.1725	1.4516	6.5889.	-1	53.4119	9.8694
1.8000	2.0096	2.2414	0.8258	1.1609	1.4444	6.8521.	-1	53.4237	$9: 6093$
1.8715	2.1734	2.3310	0.8206	1.1785	1.4553	6.4508.	-1	53.4053	10.0000
1.9265	2.3140	2.4000	0.8170	1.1918	1.4631	6.1470.	-1	53.3899	1.10 .2747
1.9010	2.2406	2.3667	0.81 .97	1.1854	1.4594	6.2926.	-1	53.3974	10, 1451
1.9750	2.4224	2.4609	0.81 .41	1.2032	1.4697	5.8844.	01	53.3757	10.5000
2.0062	2.5000	2.5000	0.8123	1.21 .15	1.4738	5.7189 ,	-1	53.3664	10.6389
2.0000	2.4845	2.4923	0.8126	1.2091	1.4730	5.7514.	-1	53.3692	10,6103
2.0958	2.7040	2.6000	0.8082	1.2285	1.4836 1.4848	5.307 Ac	-1	53.3420	10.9618
2.0957	2.7301	2.6125	0.8078	1.2308	1.4848	5.2578.	-1	53.3389	11.0000
2.1652	2.9159	2.7000	0.8047	1.2459	1.4927	4.9167.	-1	53.3172	11.2541
2.1000	2.7414	2.6179	0.8076	1.2317	1.4853	5.2362.	01	53.3375	11.0184
2.2000	3.0111	2.7437	0.8032	1.2533	1.4964	4.7523.	-1	53.30A4	11:3728
2.2390	3.1198	2.7928	0.80 ± 7	1.2615	1.5005	4.5727.	-1	53.2943	111.5000
2.2447	3.1360	2.8000	0.8015	1.2626	1.5011	4.5467.	-1	53.2925	11.5183
2.3000	3.2937	2.8696	0.7995	1.2738	1.5965	4.3025.	-1	53.2754	11.6871
2.3242	3.3039	2.9000	0.7987	1.2786	1.5088	4.1991.	81	53.2680	11.7574
2.4000	3.5892	2.9955	0.7963	1.2932	1.5158	3.8879.	-1	53.2451	11.0654
2.4035	3.5999	3.0000	0.7952	1.2939	1.5161	3.8738.	$\underline{1}$	53.2441	11.9747
2.4133	3.6295	3.0123	0.7959	1.2957	1.5159	3.8354.	-1	53.2492	12.0000
2.4829	3.8439	3.1000	0.7939	1.3085	1.5228	3.5707.	-1	53.22 ก18	12.9726
2.5000	3.8975	3.1215	0.7935	1.3116	1.5242	3.5083.	-1	53.2158	12.9430
2.5622	4.0959	3.2000	0.7919	1.3224	1.5290	3.2892.	91	93.19月2	12.3535
2.6000	4.2186	3.2476	0.7910	1.3288	1.5318	3.1627.	-1	59.1877	12.4341
2.6320	4.3243	3.2880	0.7903	1.3342	1.9342	3.0588.	-1	53.17 A9	12.5000
2.641 .6	4.3560	3.3000	0.7901	1.3357	1.5348	3.02850	-1	53.1763	12,5192
2.7010	4.5526	3.3736	0.7888	1.3451	1.5389	2.8494.	9	$5{ }^{5}$ ciAnia	12-4.3.3

TABLE 5-continued

2.7319	4.6240	3.4030	0.7884	1.3484	1.5433	2.7878,	-1	53.1554	12,6712
2.3340	4.3993	3.4998	i. 1.7869	1.3604	1.5453	2.5664,	-1	53.1353	12.8107
2.3031	4.3999	3.500 L	0.7869	1.3604	1.5453	2.5660.	-1	53.1353	$12.811{ }^{10}$
2.3745	5.1041	3.6000	0.7855	1.3719	1.5501	2.3616.	-1	53.1160	12.9400
2.9000	5.2589	3.6259	0.7852	1.3748	1.5512	2.3115.	-1	53.1111	12,9747
2.2107	3.3273	3.6494	0.7849	1.3773	1.5523	2.2669.	$\underline{-1}$	53.1057	13.0000
2.7547	5.4759	3.7000	0.7843	1. 3828	1.5545	2.1740,	-1	53.0975	13.0590
3.0040	3.6312	3.7521	0.7837	1. 3883	1.5567	2.0823.	-1	53.0892	13.1175
3.1300	3.7760	3.8000	0.78 .31	1.3932	1.5586	2.0015.	-1	53.0799	13.1693
3.1000	5.9762	3.8782	0.7823	1.4010	1.5617	1.8766.	-1	53.0646	13.2499
3.1172	6.3840	3.9000	0.7821	1.4031	1.5625	1.8433.	-1	53.0630	13.2715
3.1965	5.3499	4.0000	0.7811	1.4125	1.5662	1.6982.	-1	53.0470	13.3665
3.2030	5.4141	4.0044	0.7811	1.4129	1.5663	1.6921,	-1	53.0463	13.3706
3.2757	5.7239	4.1000	0.7802	1.4214	1.5696	1.565 ?	-1	53.0316	13.4549
3.3010	5.8247	4.13115	0.7800	1.4241	1.5706	1.5267.	-1	53.0271	13.4807
3.31.54	5.9416	4.1538	0.7798	1.4261	1.5713	1.4983.	-1	53.0237	13.5000
3.3500	7.3559	4.2000	0.7794	1.4300	1.5728	1.4433.	-1	53.0170	13.5373
3.4040	7.2480	4.2568	0.7790	1.4346	1.5746	1.3787.	-1	53.0090	13.5816
3.4342	7.3959	4.3000	0.7786	1.4381	1.5758	1.3316,	-1	53.0031	13.6142
3.50110	7.6840	4.3329	0.7780	1.4445	1.5782	1.2460,	-1	52.9970	13.6742
3.5135	7.7439	4.4000	0.7779	1.4458	1.5787	1.2292,	-1	52.9898	13.6861
3.5927	3.1999	4.5000	0.7773	1.4532	1.5814	1.1354,	-1	52.9771	13.7535
3.6030	B. 1328	4.5091	0.7772	1.4539	1.5816	1.1272,	-1	52.9760	13.7594
3.6720	8.4039	4.60110	0.7767	1.4602	1.5840	1.0494,	-1	52.9650	13.8166
3.7010	4.5944	4.6353	0.7764	1.4626	1.5848	1.0208.	-1	52.9679	13.8379
3.7512	8.8358	4.7000	0.7761	1.4669	1.5864	9.7058.	-2	52.9535	13.8758
3.8940	9.0686	4.76 ± 5	0.7757	1.4709	1.5878	9.2536.	-2	52.9447	13.9105
3.8305	9.2460	4.8000	0.7755	1.4733	1.5886	8.9822.	-2	52.9425	13.9316
3.9010	9.5555	4.8876	0.7751	1.4787	1.5995	8.3978,	-2	52.9332	13,9777
3.9098	9.6140	4.9000	0.7750	1.4794	1.5908	8.3188,	-2	52.9320	13.9840
3.9350	9.7290	4.9318	0.7749	1.4813	1.5915	8.1195.	-2	52.9297	14.0000
3.9591	9.9999	5.0000	0.7746	1.4853	1.5928	7.7098.	-2	52.9219	14.0334
4.0010	10.0552	5.0138	0.7745	1.4860	1.5931	7.6296,	-2	52.9206	14,0400
4.11683	10.4040	5.1000	0.7741	1.4908	1.5948	7.1501.	-2	52.9124	14.0800
4.1000	10.5676	5.1399	0.7740	1.4930	1.5955	6.9396:	-2	52.9086	14;0978
4.1476	10.8159	5.2000	0.7737	1.4962	1.5966	6.6362.	-2	52,9032	14.2240
4.2000	11.0927	5.2661	0.7735	1.4995	1.5978	6.3193.	-2	52.8074	14.1517
4.2208	11,2358	5.3000	0.7733	1.5012	1.5984	6.1636.	-2	52.8945	14,1055
4.3000	11.6304	5.3922	0.7730	1.5057	1.5999	5.7611.	-2	52.8867	14.2019
4.3061	11.6639	5.4000	0.7730	1.5061	1.6000	5.7287.	-2	52,8861	14.2049
4.3855	12.1000	5.5000	0.7726	1.5108	1.6016	5.3283.	- 2	52.8781	14.2422
4.4010	12.1809	5.5184	0.7726	1.5116	1.6019	5.2583,	-2	52.8767	14.2488
4.4647	12.5438	5.5000	0.7723	1.5152	1.6031	4.9597.	-2	52.8704	14,2775
4.5010	12.7441	5.6445	0.7721	1.5171	1.6038	4.8050.	-2	52.8871	14.2927
4.5440	12.9959	5.7000	0.7720	1.5195	1.6046	4.6198.	-2	52.8531	14.3117
4.6000	13.3200	5.7706	0.7718	1.5224	1.6055	4.3959.	-2	52.8581	14:333\%
4.6233	13.4560	5.8000	0.7717	1.5236	1.6059	4.3063.	-2	52.8561	14.3429
4.7000	13.9085	5.8967	0.7714	1.5274	1.6072	4.0262.	-2	52,8496	14.3722
4.7026	13.9240	5.9000	0.7714	1.5275	1.6072	4.0170.	-2	52.8494	14,3732
4.7819	14.4000 14.5098	6.0000	0.7711	1.5313	1.6085	3.7498.	-2	52.8429	14.4020
4.8000	14.5098	6.0228	0.7711	1.5321	1.6088	3.6918,	-2	52.8415	14.4084
4.9612	14.8840	6.1000	0.7709	1.5349	1.6097	3.5029.	-2	52.8 .367	14.4294
4.9000	15.1237	6.1489	0.7708	1.5366	1.61 .02	3.3890 ,	-2	52.8338	14.4424
4.9405	15.3760	6.2000	0.7707	1.5383	1.6108	3.2746.	-2	52.8308	14.4556
5.0000	15.7504	6.2750	0.7705	1.5408	1.6116	3.1145.	-2	52,8265	14,4744
5.0198	15,8759	6.3000	0.7704	1.5417	1.6119	3.0632,	-2	52.8251	14.4805
5.0845	16.2898	6.3816	0.7703	1.5443	1.6127	2.9025.	-2	52.8207	14.5000
5.0991	16,3839	6.4000	0.7702	1.5448	1.6129	2.8675,	-2	52.8197	14.5043
5.1000	16.3897	6.4011	0.7702	1.5449	1.6129	2.8654.	-2	52.8196	14.5045
5.1784	16.8998	6.5000	0.7700	1.5479	1.61 .39	2.6862.	-2	52.8144	14.5270
5.2010	17.0417	6.5272	0.7700	1.5487	1.6142	2.6391.	-2	52.8130	14.5330
5.2577	17.4240	6.6000	0.7698	1.5509	1.6149	2.5479,	-2	52.8194	14.5487
5.3000	17.7064	6.6533	0.7697	1.5524	1.6154	2.4333.	-2	52.8068	14.5599
5.3371	17.9559	6.7000	0.7696	1.5537	1.6158	2.3618.	-2	52.8 ¢ 45	14.5694
5.4000	18.3837	6.7793	0.7695	1.5559	1.6165	2.2459.	-2	52.8008	14.5853
5.4164	18,4960	6.8000	0.7695	1.5564	1.6167	2.2168.	-2	52.7999	14.5893

5.4957	19.0439	6.9000	0.7593	1.5591	1.6175	2.0821,	-2	52.7954	9.4.6n8.3
5.5040	19.0738	6.91154	0.7893	1.5592	1.6176	2.0751.	-2	52.7951	14.4093
5.5750	19.6000	7.0000	0.7691	1.5616	1.6183	1.9568,	-2	52,7911	14.6265
5.6010	19,7765	7.0315	0.7691	1.5624	1.6186	1.9192.	-2	52.7997	14.6321
5.6543	20.1638	7.1000	0.7690	1.5640	1.6191	1.8403 ,	-2	52.7869	14.6440
5.7010 5.7337	20.4919	7.1575	0.7589	1. 5654	1.6195	1.7768,	-2	52.7846	14.6537
5.7337	20.7359	7.2000	0.7588	1.5664	1.6199	1.7317 ,	-2	52.7829	14.6608
5.80 .10	21.2200	7.2835	0.7587	1.5683	1.6205	1.6467 ,	- 2	52,7797	14.6747
5.8156	21.3160	7.3000	0.7587	1.5687	1.6206	1.6305 ,	-2	52.7790	14.6768
5.812 .4 5.9030	21.9041	7.41000	0.7686	1.5708	1.6213	1.5362.	-2	52.7753	14.6923
5.9010 5.9717	21.7608 22.4997	7.4095	0.7585	1.5710	1.6213	1.5275.	-2	52.7750	1.4 .6937
5.9717	22.4997	7.5000	0.7684	1.5739	1.6219	1.4482,	-2	52.7717	4.4.7071
6.0010	22,7142	7.5356	0.7684	1.5737	1.6222	1.4183.	-2	52.7705	14.74フ?
0.0510	23.1038	7.6000	0.7683	1.5751	1.6226	1.3661,	-2	52.7683	14.7214
6.1010	23.4804	7.5617	0.7582	1.5762	1.6230	1.3181,	-2	$52.7 \mathrm{K62}$	14.7299
6.13 .14	23.7158	7.7000	0.7882	1.5770	1.6232	1.2893.	-2	52.7649	14.7351
6.2030	-4.2592	7.7877	0.7681	1.5786	1.6237	1.2261.	-2	52.7621	14.7487
6.2097	24.3358	7.8000	0.7881	1.5789	1.6238	1.2176,	-2	52.7617	14.7493
6.2891	24.9637	7.91000	0.7580	1.5807	1.6244	1.1505,	-2	52.7586	14.7810
0.3030	25.9506	7.9137	0.7579	1.5809	1.6244	1.1416.	-2	52.7582	94.7627
6.3645	25.0001	8.0000	0.7678	1.5825	1.6249	1.0876.	-2	52.7556	14.7732
6.4040	25.15488	8.13397	0.7678	9.5831	1.6251	1.0638,	-2	52.7544	1.4 .7779
6.4478	26.2440	8.1000	0.7677	1.5842	1.6254	1.0283,	-2	52,7527	14.725
6.5030	26.6716	8.1057	0.7577	1.5953	1.6258	9.9223.	-3	52.7508	14.7925
6.5272	26.5960	8.2000	0.7576	1.5858	1.6260	9.7374,	- 3	52.7498	14.7964
6.5011 6.5765	27.5011	8.2917	0.7676	1.5873	1.6264	9.2621.	-3	52.7473	14.8064
6.51765 6.6979	27.5559	8.3000	0.7676	1.5874	1.6265	9.2207.	-3	52,7471	14.9073
6.6879 6.7010	28.2238	8.41100	0.7675	1.5890	1.6269	8.7361.	-3	52.7445	14.8179
6.7010 6.7653	28.5433	8.4177	0.7674	1.5893	1.6270	8,6531.	-3	52.7440	14.8197
6.7653 6.8010	28.4001	8.5000	0.7674	1.5905	1.6274	8.2808,	-3	52.7419	44.8281
6.3446	29.1981 29.5839	8.5437 8.6000	0.7673 0.7673	1.5911	1.6276	9.0907.	-3	52.7409	14.8325
6.99010	30.0656	8.6697	0.7672	1.5919 4.5929	1.6279	7.8536.	-3	52.7395	24.8387
6.9240	30.2757	8.7000	0.7672	1.5929 1.5934	1.6283	7.5709. 7.4520.	- 3	52.7378 52.7371	$\begin{array}{r}44.8446 \\ \hline 14.8475\end{array}$
7.0010	30.9458	8.7957	0.7671	1.5947	1.6287	7.0900 ,	-3	52.7349	14.8563
7.0034	30.9760	9.8000	0.7871	1.5947	1.6287	7.0743.	-3	52,7348	94.8567
7.0828	31.5838	8.9000	0.7570	1.5961	1.6291	6.7191.	-3	52.7325	14.8656
7.1010	31.8387	8.9217	0.7570	1.5963	1.6292	6.6447 ,	-3	52.7321	14.8675
7.1621	32.4000	9.0000	0.7670	1.5973	1.6295	6.3848,	-3	52.7304	4.4.874?
7.2000	32.7442	9.0477	0.7669	1.5979	1.6297	6.2321.	-3	52.7294	14.87A\%
7.2415	33.1237	9.1000	0.7669	1.5986	1.6299	6.0698.	-3	52.7283	14,8825
7.3010	33.6624	9.1737	0.7669	1.5995	1.6302	5.8494.	-3	52.7268	14.8885
7.3209	33.8559	9.2000	0.7668	1.5998	1.6303	5.7729.	-3	52.7262	14.8906
7.4010	34.5933	9.2996	0.7668	1.6010	1.6306	5.4941.	-3	52.7242	14.8983
7.4003 7.4796	34.5957	9.3000	0.7668	1.6010	1.6306	5.4933.	-3	52.7742	44.8984
7.4796	35.3438	9.4000	0.7667	1.6021	1.6310	5.2293.	-3	52.7923	14.9059
7.5010	35.5369	9.4256	0.7667	1.6024	1.6311	5.1641.	- 3	52.7318	14.9079
7.5590	36.1000	9.5000	0.7666	1.6032	1.6313	4.9802.	- 3	52.7205	14.9132
7.6040 7.6384	36.4931 36.8636	9.5516	0.7666	1.6038	1.6315	4.8573.	-3	52.7195	14.9169
7.7000	37.8620	9.6000	0.7666	1.6043	1.6316	4.7452.	-3	52.7486	14:9203
7.7178	37.8358	9.7000	0.7665	1.6053	1.6319	4.5718	-3	52.7173	14.9257
7.7972	38.4159	9.8000	0.7665	1.6063	1.6323	4.5231.	-3	52.7169	14.9272
7.8040	38.4435	9.8035	0.7665	1.6064	1.6323	$4.3131{ }^{\text {4, }}$	- 3	52.71 .52	14.9339
7.8766	39.2040	9.9000	0.7664	1.6073	1.6328	4.3059.	-3	52.7151 52.7135	1.4 .9344 44.9404
7.9040	39.4378	9.9295	0.7664	1.6076	1.6326	4.0582.	-3	52.7130	14.942 ?
7.9560	40.0001	10.0000	0.7664	1.0083	1.6328	3.9268,	- 3	5 Ca 7119	14.9486
8.0000	40.4447	10.0554	0.7663	1.6088	1.6330	3.8271.	- 3	52.7110	14.9507

Fig. 1a. Basic flow model.

Fig. 1b, 1c. Two-dimensional waves.

Fig. 1d, 1e. Axisymmetric waves.

Fig. 1. Flow models.

Fig. 2. Variation of static-pressure ratio and parameter A with $q / c_{p_{1}} T_{1}, F$ and $M_{N 1}$.

Fig. 3. Variation of static-density ratio with $q / c_{p 1} T_{1}, F$ and $M_{N 1}$.

Fig. 4. Variation of static temperature ratio with $q / c_{p 1} T_{1}, F$ and $M_{N 1}$.

FIG. 7. Compound chart for shock and detonation waves ($y=1 \cdot 4,1 \leqslant F \leqslant 2$).

Fig. 8. Variation of normal Mach number (and dependent functions) with δ, ζ and M_{1}, for waves of given $F(1 \leqslant F \leqslant 2)$.

Fig. 9. Variation of wave angle with $\delta, M_{N 1}, M_{1}$ and M_{2}, for waves of given $F(1 \leqslant F \leqslant 2)$.

Fig. 10. Variation of velocity ratio with $\delta, \zeta, M_{N 1}, M_{1}$ and M_{2}, for waves of given $F(1 \leqslant F \leqslant 2)$.

Fig. 11. Variation of discharge Mach number with $\delta, \zeta, M_{N 1}$ and M_{1}, for waves of given $F(1 \leqslant F \leqslant 2)$.

Fig. 12. Variation of stagnation temperature ratio with $\delta, \zeta, M_{N 1}, M_{1}$ and M_{2}, for waves of given F $(1 \leqslant F \leqslant 2)$.

FLOW DEFLECTION δ
Fig. 13. Variation of stagnation pressure ratio with $\delta, \zeta, M_{N 1}, M_{1}$ and M_{2}, for waves of given F $(1 \leqslant F \leqslant 2)$.

C) Crown copyrigh 1970

Printed and published by Her Masesty"s Stationery Office

To be purchased from
49 High Holborn, London WCl
13a Castle Street. Edinburgh EH2 3AR 109 St Mary Street, Cardiff CFI JJW
Brazennose Street, Manchester M608AS
50) Fairfax Street, Bristol BS1 3DE

258 Broad Street. Birmingham 1
7 Linenhall Street. Belfast BT2 8AY or through any bookseller

[^0]: *Replaces R.A.E. Technical Report No. 66081 -A.R.C. 28317.

[^1]: *At least some of Gross' original results were obtained under conditions in which combustion occurred upstream (at the fuel injector) and so acted as a 'pilot flame' for the main combustion region downstream of the shock wave. While such a process cannot be described as detonation, it forms an interesting variant of shock-induced combustion. Also, being subject to a so-called hysteresis effect (by which the combustion, once established, could be maintained at stagnation temperatures below those at which flame-out was expected), it might be particularly useful in stabilising combustion in hypersonic ramjets.

