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Summary. 
Equations have been derived for the velocities induced in an incompressible flow by distributions 

of infinite source and vortex lines representing wings of infinite span and constant chord having both 
sweep and dihedral. Particular attention is paid to the centre section where the dihedral effect~s are large. 

The equations showed that such a source distribution does not represent a wing with symmetrical 
sections, and that such a vortex distribution does not represent a thin wing. It is, therefore, not possible 
to separate the effects of wing thickness and wing load distribution, even when linear-theory assumptions 
are retained. 

This work was done before the widespread use of electronic computers to calculate wing characteristics. 
It is published now to illustrate the complex nature of the equations for the velocities induced by non- 
planar singularity distribut{ons. 

*Replaces RAE Tech Report 70077--A.R.C. 32 389. 



LIST OF CONTENTS 

1. Introduction 

2. Geometric Definitions 

3. Velocities Induced by a Distribution of Parallel Infinite Kinked Source Lines 

3.1. Single source line 

3.2. Streamwise distribution of source lines 

4. Velocities Induced by a Distribution of Parallel Infinite Kinked Vortex Lines 

4.1. Single vortex line 

4.2. Streamwise distribution of vortex lines 

5. Discussion 

6. Conclusions 

List of Symbols 

References 

Appendices 

Illustration-Fig. 1 

Detachable Abstract Cards 

Appendix 
A Evaluation of 11 (x, O, O) 

LIST OF APPENDICES 

B Evaluation of 12 (x, 0, 0) 

C Summary of equations of velocities induced by source distributions of infinite span and constant 
strength spanwise 

D Summary of equations of velocities induced by vortex distributions of infinite span and constant 
strength spanwise 



L In.t~_o_duction,_ 
Some twenty years ago, simple approximate methods were developed for calculating the pressure 

distribution and loading on plane swept wings in incompressible flow. In these methods the velocity 
distribution on such a wing was based on the velocities induced by distributions of parallel source and 
vortex lines, of infinite span and constant strength spanwise, kinked at the centre section to represent the 
sweep. Approximate expressions for these induced velocities are contained in Refs. 1 and 2, and the 
methods are summarised in Ref. 3. 

About the same time, corresponding equations were derived* for the velocities induced by distributions 
of infinite singularities of constant spanwise strength which were kinked to represent not only sweep but 
dihedral. The distributions are therefore not planar, though each semi-infinite distribution on either side 
of the centreline is itself planar. These equations provide the solution to the design problem, in which the 
source and vorticity distributions are specified and the wing shape corresponding to these distributions 
is obtained by equating the induced velocities to the boundary conditions. As will be seen, the effect of the 
dihedral angle makes the application to the inverse problem--the velocity distribution on a given wing 
shape--extremely complicated. 

Since this work was done, the advent of electronic computers has allowed some relaxation of the 
simplifying approximations in the above methods, which have thus to some extent been superseded by 
other methods. Nevertheless the results for swept, dihedralled sources and vortices are published now to 
illustrate the complex nature of the equations for the velocities induced by non-planar singularity 
distributions. 

In Section 2, the geometry of the system is defined. In Section 3 the induced velocities at the kink section 
due to sources are derived, and in Section 4 those due to vortices. Section 5 contains some brief comments 
on certain features of the results. 

2. Geometric Definitions. 
Fig. 1 shows the axis system and geometric relations used in the derivation of the velocities induced by 

single, infinite kinked vortex and source lines having both sweep and dihedral with respect to a reference 
plane which contains the free-stream velocity vector Vo. The origin 0 is at the vertex of the kinked source 
or vortex line AOB, and the x-axis is in the free-stream direction, positive downstream. The y-axis is 
positive to starboard and the z-axis positive upwards, as shown. The x, z co-ordinates of points on the 
source or vortex lines are thus always positive. Two sweep angles, ~o and • are defined: ¢p is the angle 

between the y-axis and the perpendicular projection of A0B on the xy  plane; ~-- • is defined as the 
2 

angle between A0B and the x-axis, q~ and • are positive for sweepback. The dihedral angle, ~k, is defined 
as the angle between the xy  plane and the perpendicular projection of the source or vortex line on a 
plane x = constant. ~ is positive for a dihedral angle, negative for anhedral. The angles ~, q~ and qJ are 

tan 
connected by the relation cos ~b - 

tan ~o " 
The distance along the source or vortex line is denoted by s, measured from the origin. The analysis 

deals primarily with the velocities induced in the xz  plane. 
In considering induced velocities far away from the plane of symmetry y = 0, it is convenient to work 

in terms of z', perpendicular to the plane which contains the source or vortex line and the x-axis, rather 
than z; z' = 0 on the plane. Clearly z' is in general, in a different direction on either side of the x-axis, 
because of the angle ~O. 

*Initially by D. E. Hartley, later by the present authors. 



3. Velocities Induced by a DiStribution of Parallel Infinite Kinked Source Lines. 
3.1. Single source line. 

Consider the velocity induced at a general point  R (x, 0, z) in the xy plane by a small element ds at 
a point  P (I Y l tan q~, y, [y I tan ~b) on o n e h a l f  of a source line kinked at the origin as in Fig. 1. 

In vector notat ion,  

s = o r '  = ( ly l  tan ~p) i + ( y ) j + ( l y l t a n  ~b)k 

OR = (x) i + (0 )  i + (z) k .  

Hence,  

ds = (tan q~ i + j  + tan ~O k) dy 

and 

r = 0 R - 0 P  = P R  

therefore 

r = ( x -  lyl  tan t p ) i + ( - y ) j + ( z - l y l  tan ~b)k. 

If the source line has strength E per unit length, the velocity at R due to the element ds at P is 

(1) 

which has components  along the axes 

(2) 

E d s r  
Av = 4nr3 (3) 

and 

E ds ( x -  y tan tp) 
Avx = 4nr3 

Avr = E ds y 
4nr 3 

Avz E ds ( z -  y tan ~b) 
= 47rr 3 

(0p)2 = 8 2  = y2 (1 + tan 2 cp + tall 2 ~) = y2 0 2, say,  

(4) 

(5) 

where A = 
x tan q~ + z tan 

0 

/' 2 _ A x 2 + z 2 \  2 
( p R ) 2 = r 2 = ~ y  + 2 y - ~ + ~ ) O  (6) 

(7) 



Hence, 

m/) x 
E (x - y tan (p) dy 

( y2 + 2y-~+---Og--- ) 4re 0 2 A x 2 + z 2 "X 3/2 

and 

m y  z 
E (z- y tan O) dy 

4n0 2( 2 _ A x 2+z 2~3/2 
y +2y ~+--0r-  ) \ 

Integrating (8) and (9) yields the induced velocities due to the infinite kinked source line 

v~(x, O, z) = 

0 

(x-y  tan ~o) dy 
2 2 A x2+z2~ 

Y + Y ~ + - - U - )  
3/2 

E 

+ 

(A) tan q~ y +-~ dy 

i 2 _ A X271_Z 2 ~ 3/2 
o (y +~y-~+---g-) 

A x 2 + z 2 3/2 

(8) 

(9) 

E I 1 
tan q~ /" y2 2 A x2+z2"~ ~ 

+ Y~+--W- ) 

+(X+otanq~)  i d ( Y + o )  

{(o) .41o Y + -~ 0 2 

= 2~0---- 5 [x~xZ~-z$ f x2+z2_A 2 



[ A 
E x + ~ t a n  ¢p( 

2 \ 
A "~ tan ¢p (lO) 

vy (x, 0, z) = 0 

By compar ing (8) and (9), and using equat ion (10) 

A 
E z + ~ t a n ~ b  ( 

0, = Lx 2 + S _ A  
A ) (11) 

3.2. Streamwise Distribution of  Source Lines. 
Consider a distribution of parallel source lines in z' = 0. 
Let q(x) be the source strength per unit area. Then  

E ds = q ds dx cos ~ ,  

therefore 

E = q dx cos qb. (12) 

Equat ion  (10) can be rewritten in the form 

E V x OZ- tan ~o (x tan q~+z tan ~ ) (  1 
/)x (x, 0, Z) -4 2~[_ 0 2 ( x 2 + z 2 - A  2) \ 

x tan q~ + z tan ~, 

O ~ z  2 

tan 0 ] 

E [- x s e c  2 ~t - Z tan ~, tan ~o 
= " ~  L X2 sec2 ~t - -  2x z tan g, tan ~p + z 2 s e c  2 tp 

0 (z2 tan ~ - x  z tan ~O) -] 

(x 2 sec 2 ff - 2x z tan ~, tan q~ + z 2 see 2 q~) ~ _1" 
(13) 

Replacing E by q(x') dx' cos q), and x by x -  x', integration with respect to x' gives the velocities induced 
by the streamwise distribution of source lines between the leading edge, x' --= 0, and the trailing edge, 
x'  = 1. Hence 

1 

vx (x, O, z) = f q(x') cos (I) ( x -  x') sec 2 ~, - z tan ~ tan q~ d x ' -  
2r~ (x - x') 2 sec 2 ~//- 2 ( x -  x') z tan ~ tan cO + z z see 2 q~ 

1 

f q(x') cos 
2r~ 

0 [z 2 tan q~ - (x - x') z tan ~]  

[(x -- x') 2 sec 2 @ -- 2 (x -- x') z tan ~O tan q~ + z z sec 2 ~0] v/(x -- x') 2 + z 2 

= 11--12 . 



The velocities are evaluated at z' = 0. In particular, at the centreline, (the x-axis), z' = z = 0 and, as 
shown in Appendix A, 

1 

11 (x, O, O) = f q(x') dx' X X' COS 27z -- 
o 

(14) 

= V x COS 

where v~ is the streamwise velocity increment induced by a distribution of unswept two-dimensional 
source lines. 11 (x, 0, 0) is therefore the same as the streamwise velocity increment induced by a planar 
distribution of infinite source lines swept at an angle ~, i.e. the 'infinite sheared wing '3. 

As shown in Appendix B, 

Iz (x, O, O) = q(x) ( 1 + sin * 
- ~ -  c o s *  log 1 - s i n *  ]" (15) 

Hence the total chordwise velocity induced by the distribution of source lines is 

 oso{i , x, ,   x lo  X+sin:/1 
2re x' - ~  \ 1  sin " 

0 

(16) 

Thus it can be seen that since ~k does not appear in equation (16), vx is not affected by dihedral. 
Equation (11) can be rewritten in the form 

E f zO2-tan~b(xtanq~+ztanO)( 
Vz(x,O,z) = ~ 02 (x~ +z~_A2) \ 

_ E I tan ~o tan ~ ,  
2n 

x tan q~ + z tan 0 

x sec 2 ~b - z  tan q~ tan ~ . 
sec2 0 x2 sec2 0 - 2x z tan q~ t a n 0  + z 2 sec 2 (p 

tan 0 } 

0 

0 tan ~ 0 2 
_ _ + - - -  

s e c  2 0 z 2 sec 2 i// (x 2 sec 2 0 -- 2x  z tan q~ tan 0 + 22 sec2 q~) + 

| 
0 [z 2 see 2 q~ tan 0 + x z tan q~ (1 - tan 2 0)] [ 

q" sec2 ~ ~ Z2 ( X2 sec2 0 -- 2x z tan q~ tan 0 + z2 sec 2 ~0) I" 

the terms being arranged to facilitate integration. 

(17) 

Again replacing E by q(x')dx' cos q) and x by x - x ' ,  and integrating with respect to x' 



v~ (x, O, z) - 
cos • t an  cp t an  ~b f q(x') (~-x' sec 2 ~ b -  z t an  q~ tan  ~k) dx' 

~-~ sec2~b ~ o ( X - - X ' ) - f s ~ c 2 ~ - 2 ( - x - - - - - ~ z t ~ p t - - ~ ~ + - - ~ - s e c 2 q ) -  

1 

0 t an  ff I q(x') dx' 
(, j , / ( x_  + z 

0 

1 

0 2 f q (X') Z dx' dx' + 
+ ~ (x - x ' )  2 sec 2 ff - 2 ( x -  x ' )  z t an  tp t an  ~k + z 2 sec 2 cp 

1 
0 f q(x') [z  2 sec 2 cp t an  ~b + (x - x ' )  z t an  ~0 (1 - t an  2 ~b)] dx' 

-~- ~ N/(X - -  X') 2 -~- Z 2 (X - -  X ,2 sec  2 ~//-- 2 x -  x '  z t an  q~ t an  ~b + Z 2 sec  2 ~0) 
(18) 

= I 3 + 1 4 + 1 5 + 1 6  . 

O n c e  aga in  the  in tegra l s  have  to  be  e v a l u a t e d  in  the  l imi t  z ~ 0. 

cos  • t an  ~o t an  ~, 
I 3 (X, O, O) = × 

2 n  s ec  2 ~ z ~ 0 

1 

l im  f q(x') (x- x' sec 2 ~b - z t an  cp t an  ~b) dx' 
( x -  x ' ~  s~c2 ~ - L - - 2 - ~ - - ~  t-~n ~p t-a-nn ~-¥ ~-sec 2 ¢p 

1 

= - sin • s in ~ f q(x') dx' 
2re ( x -  x ' )  

0 

as in A p p e n d i x  A 

! 
= - s in • sin ~ vx (19) 

I4 has  to  be  e v a l u a t e d  a t  a n o n - z e r o  va lue  of  z, because  it ha s  a l o g a r i t h m i c a l l y  inf ini te  va lue  for  z = 0 

14 (X, 0, Z) = 

1 
c o s O  0 t a n g o  ~ q(x')dx' 

0 

1 

= - s in ~ f q(x') dx' 
2~ . , / ( x -  x') ~ + z ~ 

0 

(20) 

15 (x, O, O) - 
cos  

2~ 

1 

0 2 l im  f q(x') z dx' 
s e c  2 ~/ Z ~ 0 (X - -  X' )  2 sec 2 ~b - 2 ( x -  x ' )  z t an  q~ t an  @ + z 2 sec 2 tp 



• g - x  r m  ~ 8  

cos • q(x) lim f z d ( x -  x') 
2n cos 2 • z --* 0 (x - x') 2 sec z ~ - 2 ( x -  x') z tan cp tan ~b + z 2 sec 2 cO 

X - - X  r = -.}-/~ 

where e is small compa red  to i but  large compa red  to z. We take the limit z ~ 0 and e ~ 0. 

_ q ( x )  lim [ 1 x 
2n cos • z,g ---r O ~  0 4 s e e 2  @ see2 ¢P - tan2 O tan2 q~ 

- -sec  2 o - - z  tan cp tan 
t a n -  1 8 

-~ ~ s e c 2  ~b secZ q~-  tan2 co tan2 ~ 

1 
s e c  2 tan ~o tan ~k 

1 8 . 
tan 

z / sec  2 ~k sec 2 ~o - tan 2 ~o tan 2 ~, 

as given in Ref. 4 

q(x) n - - q  
- 2n cos • xfsec  2 ff sec 2 qg-- tan 2 ~k tan a ~o 

the positive sign being used if z ~ 0 f rom the positive side, and vice versa. 
F r o m  the relat ion cos ~ tan ~o = tan O, 

Is(x,O,O) = _+-q~cos  ~ 

1 6 ( x , 0 , 0 ) -  - -  
cos • 

2n 

1 

0 lim f q(x ' )[z2sec2~otanO+(x-x ' )z tan~o( l_tan2O)]d x, 
sec z ~, z -~ 0 _ x / ( x _  x,)2 + z 2 (x_--Z'~2 sec 2 ~ _ 2 x -  x '  z tan ~o tan O + z2 sec2 q~) 

(21) 

This is the type considered in Appendix  B, with e = s e c  2 (p tan ~ and fl = tan q0 (1 - t a n  2 ~k). 

Therefore  

I tan tan  (,÷sinO)l 
16 (X, O, O) = ~ q(x) 2~k q 0 log 1 - sin • 

q(x)cos~k~b.q(x) . ( l + s i n O )  
= n + - ~ n  s l n O s i n ~ ' l ° g  1 - s i n O  " (22) 



Hence, 

v~ (x, 0, 0) = 

1 1 

f q(x') dx' sin ~b ~ q(x') dx' 
- sin ~o sin q/ 2zc ( x -  x') J 27r x / ( x _  x,)2 + .72 [" 

o o 

q~) ~ .q(x) ( l + s i n O )  ~ )  
+ c o s 0 ~ + ~ - s i n O s i n O l o g  1 - s inq~  --- cosO 

For  dihedral, q, z e r o  O, and 
[v z (x, 0, 0)] 0 = o = + q 2  )t,, 

For  zero sweep, • = ~0 = 0, and 
1 

[Vz(X, O, O)]._,o= o = - s i n  ~b f q(x') 
dx' 

- d 2re 0 % / / ( X  - -  X')  2 -[- Z 2 

q-~atY~ cos ~k ~ + q ( x )  COS O 
~)-2- 2 Z 

(23) 

4. Velocities Induced by a Distribution of Parallel Infinite Kinked Vortex Lines. 
4.1. Single Vortex Line. 

Using the same notation as for source lines, the velocity at point R (x, 0, z) due to an element of the 
vortex line at P (]y] tan tO, y, ]y] tan ~,)is 

F d s x r  
Av - 4~ r a (24) 

where F is the strength per unit length of the vortex line. The components  of Av are 

Avx F z dy 
- 4gr 3 

Avy F (x tan ~ - z tan q~) dy 
= 4 ~ r 3  

Av~ - F x dy 
4rcr a 

Substituting for r from equation (6) and integrating over the complete vortex line, 

(25) 

oo 

F f (  zdy 
• _ A x 2 + z  2,~a/2 vx(x,O,z ) = 2~Og y2 + 2y~+~g___ ) 

F z  
- 2re  0 x z + Z 2 - -  A 2 1 

(26) 

as in the derivation of equation (10). 

v~ (x, O, z) = 0 

10 



and, by analogy with (26) 

v ,  (x ,  O, z )  = 
1 ( 

2nO X2 + z 2 -  A 2 1 
A 

(27) 

4.2. Streamwise Distribution of Vortex Lines. 

Consider a distr ibution of parallel vortex lines in z' = 0. 
Let  ~(x) be the vortex strength per unit area. Then  

F ds = ~ ds dx cos tI) 

therefore 

F = y dx cos 4). (28) 

Equat ion  (26) can be rewritten in the form 

vx (x ,  O, z )  = - -  
FzO 1 

.x ( l q  
2n x 2 s e c  2 ~//-- 2x z tan q~ tan ~ + z 2 sec 2 ¢p: 

x tan q~ + z tan ff "~ 

0 N / / ~  + Z 2 ) 

= 2-~ X 2 s e c  2 ~ - -  2 x  z tan q~ tan ~k + z 2 s e c  2 ¢p F 

x z tan q~ + z 2 tan ~k ] 

-~ ~ (x 2 sec 2 ~ - 2x z tan q~ tan ~ + z 2 sec 2 q~) 
(29) 

Replacing F by ~(x')dx' cos (I), and x by x - x ' ,  integration with respect to x' gives the velocities induced 
by the streamwise distribution of vortex lines between the leading edge, x'  = 0 and the trailing edge, 
x ' =  1. 

vx (x ,  o ,  z )  = - -  

1 

0cos~ ~ , 7(x')zdx' 
2n ,] ( x -  x ) sec2 ~b- 2 ( x -  x') z tan q~ tan ~ + zZ sec2 q9 

1 
cos • [ V(x') [ ( x -  x') z tan ~o + z 2 tan ~b] dx' 

+ ~ J N~(X -- Xt) 2 + Z 2 X [(X - -  Xt) 2 s e c  2 ~ - -  2 ( x -  x') z tan ~ tan ~, + z 2 s e c  2 ~o] 

= 1 7 + 1 8  . 

The  integrals are to be evaluated at z' = 0 so that  at the centreline limiting values as z ~ 0 are required. 
17 is evaluated as for 15, and 18 as for 12. 
Hence, the total chordwise velocity induced by the distribution of vortex lines is 

v~ (x, O, O) -- + ~  cos O +  ~(x) - ~ c o s  
7Z 

(30) 

II  



where the positive sign is used when z ~ 0 from the positive side, and vice versa. 
Unlike the chordwise velocity increment  in the chordal  plane induced by the distr ibution of sources, 

the chordwise velocity increment  due to the vortex distr ibution is a function of the dihedral  angle ~b. 
Equat ion (27) can be rewritten in the form 

1 (x, 0, Z) Vz 
2re Lx 2 ~ -  2x z tan q~ tan ff + z 2 sec 2 0 x / x ~  z 2 

_ F I xO 
2 ~  x 2 sec 2 ~ -- 2x z tan ~0 tan ~b + z 2 sec 2 q~ 

tan q~ -t 
sec 2 ~t x/X'x'~+ z 2 

x z tan ~b (2 tan 2 q~ + sec 2 ~) - -  Z 2 sec 2 ~ tan q~ -] 

-t J see 2 ~b x / ~  + z 2 x (x 2 sec 2 ~ -  2x z tan ~0 tan ~, + z 2 sec 2 ~0) 
(31) 

the te rms being ar ranged to facilitate integration.  
Again replacing F by ~,(x') dx' cos (I) and x by x -  x', integrat ion with respect to x' gives 

vz (x, 0, z) = 

1 

0 cos ~ f y(x') ( x -  x') dx' 
2~ ( x -  x') 2 sec 2 0 - 2(x - x') z tan q~ tan ~ + z 2 sec 2 ~0 

1 

tan q~ cos (I) I 7(x') dx' 
 se-Y  j 

0 

1 

cos • f ?(x') [ ( x -  x') z tan ~9 (2 tan 2 ~0 + sec 2 O) - 22 see2 ¢P tan ~o] dx' 
2re sec 2 ~, x / (x  - -  X ' )  2 -]- Z 2 . X [ ( X  - -  X ' )  2 sec z ~b- 2 ( x -  x') z tan ~o tan ~, + z 2 sec 2 (p] (32) 

= Ig+Ito+Il t .  

As before, the integrals are evaluated in the chordal  plane as z ~ 0. 

1 

0 cos * I lim f E ( x -  x') sec 2 ~b - z tan q~ tan $ ]  ?(x') dx' 
19 (x, O, O) = 2~ sec 2 0 z --* 0 J (x - x') 2 sec 2 O -  2(x - x') z tan q~ tan 0 + z2 s ec2 0 

0 

1 

+ t a n g t a n ~ b  lim f zv(x')dx' ] 
Z "-~ 0 (X - -  X ' )  2 s e c  2 ~ - -  2 ( x -  x') z tan ~o tan O + Z2 s e c 2  t# 

0 

These limits can be evaluated in the same way as I ,  and I5, and therefore 

1 

/9 (X, O, O) -- 0 COS ~ f 7(X') dx' _ y(x) 
sec2 I]/ 2 ~  ( x -  x ' ) +  2 - sin (I) sin 0 

0 

the negative sign being used as z- - ,0  from the positive side. 

(33) 

12 



I~o, like 14, can only be evaluated on the aerofoil surface, 
111 is of the type considered in Appendix B with ~ = - sec z ~0 tan q~ 

and fl = tan ~O (2 tan 2 q~ + sec 2 ~b). 

Hence 

Hence 

11i (x, O, O) = 

v~ (x, o, O) = 

cos 09 { 1 + sin 09 ], 
2n sec a ~k y(x) 2~k tan q~ tan ~k- 0 log ~ j .  

1 

0 cos 09 f y(x') dx' _7(x) 
sec2 ~k 2n ( x - x ' )  + 2  - sin 09 sin @ 

0 

1 

tansec zq~ cos@ a9 f ~(x') dx' 
2n ~ / ( x -  x') 2 + z 2 

0 

(34) 

COS 09 
v¢x, '_s_--) 2~k tan ~ tan q~ 

s e c  2 i~ z7¢  

cos09 V(x) 0 ( l + s i n 0 9 )  
4 log 

s e c  2 @ ~ 1 - sin 09 

1 

= - cos tp f y(x') dx' _~(x) 2n ( x - x ' )  + - 2  - sin 09 sin @ 
0 

1 

- sin 09 cos ~k f y(x') dx' 
2n ~ / ( x -  X') 2 -'[- Z 2 

0 

r(x) 
sin • sin ~b 

2 n/2 

+ ~2(~) cos ~k log ( 1 + sin 09 ~ 
1 - sin • ,]" 

For  zero dihedral, ~ /=  0, and 

1 

o,  = - f dx '  
J 2~ ( x - x ' )  
0 

1 

~,(x') dx' ~- y(x) 
sin 09 j - ~  x/( x _ x') 2 + z 2 ~ cos ~k log 

0 

1 + s i n ~  ) 
1 - sin 09 " 

(35) 

13 



F o r  zero sweep, q) = ~o = 0, and 

1 

y(x') dx' 
[Vz(x,O,O)].=~=o = -cosO3 ~ (x-x')" 

0 

Far  away from the plane of symmetry ,  y = 0, we have the condit ion of a sheared wing with dihedral,  
having a thin section and a lift distr ibution represented by a distr ibution of vorticity. I fz '  is the co-ordinate  
perpendicular  to this sheared wing 

1 

f y(x') z' dx' 
vx (x, 0% z') = 2n [(x - x') 2 + z '2 see z tI)] 

0 

where the local leading edge is assumed to be x '  = 0. In the chordal  p lane z' = 0, 

1 

lim f y(x') z' dx' 
vx (x ,  oo,  0)  = z' - ,  0 2 n  [ ( x -  x ' )  2 + z '2 s e c  z a , ]  

y(x) ~ l im 
- -  - -  COS t p  r 

2n z -~0  f 
X - - X  "= +8 

z' sec q~ d ( x -  x') 
(X - - X ' )  2 -t- Z '2  s e c  2 q)  

= _ + ~ 2  c0s ~ ,  

the posit ive sign being used when z' ~ 0 f rom the positive side. 
Similarly 

v'z (x ,  oo,  z')  = - 

1 

f ~(x') 2n 
0 

(x -- x') dx' 
[(X-- X') 2 + z '2 sec 2 ~ ]  

and as z' ~ 0 

v; (x ,  0% o)  = - 

1 

f ~(x't dx' 
2re x- -  x' " 

For  convenience the induced velocities derived in this section are listed in Appendix  D. 
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5. Discussion. 
The use of distributions of infinite source and vortex lines of constant strength along their span to 

represent thick, lifting, swept wings in incompressible flow has been studied in detail by, for example, 
Ktichemann I and Weber 2. This Report has carried the study one stage further to consider the case where 
the source (and vortex) distribution on one side of the kink is not coplanar with that on the other side, 
i.e. a distribution with dihedral as well as sweep. In the preceding sections the velocities induced by distrib- 
utions of such vortices and sources in their own plane(s) have been derived, and are listed in Appendices 
C and D. Particular attention has been paid to conditions in the plane of symmetry, that is, the centre 
section, where strong dihedral effects can be expected. Far away from the centre section, of course, the 
flow field is the same as that induced by a planar distribution. 

The outstanding feature of the results in Appendices C and D is that, at the centre section, a distribution 
of sources with constant spanwise strength gives rise to a component of downwash, Vz, which has the same 
direction on both sides of the chordal plane : and a distribution of vortex lines with constant spanwise 
strength gives rise to a component of downwash which has opposite signs on either side of the chordal 
plane. That is, part of the downwash due to the sources has a characteristic one associates with a vortex 
distribution, and part of the downwash due to the vortices has a characteristic one associates with a 
source distribution. In addition, the chordwise velocity increment, v:,, due to the vortices has a term 
proportional to the local vortex strength and with the same sign above and below the chordal plane; 
i.e. it is of the form usually associated with a source distribution. Thus the great simplification that linear 
theory brings to the study of planar wings, namely the ability to treat thickness and lifting effects separately, 
no longer applies when the wing has a dihedral angle. 

Consider an unswept wing of infinite span and constant chord, with the same symmetrical section 
shape at all spanwise positions. If it is at zero incidence, the velocities induced by this wing can be calculated 
in linearised theory by representing the wing by a distribution of infinite source lines in the chordal plane, 
the source lines having constant strength spanwise. At any chordwise position, x, the induced velocity 

perpendicular to the chordal plane, vz(x), is equal to + ~ - } ,  where q(x) is the local source strength. If we 

consider an infinite wing which is swept on each side of a particular section--the 'centre section'--the 
induced velocity v~ everywhere is still equal to the local source strength (see equation (C.2) with ~ = 0). 
Therefore a wing with a uniform symmetrical section can still be represented by a distribution of source 
lines having constant strength spanwise. 

If now we consider a distribution of source lines of infinite span which has both sweep and dihedral, the 
results in Appendix C show that the above result for plane wings--that the induced velocity perpendicular 

to the chordal plane is equal to + -q - i s  now true only at points far away from the centre section. At the 
- 2  

centre section, v~ contains a number of terms which have the same sign above and below the chord line 
and which are therefore characteristic of the velocity induced by a distribution of vortices. Therefore to 
represent a swept, dihedralled wing of uniform symmetrical section at zero incidence, a distribution of 
source lines of constant strength is not sufficient. A distribution of vorticity is also needed, to cancel out the 
unwanted terms in Vz. Since the 'centre effect' disappears as y ~ Go, this distribution of vorticity will not be 
infinite spanwise, nor of constant strength. The equations of Appendix D cannot therefore be used to 
determine this vortex distribution. 

Subsonic wind tunnel tests (unpublished) on a constant chord wing of aspect ratio 5, 45 ° sweep and 32 ° 
dihedral, with a constant symmetrical aerofoil section, have shown that, at and near the centre section, 
there is indeed an appreciable lift force at zero incidence. 

The distribution of sources represents a wing which is cambered and twisted at, and near, the centre 
section, to conform, within linearised theory, to the geometry implied by equation (C.2). The camber line 

of this section is determined by the vz terms other than + q  cos ~k. Since v x is the same above and below 

the plane of the sources, ACp, the local normal force, is everywhere zero and, in particular there is no lift 
on the cambered centre section. The source distribution considered here therefore represents a wing with 
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zero lift but this is not a wing with uniform symmetrical section shape. 
Consider now a thin, unswept wing without dihedral, of infinite span and constant chord. If it has the 

same streamwise camber and the same incidence at all spanwise positions, the velocities induced by this 
wing can be calculated in linearised theory by representing the wing by a distribution of infinite vortex 
lines in the chordal plane, the vortex lines having constant strength spanwise. At any chordwise position, 
x, the induced velocity parallel to the chordal plane or x-axis, (the incidence is assumed to be small), Vx, is 

equal to ± ~  and the induced velocity perpendicular to the chordal plane, vz(x), is given by 

f ~(x') dx' so that vortex strength can be related to the geometry of the thin wing section. If we 
2n ( x -  x') ' 

chord 

consider a distribution of vortex lines of infinite span which has sweep but no dihedral the velocity, vz, 
at the centre section cannot be calculated on the chord line due to the presence of a singularity in an 
integral, and vz calculated off the chordline (e.g. on the surface of a wing of finite thickness) is not the same 
as at sections far outboard (see equation (D.2) with ~ -- 0). This means that the distribution of constant 
strength vortices represents a wing cambered and twisted near the centre section to give the same distribut- 
ion of lift, ACp(x), at all spanwise positions. 

If we now have a distribution of infinite, constant strength vortices having both sweep and dihedral, 
this distribution represents a different camber and twist at the centre section compared with the swept, 
planar wing (see equation (D.2)). As both v x and vz at the centre section contain terms characteristic of 
sources (vz has opposite signs above and below the plane) this distribution ofvorticity cannot represent an 
infinitely thin wing. 

6. Conclusions. 

Equations have been presented for the velocities induced in incompressible flow by distributions of 
kinked source and vortex lines, having both sweep and dihedral. These have shown that the dihedral 
makes it impossible to separate the effects of wing thickness and wing load distribution, even when linear 
theory assumptions are retained. To calculate the velocity distribution on a wing of given shape is there- 
fore much more complicated than for planar wings. 

16 



0X, 0Y, 0Z 

0Y', 0Z' 

x, y, z, y', z' 

X' 

Vx, vv, v~, v'z 

73 x 

V o  

q) 

q~ 

0 

COS ~ ---~ 

0 

A 

P 

R 

S 

E 

F 

q(x) 

~(x) 

u 

a, fl, a , b , A , B , C  

#, v, t, T, X 

LIST OF SYMBOLS 

Right handed set of axes, the origin being at the kink of a source line or vortex line. 
0X is positive in the downstream direction, 0Y positive to starboard and 0Z 
positive upwards. For a chordwise distribution of singularities the unit of length 
is the wing chord (assumed constant). (See Fig. 1). 

Axes at right angles to 0X, along and perpendicular to the plane of the singularity 
distribution, respectively. For integrations far away from the plane of symmetry 
the origin is taken at the local leading edge, for convenience. 

Co-ordinates with respect to the above axes 

Variable of integration 

Velocity increments in the x, y, z and z' directions 

Velocity increment in the x-direction induced by a distribution of two-dimensional 
singularities 

Free-stream velocity 

Angle of sweep in the plane of a half-wing (sweepback is positive) 

Projected angle of sweep in the plane z = 0 (sweepback is positive) 

Projected angle of dihedral on the plane x = 0 (dihedral is positive) 

tan 
tan go 

1 + tan 2 q~ + tan 2 

"x tan q~ + z tan 
0 

General point in the plane of symmetry 

General point on a source or vortex line 

Distance between P and R 

Distance along a source or vortex line 

Source strength per unit length 

Vortex strength per unit length 

Source strength per unit area 

Vortex strength per unit area 

Variable of integration 

Constants used in evaluating integrals 

Variables used in evaluating integrals 
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cos ~ lim 
11 (x, 0, 0) - 

2re 

A P P E N D I X  A 

Evaluation ofll  (x, 0, 0). 

(see Section 3.2). 

1 

f q(x') { ( x -  x') sec 2 ~ - z tan ~b tan q~} dx' 
- - -  z ~ 0 ( x -  x') 2 sec 2 ~9 - 2(x - x') z tan ~ tan ~0 + z 2 sec 2 q~ 

The integrand has a singt/larity when z = 0, x = x'. We divide the range of integration into three parts, 
0 ~ < x ' ~ < x - e , x - e ~ < x ' ~ < x + e ,  a n d x + e ~ < x ' ~ <  1. w h e r e e ~ 0 b u t e > > z .  In the first and third of 
these ranges, x 4: x', and so no singularity occurs when z is put  equal to zero. 

In the second range of  integration we have 

X--X '=  --g 

c o s ~  lim f q(x ' ){(x-x ' )sec2~b-ztanOtanq~}d(x-x ') . 

2~ z ~ 0 (x - x') 2 sec 2 ~ - 2 ( x -  x') z tan 0 tan ~o + z z sec z ~o 
X--X '=E 

It is assumed that q(x') is a cont inuous  function and can be replaced in this range by a mean value, say 
q(x). The integral then becomes 

cos O q(x) lim 1 I 9  (x-x')2secZ~-2(x-x')ztan~Otancp+zZsec2q ~ ] x -x '=-~  
2~ z ~ 0 ~ l ° g  x-x'=~ 

e ~ 0  

Z 2 

q(x) cos • lim sec 2 ~k + 2 z tan ~ tan (p sec 2 

4~z z ~ 0 log 
Z 2 

~ 0 sec 2 ~ -- 2 £ tan ~ tan q~ s e c  2 +~ ~o 
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Hence ,  

= 0 ,  

I1 (x,O,O) = ,,_ 

s ince 

cos ~ ,  

2n  

A P P E N D I X  A 

z<<e. 

X ~ = X - - ~  X ' =  1 ! ' mf l ira q(x') dx' t-e 
5-+0 X-- X' ~ 0 

q(x') dx' } 
X - - X '  

1 

= fq(x')2n 
o 

dx' 
X - -  X t COS (I) .  

A P P E N D I X  B 

Evaluation of12 (x, 0, 0). 

(see Sect ion  3.2) 

1 

2 (x, 0, 0) = 0 c o s O  l im I q(x') l-z 2 t a n  q ~ - ( x - x ' )  z t an  @] dx' 
• 2n  z ~ 0 j [(x - x') 2 sec 2 ~ - 2(x - x') z t a n  ~ t an  q~ + z 2 sec 2 ~o]...x ~/(x - x') z + z 2 

o 

Let  u = x - x' ,  a = t an  q~, fl = - t an  ~9, i X ' )  = f i x -  u). 
T h e n  the  in teg ra l  is 

U = X - - 1  

l im _ f f (x - u) (a z e + f lu  z) du 
z ~ 0 ~ (u 2 sec 2 ~ -  2u z t an  0 t an  q~ + z 2 sec 2 ~o 

u ~ x  

(B.1) 

z 2 = 0  o n l y  w h e n  u = z = O .  

u 2 sec 2 ~ - 2u z t a n  ~k t an  ~o + z 2 sec 2 ~o 

= u z (1 + t an  z i p ) ,  2u z t an  ~O t a n  q~ + z z (1 + t an  z ~o) 

= u 2 + z z + (u t a n  ~O- z t an  q~)z. 

Since all the te rms are  posi t ive,  this express ion  is zero on ly  w h e n  u = z = 0. Therefore  the d e n o m i n a t o r  
of  the i n t e g r a n d  is zero on ly  when  u = z = 0. Subs t i t u t i ng  z = 0 in the  in tegra l ,  the i n t e g r a n d  is therefore  
zero except  when  u = 0 (i.e. w h e n  x '  = x). Since 0 ~< x ~< 1, u = 0 wi th in  the range  of  in t eg ra t ion .  The  
in t eg ra l  m a y  therefore  be wr i t t en  

e 

lim f (x )  f (a z 2 + f lu  z) du 

3 
z --+ O (U 2 s e c  2 ~//-- 2u z tan ~k tan ¢p + Z 2 s e c  2 ~0 

- g  
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A P P E N D I X  B 

where e will ~ O, but ~ > > z, and a s s u m i n g f  ( x - u )  = constant  = f(x) in the range of  integration. 

Substitute u = t + v where p, v are roots  of  the equat ion 
t + l  

~ 2 + ¢ z t a n 2 ~ b - t a n 2 q ~  z 2 = 0  
tan ~b tan q~ 

i.e. 

tan cp 
# = z  

tan ~b 

tan 
1; ~ - - z - -  

tan ¢p 

U ---- 

{ tan q~ tan ta t-tan ) 
t + l  

t - -  
/ 2 - - u  

tan 
u + z - -  

tan q~ 

tan ~p 
z tan ~ , - u  

# -  v z (tan 2 ~k + tan 2 ~p) 
du = ~ ] ~ d t  = tan ~p tan ~ (1 + 0  2 dt. 

Studying the behaviour  of t in the range of  integration : 
When  

U = - - g , t  - -  

tan ~b 

tan ~o 

tan q~ 
e + z  

tan 

tan ~p 
< 0 ,  since z < < a ~ a s s u m m g q ~ a n d ~ > O  

when 

tan2O > 0 
u = O , t  - tanZ q~ 
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APPENDIX B 

when 

U = 

< 0  

tan 
tan q, 

+ 8 , t  - -  
tan (p 

8 - - Z  
tan.O 

tan ~k 
since z < < e 

tan ~p 

tan q~ 
As u ~ z t - ~  from below, 

tan ~p 
As u ~ z ~  from above, 

Therefore t increases from 

again to 

t --~ 0 0 .  

t - - ~  - - o 0 .  

tan ~, 
8 - - Z  

tan ~o 
tan ¢p 

e + z - -  
tan O 

tan 
e + z - -  

tan q~ at u = + e .  

tan q~ 
8 - - z - -  

tan 

zlkmof (X) 

L 
u = - 1 ~  

g =  + e  

= lim f(x) f 
Z _.9. 0 u =  - -e  

U =  + g  

The integral becomes 

tan q~ 
- -  at u = - e to + oo at u = z ~ : jumps to - ~ and increases 

.. _ / '  tan ~0 tan O [°~(t+l)+fl~,t~nOt-tanq~)](tan2O+tan2q~) dt 
( t a n q ,  t tanO a 

t a n q ~ t a n ~ k ~ / ( t + l ) 2 + \ t a - ~  - t a n q ~ ) x  

( t a n q ~ t _ t a n  2 
\ t a n O  t a n ~ )  sec2 o+(1  +t)2 sec2 q~ 

/' tan ~0 tan $ ) 
- ( l + t ) 2 t a n  O tan ~0 ~ t  tango 

{(c~+Bt~n~O)t+(c~-fltan---~'~ttan2Odt\ tan ~o / 

tan ~o x/ tan 2 q~ + tan 2 O ~/tz + t a - ~  ~ t2 + t a n 2  0 [ 02 tan2 (p) tan2 ~ 
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f 
= lim f(x) 

z-- ,0  [ 
/ 

APPENDIX B 
U= +g 

tan ~ (~ tan ¢ + fi tan ~o) f t dt 

tan (P x/ tan2 q°+ tan2 ~ u= -~ ~ t 2 + ~  ( t z + t a n  ~0 \ 02 tan2 O t a n  z q~ ) 

tan 2 ¢ (~ tan q~ - fi tan ¢) 

tan 2 ~0 x / tan  2 q~ + tan 2 U= +e 1 f dt . 
/ 2 tan2 @// 02 tan2 0 )  

u=-. 4 t + ta~T--~ ~, ta + tan2q~ 

Consider  firstly 

f 
U = - - E  

t dt 

x/t2+•(t2+o2tan2•) tan ~o k tan 2 

dT 
, on substituting T = t 2 . 

U= q-~ 

g (T + B) 
u = --8 

This is of the form 

f dx 

(x-c)x/~x+b 

of which the solution is given in Ref. 4. 
H e r e x - -  T , a =  1, b = A a n d c =  - B  

tan 2 ~ 02 afi+b = A - B  - t a - ~  (1 -02 )  < 0 since > 1. 

The integral is therefore 

(B.2) 

-2  /-(a~_+b) 
x / -  (a fl + b) t an -  ~ ~ a x + b t- constant  

- 2 tan ~o 

tan ~b x / t an  2 ~o + tan 2 

tan2 O 2 -- 

tan_ 1 /tan2----~ (0z 2 1 )  

/ tan2_0 
V tan 2 q~ 

The first part  of (B.2) is therefore 

lim f(x),  
z ---~ 0 

tan ~ (~ tan O + fl tan rp) 1 

tan ~o ~/ tan 2 q~ + tan 2 ~- 

- 2  tan ¢p 
x 

tan O ~f  tan2 q~ + ta n2 ~ 
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APPENDIX B 

= lim f(x){ c~tanO+fltan4° I I(ztan4°-utan~s)2]:=+;} 
z --* 0 tan2 q~ + tan2 0 tan-  1 X] u a - ~  ~ : " 

Since z tan q~- u tan ~ and ~ are physical distances, take the positive square root. 

zl~f(x) f atan~b+fltan~°[tan-ilztanq)-utanOll u=+~ } t a n  2 q~ + tan 2 ~b ~ , = - ,  

= zlim, of(X) f a tan ~ + fl tan q~ 
tan 2 ~ - ~  ) 

tan-  1 Z t a n  ~o - e t a n  

, : /U+z 2 
z tan ~o + e tan ~k{. 

% 

tan-  
x//-fi + z 2 J 

Remembering that e > > z, as z --* 0, the limit is 

f ( x ) [  a t a n q / + f l t a n t p  {tan-1 ( - t a n O ) - t a n - 1  (tan~b)} l t a n 2  q~+tan2 

= 2f(x) ~k a tan ~ + fl tan ¢p 
tan 2 q~ + tan 2 ff " 

Consider secondly 

u. = +e 

/ 2  tan2 0 / '  tan2 0"~ u--'-~ ?t +ta--~tt2+O2tan2q) ] 

= f dX where 
(x'- + c 2) 

I t =  - - ~  

X = t ,  and C 2 :> A 2 . 

From Ref. 4 the solution is therefore 

2 C x / C Z - A  2 
l o g  { constant C C ~ -  X ~ } WX2 + A2 + X 

tan 2 ~o . log 

( 20 tan 2 ~O x/ tan 2 qo + tan 2 ~O 

0 t 

x/tan 2 q~ + tan 2 ~t • /  tan2 ~, 
t 2 + t a n  2 ~p 

constant 
0 t 

l tan2 ~/tan 2 ¢p + tan 2 ~ t 2 -~ tan 2 q~ 
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A P P E N D I X  B 

The  second par t  of (B.2) is therefore 

f 

lim .~ e tan q~ - fi tan 

z ~ of(X) 1 20--~n2-~ ~t-~£ ~) 

L 
As before x / / ~  z z > 0 an~ 

zlim__~ o f  (X) 

= f(x) 

log 

u+z tan ~. 
0 tan ~o 

tan ~p 

u + z tan____~ 
0 tan ~o 

tan ~o " x / ' ~  

it= +e 

It= --8 

e > > z. Taking the limit as z -~ 0 

tan q~ - f l  tan ~, 
20 (tan 2 ~p + t a n  z ~9) 

1+ 

log 

tan u + z - -  
tan q~ sin qb 

tan u+z - -  
tan q~ sin 

~ / ~ + z  2 

tan ~p - fl tan ~b .J" 1 + sin ¢I) 
20 (tan 2 ~ + t a n  2 ¢~)1 l°g 1 - s i n  

log 

0=+8 ] 

U = --8 I 

1 + sin 

tan ~o - fl tan ~ 1 + sin 
= f(x) 0 (tan 2 ~o + tan 2 ) log 1 - sin ~ "  

Therefore 

I 2 (x ,0 ,0)  = - -  
0 cos • J"2ff a tan ~ + fi tan tp 

2~ - q(x) [ tan2 q~ + tan2 
a tan q~- fi tan ~O 

0 (tan z q~ + t a n  2 if) 
, 1 + sin • ] 

x log i--S_ s ~  ; 

q(x) I + sin 
2n cos • log 1 - sin ~ "  

124 



A P P E N D I X  C 

Summary of Equations of Velocities Induced by Source Distributions 
of Infinite Span and Constant Strength Spanwise. 

(See Section 3.2) 

1 

vx (x, 0, 0) = cos cb f q(x') dx' q(x) cos ~ log 1 + s i n ~  
6 2re x - x '  2re 1 - sin 

0 

1 1 

Vz (X' O' O) = - sin ~ sin ql f q(x') x - x' - sin q/ f q(x')2rc 

o o 

dx' * 

x / ( x  - x 3 2 + z ~ 

(c .1)  

~q,x,~ ~,~ ~os ~ + ~  s~n o ~m ~,o~ (~ +s~ °)s~ • 

+~)  cos ¢, 

the positive sign being used if z ~ 0 f rom the positive side. 

(c.2) 

the 

1 
f q(x') dx' 

vx(x,o%0) = c o s ( I ) j  2re x - x '  
0 

q(x) 
6 (x, o% O) = +_ 

2 

9ositive sign being used if z --* 0 f rom the positive side. 

(C.3) 

(C.4) 

*This integral cannot  be evaluated in the limit as z ~ 0. A finite value o fz  mus t  be chosen. 
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APPENDIX D 

Summary oj Equations of  Velocities Induced by Vortex Distributions 
of  Infinite Span and Constant Strength Spanwise. 

(See Section 4.2) 

vx (x, O, O) = + tx~r~:: cos ~-~ 
~(x) 

Z 2 n/2 
c o s  • 

the positive sign being used if z ~ 0 from the positive side. 

1 1 

Vz (x, 0, 0) = - cos ff ~ 7(x') dx' sin • cos ~ f 7(x') dx' * 
J x - x '  J 
0 0 

~'(x) ff sin ¢ ~'-t-2n-~ c°s ~' l°g ( ) sin "" ' y(x) , 1 + sin 
2 n/2 1 - s i n  ~ 

- T - ~  sin • sin 

the positive sign being used if z --+ 0 from the negative side. 

v~tx, ~ , 0 )  = +~ff-~cos(I), 

the positive sign being used if z-o 0 from the positive side. 

(D.1) 

(D.2) 

(D.3) 

1 

V'z (x, oo, O) = -- f 7(x') dx' 
2n x -  x' " 

0 

(D.4) 

*This integral cannot be evaluated in the limit as z ~ O. A finite value ofz must be chosen. 
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FIG. 1. System of axes and kinked vortex or source line. 
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