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p. 1, first paragraph, last line: for "dlsturbedl' read "distorted".
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9!ATER  TUNNEL BOUNDA?Y  EFFECTS ON AXIALLY SYMETRIC
FULLY DEVELOPED CAVll'lES

by I. J. Campbe!l  and G. E. Thomas

ABSTRACT-----

The IImItation  on cavitation number attainable when axially
symmetric cavities are formed in a flxsd  wall tunnel (Simmons' blockage
effect1 and related effects are discussed in some detail. Estimates
of the way in Nhich  the dimensions  of cavities formed behind a circular
disc depend on the cavltatlon  number and on the ratio of model diameter
to tunnel diameter are provided.





INTRODUCTI@J

I. The effects of the finite  extent of the stream on the formation of cavities
In a jet bounded by fixed  or free walls have been thoroughly explored In theta-
dimensional case by Birkhoff,  Plesset and Sinnuns  tRef.1). Knwledge  of tunnel
boundary effects on cavities In the thre~dlmensional axlaily  symmetric  case is very
much more  limited, Armstrong and Tadman  (Ref.21 have given  an approximate theory
frcmwhich  they derive the boundary effects in soppe detail for cavities in a free
jet and give PI& order corrections for cavltles In a fixed wall tunnel. Specifically
they enquire what will be the effect of the stream boundaries on the dlmenslons  of the
cavity for a given  value of the cavltatlon number. For the case of the fixed wall
tunnel thls approach does not give the whole story since,  owing to blockage effects,
Well-developed cavities may be formad  behind obstacles, which are quite small ccmpared
with the tunnel diameter, at cavitation numbers quite different from  those  at which
they would  be famed  in an unbounded stream: indeed the range of cavitation numbers
Of Interest In an unbounded stream msy be quite  unattainable In the tunnel. The
present report discusses In sane detail the I lmitatlons  on cavitation  number  attainable
when  axially symnetrlc  cavities are formed  In a fixed wall tunnel lthe blockage effect
found by N. Simnonsi  and related effects. Theoretical estimates are provided  of the
dln?enslons of cavities famed  behind a circular disc at various cavltatlon numbers  in
,a flxed wall tunnel and the extent to Hhich  a cavity  of given fineness ratio may be

' distorted'by  the Influence of fixed boundarles  is Illustrated.

CAVITIES IN UNBOUNDED FLOW-

2 Axially symnetric  cavltles formed  In an unbounded stream will be dlscussed
first. Porthe  present, the radius H in Figure  I Is assumed  to be lnflnite.
Relchardt  (Ref.31  carried  out experifwnts  In a specially  designed tunnel and gave
good reasons for supposlng  that his results ware little affected by boundary  effSCtS.
He showed  that:

ill  The fineness ratlo  (l/a) of the cavity depends exclusively  on the
cavitation nullber. The dependence of ljn on Q Is given  in Figure  2.

Ill) If f${Q) Is the drag cosfficlent  based on the frontal area of the
wetted portion of the obstacle, when the Cavitatim  number  iS  Q,
then for obstacles with  a fixed separation point

CD(Q) a
D -- P

$ p 112 7-l b2 c,(o) fl + Q) . . . . . . (1)

ill11 The drag coefficle$  basedon  the maximum frontal area of the Cavity
depends exclus1valy  on Lne cavitation number and a good approxlmatlon
to the experimental data Is given  by

D
KD - 4 p U2 77 a2 * 0.9Q

The value of CD(O) Is ~YN  ail that Is required to give  the absolute dimensions,  1
and CI,  for a cavity behind an obstacle with  a flxed  separation point for any given
value of Q. a/b Is given fmn (II and (21  by

i = j CD"~+~S  Q! *..... (3)

and 1 1 a
- I
b a'i'

where a/b Is known from 131 and l/n frcm  iIJ  above f Figure 21.
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A reasonably corrprehensive  theoretical account of axially symnetric  cavities can
be ccnsldered  to have been achieved if the dependence of fineness ratio on Q, equations
III and 12) and the value of C,(O) can be derived theoretlcally. Such an account WI I I
be sketched below as a preliminary to develaplng  a similar account for cavities formed
In a bounded stream. No exact theory forthree  dimensional cavities exists and the
arglnrents  are plausible rather than undeniable.

To relate l/a to Q, Simmons I ref.41  made the simol  ifvina assvrotlon  that the flw

#here

round a cavity can be rep;esented  by a source-sink distribution; the strength of which
varies I inearly  from a positive value at x
at x = + 2.

= - 2 (Figure  I) to an equal negative value
By varying the strength of the distribution, the values of a and of W/n

which is equal to (1 + Q)&, can be varied together.
Q Is as follows:

SIrrims’  relation between 111

(1 l Ql*

(51

The agreement  between this relation and the experlmental  values is not unreasonable
(Figure  21. IEiatter  agreenerd  was obtained by Reichardt by using mare elaborate source-
sink distributions IRef.5): the simpler mxlel  Is preferred here becC+uSe  i t  iS used later

in connection with cavities in a bounded stream).

Reichardt made equation III at least plausible by maklng  simple assumptions  about
the pressure dlstrlbution  over the wetted portion  of the obstacle. Relchardtls
considerations are reproduced in a slightly different form In Appendix I and discussed in
relation to a “hydraulic principle” of Bitihoff lWf.61.

To obtain (21 theoretically, Relchanlt  showed fron considerations of mxnsntum  that

Ir, = Q--$ Azrd.r, . . ...*  (6)

where ufO,r) = U(1 + A). This relation is derived in Appendix II. If the integral is
evaluated using Simmnsr  representation  of the external flow, close agreement with I21
is obtained, as is illustrated in Table I,

TABLE I

lla 3 5 9

KD  I from 16) and Slmnonsl node1 I 0.216 0.033 0.045

0.9 Q lQ frMn I41 and 1511 0.222 0.081 0.045

The value of C (0)
4

depends, of course, on the shape of the obstacle. 3y assuming
the pressure dlstrlbut  on to be the sane as that on a flat plate in two-dimensional cavity
flw at zero cavltatlon nwnber, Reichardt obtalned  C!,(C)  for a circular disc. (PIesset
and Shaffer lRef.7) have made sInlIar estimates for a family of cones). The value of
CD(O) obtained In this way for a circular disc Is 0.81 and the eqerlmental  ly determined
value is 0.79. It hardly matters which of these values Is used but in fact the value
0.79 has been used subsequently in this report. For a circular disc normal  to the flow
the relaticm  between a/b and Q can nw be obtained from equation I31 and the conparieon
with directly measured experimental values Is shown In Figure 3. The relat Ion between
Z/b  and Q is I ikewise plotted and conpared with experimental results in Figure 4
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CAVITIES IN A FIXED WALL TUNNEL

3 . Some idea of the general effects to be expected on axially symnstrlc  cavltles
fmn constraining the stream inside a fixed ~11 +unnel  nay be gained fmm elemrtntary
considerations.

Noting that the cavttation  number is given by

. . . . . . . (71

we consider a small cavity In a tunnel. The effect of the presence of fixed walls
is to speed up the flow at the node1 so that the model is effectively in a stream Of
velocity UM, where UAi >..  V. Assuming that the cavity pressure Is fixed, e.g. at
the vapour  pressure, the effective cavltatlon number, (uc~U~lz  - I, Is less than the
LncminalJ  cavitation number, (u~UJ2  - 1. So It Is to be expected that the presence
of the #alIs  will encourage the productlon  at a given cavitation  numberof  a nore
fully developed cavity, i.e. a cavity of larger fineness  ratio (FlgureZJ.

Again, since  the mlnlmun  pressurn  occurs at the cavity  wall,
n

2 n 1
> -

u u
li denotes  the mean flue

/lie - 9)

. . . . . . (8)

In the Iimitlng  case ln which the cavity becomes  inflntely  long the cavity radius
will tend asymptotically to a constant value and the transverse velocity dlstrlbution
will tend to become  unlfon: the corresponding cavltatlon  number is then the blockage
cavltatlon number, CR This Is the tunnel blockage phenomenon, discovered by
Slmlons. In any case the cavitatllan number certainly exceeds twice the cavity
blockage (n2/Ke). According to ReichaWls results a cavity of fineness ratio IO
WI!\ be formed  In unbounded flow at a Qof 0.033: thus the sFJed  at which such a
Cavity  would be found at a given free stream  pressure In a fixed wall tunnel would
be 35% JoWer  if the cavity  blockage were 4% and more  than 55% lower if the cavity
blockage were 9%

LikewIse,  If we assUme  that CD* Is Independent of changes In Qand the
presence Of boundaries (see Appendix  II, ve can make some  assessment of the Influence
of tunnel wall constraint  on CP ThUS

For a cavity of fineness ratlo  IO in an unbounded stream, the value of CD Is roughly
1.03 $ Iwhere  g depends on the shape of the obstacle): In a flxed  wall tunnel
must be at least I.03 Clj  If the cavity blockage Is 4% and at least 1.18 Ci If the

CD

cavity blockage is 9%

Conclusions  concerning KD can be derived fron Reizha'dt's  ralatlon

.**.., ( 9 )
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where UC = U/l + Al (see Appendix II). Assuming, as seer6  reasonable,  that A is alwQS
positive,

By contlnulty  requirerrents

27r
1”

{u(O,r)-U}xir = U77a2

a

2
i.e.

7
An3.r = 1 .

The mximm  value of A must occur at the cavity wall where

and so KD > I1 + Q13  [Cl + QJ3 - 11 > 3 Q  > & QR > $ . ...*. (10)

In the limiting case when  the cavity beco7'es  infinitely long

..*... (111

KDcertainly  exceeds the cavity blockage. According to R?icharJt's  results the value of
KD for a cavity of fineness ratio  IO is about 0.03 in unbounded  flow: thus a fixed wall
tunnel measurenRr#. for a cavity  of fineness ratio IO will overestimate KD  by more than
30% if the cavity blockage IS 4% and by fwre  than 200% if the cavity blcckage  1s 9%

It is also  pxsible  to draw some general concIuS/ons  about the effect of the
tunnel wall constraint on the cavity diameter. Front the definitions  of CD and Kj

. ..*.. (12)



-5-

where the equality sign holds in the limiting case of an infinitely long Cavity.
Figure 5 shows how afb  depends on b/R in the case of a circular disc placed symtrical  ly
in a tunnel under blockage conditions. llws if b/R is 0.10, i.e. If the node1 blockage
@/PI is l%the  value of a/b can never exceed about 3: for cavities In an unbounded
Stream  the value of afb  Is greater than 3 for cavities of quite naderate  fineness ratios
(lfa > 5) and tends to Infinity when the cavity length tends to infinity.

It w/Ii be seen also that, under blockage conditions,

so that (81 may be wrltten1
[ 1

2
$ El

1 - (CfJ$  $
- 1 .

. . ...* (131

..*...  (1.4)

in the case of a circular disc in a tunnel, this relation Is plotted in FIgwe  6, fmn
which it will be seen that, even Men the node1 blockage is only ISq the blockage
CaVitation  number alretiy  exceeds 0.20: at this cavitation number  in a virtuaily
unbounded stream only a shot-t cavity  with a fineness ratlo of about 2 could be expected.

4. To reach nare  detailed conclusions, it will be assured  here, as in the paper
by Armstrong and Tadrw  iRef.21,  that the fiw round a cavity in a flxed wall tunnel
can be represented by a distrlbutlon  of sxnes, between the potnts  X = f 1 on the
axis  of the tunnel, such that the source strength at X 3 Q Is - 2 nC Uvp3r unit
length. As has been seen, this representation leads to conclusions in reasooabie
agreement wlth experiment  when the boundary effects are negligible.

The velocity cotentlai  due to a potnt  source of strength S at the origin on
the axis  of a circular tube of radius Rwas given by Lamb lRef.81, namely

where the summation  Is over all the positive  zeros of J (Al. It foflwis  that the
velocity In the plane half-way along the cavity  due to 1 he singularltiy  dlstrlbution
assumed here Is

. . . . . . (15)
. ,’

Since  the velocity  at the wall is u/O,@,  it follows that

(1 + Ql+ P l+C{[;]2+23 d.....  (16)



C Is detennlned  frun the condition that the boundary of the cavity passes through the
point (O,ul; continuity requires that

{UfO.  rl -Ul2nrdr = (In+,

.*..*. (181

The sumnations  In (151, 1171 and I191 are overall the positive zeros of J,(X). 116)
and (181 correspond to 14)  and (51  in the unbounderl  case and relate l/at0  Q for various
values of n/R. The method used to sum S, and Ss is briefly described in Appendix II.
The results  are presented in Figure 7.

For various  values of Z/n and a/R, Awas also evaluated from  (151  and fnm these
results value: of

were obtained by numsrlcal  integration. &nce values of KD could be obtained from  (91.

Assunlng  that g Is independent of changes In Q or the presenceof  boundaries,
a/b  CM be evaluated fmm the relation

The nwerlcal values obtained are swnnarlsed  in Table II: here the values of n/b apply
to cavities formed behind a circular disc (q= 0.79). These values wre used in the
preparation of Figure 8: the "blockage barrier"  In Figure  8 represents the relation
between QA and a/R  given In (81  and the curves of constant a/b Intersect with the
blockage barrier In points given by 1131: the intersectlons  of the CUWSS  Of Constant
a/b with  the abscissa are given in Figure  3. Flqures  7 and 8 New used to construct
Figures 9 and IO, which  show how l/b and a/b vary with Q for different values of b/R
in the case when  the obstacle is a symretrlcally  placed circular disc. Finally
Figure  II, in which a/b Is plotted against lfn for various values of bfR,  indicates,
agatn  for the case of the circular disc, how the shape of a cavity of given fineness
ratlo is distorted by the presence of the tunnel walls. Similar results could, of
course, be obtained for cavltles  formed behind  any obstacle on which the separation
point  is fixed simply by taking  the appropriate value of $



TABLE II

(The  val~.~s  o f  a/b  given in this table apply to cavi t ies formed behind a circular  disc,  for  which C$  is 0.791
-.

-

1
n
-

3

4

5

8

9

IO

3

0.244

0.161

0.097

0.067

0.053

0.051

i

-

0.215

0.146

0.083

0.055

0.047

0.040

a Q
EDED

! a
iib Q rc, i

0.215 2 . 1 42 . 1 4 0.2%0.2% 0.2180.218 2.132.13

0.146 2 . 5 22 . 5 2 0.1930.193 0. I500. I50 2 . 4 92 . 4 9

0.083 3.233.23 0.1130.113 0.0880.088 3.153.15

0.055 3.923.92 0.0860.086 0.0620.062 3.733.73

0.047 4 . 2 24 . 2 2 0.07a0.07a 0.0540.054 3 . 9 83 . 9 8

0.040 4.574.57 0.0720.072 0.0490.049 4.144 . 1 4

a
- = 0.x)
R

I

/ 0
I

-  = 0 . 2 5
R

I-
a

ii

,

t
Q ,/ !D;

0.363 o.aso

0.293 0.199

0.249 .” 0,1?0~

.<
~0.233 :  - 0..131

-’ :

2 . 2 7

2 . 5 6

2 . 7 3

J
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S_UMMARY  AND CONCLLlSION~

5. The I imitations on cavitatlan number attainable and related effects v&n awlal  ty
symmetric  cavities are fonnsd in a fixed wdll  tunnel  have been dlscussed In sons  detail.
In the case of cavltles fonnsd behind a circular disc symastrically  placed in the tunnel
It Is estimated that the lowest cavitation number  attainable, which corresponds to a
cavity of infinite length, exceeds 0.2 even when the model  blockage Is only I%:  at a
cavltatlon nurber  of 0.2 in a virtually unbounded stream only a short  cavity with  a
fineness rat lo of about 2 would be expected. For the saw case of the disc with a mDdeT
blockage of 1% in the tunnel It is estimated  that the ratio of maxlmum cavity diameter to
disc  disneter can never exceed about 3: for cavities In an unbounded stream thls ratio
is greater than 3 for cavities of quite moderate flneness ratios ard tends to Infinity
when the cavity length tends to infinity. Estimates of the way in which the dlme?slcw\s
of cavltles formed behind a circular disc  depend on the cavltatlcn number and on the
ratio of male1 diameter to tunnel diameter are presented graphlcally. A further diagram
shows  the extent to whfch cavities of various  fineness ratios may be dIstorted by the
lnf luence of fixed botmdarles.
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APPENDIXI

THE RELATION BETWEEN C,fQ, AND C (01 FOR CAVITIES IN
UNBOUNDED FLOW  AND BIRKHOFF'S "PhNCIPLE  OF STABILIN

OF THE PRESSURE COEFFICIENT"

Let C$ denote the drag coefficient based on the frontal area of the wetted
portIon  of the obstacle and cn the velocity on the cavity wall. Then, If pN Is

the pressure at any point on the vetted  portion and &the pressure In the cavity,

Sdenotes  the frontal area of the wetted portion. Clearly

u

c 1P 11;

Js albays  I at the front stagnation point and is alaways  zero at the separation point.
If changes in the shape of the pwsure  distribution at Intermediate points can be
neglected, then C$will  be independent of 0. Sl”CC!

and, In particular, v&en  [! P 0, CD(O) = CD the assumption  that C$ is independent of
0 leads to Riechardt's  relation

*
c,(Q) * C,(O) (1 + Q).

Eiirkhoff lRef.61 has made the additional suggestion that

and so also g are Independent not only of changes in 2 but also of the presence of
boundaries. Certainly in the ttiixiensional case of blockage  cavities  formed
behind a flat strip symretrlcally  placed In a closed channel exact theory show
that CJ is alnast  Independent of the model blockage in the tunnel (Ref.11. This
conclusion  about L$ could cot,  of course, be expected to hold in cases where the
separation position might change with Q.
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APPENDIX I-1

I
R

THE RELATION Kg = 8 - ;;a A2 rdr
a-

Consider the fluid inside a control surface consisting 1 in Figure I) of tW
planes nonal  to the stream, one far upstream and one at the rraximum diameter of
the cavity,  the walls of the tunnel, the wetted portion of the nase and pati of
the cavity wall.

The flux of nmentwn  out of the contrt4  surface to the right

= -pF[ZnW+p(:S(O,r)  277rdr

= -p[Fna2  +277p  (G-F) nfr
fa

E -p[12na2+2vpl@ (A?+2A)  rdr

where ~(0, r) . U(l+A).

The integral of pressures, parallel to the axis  of synmetry,  over the
control  surfaces

- PO PN* 277m-pC
P P

2nlKir- Pe2nm
b a

= p. na2  -
P

(P, - PO,  2 77 TV??  - PC
0

&Inmpr2n[~po-p$nir

- (PO-pJna2-D+vp  (u2-@1  m
i”a

m (p,-p,Ina2-D+np@ W+2A) rdr

Equating these two ewpresslons,  we have

'PO - pcl n a2  - D + n P lJ2
B

(A?+2A)  Mr.- pU%a2+22pU2 (A2  + 2 A) ti
a

I.e. D P (PO  - pcl 77 & + p [12  77  02  - n p rF
P

(62  + 2 A) rclr.
0
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Fran ccmtlnuity  considerations

(Inn? =
1”

(u - U) 2 n nir

a

“ (,
, I

I..?. -Una2  P nil
f

2Ardr
’ n

Hence

and so

D
KD = 3p[Fna2

P Q--$

f

h2nir.

a
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APPENDIX III

SUhMATION  OF S, AND S,

Since S, Is a slwly  convergent series, It was found convenient to determine
for the successive term?.,  Slljm,  of S , to sum

(requiring  only a fw4 term31  an 3 to convert
&%?es which can also be sumned  with only a few

The sms procedure was followed in sunming  Sa.

S, was written as follcw.5:

m co

si p xa[Ijrn *C (s(i)m-  a(i)mj*

lll=O lb0

where

Similarly

where

a-,:li  z2irn were  derived by employing the asymptotic expansions of the Bessel

corn  and s (iv*

+
m

La(l)rn and
ca(2)m

lW0 m-o

were  sumning  by using  the follwlng  results, which were  derived by k&.cFarlaw~s
nethod  (Ref.91 of sumnlng  slowly convergent series:
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[(v,h)  denotes the generalised  Rimnn ~-function, which is defined for v > 1 by

OD

5tu.W  -
c

(q + hl' (v ' II

q-

and for Y < 1 by analytic continuation. Tables of c(v,hl  are given in Fef.10. These
series  Of general  lsed Rlemnn  ~-functions are very rapidly cmvergent.
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LIST OF SYMB~

a

b

C

C D

c$

D

Jet  J,

K D

I

PC

Pe

PN

4

Q

QB
R

r

u

~(0, rl

UC
X

A

maximum radius of cavity

maximum radius of wetted portlon  of obstacle

a parameter governing strength of slngularlty  distributions

drag coefflclent  based on frontal area of w&ted  portion of obstacle
and upstream velocity (D  - 5 p @ TI b2  CDJ

drag wefficlent based on frontal area of wtted portion of obstacle
and velocity on cavity wall (D  =  & p ug  n bz C!&

drag

Bessel functions

drag ccefflclent  based on frontal area of cavity and upstream velocity
fD = 3 p fi v a2 Kd

half-length of cavity

pressure in cavity

pressure un water at points In plane f0rmal to axis of symmtry  and
situated half-way aloy  cavity

pressure at points on wetted portion of obstacle

free stream pressure

cavitation number  (Q = '#]

blockage cavitation  number llwer llmltl

radius of tunnel

radial distance  fran axis  of symmetry

velocity far upstream

velocity  at points In plans normal to axls  of symmetry  and situated
half-way along cavity

velocity on cavity wall

axial distance

defined by u(O,r)  - U(1 + 4

axial distance

density of fluid

velocity potential

Is taken as the measure  of "cavity  blockage"

Is taken as the measure of %odel blockag@.
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GEOMETRY OF CAVITIES FORMED BEHIND
CIRCULAR DISC SYMMETRICALLY PLACED

IN A FIXED WALL TUNNEL.

. FIG. II.
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