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ABSTRACT

The {1Imitation on cavitation number attainable when axially
symmetric cavities are formed in a fixed wall tunnel (Simmons"™ blockage
effectl and related effects are discussed in some detail. Estimates
of the way in which the dimenslions of cavities formed behind a circular
disc depend on the cavitation number and on the ratio of model diameter
to tunnel diameter are provlded,
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l. The effects of the finite extent of the stream on the formation of cavlties

In a jet bounded by fixed or free walls have been thoroughly explored In the two-
dimensional case by Birkhoff, Plesset and Simmons {Ref.l).  Knowledge of tunnel
boundary effects on cavities In the three-dimensional axially symmetric case is very
much more limited, Armstrong and Tadman (Ref.21 have glven an approximate theory

from which they derive the boundary effects in some detail for cavities in a free

jet and glive first order corrections for cavitles In a fixed wall tunnel. Specifically
they enquire what will be the effect of the stream boundaries on the dimenslons of the
cavity for a glven value of the cavltatlon number. For the case of the fixed wall
tunnel thls approach does not give the whole story slnce, owing to blockage effects,
Well-developed cavities may be fomed behind obstacles, which are quite small compared
with the tunnel diameter, at cavitation numbers quite different from these at which
they would be formed In an unbounded stream: indeed the range of cavitation numbers

Of Interest In an unbounded stream may be quite unattainable In the tunnel. The
present report discusses In sane detail the Iimitatlons on cavltation number attainable
when axially symmetric cavities are formed In a fixed wall tunnel tthe blockage effect
found by N. Simmons} and related effects. Theoretical estimates are provided of the
dimensions of cavities formed behind a circular disc at various cavltatlon numbers in
,a flxed wall tunnel and the extent to which a cavity of given fineness ratio may be
distorted by the Influence of fixed boundarles is 1llustrated.

CAVITIES IN UNBOUNDED FLOW

2 Axially symmetric cavitles formed In an unbounded stream wll1 be discussed
first.  For the present, the radius A in Figure I Is assumed to be Infinite.
Relchardt {Ref,3) carried out experiments In a speclally designed tunnel and gave
good reasons for supposing that his results ware little affected by boundary effects,
He showed that:

{1) The fineness ratio (I/a) of the cavity depends exclusively on the
cavitation number,  The dependence of l/@ on Q Is glven in Flgure 2.

tithh IfC (Q) Is the drag coefficient based on the frontal area of the
wetted portion of the obstacle, when the cavitationnumber Is(),
then for obstacles with a fixed separation point

Gl = Cpto} (2 +Q ... (1}

D - -
$p U bR

{EH)  The drag coefficienf based on the maximum frontal area of the cavity
depends exclusivaly on wne cavitation number and a good approximation
to the experimental data Is glven by

Kn = D 0.9 0 (2)
D é p U‘o"ﬂ az . sanvea

The value of Cn{() Is now ail that Is required to glve the absolute dimensions, 1

and 2, for a cavity behind an obstacle with a flixed separation point for any given

value of Q.  afb ts given from () and (2} by
| Colo) (1+ @)
J 0.9 ¢

Q

XXIEY] (3}

o'l

and

=T —
Qe
c‘lm
-

where afb Is known from {3} and l/@ from {}) above { Figure 2},
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A reasonably comprehensive theoretical account of axially symmetric cavities can
be considered to have been achieved if the dependence of fineness ratio on Q, equations
(1} and {2) and the value of CD(O) can be derived theoretically,  Such an account wlll
be sketched below as a preliminary to developing a similar account for cavities formed
In a bounded stream.  No exact theory forthree dimensional cavities exists and the
arguments are plausible rather than undeniable.

To relate /g to (. Simmons { fef.4) made the simpl |fyina assumotion that the flow
round a cavity can be represented by a source-sink distribution; the strength of which
varies | inearly from a positive value at x = = ] {Flgure |} to an equal negative value
at x =+ l. By varying, the strength of the distribution, the values of a and of uc/U,
which is equal to (I + ()4, can be varied together. Simmons! relation between [/a and
Q Is as follows:

1 12 4 7
(1.Q}*=1+c In{a+[a§+1] }__iz_a_} {4)
=)
where
1 1 N I (12 8
E=a[a—2+1]“tn{'a'+[;é+1]}. (5)

The agreement between this relation and the experimental values is not unreasonable
{Figure 2}, ({Better agreement was obtained by Reichardt by using more elaborate source-
sink distributions {Ref,8): the simpler modet Is preferred here because it is used iater
in connection with cavities in a bounded stream).

Reichardt made equation (}) at least plausible by making simple assumptions about
the pressure dlstribution over the wetted portion of the obstacle. Reichardt's
considerations are reproduced in a slightly different form In Appendix | and discussed in
relation to a “hydraulic principle” of Birkhoff (Ref.6).

To obtain (2} theoretically, Refchardt showed from considerations of momentum that

2
KD = Q-a'é' Az rdr, . -00-0(6)
4

where uf0,r) = U(1+ A).  This relation is derived in Appendix {l, If the integral is
evaluated using Simmons! representation of the external flow, close agreement with {2)
is obtained, as is illustrated in Table I,
TABLE |
lja 3 5 9

KD { from {g) and Slmmons' modef | 0.216 0.033 0.045

0.9 Q (@ from {4) and (5)) 0,20 0081 0.045
The value of C (0) depends, of course, on the shape of the obstacle. 8y assuming
the pressure distribut4on to be the same as that on a flat plate in two-dimensional cavity
flow at zero cavitation number, Reichardt obtalnea (n(0) for a circular disc. { Plesset

and Shaffer (Ref.7) have made sim]lar estimates for a family of cones), The value of
CD(O) obtained fn this way for a circular disc Is 0.81 and the experimental ly determined
value is 0.79. It hardly matters which of these values Is used but in fact the value
0.79 has been used subsequently in this report. For a circular dise nomal to the flow
the relation between a/b and {) can now be obtained frgm equation {3) and the comparison
with directly measured experimental values Is shown In Figure 3. The refat lon between
1/b and Q is | ikewlse plotted and compared with experimental results in Figure 4
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CAVITIES IN A FIXED WALL TUNNEL

3. Some idea of the general effects to be expected on axially symmetric cavities
from constraining the stream inside a fixed wall *unnel nay be gained fmm elementary
considerations.

Noting that the cavlitation number is given by

Po=Pe _ ()®

Q = = = 1’ ------- (7’
$plF U

we consider a small cavity In a tunnel. The effect of the presence of fixed walls

is to speed up the flow at the mpdel so that the model is effectively in a stream Of

velocity U!‘f’ where &,/ >, V. Assuming that the cavity pressure Is fixed, e.g. at

the vapour pressure, the effective cavltatlon number, (uc/UM)‘g = 1, (8 less than the
{nominal ) cavitation number, (uc/‘[l}2 - 1. So It Is to be expected that the presence
of the walls will encourage the production at a given cavitation number of a more
fully developed cavity, i.e. a cavity of larger fineness ratio (Figure 2},

Again, slnce the minimum pressure occurs at the cavity wall,

%Q > g {where T denotes the mean value (ﬁa—_l_,,ej J: u(o,r} Tﬂf‘}

®
ey
Henca
1 2 az
2% | e (9
B

In the limiting case [n which the cavity becomes infintely long the cavity radius

will tend asymptotically to a constant value and the transverse velocity distribution
will tend to become uniform: the corresponding cavitation number is then the blockage
cavltatlon number, QB‘ This Is the tunnel blockage phenomenon, discovered by
Simmons., In any case the cavitation number certainly exceeds twice the cavity
blockage ((lalﬁe). According to Reichardt!s results a cavity of fineness ratio |0
witl be formed In unbounded flow at a {} of 0.033: thus the sp:ed at which such a
cavity would be found at a given free stream pressure In a fixed wall tunnel would

be 35% lower if the cavlty blockage were 4% and more than 55% lower {f the cavity
blockage were U%

Likewlse, IT we assume that Cp* Is Independent of changes in { and the
presence Of boundaries (ses Appendix }' we can make gpme assessment of the Influence
of tumnel wall constraint on Cp  Thus

*

For a cavity of fineness ratlo |0 in an unbounded stream, the value of CD Is roughly
1.03 CB {where CF depends on the shape of the obstacle): In a fixed wall tunnel
must be at least P.m Cﬁ If the cavity blockage Is 4% and at least |.{8 CB If the
cavity blockage is 9%,

%.(%u+m>%u+w>%P+2ﬂ

Concluslons concerning K[_) can be derived from Relcha<dt's relatlon

2
Kb = - ag & rdr srease (9)
a
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where Up = U(1 + A) tsee Appendix |}, Assuming, as seems reasonable, that A ls always
positive,

2
Aardr\(qnaxaé A .,

a a

Bl

By continulty requirements

291t {Wo,r) -0y rdr = Uno?
a

2

i.e. ;é Ardr‘--l

a

The maximum value of A must occur at the cavity wall where

U(Leb) =
= U(1+04.
2 %
Hence — | ®Prdr £ (1+0/7-1
a 1
a? *
and so KD>(1+O)*[(1+QPL-1]);'TQ>3QB>F c e {10)
In the limiting case when the cavity becomes infinitely long
a 2
R
KDB = (1 + QB)A- [(1 + Qﬁ)é - 1] = ———52' TYIEI] (11)
I F
Kn certainly exceeds the cavity blockage. According to Rzichardt's results the value of

for a cavity of fineness ratio |0 is about 0.03 in unbounded flow: thus a fixed wall
tunnel measurement for a cavity of fineness ratio 10 will overestimate KD by more than
30% if the cavity blockage 1s 4% and by more than 2X00% if the cavity blockage Is o

It is also possible to draw some general conclusions about the effect of the
tunnel wall constraint on the cavity diameter, From the deflnitions of CD and £p

@ G G 1+ Q) %
B oKy (Le0F 1+ YF - 1) 1
(1+0)%
Ch . 2
< —D—f_“’ D o2
(1+Q};)g

© 3 (ot [g] : e (12)
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where the equality sign holds in the limiting case of an infinitely long cavity.

Figure 5 shows how @fb depends on b/Rin the Case of a circular disc placed symmetrical ly
in a tunnel under blockage conditions. Thus if b/Ris0.10, i.e. If the model blockage
(bz/ﬁe} is 1% the value of a/b can never exceed about 3: for cavities In an unbounded
stream the value of @/b Is greater than 3 for cavities of quite moderate fineness ratios
fl/a > 5} and tends to Infinity when the cavity length tends to infinity.

It will be seen also that, under blockage conditions,
a? b
Zs e (CHE - .L* (13
= = (CH7 2 (13)

so that {8) may be writte

QB = - 1 . thdeny {14)
1-(cys

in the case of a circular disc in a tunnel, this relation Is plotted in Fligure 6, from
which it wil| be seen that, even when the model| blockage is only [% the blockage

cavitation number already exceeds 0.20: at this cavitation number in a virtually
unbounded stream only a shot-t cavlty with a fineness ratlo of about 2 could be expected.

4. To reach more detailed conclusions, it will be agssumed here, as in the paper
by Armstrong and Tadman (Ref,2), that the flow round a cavity in a fixed wall tunnel
can be represented by a distribution of sources, between the points X = ¢ I on the
axts of the tunnel, such that the source strength at X = 71 Is = 2 # ¢ Unper unit
length. As has been seen, this representation leads to conclusions in reascnable
agreement wlth experiment when the boundary effects are negligible.

The velocity optential due to a point source of strength S at the origin on
the axis of a circular tube of radius J was given by Lamb IRef.81, namely

J ;\:] |x|
5 S x| <"z e""“};“
= e I-_—+\ T — e »
27R | R ZLNEWN

where the summation Is over all the positive zeros of J{Al. It follows that the
velocity In the plane half-way along the cavity due to %he singularitiy distribution
assumed here is

Jy I\ = ! L
u(o,r) = U - — s - gl _ =z ¥l
{0,r) +C [R] +2/‘_.?\JS(MK1 e =€
------ (15)
Since the velocity at the wall is u({0,a}, it follows that
4 1?
(1 + Q} e l+cC {[E] + 2 81} beaese r16}
where
Jo A= ! L
\:"*0[;]1[ ""\7] 1 A
S - —_ |- - i - - f - rreans
VAN C AT OR (ol 7° 17
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C Is detemnined from the condition that the boundary of the cavity passes through the
point {0,a); continuity requires that

{uo,r) -} gmwrdr = Uma?,

a
1 13?2 a)? R
whence E = [;l] { -[E]}—é-asa (IR EN] (18)
where
J [)\E] ..;\_Z. ..}\.l.
1 R ,
S = — £[j_-3 1? "1"3 1‘? ssrnss (19}
2 L NTB N A R

The summations In (15}, {17} and (9] are overall the positive zeros of J (A), (16}
and {!8) correspond to {4) and {5} in the unbounded case and relate /@ to § for various
values of a/}?. The method used to sum Sl and S2 is briefly described in Appendix II.

The resuits are presented in Figure 7.

For varlous values of /g and a/R, A was also evaluated from {15) and from these
results value: of

AR rdr

s

n

were obtained by numerical integration. dence values of KD could be obtained from (9],

Assuming that C5 Is independent of changes In Q or the presence of boundaries,
a/b cm be evaluated from the relation

? Ch(1+0)
¥ T Tk

The numerical values obtained are summarised in Table 111 here the values of n/b apply
to cavities formed behind a circular dlsc¢ {C* = 0.79). These values were used in the
preparation of Figure 8: the "blockage barr‘?er" In Flgure 3 represents the relation
between {p and a/}? given In {g) and the curves of constant a/b Intersect with the
blockage é;arrier In points given by {|3): the intersections of the curvesOf constant
a/b wlth the abscissa are given in Flgure 3. Filqures 7 and 8 were used to construct
Figures 9 and 10, which show how I/b and a/b vary with Q for different values of b/R
in the case when the obstacle is a symmetrically placed circular disc. Finally
Flgure 11, in which @/b Is plotted against l/a for various values of bff, indicates,
aga{n for the case of the circular disc, how the shape of 3 cavity of given fineness
ratlo is distorted by the presence of the tunnel walls. Similar results could, of
course, be obtained for cavities formed behind any obstacle on which the separation
polnt is fixed simply by taklng the appropriate value of CB.



TABLE 1|

{The values of a/b given in this table apply to cavities formed behind a circular disc, for which Cj is 0.791
2. 00 2 .05 Z- 0.0 ¢ .0.25 f 2 - 0.30
R R R R .
oy w [f e lw 5 [on 5] ln [5le | s
T
3 0.244 0.215 2.14 0,26 0.218 2.13 0.276 0,225 Z.12 0,31 0,238 2,08 0.363 0.260 2.04
4 0.161 0.146 2.52 0.193 0. 150 2.49 0.204 0.153 .45 0.242 0.173 2.38 0. 20 0.199 2.27
5 0.097 0.083 3,23 0.113 0.088 3.15 0.142 | 0.09% 3.00 | 018 | odle | 28l 0.249 .| 0.150 | 2.56
8 0.067 0.055 3.92 0.086 0.062 3.73 .17 0.075 3.43 | 0.165 0.098 | 3.06 rO.ZS.‘th: 0.3 2.73
9 | 0.0 | 0.047 | 4.22 0.0% | 0.054 | 3.98 ot | 0.069 356 | 0.1% | 0.092 | 316 % 02:;5“, ofzr . 2.75
o | 0051 0.040 4.57 0.072 | 0.049 4.14 0,106 | 0.064 570 | 0155 | oo | 3,25 3 102%25 0523',1?!280
E LS ]
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SUMMARY AND CONCLUSIONS

5. The | imitations on eavitation number attainable and related effects when axlal ty
symmetric cavites are formed in a fixed wall tunnel have been dlscussed In some detail.
In the case of cavitles formed behind a circular disc symmetrically placed fn the tunnel
It Is estimated that the lowest cavitation number attainable, which corresponds to a
cavity of infinite length, exceeds 0.2 even when the model blockage Is only 1% at a
cavitation number of 0.2 in a virtually unbounded stream only a short cavity with a
fineness rat lo of about 2 would be expected. For the saw case of the disc with a model
blockage of {% in the tunnel It is estimated that the ratio of maximum cavity diameter to
disc diameter can never exceed about 3: for cavities In an unbounded stream thls ratio
is greater than 3 for cavities of quite moderate fineness ratfos ard tends to Infinity
when the cavity length tends to infinlty, Estimates of the way in which the dimensions
of cavitles formed behind a circular dtsec depend on the cavltation number and on the

ratio of medel diameter to tunnel diameter are presented graphlcally. A further diagram
shows the extent to whlich cavities of various fineness ratios may be dlistorted by the

Inf luence of fixed boundaries.,
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APPEND X |

THE RELATION BETWEEN Cp{(Q) AND Cpf0} T CAVITIES IN
UNBOUNDED FLOW AND BIRKHOFF S "PEENCWLE OF STABILITY
OF THE PRESSURE COEFFICIENT"

Let C¥ denote the drag coefficient based on the frontal area of the wetted
portion of the obstacle and on the velocity on the cavity wall, Then, If py Is
the pressure at any point on the wetted portion and P the pressure In the cavity,

$pulSCH = D = J (py - p) S
s

i.e. o = J _ﬂ’_:_pC] as .
S

2
p Uz

[

S denotes the frontal area of the wetted portion. Clearly

[;’A{" c

p Uz

J5 always | at the front stagnation point and is always zero at the separation point.
}¥ changes in the shape of the pressure distribution at Intermediate points can be
neglected, then Cﬁwlil be independent of (,  Since

2
o) = 05[%9] < ChLeQ)

and, In particular, when J = 0, C (O} x Cﬁ, the assumption that Cb‘ Is independent of
0 leads to Riechardt!s relation

: CD(Q) = Cp(0) {1+ Q).

Bi rkhoff IRef.61 has made the additional suggestion that

Py~ Pe
4 pug

and so also CB are Independent not only of changes in {) but also of the presence of
boundaries. Certainly in the two~dimensional case of blockage cavlties formed
behind a flat strip symmetrically placed In a closed channel exact theory show
that Cﬁ is almost Independent of the model blockage in the tunnel (Ref.l). This
conclusion about CB could not’ of course, be expected to hold in cases where the
separation position might change with Q,
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APPENDIX |
2 R
THE RELATION Kp = 0 = =3 J 4% rdr
a
a
Consider the fluid inside a control surface consisting ! in Figure |} of two

planes normal to the stream, one far upstream and one at the maximum diameter of
the cavity, the walls of the tunnel, the wetted portion of the nose and part of
the cavity wall.

The flux of momentum out of the control surface to the right

3 —pUzrznrﬁr+pJEuz(0,r) 27 rdr
o

a

= -plR7a? +21rpr(u2—02) rdr

a

. -p021r03+2~1p03r(62+2mrw‘
a
where u(o,r) . Ul + 4).

The integral of pressures, parallel to the axis of symetry, over the
control surfaces

Porz‘wrdr‘—rpﬂ. ZﬂFﬂr-cha21rrCD”—JEpe2nrd?‘
o 0 b a

po'"aa"r{pN-pC)211rdr-pcJa2wrdr+2wr(P0-P9)"d"
0 a

0

(P = Ppl waa-Duerﬁ(uz-Uz) rdr
a

(Po = Pp/ waz—D+1rpl}2r(AZ+2A) rdr
a

Equating these two expresslons, we have

fPo"Pc‘ﬂaz~D+wpﬂzr(A2+2A) rﬂrn-pﬂ%az+2ﬂp03r(az+2mrﬂr'
a a

f.eu De (pomp)nErplPmnofemplf JR(A‘ZoZ A) rdr.
a
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From continuity considerations

Una® a r(u—U)Z 7 rdr
a

Ioe. *Uﬂaz = nUJ‘QQAIﬂr
o
Hence D = {po-pc)ﬂaa-—wpUerzrﬂf
[
and so

D 2
-3 e 2 .
VI e e GQEA rdr
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APPENDIX 11!

SUMMATION OF S, AND S,

Since S, Is a slowly convergent series, It was found convenient to determine
an asymptotic expression, 3y for the successive terms, § Lm of S, to sum
the difference between 3 and agym | requiring only a few (terms) and to convert
b3 84y Into a rapldty convergent series which can also be summed with only a few
times. The same procedure was followed in summing Sz.

81 was written as fol lows?

&© o

N 7
S57 / %am* , Sym= dyn)s
=0 =0
where
ma B 1 ma+ 7
[1:F:] [§+ ]w a B ain [R ]
Hom = 4 5,572 *5“;(5*3,%} 572 °
mn+ - M+ -
3 3
i
= ————r and ,Bnﬁ'[5§—1]
17[2%
Similarly
@ @
S, = L Uaym +Z (Scoym = B(zym
m=0 mn=0

where
1 {[ma+,8) [ma+ ]'nr
aln - krd ces -
o 7 3o (R R
Y2m = s/a"*a.,,z[g“% 7/2

a( ) and G aym WEre derived by employing the asymptotic expansions of the Bessel
F .
unctions in 3(1)”1 and 8(1)”1'

&0 0

<"
/Bm 20 Z 321m
m=0 m=0

were summing by using the fol lawing results, which were derived by MacFarlane!s
method (Ref.91 of sunming slowly convergent series:

cos mE+ﬁfr sin (2n+1}f(,-n 3
: [R ) - il *2’:] n

2 T4 Y &
4

M=0 h=0
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ésin{[ﬂlgi-ﬁ]w} FOE-,sm {{2n-1) §}§[~n+§,-§] n
TR 4 " ¢

M=0 N=0
a
® Ctos [m'*/s]'f? © sin (2n+1)f§—n+z,§
LA R 4 2 4 n
® L 1 Y—‘ T -
- e £ n i R
=0 s n=0
{(v, 1) denotes the general ised Riemann ~-function, which is defined for y > | by
X
CUIEINEY o o
qg=o
and for ¥ < 1 by analytic continuation. Tables of g(v h) are given in Ref.i0. These

series Of general Ised Riemann ~-functions are very rapidly convergent,
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LIST OF SYMBOLS

maximum radius of cavity
maximum radius of wetted portlon of obstacle
a parameter governing strength of singularlty distributions

drag epefflelent based on frontal area of wetted portion of obstacle
and upstream velocity (D=4 p 07w b2 Cp

drag coefficlent based on frontal area of wetted portion of obstacle
and velocity on cavity wall (De=4p u(z:n b2 cy

drag
Bessel functlons

drag coefflclent based on frontal area of cavity and upstream velocity

(D3 plfma® Ky
half-length of cavity
pressure in cavity

pressure yn water at points In plane normat to axis of symmetry and
situated half-way along cavity

pressure at points on wetted portion of obstacle
free stream pressure

cavitation number [Q 0 Po p]

iplP
blockage cavitation number {lower 1imit)

radius of tunnel
radial distance from axis of symmetry
velocity far upstream

velocity at points In plans normal to axis of symmetry and situated
half-way along cavity

velocity on cavity wall
axial dlstance

defined by uf{Q,rj= U4 + 4
axial distance

density of fluid

velocity potential
Is taken as the measure of "cavity blockage"

Is taken as the measure of "model blockage",
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