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Summary. 

A modified form of the approximate method developed by Kryloff and Bogoliuboff is derived and 
applied to particular cases with a large frequency dependence on amplitude. The results suggest that some 
relaxation of the constraints of the earlier method may be justified. 

The method provides an approximate solution of the frequency and the amplitude damping envelope in 
terms of the amplitude, and suggests itself as a means of cataloguing, in matrix form, the characteristics 
of practical non-linear systems. 
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1. Introduction. 

Very many problems in dynamics involve second order systems, expressible generally as ~ + F(x,  2) = 0, 
characterised by an oscillatory behaviour. The linear system, in which F = AYe + Bx ,  is a familiar example ; 

here the frequency is constant ~ 4  and the amplitude varies exponentially, the exponent being 
- A /2  t. It is striking how many systems, which, although non-linear in x and 2, nevertheless display free 
oscillation characteristics qualitatively similar to these, i.e. 'a periodic' motion, the amplitude envelope of 
which is time-dependent. At first sight it seems logical to express the solution to ~ + F(x,  2) = 0 as x = x(t), 
which enables the mot ion-- the  displacement, velocity and acceleration--to be fully described at any 
instant. However, this has some drawbacks, particularly for non-linear equations, in that the solution is 
unnecessarily precise, and hence more difficult to obtain. Much more information on the behaviour may 
be gleaned by expressing the solution as a function of two variables, viz. one of the localised frequency, the 
other the amplitude envelope, and with both of them as functions of amplitude. To use the linear case 
again as an example, we have that the formal solution is x = x o e - A / 2 t  c o s  ( w t + e ) w h i c h  is dependent 
upon the initial conditions (Fig. 1). We may, however, consider the solution as x = ®(t) cos ~b (t), so that (°) 2 = ~ is one variable and co ( - q~) is the other; for the linear equation both are constants and do not 

involve the initial conditions. In essence they provide the frequency and the envelope within which the 
motion is contained, but without the detailed displacement history. These parameters, in addition to 
being more readily obtained, are usually more pertinent for system stability studies. 

This approach is, of course, not new. Kryloff and Bogoliuboff produced a classical paper 1 on these 
lines in 1937, and introduced the concept of an 'equivalent linear system'. In some ways, however, their 
treatment was unnecessarily restrictive. For  example, frequency variation was confined to be small 
compared with the basic frequency defined by the coefficient of x in F(x,  2). Thus, the variation of frequency 
during the whole motion, not just during any one cycle, was assumed to be small in order to justify the 
omission of certain inconveifient terms in the analysis. 

It is the purpose of this Report to re-derive some of the elementary results of Ref. 1, to retain and 
recast the omitted terms, and thereby to remove some of the restrictions in application. It does not 
purport to be a rigorous treatise on non-linear systems, but rather a pointer to the way in which their 
physical properties may often by simply and accurately derived and described. 



2. Method. 

By analogy with the solution for the linear system we express the solution of 

5~ + F(x, ~) = 0 as x = ® cos ¢ ,  

where ® and ¢ are the amplitude and phase respectively, and are both functions of time. 
Then 

= 0 cos ¢ -  O 6 sin ¢ 

and 

(1) 

5~ = 0 cos ¢ - 20  q~ sin ~b- ® 4; sin ¢ -  (6) 2 ® cos ¢ .  

Rearranging, and writing 09 ( - 09(0) for q~ as the instantaneous rate of change of phase angle, 

[092 0 - 0 ]  cos¢+[2091b+cb ®] s ine  = -5~ = F [ O c o s ¢ , O c o s ¢ - 0 9 ® s i n ¢ ] .  (2) 

From the assumption that the amplitude and frequency change during any one cycle is small enough, 
we may integrate over the cycle and interpret the bracketed terms not as instantaneous values but as 
values applicable at a particular ® within the cycle. Herein this is taken at mid-cycle. Then, 

2~ 

209 ~ + o5 ® = -1 ~ F sin ¢.  de (3) 
3 
0 

2~ 

0 

In Ref. 1 the terms 69 ® in equation (3) and 0 in equation (4) were disregarded, giving simply 

2~ o ( , 1 )  
' - 2 o 9 n ®  Fsinqg.~/~b = ~ , s a y  

0 

(4) 

(5) 

and 

2~  

if 09 2 - ~ F cos ¢ .  dq~ ( = 12 , say). (6) 

0 

We may demonstrate the inadequacy of this approximation by comparison with the known exact 
solution for a linear system with damping, viz: 

0 A 

2 - ~ = A 2 4  2 1  
092 B - 

(7) 



The approximations of equations (5) and (6) give, on substituting for x = ® cos ~b, and 
= 0 cos ~b - o~ 0 sin q~ in F. 

2~ 

1 I [A(O cos ~b- co O sin q~) + B O cos ~b] sin ~b d~b = - A co I t  = ~---~ 

and 

12 = B + A  2 

from which 

A 
2 

a 2 
CO2 -- B - - -  

2 

(8) 

The frequency is seen to be in error, the influence of the damping being overestimated by a factor of two. 
Although not a fully satisfactory approximation, the above Kryloff and Bogoliuboff result nevertheless 

serves to bring out the importance of the parameters e~2 and 2 ( - - ~ )  as quantities which describe the 

characteristics of the system in terms of the envelope of the motion. These, rather than the instantaneous 
displacement and velocity within the envelope, will be regarded as the significant parameters throughout 
this Report. Hence in the special case of the linear system, both o~ 2 and 2 are constant. In the general 
case they will be shown to be dependent upon the amplitude, ®. 

Returning to equation (3) we may recast this in terms of 2, co2 and ®. Thus, since 2co O + & ® - 

I ZCO2d 0 d(co2)l/],O 
2 dO ] co 'we have that 

2 = I1 
[ 0 d(co2) ] (9) 

20  lq-4co~, dO 

2~ 1; 
where I t = ~  F s i n t ~ . d ~ .  

0 

E ] Similarly, since 0 = 0 ~2 + 2 0 d-~ , 

(.0 2 = ) ] . 2 + I 2 + , , ~ O - -  
d2 
dO 

(10) 

2~ 

if w h e r e I 2 = ~  Fcos~ .dq~  

0 



, .  . d ( c o  2)  . d 2  
If now as our first approximation we alsregaro ~ ana ~ ,  then 

1__ I (11) 
2 - 2 c  o • 1 

602 - -  2 2 + 1 2  • (12) 

Equation (11) is identical with equation (5), but equation (12) differs from that of equation (6) by the 
addition of the term 2 2 . This latter removes the discrepancy when the approximate method is applied to 
the damped linear system, and equation (12) gives the frequency exactly. 

In many cases equations (11) and (12) will suffice; but where further refinement is justified the d(c°2) 
dO 

d2 
and~--O terms may be readily obtained (by differentiating the first approximation) to give a second 

approximation, and so on. The neglect of these terms, rather than ~ and cb, can be shown to be better by 
an order for systems with significant damping. 

The method is best demonstrated by examples, as in the following sections. 

3. Direct Applications. 
The examples given in this section are such that the integrations from 0 to 2zc may be performed directly. 

3.1• Damped, Linear System with an Additional Cubic Stiffness Term (Duffing "s Equation)• 

F = A£+Bx+Cx 3. (13) 

2~ 1; 
I1 = ~--O F sin ~b. de  

o 

in which x = O cos ~b 
£ = 0 cos ¢ -  co O sin ¢ 

27t 

- zrO1 f [A(Ocos¢_coOsin(b)+BOcosdp+COacosS¢]sin¢ . dc~ 
o 

= - A c o  

27r 

I 2  = 

o 

F c o s ¢ . d ¢  = B+A)~+~CO 2. 

(14) 

(15) 

First approximation 

A 

~ . l  1 
• 2 

A z 3 
co 2 - B - T +  ~ C O 2 

(16) 



Second approximation 

d2 
"-0  

d O "  

do,) 2 3 
d-g- CO 

- A  092 
2 - -  

2092 + ~ C O 2 
4 

A 2 3 
092 -- B___4_+_~C 0 2  . 

(17) 

2 
The of the ~ C 0 2 term due to the non-linearity is a well known result when the motion is presence 

undamped. 
In Fig. 2 is shown a comparison between the approximations of equations (16) and (17) and the solution 

from digital computations by the Kutta-Merson method z. The upper half of the figure shows the rapid 
departure with amplitude of the damping parameter, 2, from the constant value predicted by Ref. 1 and by 

d09 z 
the first approximation of the present method. The inclusion of the ~ term, however, (equation (17)) 

A 2 
produces very close agreement depending only slightly on the value of ~-~. 

The correlation with the frequency parameter in the lower half of the figure is quite good. It is worthy of 

comment that it is only the presence of the, 4-B term, hitherto omitted, in the ordinates, + ~  ', which 

A 2 
has produced the correlation for the data near the origin, corresponding to the largest values o f ~ .  

3.2. Damped, Linear System with an Additional nth Order Stiffness Term. 

F = A2  + Bx  + C, x" (18)  

2~ 

if 11 = -~--0 F sin (o . d$  = - A m  

0 

(19) 

where 

2~ 

1 fFcos4,.d¢ = B+A2+~. 12 = ~ - ~  

0 

~,. = 0 for n even 

C,(n+ 1) IO "-1 
= " for n odd. 

(20) 



First approximation 

A , ~ # - - -  
2 

A 2 ~)n- 1 C , ( n + l )  ! 

• n__~l ! 2" 

(21) 

The above reduces to that in the previous example, 3.1, when n = 3. The approximate value of ~o 2 is 
d2 

unaffected by d--~, so that, in common with linear differential equations, to the order of the second 

approximation, the solutions may be superposed. This is an interesting result since it enables the influence 
of the items in a polynomial stiffness representation to be separately assessed. 

3.3. Van der Pol's Equation. 

F = A~(Cx 2 -  1)+Bx .  (22) 

Hence 

11 = coA 1 - C - 4 -  (23) 

(3)  
12 = B - A 2  1 - ~ C O  2 . (24) 

The first approximation gives 

1- o )4 } 
O2 -- B---~ - 1 - -~C  1 ~ . 

(25) 

This shows the characteristic behaviour of a limit cycle, 2 being positive, and hence the motion divergent, 
for ® < 2/~/C, and the converse for ® > 2/~/C. The frequency in the limit cycle (i.e. when @ = 2/~/C) is 
~/B. The behaviour when A is large is discussed further in Section 5. 

3.4. Large amplitude motion of a pendulum with damping. 

F = A~+B sin x .  (26) 

This is a particularly interesting application. Without damping the solution is well known as a complete 
elliptic integral of the first kind, and this provides us with a yardstick by which to judge the effectiveness 
of the present method in conditions where F is not dominated by the linear term in x. 

To evaluate 11 and 12 we first utilise the Sonine expansion form, whereby 

sin (® cos ¢) = 2 ~ ( - "  1)"- 1 J2,- 1 (~)) COS (2n-- 1) ¢ 

n = l  



where J .  (O) is the Bessel function of the first kind of integer order n. 

Hence 

I1 = - A 0 )  

and 

2B J1 (®) ~-A2 
I 2 - -  O 

First approximation 

A 
2 -  

2 

0) 2 ~ 2 B J I ( O )  A 2 

O 4 

Second approximation 

d2 
- ' 0  

d O "  

Hence 

d(0) 2) . 2B J2 (O) 

dO O 

A 

2 
2 -  

O J2 (O) 
1 

4 J1 (O) 
A 2 O 

1 
8B J1 (O) 

A 

2 

O J2 (O) 
1 

4 "J1 (O) 

m 2 
to within 1 per cent for ® = 2, and ~ -  ~< 0.05 

O )  2 - -  2B J1 (O) A 2 

® 4 

When A = 0 the exact solution gives 

(.0 2 -- , B 

(27) 

(28) 

(29) 

(30) 

(31) 



~/2 

whereK sin-6- = 

1 - s in  2 ~ -  sin" 2 4~ 

The present approximation gives co 2 - - -  2J1(®) 
19 

B.  

The exact and approximate solutions are compared in Fig. 3. It is noticeable that the agreement is 
remarkably close---even up to an amplitude of re/2, the error is only 0"5 per cent*. Since at this amplitude 
® is clearly not a valid approximation for sin 19, the restriction to cases where F is predominantly linear 
in x is probably unnecessary. 

An exact solution with damping present is not known to the authors. In this case digital computations 
using the Kutta-Merson variable step programme 2, and the method given in Appendix A, were made, 
and the results are compared with those from the present approximations in Figs. 3a and 3b. These 
confirm the influence of A, the coefficient of 2, on the natural frequency (equation (30)), viz. that, as in the 

linear case, 092 +A2/4 collapses the results to one curve over a wide range of A2/4B (0 to 0.6). 
B 

Regarding the damping, the computed data show a high order dependence on amplitude (Fig. 3b). The 

first approximation predicts a constant value of-~/9. The second approximation (equation (30) ) predicts 

the correct trend and agrees quantitatively quite well up to amplitudes of 75 ° or so. At really large ampli- 
tudes the approximation noticeably overestimates the damping, probably because of the increasing 
sensitivity to the diminishing denominator. For example, although not justifiable analytically, replace- 

ment by 1 J2 (®______)) 5J1 (19) secures much better agreement. A brief examination of the effect of a third approxi- 

mation suggests that, as in Duffing's equation of Section 3.1, the modifications are mainly on the influence 
of k ( = A2/4B). 

4. Other Applications. 

Consider a general term, x" 2", 

= 19" cos" ¢ (tb cos ~b-® co sin ¢)" 

n 

= 2 A ~  (19, O) cos cm+"- ~) ~b sin ~ ~b. 

r = 0  

(32) 

The contribution to 

2 ~  n 

l 
11 = ~ r cosC"+"-r) ~b sin c'+ 1) q~ d~ 

0 r = 0  

n2 ®2 7 
*The power series expansion for 4K 2 (®) is 1 - 8 - +  1-~-6 04 . . . . . . .  

2J1 (O) 0 2 8 4 
and for ~ is 1 - - ~ - +  1--~-~ ® . . . . . .  



and t o  (33) 

2 7t I'l 

l f 2  12 = ~ A, cos lm+"-'+ 1) 4 sin' 4 d4 .  

0 r = O  

2I t  

Now f cos u 4 sins 4 = 0 unless both M and N are even. 

0 

(34) 

Thus terms contributing to 11 and 12 are those for which r is odd and even respectively. Both cases, 
however, require that m + n shall be odd. The important corollary is that any terms in the equation of 
motion which consist of an even-powered product of x and 2 may, within the limits of the present method, 
be removed without affecting the external characteristics, via the amplitude envelope and the frequency. 
For example, even-powered stiffness terms do not contribute. 

4.1. Aerodynamic Systems with Cross-Flow Forces. 
There is an important type of non-linear stiffness, however, which has the form of an even-power term, 

but is nevertheless an odd function of x. This may be represented by Sgn x. sin 2 x and is readily accom- 
modated by the present method inasmuch as 

Sgn x = Sgn cos 4 

= + v e f o r - ~ < 4 < - ~  

rc 3re 
= - r e  for ~ < 4 <-~- .  

Thus 

2n n/2 

f Sgn x.F sin 4 d4 = 2 f F sin 4 d4 . 
(COS 41 (COS 4) 

0 - h i 2  

(35) 

since F is an even function of 4. 
As an illustration let us take the case of a body at high incidence. Here the stiffness term is often regarded 

as coming from two sources; (i) the potential flow aerodynamics giving a contribution proportional to 
sin 2x, and (ii) a term giving a contribution proportional to Sgn x.sin 2 x. If we include damping as before, 
then 

F = A2 + B sin 2x + C Sgn x. sin 2 x.  (36) 

The contributions of the first two terms to 11 and 12 may be derived directly from previous examples 
(3.4 etc.). 

The third term may be written as 

oo 

C [ 1 - c o s  (20 cos 4)] Sgn x CI1-Jo(20)-2~(-1)"J2n(20)cos2n~blSgnx.  
2 

n = l  

(37) 

10 



Using equation (35), we have that the contribution of this term to I1 is 
h i2  0o 

cf[ 2 ] n O  l - J °  ( 2 0 ) - 2  ( -  1)" J2" (2®) c°s 2n 4 sin 4" d4" 
-~/2 n= 1 

The general term 

hi2 

f 1 F cos (2n-  1) 4 cos 2n 4 .  sin 4 d4 -- ~ L 
- ~ / 2  

cos (2n+ 1) 4 q 
2 n + l  J = 0 

whereas 

n/2 
f 1F sin(2n- 1)4 sin (2n- 1) 4 ] 

_~/2c°s 2n 4- cos 4 .  d4 = ~ L f q 2n+ 1 = 
2( -1)"  
4n 2 -  1 " 

Thus the contribution to 

I 1 = 0  

09 

/2 = ~ 1 - J o ( 2 0 ) + 2  ~nn2-S[ j .  
/1=1 

Thus, complete 

I1 = -Ato 

and 12 = A2-t 

oo 

2. 1,2o, 2cr X'2n'2 '] 
1 - J ° ( 2 0 ) + 2  4n 2 - 1  

n=l 

First approximation 

A 
2 - - - -  

2 

092 - A 2 2B J! (2~) 2.~ [ ~--"~j J2n (2~) 1 
1 - Jo (20) + 2 ~ 4 + 0 I- ~nn2--Z ~ j 

n=l 

A 2 2 n - 4 F o [ B J I ( 2 ® ) + C { 1 - J ° ( 2 ® ) + 2 j 2 ( 2 ® ) } I  

to within 1 per cent up to ® = -~ 
2" 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

11 



4.2. Systems with Stiffness Discontinuities Dependent upon the Direction of  Motion. 

These are of the type 

+ A~ + Bx  + f ( x ) .  Sgn :~ = 0. 

Now 

:~ = Ib cos ~b - co ® sin ~b - • [2 cos ~b- 09 sin q~] 

so that 

Sgn ~ = - v e  for ¢kc< ~b < 7z + ~b~ 

= +re  for n+~b c < ¢ < 2rc+~bc, 

2 
where tan q9 = - 

(.0 
N 

If f (x) may be represented by the p o l y n o m i a l ~ a ,  x ", then 

0 

2~ n+¢c 
ff(x)SgnYccosckdq~ = -2  ¢ )  

o ¢. 

~ a. ®" cos" ~b cos q~ d~b for n even 
(sin ~b) 

and 
Then, for the first approximation, 

= 0 for n odd 

I 1  A 2 
2 -  2co 2 

N 

~ a n On- 1 con n+ 1 for n even 

o n + l  [ ( .02+22] ,  2 

(45) 

(46) 

(47) 

and 

cos - -  22 + 12 

~ ( ) 22a+t-2~ l f ° r  = 2 2 + B + A 2 + 4  a2,®2._ 1 (_1 )  a n neven 

rc o 0 0 [ c o 2 + 2 5 ]  

(48) 

w h e r e ( n ) _  n !  
0 ( n - 0 )  !0 !" 

As a particular example, consider the effect of Coulomb friction, viz. of constant magnitude but always 
opposing the motion. For this casef(x) = ao = constant. Then from the first approximation 

A 2 ao 1 2 - (49) 
2 r c ~ ' ®  

12 



i.e. 092+ 25 = B, so that 

and 

o92 _ 22+B+A2+4 ao. 2 1 

= B-22  from equation (49), 

2 1 + 2 ( _ ~ ) . ( 2 B ~ ' ~  1 
A/2 - a /I'® 

a 2 
(.0 5 . - ~ - -  

4 1 4 / a 0 ) .  A 1 1 

(50) 

(51) 

From equation (45) it follows that below an amplitude of ~ ,  there will be no motion. 

5. Influence of Distortion in the Response Waveform. 
In the preceding sections it has been assumed that the displacement is nearly enough sinusoidal with 

time, and is capable of representation adequately by ® (t). cos ~b (t). The present method may be general- 
ised to include, and to obtain the amplitude and phase of, harmonics of the fundamental which produce the 
distortion. Thus 

N 

x = ~-~®. cos (n 4~ + e.) 
n = l  

N 

= ~ [~ .  cos (n ¢ + e . ) -  ®, n o9 sin (n ~ + e,)]. 
n=l  

From these, and the method used for deriving equations (9) and (10) for the fundamental, it follows that 
for the (m-  1)th harmonic, 

2 "  ~ I I , .  
I o,. d(~o~)~ (52) 

2mo9 1-+ ~ . d - - ~ =  _] 

and 

d 2  m 
(m 02) 2 = 2 2 + I2m q- 2 m . 0 m . dO,. (53) 

where 

2~ 

_ 1 
Ilm re 0 IF.  sin (m ¢ + e,.) de 

m , d  

13 



and 

I 2 , .  ~ - -  

2 ~  

'f rc ~9," F . cos  (m 4' + a,,) d4' . 

0 

These give a set of 2N equations for the unknowns. 
This could be of particular interest in the study of systems producing limit cycles. In the steady case, 

d(¢°2-----)) = 0, and since by definition the steady state amplitude is not zero, whereas ~, ,  is, 2,, must be zero. 
dO,, 
Then 

and 

11" = 0 for all m 
m 

12," 
0)2 = constant - m 2  for all m. 

(54) 

A good example of a system in which the distortion is important is the van der Pol equation (equation 
(22)) in which A is very large compared with B. Fig. 4 shows the displacement waveforms for a range of 
A 
- -  from 0-1 to 10. Accompanying the distortion in the latter case is a large change in frequency which is 
B 

not predicted from a consideration of the fundamental alone (equation (25)) inasmuch as in the limit 
cycle, (2 = 0~ it gives o92 - B, and thus independent of A. 

The displacement limit cycle waveforms of Fig. 4 have been harmonically analysed utilising 96 ordinates 
per cycle. Because of symmetry the amplitudes of even multiples of the fundamental are zero. The ampli- 
tudes of the first few odd-multiple components, together with the phase angles referred to the fundamental 
are given below. 

2 + A ( x  2 -  1 ) ~ + x  = 0,  for which 

oo 

x = >-~ff .  cos (n 4 ' -a . )  
1 

A = 0"1 A = 1"0 A = 10"0 
Fundamental 

frequency 0"9994 0"9432 0"3297 

n O.  ~.(°) 5.( ° ) 

1 

3 
5 
7 
9 

11 t 
1-997 
0"022 

< 1~ of Oa 

0 
90 ° 

) 

O / I  

2.020 
0.231 
0.048 

< 1~o of O1 

0 
54 
85 

2.128 0 
0-639 16 
0.358 13 
0.241 12 
0.178 16 
0.139 19 

In principle at least, it should be possible to predict these coefficients from equation (54). The inter- 
relationships which produce zero damping (i.e. Ilm = 0) should then give o92 from 12,.. 

14 



5.1. Duffino' s Equation. 

As an example, we consider the extent of distortion present in the motion characterised by the example 
in Section 3.1 but without damping, viz. 2 + B x  + Cx 3 = 0. In this case, 2 = 0, and the amplitude remains 
as the initial value. Consider the effect of a second harmonic content such that 

x = O 1 cos ~b + O3 cos (3~b + s). 

Thus 

3 

v = n [01 cos ¢ + 03 cos (3¢ + ~)3 + c ~-~k. O13-" O~ cos" (3~ + ~). cos 3-" ¢ 
0 

(55) 

where k, = 1 for n = 0 and 3 

k, = 3 for n 1 and 2. 

~: After some arithmetic, the relevant integrals give: 

21t 

(i) n l I F  c°s~bdq~ B O 1 + C I ] O ~ + 3 2 4  3 ] .  - -  , = O 1 O 3  COS ~ " ~  O 1 O 2 (56) 

(ii) 

2~ 

(iii) 

2~ 

if 
0 

3 CO1 zO 3sine. F .sin 4, d~ = -~  

(iv) 

2~ 1 ! 
F. sin (3q~ + e) d~b = C sin e. 

F r o m  equations (52), (58) and (59), since the system is conservative 

sine = 0. 

Hence, from equations (53), (56) and (57) 

~o z = B + ~ C  [ 0 ~ + O 1 0 3 + 2 0 2 ] .  

[ 3 _  3 3 2 ®  +Ox 3 ]  
90zoJ  2 = B 0 3 + C  ~ 3 + ~ O 1 3  --4--_]. 

(57) 

(58) 

(59) 

(60) 

(61) 

15 



Substituting for co 2 in equation (61), and omitting higher order terms in 03  in comparison with O1, 
we have: 

C [ 0 3 _ 2 1 0 2 ® 3 ]  - 8 B O 3 .  
4 

Putting 

B 0 3  
- -  = R and - -  = r ,  
C 0 2 O1 

this becomes : 

1 
r - - -  (62) 

32R + 21 

i.e. 03  ~ 0 for the linear case, and to about 2 per cent the amplitude o f®l  where the maximum non-linear 
contribution to the stiffness is equal to the linear. 

The influence on the frequency is no greater, and gives confidence in the application of the method 
using only the fundamental. Distortion of the waveform is, however, an inevitable consequence of non- 
linearity, and in extreme cases, such as the van der Pol Equation considered earlier, it will decide the 
degree of applicability of the fundamental mode method. 

6. Equivalent Linear Systems. 

In equations (9) and (10) we formulated expressions for the amplitude damping 2, and the (frequency) 2, 
(0 2, viz. 

• 1 11 
___o d( o 

2 - ~-~. 1-~ 4¢o2. dO 

d2 
0) 2 ~ ,~2+I2+2 0~--~. 

(63) 

Because 11 and 12 contain only O, 0 and o9, i.e. O, 2 and o,  equation (63) gives two relationships for 
these three variables, so that we may in principle express any two in terms of the third, i.e. 

2 = A (o) 

~2 = f2 (®). 
(64) 

We can now define the equivalent linear system as that which at a particular amplitude, O, has the same 
frequency and amplitude damping as the actual system. The equivalence will in general vary with ampli- 
tude (equation (64)). 

Consider as a simple illustration the example of Section 3.1, 

F = A 2 + B x + C x  3. 

Let the equivalent linear system be 

F = a 2 + b x .  
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Then * 

a - - 2 2  - A  ) 

t from equation (16). 

_~ 0 ) 2 + 2 2  - -  B+~C192 b 
4 

2~ 2~ 

Note that the equivalent stiffness, b, is ~xx sin ~b. d~b, rather than ~ ~x" d~b, or the displacement 

o o 

~z/2 

average, ~x" sin q~ d~. In Ref. 1 the term F (x, 2) was predominantly linear in x, viz. v 2 x + e (x, 2) and it 

was shown that, to the order of e 2, the 'equivalent linear system' was a justifiable replacement for the 
original system. In our present attempt to extend the scope of the method, we have shown that the linear 
equivalent will vary with amplitude, and it suggests that the transfer function might be regarded as having 
different values according to the amplitude range, or even continuously varying coefficients. The rami- 
fications of this have yet to be investigated, particularly as.regards response to forcing. 

Nevertheless it suggests that non-linear systems of this type might well be analysed and catalogued in 
0 

terms of the dependence of the two parameters o92 and ~ ( - 2) on amplitude, and this can be done 

whether or not the basic differential equation of any particular system is known. 
Table 1 gives a summary of the results obtained herein in the form: 

+K2 ] 

= [ A . , ]  19 n 

t65) 

where Amn defines the dynamic characteristics of the system 

n = 0, 1,2 etc. 

m = 1 and 2 for top and bottom rows respectively, 

and K1, K2 and K 3 are constants. 

The resemblance in form to that of the linear system is striking. The constants on the 1.h.s. are identical in 
every case. On the r.h.s, the constant term (i.e. for n = 0) is unity in every case, the essential difference 
being the non-zero coefficients of 192, ®4, etc.* It is worth noting that because of its form very few terms 
in the expansion are needed to define this dependence over quite large amplitudes. For example, only 
the term in 192 is necessary to specify the response for the damped pendulum system to within 1 per cent 
for 1 radian amplitude. 

Also included in Table 1 is the suggested fit to the 'experimental' (i.e. computed) data. In all cases the 
adjustment required to the solution from the present approximate method is very small indeed for the 

o92 2 
representation of ~-~-+ K2. Rather more is required to fit the ~ data at large amplitudes (of the order of 

90 ° or more). 

*The even order powers of 19 arise naturally from the 'direct' applications considered in Section 3. 
Odd powers will arise ifF (x, 2) includes Sgn x or Sgn 2 terms (Section 4). 
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The method offers possibilities forthe classification of practical dynamic systems, and is being adopted 
for the presentation of the response data from the RAE wind tunnel/flight dynamics simulator facility. 
It is hoped that the 'response signatures' for aircraft and weapon flight dynamics, with or without auto- 
pilot and guidance representation, will prove to be amenable to presentation in the form, and that it will 
be possible eventually to extend the technique to the higher order differential equations necessary to 
specify the full 6 degrees-of-freedom motion behaviour. 

7. Conclusions.  

7.1. By a slight recasting of the results from Ref. 1 the external dynamic properties of the system, 

5~ + F (x, :~) = 0, viz. the frequency e~ and the amplitude damping ~ ,  may be expressed as : 

d2 
0)2 - ,~2+12+J. 0 ~ -  ~ 

where x = ® (t) cos $ (t) 

® = amplitude 

2~ 

1 f Ix =~-~ Fsin~b.dq~ 

0 

2~ 

1 f 1 2 = ~  Fcos t  k.d~b 

0 

7.2. Instead of neglecting ~ and d9 ® as in Ref. 1, a first approximation is obtained by omitting the 
d d~ terms; this, for example, gives the exact solution for the linear case. Where required,, second order 

approximations are obtained by including the derivatives of the first approximation with respect to ®. 

7.3. In this form the present method has been found to give good agreement in particular cases for 
which F (x, ~) departs markedly from the constraints implicit in Ref. 1. 

7.4. Since 0)2 and 2 are generally functions of amplitude it may be convenient for analysis and 
application to catalogue the characteristics of this type of non-linear system in terms of this dependence. 
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a 

b 
A 
B 

C 

amn 

11 

12 

ltm 

I2m 

J.(O) 

k 

K 1 , 2 , 3  

Sgn 

t, 

~a 

An 

8 

® 

LIST OF SYMBOLS 

(i) coefficients of 'equivalent linear system' (Section 6) 

(ii) coefficients of exponents (Appendix) 

Constants 

O9 2 
2 row matrix giving coefficients of O" for ~-~+ K2 (m = 1) 

A--~ (m = 2) and 

2~ 

1 !Fsindp.dd p 
nO 

2~ 

if n O  F.cosq~.dq~ 
. 0 

2~ 

if  7g O m F.  sin (m ~b + am) dq~ 
0 

2n 

zc 0,~ F .  cos (m ~b + era) d~b 
0 

Bessel function of the first kind of integer order n 

Complete elliptic integral of first kind = 

a 2 

4B 

Constants (Section 6) 

'Sign of' 

n/2 

Elapsed time to the point on the nth half cycle to which the amplitude envelope is tangential 

Time reference 

t n -  tre f 

Phase displacement 

Amplitude 

O 
® 
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LIST OF SYMBOLS--continued 

V 

O9 

Frequency, considering only linear stiffness term in F (x, £) (Ref. 1) 

Phase angle 

Fundamental frequency ( = 4~) 

No. Author(s) 
1 N. Kryloffand. .  

N. Bogoliuboff 
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APPENDIX 

Numerical Evaluation of(9~®. 

Let us assume that the envelope may be defined by 

O , =  On=ref exp ( ~a,h A'," ) 
m = l  

(A.1) 

where ®, is the amplitude at the point of tangency of the envelope on the nth half cycle peak 

A n = t n -  tre f 

t, = elapsed time to ®n. 

If we take 3 points to define this dependence, then 

0 3  = 0 1  e(aA3+ba~) l 
! 0 2 = 0 1  e (aA2+bA~) 

Then, at ®2, 

therefore 

[0 ]  = ®1 (a+2b A2) e (aA2+bA~) 

O ]  = a + 2 b A 2 "  
2 

(A.2) 

(A.3) 

(A.4) 
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APPENDIX 

From (A.2), 

I ® 3 ] = a A a + b A  2 1Oge 

l Iog~ ~ = a A  2+bA~. 

(A.5) 

Eliminating a and b from (A.5) gives 

A~ log - A  2 log 

a = 

and 

A21og --A alog ~ 

b = A3 A2 (A3 _ A2) . 

Substituting for a and b in (A.4) gives 

(A.6) 

A2 1Oge I~2a] + [A3- A212 l°g I ~--~2x 1 

2 A3 A2 (A3 - A2) (A.7) 

There is a phase..differenc~ between the peak of a~y half cycle and the point to which the amplitude 
envelope is tangehfihl:'If the latter is taken to occur at q~, the former is defined by: 

= 0 = Ib n cos (N n + e) -  0 ,  co sin (Nn + e) 

o r  

tan e = - -  

60 n 

If the waveform is quasi-sinusoidal then the tangency points, O1,2, 3 required for the foregoing are the peak 
Values multiplied by cos e, i.e. 

opoak 

Since, by stipulalion, 2 and 09 do nbt vary significantly during" one cycle, we may cancel the 

1 , terms in deriving log ~ , etc., and hence utilise peak values of ®. By the same token, 

0 A. is unaffected. However, it should be remembered that the ® at which ~ ( = 2) is evaluated from (A.7) 
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j t~t ~ is strictly the tangency value, viz. the peak value 1 + ; however, both 2 and e~ are now known, 

so this adjustment presents no problem. 
Care is clearly necessary in using this numerical method where the waveform is significantly distorted 

(Section 5). 
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TABLE 1 

External Dynamic Characteristics (Frequency and Amplitude Damping) of Various Systems for which 
~ + F (x,~) = O. 

x = e(t) cos , ( t )  

@ 
8 

KI, 2 and 3 are constants 

-- K = [Amn ] ®2n n = 0,' i ,  2 . . .  

m = I or 2 for upper and lover ro~:'s respectively 

N.B. In the following table, k = 

t o  
F(. ,  {) K1 ~2 ~3 

A 
A~+ Bx B k -- 

2 

A-{+Bx+Cx 3 B k A 

Column A - first approximation 

Eq. n=0 I 2 ... p 

A (21) A~+ Bx+ Cx 2p+I B k 

A A(Cx 2 -  4) . {+ :B~: B k y ~25) 

Az~+ B sin x B k 2 A- (~9) 

I I 

I 

I c 1  

1 

- 1  

1 

1 - 

I - 

0 0 

0 0 

~c o 
4B 

0 

0 0 . . .  

0 0 

kc - ~  (kc) 2 

C 
- -  0 
4- 

1 1 
B 192 

"''''''''°'I 
C (2p.+2) ! 

. i  I 
" ' ' ~  ! 

0 

i 

_! 

Eq. I n=0 

r 
i(~,7) 

;30) I I 

A IILl','q 

Column C - 
Column B - second approximation empirical fit 

1 2 n=0 2 

l_q o 
~B C2 

+ &3_ C 2_7.7 
B 1-'T~-k) - 64 B 2 ( 1 . k ) 2  

i i 
8 192 

- ~ - 768(1_k)2 

I 
1 

i 

ij 0 

0 

"I 

r - 0.125 

0.035 

exact 

0.004 

0 . 0 t 2  
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FIG. 1. Motion parameters of simple linear system. 
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[] ~A 2 > 0"01 ~ 0.1 ~~ ~0"I  
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FIG. 2. Application to solution of Duffing's equation. 
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