

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

An Approximate Treatment of the Stability of a Towed Unbanked Object in a Condition of Zero Lift

By H. R. Hopkin

Aero Dept.. R.A.E. Farnborough

An Approximate Treatment of the Stability of a Towed Unbanked Object in a Condition of Zero Lift

By H. R. Hopkin
Aero Dept.. R.A.E. Farnborough
Reports and Memoranda No. 3675* April, 1969

Summary.

An approximate method is given for assessing the stability of a towed object, using the same basic theory as Glauert (Ref. 3) and Etkin and Mackworth (Ref. 6). The analysis is developed in terms of lateral stability, but can be simply translated to deal with the longitudinal case. Stability criteria are derived which involve a number of parameters, including the mass and moment of inertia of the body, its drag and transverse aerodynamic force and yawing moment characteristics, and the vertical scparation between towed body and the tug. Formulae and charts are given for ready application of the method.

[^0]
LIST OF CONTENTS

Sections.

1. Introduction
2. Equations of Motion
3. Stability Quartic and Stability Boundaries
4. Effects of Varying the Aerodynamic Design or Moment of Inertia
5. Mapping of Unstable Region
6. Modes of Motion
7. Discussion and Conclusions

List of Symbols
References

Appendix 1 Corresponding quantities in three notations
Appendix 2 Contours of constant persistence and loci of the maximum persistence
Illustrations--Figs. 1 to 13
Detachable Abstract Cards

1. Introduction.

Although a number of papers have been written on the general theory of the stability of objects being towed by aircraft, and also on the related inverse problem in which a balloon is tethered by a cable, the application of the theory has been limited. A comprehensive analysis would be complex, even when based on smal! perturbations and linearised equations, owing to the action of the cable and the aerodynamic forces acting on it, and to the coupling between longitudinal and lateral motions.

The present report is restricted to attempting to generalise and improve the techniques of application of an approximate theory for a drastically simplified mathematical model. To clarify some of the assumptions it seems worthwhile to begin by considering briefly, as background, previous work in the field.

Neumark ${ }^{1}$. in examining the aerodynamics of cables for balloons, reviewed the known literature, beginning with Bairstow, Relf and Jones ${ }^{2}$. Much of it relates to the calculation of 'cable derivatives', which are quantities analogous to the familiar derivatives of aerodynamic forces and moments much used in stability analysis. Thus, perturbations in the components of cable force in a purely longitudinal problem would be expressed in the form $X_{x} x+X_{z} z, Z_{x} x+Z_{z} z$, where x, z are components of the displacement of the endpoint of the cable. It is perhaps significant that Glauert ${ }^{3}$, Brown ${ }^{4}$, Mitchell and Beach 5, and again Neumark came against computational difficulties. The present author, together with H. H. B. M. Thomas, tried recently to extend Neumark's formulae to the doubly limiting case of a cable without weight and without drag. The analysis revealed that, as the limit is approached, the individual derivatives $X_{x}, X_{z}, Z_{x}, Z_{z}$ tend to infinity but in such a way that ($\left.X_{x} x+X_{z} z\right)$ and $\left(Z_{x} x+Z_{z} z\right)$ remain finite. This behaviour is the root cause of the computational difficulties. It is, of course, unnecessary to introduce cable derivatives for a weightless dragless cable (which is assumed in the present report), but even in cases in which perturbations in cable forces caused by cable weight and drag do have to be considered, it might be profitable to seek an alternative to a representation in terms of cable derivatives.

The classic paper on the dynamics of towed objects is by Glauert ${ }^{3}$. He considered the shape and dynamics of a light inextensible wire when used for towing, and examined the stability of a towed object subject to assumptions that permitted of separate longitudinal and lateral equations of motion. More recently Etkin and Mackworth ${ }^{6}$ produced an analysis, which (although they were unaware of this) corresponded to an approximation given by Glauert. They applied the analysis only to lateral stability. Lipscombe ${ }^{7}$ also developed the same sort of theory independently.

Glauert started by determining the shape of the wire following an assumption that the aerodynamic force on an element of length δL would be normal to the element and proportional to $\sin ^{2} \varepsilon$, where ε is the angle between δL and the airstream. This was based on work by McLeod ${ }^{8}$. Glauert then examined the modes of motion consistent with small perturbations for a wire supporting an object, but assumed at first that the aerodynamic forces acting on the object remained constant during the motion. There were three such modes, which he interpreted as
(a) a transverse 'pendulum oscillation',
(b) a 'pendulum oscillation' in the vertical plane of symmetry,
(c) a 'bowing (or normal) oscillation' in the vertical plane of symmetry.

Finally he added the effect of incremental aerodynamic forces on the towed object, and the equations of motion included terms in $X_{r r} Z_{w .} Z_{q}, M_{w}, M_{q}$ and in $Y_{r .}, Y_{r}, N_{r,} N_{r}$. The separated longitudinal equations yielded a sextic stability polynomial, and, because derivatives of the rolling moment were ignored, the lateral equations yielded a quartic. For typical parameter values, the sextic factorised approximately into a quadratic that always represented a stable mode of motion together with a quartic that was analogous to the lateral quartic, Z_{w} being considered as the counterpart of Y_{v}, M_{w} of $-N_{v}$, and so on.

Etkin and Mackworth make more drastic assumptions from the outset, as in the present report, which lead directly to the lateral quartic. They have sought corrections to account for the influence of cable drag and mass in approximate fashion, but it seems unwise to toy in such a way with the more general problem, as there is a host of additional interrelated contributions once we depart from the simple straight-cable. Great care must then be taken in making a consistent set of assumptions. They suggest that the simple uncorrected analysis might be accurate enough when the cable drag and mass do not exceed about 10 per cent of those of the towed object, but no positive evidence to support this is known.

The present report makes use only of the simple quartic stability equation, but describes a fairly complete analysis of the consequences of variations in aerodynamic design or moment of inertia of the towed object.

Generalised stability diagrams are outlined, and examples for typical parameter values include a mapping of unstable regions, and give loci that define the maximum degree of instability possible. General expressions for calculating such loci and other quantities are derived. An analysis of the unstable region is important in some applications when the operational pattern cannot completely avoid the region although it may be traversed quite quickly.
Only the equations for lateral motion are given, but as already indicated the basic assumptions are such that the analysis can be applied to the longitudinal motion merely by replacing lateral parameters by corresponding longitudinal ones. For zero aerodynamic forces on the cable the correspondence is exact, and not merely approximate as indicated by Glauert in the general case.
It should be noted that except in some trivial respects the notation follows that described by the author elsewhere ${ }^{9}$, and also by the Royal Aeronautical Society ${ }^{10}$. A table of corresponding symbols and expressions used by Glauert ${ }^{3}$ and by Etkin and Mackworth ${ }^{6}$ is given in the Appendix.

While the present report was being prepared, Pinsker ${ }^{13}$ investigated the stability of free-flight model aeroplanes when on tow prior to release. He decided that aerodynamic lift was important and that a good approximation would be obtained by suppressing the yawing freedom but retaining the rolling His stability equation is therefore a quartic that is quite different from the one considered here, and the two reports are complementary.

2. Equations of Motion.

Consider an object such that, when towed at a steady speed V_{e} in level flight, its weight is balanced by the vertical component of the cable tension. The only aerodynamic force is then the drag, which is balanced by the horizontal component of the cable tension. If the cable is inextensible and connected at the centre of gravity, and its mass and drag are negligible, it assumes the shape of a straight line. The configuration in the steady state is depicted in Fig. 1, and perturbations from this state are shown in Fig. 2.

Earth axes $O_{n} x_{n} r_{n} z_{0}$ provide a reference for the point of cable attachment G and for changes in attitude of the towed object. The origin O_{o} travels at speed V_{ρ} and is always at distance L from the towing-point $P: O_{o}$ is also behind and below by amounts a_{e}, b_{e} respectively. The vertical separation b_{e} will be found to have great significance in the motion of the object. The $x_{o} y_{o}$ plane is horizontal and the x_{o} axis is in the vertical plane through O_{o}.

Any displacement of G relative to O_{0} is represented by the components x_{0}, y_{0}, z_{0}. Aerodynamic-body axes GxyE are employed for dealing with the equations of motion, and for defining perturbations in attitude in terms of the deviation angles ϕ, θ, ψ. Since in this application $G x y$ is horizontal in the datum flight condition. the yaw-deviation angle ψ corresponds to a displacement in a horizontal plane and the pitch-deviation angle (10 one in a vertical plane. The roll-deviation angle ϕ is equal to the bank angle.

Equations of motion are obtained in the usual way, but terms representing the effect of the cable tension have to be included. Consider the components of the tension T in the perturbed state. The components along earth axes are given by the column matrix $\left\{X_{T v} Y_{T v} Z_{T o}\right\}$, or $\left\{X_{T o}\right\}$ in abbreviated form. where

$$
\begin{aligned}
X_{T o} & =T\left(a_{e}-x_{o}\right) / L \\
Y_{T o} & =-T_{y} / L \\
Z_{T o} & =-T\left(b_{e}+z_{o}\right) / L
\end{aligned}
$$

The components along body axes are given by

$$
\left\{X_{T}\right\}=S\left\{X_{T o}\right\}
$$

where S is the axis transformation matrix.
If we assume perturbations to be small, linearised approximations are forthcoming as follows:

$$
\begin{gathered}
S=\left[\begin{array}{rrr}
1 & -\psi & 0 \\
\psi & 1 & -\phi \\
-\theta & \phi & 1
\end{array}\right], \\
T=T_{e}+T^{\prime}, \quad T^{\prime} \text { small, } \\
X_{T}=X_{T_{e}}+X_{T}^{\prime}, \quad \text { ctc., } \\
\left\{X_{T}^{\prime}\right\}=(I-S)\left\{T_{e} a_{e} / L, \quad O, \quad-T_{e} b_{e} / L\right\}-T_{e}\left\{x_{o} / L, \quad y_{o} / L, \quad z_{o} / L\right\},
\end{gathered}
$$

where I is the unit matrix, or

$$
\left.\begin{array}{rl}
X_{T}^{\prime} & =T_{e}\left(b_{e} \theta-x_{o}\right) / L+a_{e} T^{\prime} / L \tag{1}\\
Y_{T}^{\prime} & =-T_{e}\left(a_{e} \psi+b_{e} \phi+y_{o}\right) / L \\
Z_{T}^{\prime} & =T_{e}\left(a_{e} \theta-z_{o}\right) / L-b_{e} T^{\prime} / L
\end{array}\right\}
$$

When these force increments are included in linearised equations of motion that could otherwise be separated into two independent sets, longitudinal and lateral, a similar separation is still feasible provided that x_{0}, z_{0}, T^{\prime} are related only to longitudinal variables, and y_{o} only to lateral ones. The linearising procedure automatically looks after x_{o}, y_{o}, z_{o}, for

$$
\dot{x}_{o}=u, \quad \dot{y}_{o}=V_{e} \psi+v, \quad \dot{z}_{o}=-V_{e} \theta+w,
$$

where u, v, w denote the scalar increments in velocity components, and it follows that a separate set of linearised lateral equations is always obtained.

In the more general cause of a curved cable, consistent and reasonable assumptions can be made that also lead to separate lateral and longitudinal linearised equations (see Glauert, for example).

The lateral equations of motion used here have a particularly simple form since it is assumed that no rolling motion develops and hence ϕ is zere. The variables are then v, ψ, y_{o}. Moreover, it is assumed that the cable bears the whole towed weight.

We may proceed at once to normalised forms according to the scheme of Ref. 9. Basic derivatives of aerodynamic forces and moments are aero-normalised, and concise derivatives are dynamic-normalised. The dip overscript (v) and cap (Ω) are unnecessary, and Y_{v} will stand for \breve{Y}_{v}, y_{v} for \hat{y}_{v}, as explained in Ref. 10. The equations of motion in dynamic-normalised form become

$$
\begin{gathered}
\left(D+y_{v}\right) v+D \psi=Y_{T}^{\prime}, \\
n_{v} v+\left(D^{2}+n_{r} D\right) \psi=0, \\
D y_{o}=\psi+v
\end{gathered}
$$

where all quantities are interpreted in terms of a unit of speed V_{e}, unit of force $\frac{1}{2} \rho_{e} V_{e}^{2} S$, unit of time $\tau=\mu l / V_{e}$, and μ is the relative density parameter $m / \frac{1}{2} \rho_{e} S l$. Since in the steady state the horizontal and vertical components of the cable tension balance the drag and weight, the second of equations (1) in terms of these units becomes

$$
Y_{T}^{\prime}=-\left(C_{D e} \psi+C_{W} \phi+y_{o} / C\right)
$$

where $C_{D e}$ is the steady-state drag coefficient,

$$
\begin{align*}
C_{W} & =m g / \frac{1}{2} \rho_{e} V_{e}^{2} S \\
C & =b_{e} / \mu l C_{W}=\frac{b_{e} V_{e}^{2}}{\mu^{2} l^{2} g} . \tag{2}
\end{align*}
$$

The final form of the equations is therefore, for $\phi=0$,

$$
\left.\begin{array}{rl}
\left(D+y_{v}\right) v+\left(D+C_{D e}\right) \psi+y_{o} / C & =0 \tag{3}\\
n_{v} v+\left(D^{2}+n_{r} D\right) \psi & =0 \\
-v \quad-\psi+D y_{o} & =0
\end{array}\right\}
$$

The force and moment derivatives are given by

$$
\begin{aligned}
& y_{v}=-Y_{v}=-\frac{\stackrel{\circ}{Y_{v}}}{\frac{1}{2} \rho_{e} S V_{e}} \\
& n_{v}=-\frac{\mu N_{v}}{i_{z}}, \quad N_{v}=\frac{\stackrel{o}{N_{v}}}{\frac{1}{2} \rho_{e} S l V_{e}} \\
& n_{r}=-\frac{N_{r}}{i_{z}}, \quad N_{r}=\frac{\stackrel{\circ}{N_{r}}}{\frac{1}{2} \rho_{e} S l^{2} V_{e}}
\end{aligned}
$$

where i_{z} is the yawing inertia parameter $I_{z} / m l^{2}$, and $\quad \stackrel{0}{V}_{v}, \stackrel{\circ}{N}_{v}, \stackrel{\circ}{N_{r}}$ are derivatives expressed in ordinary dimensional form.

The characteristic or stability equation is the quartic

$$
\begin{equation*}
\lambda^{4}+J_{3} \lambda^{3}+J_{2} \lambda^{2}+J_{1} \lambda+J_{0}=0 \tag{4}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
J_{3}=y_{v}+n_{r} \tag{5}\\
J_{2}=y_{v} n_{r}+\bar{n}_{v}+1 / C \\
J_{1}=C_{D e} \bar{n}_{v}+n_{r} / C \\
J_{0}=\bar{n}_{v} / C
\end{array}\right\}
$$

and \bar{n}_{v} has been written for $-n_{v}$ as this is usually positive.

3. Stability Quartic and Stability Boundaries.

If the aerodynamic forces were negligible, because the speed is low, for example, the quartic would approach the degenerate form $\lambda^{2}\left(\lambda^{2}+J_{2}\right)$, where $J_{2}=1 / C$ or in ordinary units g / b_{e}. The factor $\left(\lambda^{2}+J_{2}\right)$ would represent a 'pendulum' oscillation with period $2 \pi\left(h_{e} / g\right)^{\frac{1}{2}}$. The remaining factor λ^{2} merely represents the neutral properties due to the absence of aerodynamic forces.

If, on the other hand, the aerodynamic forces were important but the incremental transverse force Y_{T}^{\prime} due to the cable were negligible, the equations of motion would reduce to

$$
\begin{aligned}
\left(D+y_{v}\right) v+D \psi & =0 \\
n_{v} v+\left(D^{2}+n_{r} D\right) \psi & =0
\end{aligned}
$$

which yield the stability equation

$$
\lambda^{3}+\left(y_{v}+n_{v}\right) \lambda^{2}+\left(y_{v} n_{r}+\bar{n}_{v}\right) \lambda=0 .
$$

The factor λ again corresponds to neutral stability, and the remaining quadratic represents a 'directional' mode of motion. Such a mode is usually oscillatory for an aircraft because \bar{n}_{v} is appreciable on account of a rear fin, and the undamped period is then approximately equal to $2 \pi \tau / \omega$, where $\omega^{2}=\bar{n}_{v}$. It will be seen from equations (1) that one way of imagining the condition of zero Y_{T}^{\prime} to be approached is to have a very long cable and also to have an object with very small drag/weight ratio, since

$$
T_{e} a_{e} / L=D_{e}, \quad T_{e} b_{e} / L=W
$$

It is shown later than an undamped oscillation can be present with combinations of b_{p} and V_{e} that satisfy the relation $h_{e} V_{e}^{2}=$ constant, and that two such constants exist for any particular towed object. The b_{e}, V_{e} plane can therefore be charted into three regions, the one for which motion is unstable being flanked by regions of stability (see Fig. 3). The region of instability can be further charted to show the severity of instability.

In order to proceed with the analysis in a generalised form it is useful to change the unit of time by the factor ω, and write $\lambda=\omega \mathrm{s}$, so that the stability quartic in terms of s becomes

$$
\begin{equation*}
s^{4}+J_{3} s^{3}+J_{2} s^{2}+J_{1} s+J_{0}, \tag{6}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
J_{3}=\left(y_{v}+n_{r}\right) / \omega, \tag{7}\\
J_{2}=1+y_{v} n_{r} / \omega^{2}+1 / K, \\
J_{1}=C_{D e} / \omega+n_{r} / \omega K, \\
J_{0}=1 / K,
\end{array}\right\}
$$

and

$$
\begin{equation*}
K=\omega^{2} C . \tag{8}
\end{equation*}
$$

Further rationalisation is achieved by introducing the parameters

$$
\left.\begin{array}{l}
f=n_{r} / \omega, \tag{9}\\
x=y_{v} / n_{r}, \\
d=C_{D e} / y_{v}, \\
k
\end{array}=1 / K=\frac{\mu^{2} l^{2} g}{b_{e} V_{e}^{2} \omega^{2}}, ~=\frac{\tau}{\omega^{2}} \frac{g}{b_{e}}, \quad\right\}
$$

since then

$$
\left.\begin{array}{l}
J_{3}=f(1+x), \tag{10}\\
J_{2}=1+f^{2} x+k, \\
J_{1}=f(d x+k), \\
J_{0}=k .
\end{array}\right\}
$$

It is worth noting that K can also be expressed as $\left(P_{1} / P_{2}\right)^{2}$, where P_{1} is the basic 'pendulum' period, and P_{2} the basic 'directional' period, which were mentioned when discussing the elementary modes for degenerate cases.

In order to determine the critical values of $b_{e} V_{e}^{2}$ we merely have to determine C, or in effect K or k, and the next section discusses the variation of the critical values with f, x, and d.

Stability boundaries.

A mode of motion with zero damping will exist when the stability equation (2-4) has a factor λ or ($\lambda^{2}+$ const.). The first possibility corresponds to \bar{n}_{v} / C being zero, and for finite values of b_{e} and V_{e} this implies that \bar{n}_{v} would have to be zero. The second possibility corresponds to a factor of the form $\left(s^{2}+B_{0}\right)$ existing for equation (6), and therefore would require that

$$
\left.\begin{array}{r}
J_{0}-J_{2} B_{0}+B_{0}^{2}=0 \tag{11}\\
J_{1}-J_{3} B_{0}=0
\end{array}\right\}
$$

These are equivalent to the condition

$$
\begin{equation*}
B_{0}^{2}-B_{0}\left(1+d-f^{2}\right)+d=0 \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{0}=\frac{k+d x}{1+x} \tag{13}
\end{equation*}
$$

The quadratic in B_{0} has rather simpler coefficients than the corresponding quadratic in k, which is

$$
\begin{equation*}
k^{2}-k\left[\left(1+d-f^{2}\right)+x\left(1-d-f^{2}\right)\right]+d(1+x)\left(1+f^{2} x\right)-d^{2} x=0 \tag{14}
\end{equation*}
$$

and it is therefore a convenient basis for drawing stability boundaries.
Consider a given towed object with particular values of d, x, f. From (12) we obtain two critical values of B_{0}, and hence of k by applying (13). By allowing f to vary we can draw in the f, B_{0} plane the locus of points corresponding to an undamped oscillation. Two such loci are sketched in Fig. 4, the typical one having a turning point at $B_{0}=\sqrt{ } d, f=1-\sqrt{ } d$. When $d=0$ the curve degenerates into two branches: $B_{0}=0$ and $B_{0}=1-f^{2}$. The loci reach the B_{0}-axis at $B_{0}=d$ and $B_{0}=1$. An equivalent locus in the f, k plane is shown in Fig. 5. Representative points on the B_{0}-axis should be interpreted with care, since $f x=y_{v} /(1)$ and $f d x=C_{D e} /(\omega)$, and the stability quartic for $n_{r}=0$ is

$$
s^{4}+\frac{y_{v}}{\omega} s^{3}+(1+k) s^{2}+\frac{C_{D e}}{\omega} s+k=0
$$

When $k=\mathrm{d}$, the factors are

$$
\left(s^{2}+d\right)\left(s^{2}+\frac{y_{v}}{\omega} s+1\right)
$$

As $n_{r} \rightarrow 0, x \rightarrow \infty$ and the point $f=0, k=1+x-d x$ approaches infinity. When k is very large in this way. the stability factors are of the form

$$
\left(s^{2}+\frac{C_{D e}-y_{v}}{\omega k} s+1\right)\left(s^{2}+\frac{y_{v}}{\omega} s+k\right)
$$

and in the limit become

Although we may wish to produce a diagram like Fig. 3 for an existing towed object, a generalised form is useful for design purposes, and Fig. 6 seems suitable. Here b_{e} / g is plotted against $V_{e} \omega / \mu l$, each corresponding to a particular value of k.

To illustrate the use of Fig. 6, consider a proposed design with $d^{\circ}=0 \cdot 04, x=0 \cdot 4, f=0 \cdot 3$. From Fig. 4 we deduce the critical values $B_{0} \approx 0.04, B_{0} \approx 0.9$, and hence from equation (13) the corresponding $k \approx 0.04,1.25$ (compare Fig. 5). In this case, Fig. 6 happens to show curves for $k=0.04$ and $k=1 \cdot 3$, but if necessary additional curves can be drawn quickly since the equation is merely $\left[b_{e} / g\right]\left[V_{e} \omega / \mu l\right]^{2}=1 / k$.

4. Effects of Varying the Aerodynamic Design or Moment of Inertia.

We have shown that the two stability boundaries given by constant values of $b_{e} V_{e}^{2}$ are determined by the two values of k obtained, for a given value of f, from points such as A, B. in Fig. 5. The aerodynamic parameters considered are the drag coefficient $C_{D \rho}$, the acro-normalised derivatives $Y_{r,}, N_{t}, N_{t}$, and the moment of inertia I_{z}. These are contained in the parameters k, f, x, d which appear in the formulae and diagrams of this Report. For convenience, the definitions are collected together below.

$$
\begin{array}{rlr}
Y_{v}=-y_{v}, & k=1 / C \bar{n}_{v} \quad \text { where } C=b_{e} V_{e}^{2} / \mu^{2} l^{2} g, \\
N_{r} & =-i_{z} n_{r}, & f=n_{r} / \sqrt{ }\left(\bar{n}_{v}\right), \\
N_{v} & =i_{z} \mu n_{v}, & x=y_{v} / n_{r}, \\
I_{z} & =i_{z} m l^{2}, & d=C_{D e} / y_{v} .
\end{array}
$$

We shall first discuss the effects of varying $C_{D e}, Y_{v}, N_{r}, N_{v}$ when I_{z} is constant. Variations of Y_{v} are reflected in y_{v} and hence in x and d, those of N_{r} in n_{r} and hence in f and x, and those of N_{v} in \bar{n}_{v} and hence in k and f.

Variations in $C_{D e}$ and Y_{v}.

Fig. 5 brings out the salient features since the shape of the stability boundary is determined by x and d. It is clear that as d increases towards a value of unity the two critical points on the k-axis approach coincidence, and the whole boundary shrinks towards the point $k=1, f=0$. For $d>1$ the stability boundary reappears with a peak at $f=\sqrt{ } d-1$. When $d=1$ the stability quartic factorises into the form

$$
\left(s^{2}+f s+1\right)\left(s^{2}+f x s+k\right)
$$

which for positive values of f, x, k represents stable modes of motion. As indicated in Section 3, points on the k-axis have to be considered according to whether f is zero because n_{r} is zero or \bar{n}_{v} infinitely large. Thus, if $n_{r}=0$ then $f=0$ but $f x=y_{v} / \omega$.

In terms of Fig. 3 we conclude that the location of curve B depends directly on x, as it corresponds to the point B in Fig. 5, and that the location of curve A relative to curve B depends directly on d. The sensitivity to changes in d is in effect illustrated in Fig. 6, since, as described in Section $3, k \approx d$ for curve A in many cases.

The main point of design seems to be that the unstable region can be made small by arranging for $C_{D e}$ to be comparable with y_{v}, although considerations of performance and cable characteristics will set a limit in many cases.

Variations in N_{v} and N_{r}.

By plotting f^{2} against k, as shown qualitatively in Fig. 7, we can represent changes in \bar{n}_{i}, with $C n_{r}^{2}$ constant, by a point moving along a straight line through the origin 0 . This line may intersect the stability boundary at two points such as A, B, and these define the range of \bar{n}_{v} within which instability would arise. The values of k defining this range are the roots of

$$
\begin{equation*}
\left.k^{2}(1+e+e x)+k_{\{ }^{\{ } d x(1+e+e x)-(1+x+d)\right\}+d(1+x-d x)=0, \tag{15}
\end{equation*}
$$

where $e=C n_{r}^{2}$, and the corresponding values of B_{0} are the roots of

$$
\begin{equation*}
B_{0}^{2}(1+e+e x)-B_{0}(1+d+e d x)+d=0, \tag{16}
\end{equation*}
$$

where B_{0}, as before, stands for $\frac{k+d x}{1+x}$.
There is a value of e for which the points A, B become coincident, as at T or S. It is obtained more easily from equation (16) than (15), as it must satisfy the condition of equal roots given by

$$
\begin{array}{ll}
& (1+d+e d x)^{2}=4 d(1+e+e x), \\
\text { i.e. } \quad(1-d-e d x)^{2}=4 e d, \\
\text { or } \quad & 1-d-e d x= \pm 2 \sqrt{ }(e d) .
\end{array}
$$

The solution of this equation is

$$
\sqrt{ }(e d)= \pm \sqrt{ }\left(\frac{1}{x^{2}}+\frac{1-d}{x}\right) \pm \frac{1}{x},
$$

which implies two values of e :

$$
\begin{equation*}
e=\frac{1}{d}\left[\sqrt{\left(\frac{1}{x^{2}}+\frac{1-d}{x}\right) \pm \frac{1}{x}}\right]^{2} \tag{17}
\end{equation*}
$$

For small values of x and d, e is approximately equal to

$$
\frac{1}{d}\left[\frac{2}{x}+\frac{1-d}{2}-\frac{x}{8}\right]^{2} \quad \text { or } \frac{1}{d}\left[\frac{1-d}{2}-\frac{x}{8}\right]^{2}
$$

For example, when $x=0 \cdot 4, d=0 \cdot 04$, these approximations yield $e=737 \cdot 1,4 \cdot 623$, whereas the true values obtained from equation (17) are $740 \cdot 1,4 \cdot 864$. These correspond to those given by Glauert on page 20 of Ref. 3 , as his equation (63) is equivalent to our (17).

The very large value corresponds to the tangent OS. and the smaller value of OT. We deduce that instability camon arise when $C n_{r}^{2}$ lies between 4.864 and $740 \cdot 1$, whatever the value of \bar{n}_{r}. For positive values of \tilde{n}_{v}, instability cannot arise when $C n_{r}^{2}$ exceeds 4.864 , or in general

$$
\frac{1}{\mathrm{~d}}\left[\frac{1-d}{2}-\frac{x}{8}\right]^{2} \text { approximately. }
$$

The inset diagram of Fig. 7 shows the nature of the relevant part of a stability boundary drawn in the
\bar{n}_{v}, C plane. The value of \bar{n}_{v} below which the motion is always stable corresponds to the point P , that is to the peak on the curve in Fig. 4. This \bar{n}_{v} is therefore given by

$$
\sqrt{ }\left(\bar{n}_{v}\right)=\frac{r}{1-\sqrt{d}}
$$

Fig. 8 illustrates results for $x=0.4, d=0.04$. The special value of C corresponding to the slope of 4.864 implies a special value of $b_{e} V_{e}^{2}$, which for 'typical' numbers $l=2(\mathrm{ft}), \mu=200$, and $n_{r}=4$ comes to about 1.5×10^{6}. Thus for a modest cable length, say $b_{e}=100(\mathrm{ft})$, the speed must exceed about $122 \mathrm{ft} / \mathrm{s}$. On the other hand, we can say that the motion is stable for all values of b_{e} and V_{e} provided that $n_{r} / \sqrt{ }\left(\bar{n}_{v}\right)$ is greater than $0 \cdot 8$. Although this sort of value may be impossibly large for a given towed object, there could be considerable design freedom when the object is a carrier of goods or equipment, and then arrangements of forward and rear fins which are unusual in aeroplanes might achieve a favourable value of $n_{r} / / /\left(\bar{n}_{r}\right)$. The fins might well he dorsal and ventral and extend along a considerable length of the body.

The use of larger fins to increase n_{r} will also result in an increase of y_{r}. so that the value of x is unlikely to change very much. In terms of Fig. 5, we see that the critical value $k=1+x-d x$ is therefore also unlikely to change significantly.

The total damping available to be shared among the modes of motion (typically two oscillations somewhat analogous to the pendulum and directional modes described in Section 3) is ($y_{v}-n_{r}$), so that a large-value in relation to $\sqrt{(}\left(\bar{n}_{v}\right)$ would be expected to be beneficial. A very low value of \bar{n}_{v} would cause the towed object to tend to wander about, as a poorly damped exponential mode of motion would be present.

Variation in I_{z}.

For a given aerodynamic design n_{r}, and n_{v} are inversely proportional to the moment of inertia I_{z}, and hence $f^{2} \propto 1 / I_{z}$ whereas $k \propto I_{z}$. It follows that an increase in I_{z} can be represented by a point moving from left to right along a rectangular hyperbola $f^{2} k=$ constant superimposed on Fig. 7. An increase in the moment of inertia therefore improves stability if the original value corresponds to a point in the vicinity of the right hand branch of the stability boundary, but diminishes stability if the original point is near the left hand branch.

5. Mapping of Unstable Region.

An analysis of the unstable region may be beneficial. As we have seen from Fig. 3, the unstable region, when it exists, stretches to infinity in the directions of both axes. In applications where either cable length or speed have a range of values it may then be impossible to avoid spending some time in a potentially unstable condition. Strictly speaking, we cannot apply a stability diagram that relates to constant datum values to a condition in which parameters vary continuously, but it is reasonably safe to assume that the likelihood of building up an oscillation, while traversing a region that has been labelled unstable from a panlinear \dagger analysis, is a function of the degree of instability predicted by that same analysis.

For the stability equation considered in this Report it is found that the degree of instability increases as we penetrate further into the region between curves A and B in Fig. 3, but there is a definite limit and a locus of maximum instability exists within the region, as illustrated in Fig. 9 by the heavy dashed curve.

In preparing such a diagram it is assumed that the stability equation (6) has a factor ($s^{2}-A s+B$), which corresponds to a growing oscillatory mode with persistence index $\sigma=\frac{1}{2} A$, and angular frequency $\left(B-\sigma^{2}\right)^{\frac{1}{2}}$, expressed in the special time scale associated with s. In other words the mode has the form $\exp \left(\sigma t^{*}\right) \sin \left\lceil\left(B-\sigma^{2}\right)^{\frac{1}{2}} t^{*}+\varepsilon\right\rceil$, where $t^{*}=\omega t / \tau$.

[^1]In Fig. 9 the curves numbered 1, 2, 3, 4 are respectively loci of constant persistence given by $A=0$, $0.025,0.05$, and 0.0654 (max), and one striking feature is the disparity in the gradients as we proceed inwards from the two stability boundaries. This was taken to be the explanation of an apparent disagreement between theory and experiment in a particular case. Excellent agreement was obtained in mapping out the lower stability boundary but not the upper one. Th^{β} discrepancy, however, seemed hardly surprising when theory predicted a very low rate of change of A in the vicinity of the upper boundary, as the difficulties inherent in pinpointing a condition of zero damping by experiment would be increased considerably.

It is interesting to draw contours of constant persistence within the framework of Fig. 5 or Fig. 4, and an example is illustrated by Fig. 10. We find that the loci of constant A are closed curves that converge to a point P representing the peak value of A. This is of course not the maximum value referred to in Fig. 9, because in that example the value of f was fixed at 0.3. The loci in Fig. 9 thus correspond to the points $1,2,3,4$ in Fig. 10 . For an existing design the value of f would be known, and a diagram like Fig. 9 might be drawn. During a design study, however, it might be worth determining the point P. as this corresponds to the worst possible combination of parameters as far as stability is concerned. The equations that are required for carrying out this work are given in Appendix 2 and illustrated by Figs. 10 to 13.

6. Modes of Motion.

It is illuminating to try and identify the nature of the two typical modes of iscillation. Working in our special time scale, we correlate a separate pendulum mode with a factor $\left(s^{2}+k\right)$ and a separate directional mode with $\left[s^{2}+f(1+x) s+\left(1+f^{2} x\right)\right]$.

Consider the stability factors and values of k associated with the points $1,2,3,4,3,2,1$ on Fig. 10, as follows.

\quad Factors	k
$\left(s^{2}+0.0442\right)\left(s^{2}+0.42 s+1.038\right)$	0.0459
$\left(s^{2}-0.025 s+0.2486\right)\left(s^{2}+0.445 s+1.063\right)$	0.2642
$\left(s^{2}-0.05 s+0.4336\right)\left(s^{2}+0.47 s+1 \cdot 119\right)$	0.4851
$\left(s^{2}-0.0654 s+0.6346\right)\left(s^{2}+0.4854 s+1.185\right)$	0.7522
$\left(s^{2}-0.05 s+0.7837\right)\left(s^{2}+0.47 s+1.289\right)$	1.0102
$\left(s^{2}-0.025 s+0.8594\right)\left(s^{2}+0.445 s+1.335\right)$	1.1476
$\left(s^{2}+0.9058\right)\left(s^{2}+0.42 s+1.382\right)$	1.252

For the values taken $(f=0 \cdot 3, x=0 \cdot 4, d=0 \cdot 04)$ the basic directional mode corresponds to $\left(s^{2}+0.42 s+1.036\right)$, and for the left hand point 1 we can thus be safe in calling the undamped mode a pendulum mode. The position is not clear, however, as k becomes larger and of the order of unity, since the basic modes then have very similar frequencies. It is tempting to say that the two points on the stability boundary correspond to a pendulum-type mode (small k) and a directional-type mode ($k \approx 1$), these being associated in 1 urn with the lower and upper boundaries in Fig. 3 and Fig. 9. It is unwise, however, to guess in this way, and a more reliable basis would be to observe or calculate the dynamic behaviour. Perhaps we could go so far as to say that it would not be surprising if a more complicated motion a combination of pendulum swinging and yawing oscillation were obtained for a large critical value of k in contrast to a more nearly pure pendulum motion for a small critical value of k.

7. Discussion and Conclusions.

Although the analysis developed in the present report is based on drastic simplifying assumptions, there is evidence that it forms a valuable guide for avoiding or remedying designs that result in unstable
oscillation of a towed object at certain combinations of cable length and towing speed. Many aspects of the theory were found to be realistic in recent work by Mettam ${ }^{12}$ and in associated work in France, to which he refers.
The existence of stable or unstable motion depends on the relative values of the normalised parameters $y_{v}, n_{v}, n_{r}, C_{D e}$ and a quantity $C=b_{e} V_{e}^{2} / \mu^{2} l^{2} g$, so that it is impossible to discuss briefly all the significant combinations. A general stability boundary can, however, be drawn (Fig. 4). This shows the great importance of the quantities $f=n_{r} / \sqrt{ }\left(\bar{n}_{r}\right), d=C_{D e} / y_{r}$. The one factor that can reduce the unstable region to zero is the ratio $C_{D e} / y_{v}$, the value unity being the best.

The benefits from other variations in aerodynamic design or moment of inertia are less definite and have to be studied in detail, as modifications to the body or tail (or fin) can significantly affect all the parameters at the same time. It is possible in principle to ensure complete stability (subject of course to the basic assumptions), for all combinations of cable length and towing speed, by designing $n_{r} / \sqrt{ }\left(\bar{n}_{v}\right)$ to be greater than $1-\left(C_{D e} / y_{v}\right)^{\frac{1}{2}}$, but this much freedom of design may not be available in a particular applicationt.

If an unstable region exists as illustrated in Fig. 3, it may nevertheless be possible to operate wholly within the lower stable area or the upper stable area. On the other hand it may be necessary to operate in the one or the other at different times during the same flight. If this be so, a flight procedure might be found such that the growth of an oscillation is acceptably slow while the transition through the unstable region is carried out. For example, it could be beneficial to lengthen the cable while the speed is low enough to maintain stable conditions, and then increase speed so as to reach the upper stable region after crossing a relatively narrow unstable band. Another possibility is to raise or lower the towed object while the speed is high, as this also corresponds to a narrow band of instability. In a given case the maximum degree of instability and the period of oscillation should be calculated in terms of ordinary time units in order to asses the nature of the modes of motion likely to be encountered while the unstable region is traversed.

[^2]
LIST OF SYMBOLS

$$
\begin{aligned}
& A=2 \sigma \text { (coefficient of }-s \text { in quadratic stability factor) } \\
& A_{m} \quad \text { Maximum value of } A \text { for specified } f \\
& A_{M} \quad \text { Peak maximum value of } A \\
& a_{m}=A_{m} / J_{3} \text { (normalised value of } A_{m} \text {) } \\
& a_{e} \quad \text { Horizontal separation between towed object and towing aircraft in steady flight } \\
& a_{1} \quad 1+a_{m} \\
& B \quad \text { Constant coefficient in quadratic stability factor } \\
& B_{m} \quad \text { Value of } B \text { when } A=A_{m} \\
& B_{o} \quad \text { Value of } B \text { when } A=0 \\
& b_{e} \quad \text { Vertical separation between towed object and towing aircraft in steady flight } \\
& b_{1} \quad 1-B_{m} \\
& C=b_{e} V_{e}^{2} / \mu^{2} l^{2} g \\
& C_{D e} \quad \text { Drag coefficient of towed object in steady flight } \\
& C_{W} \quad \text { Normalised weight, } W / \frac{1}{2} p_{e} V_{e}^{2} S \\
& \text { D Differential operator with respect to time } \\
& d=C_{D e} / y_{v} \\
& d_{1}=1-d \\
& e=C n_{r}^{2} \\
& F=1 / f \\
& F_{i} \quad \text { Coefficients of quadratic in } F_{m}(i=0,1,2) \\
& f=n_{r} / \omega \\
& G_{i} \quad \text { Coefficients of cubic in } f(i=0,1,2) \\
& g \quad \text { Acceleration due to gravity } \\
& H_{i} \quad \text { Coefficients of sextic in } A_{m}(i=0,1,2,3,4,5,6) \\
& J_{i} \quad \text { Coefficient of stability quartic }(i=0,1,2,3) \\
& K=C \bar{n}_{v}=C \omega^{2}=P_{1}^{2} / P_{2}^{2} \\
& k=1 / K \\
& I_{z} \quad \text { Moment of inertia of towed object about } z \text {-axis } \\
& i_{z} \quad \text { Yawing inertia parameter (normalised value of } I_{z} \text {), } i_{z}=I_{z} / m l^{2} \\
& L \quad \text { Length of towing cable (constant) } \\
& l \text { Representative length } \\
& m \quad \text { Mass of towed object } \\
& N_{r}, N_{r} \quad \text { Aero-normalised derivatives of yawing moment }
\end{aligned}
$$

$n_{v}, n_{r} \quad$ Concise dynamic-normalised counterparts of $N_{r}, N_{r}\left(n_{r}=-\mu N_{v} / i_{z}, n_{r}=-N_{r} / i_{z}\right)$
$\vec{n}_{v}=-n_{v}=\omega^{2}$
r Yawing component of angular velocity
$S \quad$ Representative area
$S \quad$ Axis transformation matrix
$s \quad$ Root of stability equation, $s=\lambda / \omega$
$P_{1}=2 \pi\left(b_{e} / g\right)^{\frac{1}{2}}$, period of free pendulum mode
$P_{2}=2 \pi \mu l / \omega V_{e}$, approximate period of free directional mode
$T \quad$ Tension in towing cable
t Time in ordinary units
$t^{*} \quad$ Time in special units, $\omega t / \tau$
$u(F) \quad$ Function used for determining a_{m} (see Section 5)
$V \quad$ Resultant speed of towed object (associated with vector V)
$V_{e} \quad$ Value of V in steady datum flight condition
$v \quad$ Component of \vec{V} along y-axis
$W \quad$ Weight of towed object
$X=1 / x$
$X_{T}, Y_{T}, Z_{T} \quad$ Components of cable tension T along body axes
$X_{T o}, Y_{T o}, Z_{T o} \quad$ Components of cable tension T along normal earth axes
$X_{i} \quad$ Coefficients of quadratic in $x_{m}(i=0,1,2)$
$x=y_{v} / n_{r}$
$x_{o}, y_{o}, z_{o} \quad$ Components (along normal earth axes) of displacement of body-axes origin relative to position in steady flight
$Y_{v} \quad$ Aero-normalised derivative of transverse force
$y_{v} \quad$ Concise dynamic-normalised counterpart of $Y_{v}\left(y_{v}=-Y_{v}\right)$
$Z_{i} \quad$ Coefficients of quadratic in $z(i=0,1,2)$
$z=A_{m} /(1-d)$
$\theta \quad$ Pitch-deviation angle
λ. Root of stability polynomial for dynamic-normalised equations, $\lambda=\omega s$
$\mu \quad$ Relative density parameter, $m / \frac{1}{2} \rho_{e} S l$
$\rho_{e} \quad$ Ambient air density for steady datum flight condition
$\sigma \quad$ Persistence index of oscillatory mode of motion
$\tau \quad$ Dynamic-normalised unit of time, $m / \frac{1}{2} \rho_{e} S V_{e}$

LIST OF SYMBOLS-continued

$\phi \quad$ Roll-deviation angle
$\psi \quad$ Yaw-deviation angle
$\omega=\sqrt{ }\left(\bar{n}_{v}\right)$ (approximate angular frequency of free directional mode in dynamic-normalised units)

Suffixes
$e \quad$ Datum values
$m \quad$ Values corresponding to maximum persistence index
$M \quad$ Values corresponding to peak maximum persistence index
o Components along normal earth axes $0_{0} x_{0} y_{o} z_{0}$
Superfix
T^{\prime} denotes increment in $T\left(T=T_{e}+T^{\prime}\right)$, and so on

Overscript

- $\quad \dot{x}$ denotes $d x / d t$, and so on
- $\quad \bar{n}_{v}$ denotes $-n_{v}$
o Identifies derivatives in ordinary units

REFERENCES

No. Author(s)
1 S. Neumark

Title, etc.
. Equilibrium configurations of flying cables of captive balloons, and cable derivatives for stability calculations.
A.R.C. R. \& M. 3333 (1961).

2 L. Bairstow, E. F. Relf .. The stability of kite balloons: mathematical investigation. and R. Jones
A.R.C. R. \& M. 208 (1915).

3 H. Glauert The stability of a body towed by a light wire.
A.R.C. R. \& M. 1312 (1930).

4 L. W. Bryant, W. S. Brown, .. Collected researches on the stability of kites and towed gliders. and N. E. Sweeting
A.R.C. R. \& M. 2303 (1942).

5 K. Mitchell and C. Beach .. The stability derivatives of a glider towing cable, with a method for determining the flying conditions of the glider.
R.A.E. Report Aero 1764 (A.R.C. 6151) (1942).

6 B. Etkin and Aerodynamic instability of non-lifting bodies towed beneath Jean C. Mackworth aircraft.
Univ. of Toronto Inst. of Aerophysics.
Technical Note 65 (1963).
7 J. Lipscombe Preliminary investigations into the instability of a small helicoptertowed body.
Min. Defence (Navy Dept) unpublished report (1966).

8 A. R. McLeod On the action of wind on flexible cables, with applications to cables towed below aeroplanes and balloon cables.
A.R.C. R. \& M. 554 (1918).

9 H. R. Hopkin A scheme of notation and nomenclature for aircraft dynamics and associated aerodynamics.
A.R.C. R. \& M. 3562 (1966).

10 Dynamics Committee. . . Engineering Sciences Data, Aeronautical Series, Dynamics Sub(Royal Aeronautical Society) Series. Issue 1 (Items 67001 to 67007) (February, 1967).
11 H. R. Hopkin and Proposed terms for describing some properties of physical H. H. B. M. Thomas

12 A. R. Mettam Wind tunnel investigations of instability in a cable-towed body system.
R.A.E. Tech. Report 69022 (1969).

13 W. J. G. Pinsker The stability of towed free-flight models.
A.R.C. R.\& M. 3641 (1968).

APPENDIX 1

Corresponding Quantities in Three Notations.

This Report	Etkin \& Mackworth ${ }^{6}$	Glauert ${ }^{3}$
$\begin{gathered} Y_{v} \\ N_{v} \\ N_{r} \\ 1 \\ \\ \hline \end{gathered}$	$\begin{aligned} & C_{y_{\beta}}=Y_{v} \\ & C_{n_{\beta}}=N_{v} \\ & C_{n_{r}}=2 N_{r} \\ & \quad b \\ & S \end{aligned}$	$\begin{array}{r} l=[\sqrt{m R} / \rho V] \\ l^{2}(=G S \text { say }) \end{array}$
ρ_{e} $\begin{gathered} \mu=m / \frac{1}{2} \rho_{e} S l \\ i_{z} \end{gathered}$	ρ $\begin{aligned} & \mu=m / \frac{1}{2} \rho S b \\ & k_{z}^{2} / b^{2}=i_{z} \end{aligned}$	$\mu=m / \rho l^{3}$
$\begin{gathered} V_{e} \\ \tau=m / \frac{1}{2} \rho_{e} V_{e} S \\ \lambda / \tau \end{gathered}$	$\begin{gathered} u_{o} \\ t^{*}=b / 2 u_{o} \\ \hat{\lambda} / t^{*} \end{gathered}$	$\begin{gathered} V \\ {[m / R]^{\frac{1}{2}}=\tau / 2 G} \\ \lambda /[m / R]^{\frac{1}{2}} \end{gathered}$
$\begin{gathered} C_{D e} \\ y_{v}=-Y_{v} \\ \bar{n}_{v}=\mu N_{v} / i_{z} \\ n_{r}=-N_{r} / i_{z} \end{gathered}$	$C_{\text {do }}$	$\begin{aligned} k_{D} & =\frac{1}{2} C_{D e} / G \\ y_{v} & =-\frac{1}{2} Y_{v} / G \\ \mu n_{v} & =-\frac{1}{4} \bar{n}_{v} / G^{2} \\ n_{\mathrm{r}} & =\frac{1}{2} N_{\mathrm{v}} / i_{z} G \end{aligned}$
$\begin{aligned} & b_{e} \\ & a_{e} \end{aligned}$	h	b
$\begin{aligned} x & =y_{v} / n_{r} \\ d & =C_{D e} / y_{v} \\ f & =n_{r}^{2} / \bar{n}_{v} \\ C & =b_{e} e_{e}^{2} / \mu^{2} l^{2} g \end{aligned}$	$\begin{gathered} 2 k_{z}^{2} C_{y_{\beta}} / b^{2} C_{n_{r}} \\ -C_{\mathrm{D} /} / C_{y_{\beta}} \\ b^{2} C_{n_{r}}^{2} / 4 k_{z}^{2} \mu C_{n_{\beta}} \\ F h / b \mu^{2} \end{gathered}$	$\begin{gathered} y_{v} / n_{r} \\ k_{D} / y_{r} \\ -n_{r}^{2} / \mu n_{v} \\ \frac{\sec \phi}{\gamma}=4 G C \end{gathered}$

APPENDIX 2

Contours of Constant Persistence and Loci of the Maximum Persistence.

The following conditions must be satisfied in order that $\left(s^{2}-A s+B\right)$ should be a stability factor.

$$
\left.\begin{array}{r}
J_{0}-\left(J_{2}+J_{3} A+A^{2}\right) B+B^{2}=0 \tag{A.2.1}\\
\left(J_{1}+J_{2} A+J_{3} A^{2}+A^{3}\right)-\left(J_{3}+2 A\right) B=0 .
\end{array}\right\}
$$

The second of these equations is linear in k and B :

$$
\begin{equation*}
\mathrm{B}[(f+A)+(f x+A)]=k(f+A)+(f d x+A)+A(f+A)(f x+A) \tag{A.2.2}
\end{equation*}
$$

We can therefore derive a quadratic in either k or B, with coefficients that are functions of f, x, d, A. In the case $A=0$ we have shown that the quadratic in B is simpler than the k quadratic, and this is also what happens when A is not zero.
We find that

$$
\begin{equation*}
(f x+A) B^{2}-[(f x+A)+(f d x+A)-f(f x+A)(f+A)] B+[(f d x+A)+A(f x+A)(f+A)]=0,(\tag{A.2.3}
\end{equation*}
$$

and this equation reduces, as it should, to (12) when $A=0$.
The two values of B correspond to pairs of points such as 1,1 and $2,2 \mathrm{in}$ Fig. 10, and A_{m}, the maximum value of A, therefore corresponds to two equal values of B. The condition for equal values reduces to

$$
f^{2} x^{2}(1-d)^{2}+2 T f^{2} x(1-d)+\left(f^{2}-4\right) T^{2}=0
$$

where $T=\left(f+A_{m}\right)\left(f x+A_{m}\right)$, and hence to

$$
[f x(1-d)+(f-2) T][f x(1-d)+(f+2) T]=0
$$

There are two possibilities:

$$
\begin{equation*}
f x(1-d)+(f \pm 2) T=0 \tag{A.2.4}
\end{equation*}
$$

with associated values for B and k :

$$
\left.\begin{array}{l}
B_{m}=1 \pm\left(f+A_{m}\right) \tag{A.2.5}\\
k_{m}=\left[1 \pm\left(f+A_{m}\right)\right]\left[1 \pm\left(f x+A_{m}\right)\right]
\end{array}\right\}
$$

For positive f, x, A_{m} we must have $T>0$, and hence the possibilities reduce to the following.

$$
\left.\begin{array}{rl}
\text { For } d<1: & f x(1-d)+(f-2) T=0, \\
& B_{m}=1-f-A_{m}, \tag{A.2.7}\\
& k_{m}=B_{m}\left(1+f x+A_{m}\right) .
\end{array}\right\}
$$

To examine the case $d=1$ we must return to equation (20), which then becomes

$$
(B-1)[B-1-f(f+A)]=0
$$

so that it is impossible to have equal roots except when $f=0$.
Only the case $d<1$ is considered here in more detail, as this applies to a large variety of towed objects and furthermore the analysis for $d>1$ may be produced quickly by analogy. For objects designed to have little drag a typical value of d is less than $0 \cdot 1$, and quite draggy shapes have values less than unity.

The first of equations (A.2.6) can be expressed in a slightly different form to enable the drawing of generalised curves. Written in full the equation is

$$
\begin{equation*}
A_{m}^{2}+A_{m} f(1+x)+f^{2} x+\frac{f x(1-d)}{f-2}=0 \tag{A.2.8}
\end{equation*}
$$

and if we write $A_{m}=a_{m} J_{3}=a_{m} f(1+x)$, we obtain the equivalent equation

$$
\begin{equation*}
\left[a_{m}^{2}+a_{m}\right]\left[x+\frac{1}{x}+2\right]=\frac{(F-1)^{2}-F^{2} d}{2 F-1}=u(F) \tag{A.2.9}
\end{equation*}
$$

where F stands for $1 / f$. For given values of a_{m} and d, we can therefore draw a curve relating F and x. A curve of more general applicability is, however, obtained by plotting the function $u(F)$ and F. This is done in Fig. 11. for $d=0$ and $d=0 \cdot 04$, and it is seen that there are two asymptotes: one given by $F=\frac{1}{2}$ and another by

$$
u(F)=\frac{1}{2} F(1-d)-\frac{1}{4}(3+d)
$$

The alternative of drawing families of curves relating F and x is illustrated by Figs. 12 and 13. The abscissa is $(x+1 / x)$ but an equivalent scale for x is also given. Since the minimum value of $(x+1 / x)$ is 2, and f is known to be less than $(1-\sqrt{ } d)$ in the unstable region, we need look only at one branch of the curve. This corresponds to the upper branch in Fig. 11.

Curves have been drawn for $a_{m}=0,0 \cdot 1,0 \cdot 2,0 \cdot 4$ for both $d=0$ and $d=0 \cdot 04$. A value of 0.4 for a_{m} represents a large degree of instability, in that one oscillatory mode has procured 140 per cent of the total system damping $\left(J_{3}\right)$ leaving the other mode unstable with -40 per cent. For the range of values considered the asymptotes provide good approximations, but the exact expressions are not unwieldy.

One interesting conclusion is that $(x+1 / x)$ appears as a significant quantity, and that x, the ratio of y_{e} and n_{r}, can vary over the typical range 0.5 to 1.0 without altering $(x+1 / x)$ very much. Variation of f is much more important.

In order to work backwards and predict what values of x and f would produce a specified a_{m} and B_{m} for a given d, we may use the relation

$$
\begin{equation*}
b_{1} F_{m}=a x_{m}+a_{1} \tag{A.2.10}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
a_{1}=1+a_{m} \tag{A.2.11}\\
b_{1}=1-B_{m}
\end{array}\right\}
$$

together with a quadratic equation for either x_{m} or F_{m}, namely

$$
\begin{equation*}
X_{2} x_{m}^{2}+X_{1} x_{m}+X_{o}=0 \tag{A.2.12}
\end{equation*}
$$

$$
\begin{equation*}
F_{2} F_{m}^{2}+F_{1} F_{m}+F_{o}=0 \tag{A.2.13}
\end{equation*}
$$

where

$$
\begin{array}{ll}
X_{2}=2 a_{1} b_{1}-1+d, & F_{2}=X_{2}, \\
X_{1}=2 a b_{1}+a_{1}\left(X_{2}-b_{1}^{2}\right) / a, & F_{1}=2 a^{2}-a_{1} b_{1}-a_{1} F_{2} / b_{1} \\
X_{0}=b_{1}\left(2 a_{1}-b_{1}\right), & F_{0}=1+2 a .
\end{array}
$$

Determination of the peak value of A.

The typical diagram Fig. 10 shows two values of f corresponding to a maximum and a minimum on each locus of positive constant A, so long as A is less than the value at the peak P. At the peak the maximum and minimum have coalesced, and the condition for this is that equation (A.2.8) must be satisfied by two equal values of f. Writing the equation as a cubic

$$
\begin{equation*}
f^{3}-G_{2} f^{2}-G_{1} f-G_{0}=0 \tag{A.2.14}
\end{equation*}
$$

we express the condition for two equal roots as

$$
\begin{equation*}
-4 G_{1}^{3}+4 G_{2}^{3} G_{0}+27 G_{0}^{2}+18 G_{2} G_{1} G_{0}-G_{2}^{2} G_{0}^{2}=0 \tag{A.2.15}
\end{equation*}
$$

The G coefficients are given by

$$
\begin{aligned}
& G_{2}=2-y A_{m}, \\
& G_{1}=2 y A_{m}-d_{1}-X A_{m}^{2}, \\
& G_{0}=2 X A_{m}^{2},
\end{aligned}
$$

where $X=1 / x, y=1+X, d_{1}=1-d$.
The result of substituting in the condition (A.2.15) is a sextic

$$
\begin{equation*}
H_{6} A_{m}^{6}+H_{5} A_{m}^{5}+\ldots \ldots+H_{1} A_{m}+H_{0}=0 \tag{A.2.16}
\end{equation*}
$$

and the peak value A_{M} is a root of this equation. The H coefficients are given by

$$
\begin{aligned}
& H_{6}=X^{2}\left(4 X-y^{2}\right) \\
& H_{5}=4 X y\left(4 X-y^{2}\right) \\
& H_{4}=X^{2}\left(32+12 d_{1}\right)+y^{2}\left(8 X-4 y^{2}-2 d_{1} X\right) \\
& H_{3}=16 y\left(4 X-y^{2}\right)+4 d_{1} y\left(y^{2}-X\right) \\
& H_{2}=16\left(4 X-y^{2}\right)-d_{1} X\left(80-12 d_{1}\right)+d_{1} y^{2}\left(32-d_{1}\right) \\
& H_{1}=d_{1} y\left(16-20 d_{1}\right) \\
& H_{0}=-4 d_{1}^{2} d
\end{aligned}
$$

For problems where A_{M} is small some of the terms in equation (A.2.16) could be ignored in order to furnish an approximation. One such approximation is a root of the quadratic

$$
\begin{equation*}
Z_{2} z^{2}+Z_{1} z+Z_{0}=0 \tag{A.2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{m}=(1-d) z, \tag{A.2.18}
\end{equation*}
$$

and

$$
\begin{aligned}
& Z_{2}=15 y^{2}-4 X+d\left(56 X-30 y^{2}\right), \\
& Z_{1}=-4 y(1-5 d), \\
& Z_{0}=-4 d .
\end{aligned}
$$

As an example consider $x=0 \cdot 4, d=0 \cdot 04$. The coefficients of the sextic become
$\begin{array}{llll}H_{6}=-14.0625, & H_{5}=-78.75, & H_{4}=-142.05, & H_{3}=-5.04 \\ H_{2}=164.6784, & H_{1}=-10.752, & H_{0}=-0.147456, & \end{array}$
and there is a root +0.07713 as indicated in Fig. 10. The approximate quadratic is

$$
164 \cdot 6784 z^{2}-11 \cdot 2 z-0 \cdot 16=0
$$

i.e.

$$
164.6784(z+0.012124)(z-0.080135)=0 .
$$

The root 0.080135 corresponds to $A_{m}=0.080135 \times 0.96=0.07693$, and this differs from the true A_{M} by just 0.0002 .

It is interesting to note that as d approaches zero, the approximate quadratic approaches

$$
\left(15 y^{2}-4 X\right) z^{2}-4 y z=0,
$$

and the root we are seeking approaches the value $4 y /\left(15 y^{2}-4 X\right)$. At the same time $z \rightarrow A_{M}$. For the example considered above the limiting value is $14 / 173 \cdot 75$, i.e. 0.0806 , so it seems likely that the limit would provide quite a good approximation when d is small.

Fig. 1. Configuration in steady state.

Fig. 2. Geometry of perturbed configuration.

Fig. 3. Typical stability boundaries for given object.

Each point on the stability boundary corresponds to a factor $\left(s^{2}+B_{0}\right)$

$$
\begin{gathered}
x=y_{v} / n_{r}, \quad d=c_{D e} / y_{v}, \quad \bar{n}_{v}=\omega^{2} \\
B_{0}=(k+d x) /(1+x), \quad k=\mu^{2} l^{2} g / b_{e} v_{e}^{2} \bar{n}_{v}
\end{gathered}
$$

Fig. 4. Normalised stability boundary (general).

Fig. 5. Stability boundary (general).

Fig. 6. Family of stability boundaries (varying k)

Fig. 7. Stability diagrams for varying \bar{n}_{t}.

Fig. 8. Stability diagrams for varying \bar{n}_{r}.

Fig. 9. Stability contour diagram for unstable region.

Fig. 10. Normalised stability contour diagram for unstable region.

Fig. 11. Graph of function for determining maximum persistence.

Fig. 12. Loci of maximum persistence.
Fig. 13. Loci of maximum persistence.
(Cron'月 copurigh 1971
Published by
Her Maltsiys Sabloniry Ohfel
To be purchased from
49 High Holborn. London WClV GHB 13a Castle Street. Edinburgh EH2 3AR 109 St. Mary Street. Cardiff CFI IJW Brazennose Street. Manchester M60 8AS 50 Farfax Street. Bristol BSI 3DE 258 Broad Street. Birmingham BI 2HE

7 Linenhall Street. Belfast BT 14 JY or through booksellers

[^0]: * Replaces R.A.E. Tech. Report No. 69076-A.R.C. 31359.

[^1]: \dagger It has been proposed by Hopkin and Thomas ${ }^{11}$ that linear differential equations with constant coefficients be called panlinear.

[^2]: \dagger If $C_{D e}>y_{v}$ the critical value of $n_{r} / \sqrt{\left(n_{r}\right)}$ in $\left(C_{D_{e}} y_{t}\right)^{!}-1$.

