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An approximate method is given for assessing the stability' of a towed object, using the same basic 

theory as Glauert (Ref. 3) and Etkin and Mackworth (Ref. 6). The analysis is developed in terms of lateral 
stability, but can be simply translated to deal with the longitudinal case. Stability criteria are derived 
which involve a number of parameters, including the mass and moment of inertia of the body, its drag 
and transverse aerodynamic force and yawing moment characteristics, and the vertical separation 
between towed body and the tug. Formulae and charts are given for ready application of the method. 
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1. Introduction. 
Although a number of papers have been written on the general theory of the stability of objects being 

towed by aircraft, and also on the related inverse problem in which a balloon is tethered by a cable, 
the application of the theory has been limited. A comprehensive analysis would be complex, even when 
based on small perturbations and linearised equations, owing to the action of the cable and the aero- 
dynamic forces acting on it, and to the coupling between longitudinal and lateral motions. 

The present report is restricted to attempting to generalise and improve the techniques of application 
of an approximate theory for a drastically simplified mathematical model. To clarify some of the assump- 
tions it seems worthwhile to begin by considering briefly, as background, previous work in the field. 

Neumark 1. in examining tile aerodynamics of cables for balloons, reviewed the known literature, 
beginning with Bairstow, Relf and Jones 2. Much of it relates to the calculation of "cable derivatives', 
which are quantities analogous to the familiar derivatives of aerodynamic forces and moments much 
used in stability analysis. Thus, perturbations in the components of cable force in a purely longitudinal 
problem would be expressed in the form Xxx+Xzz, Zxx+Z~z, where x, z are components of the dis- 
placement of the endpoint of the cable. It is perhaps significant that Glauert 3, Brown e, Mitchell and 
Beach 5, and again Neumark came against computational difficulties. The present author, together with 
H. H. B. M. Thomas, tried recently to extend Neumark's formulae to the doubly limiting case of a cable 
without weight and without drag. The analysis revealed that, as the limit is approached, the individual 
derivatives Xx, Xz, Z x, Z~ tend to infinity but in such a way that (Xxx+ X~z) and (Zxx + Z:z) remain 
finite. This behaviour is the root cause of the computational difficulties. It is, of course, unnecessary to 
introduce cable derivatives for a weightless dragless cable (which is assumed in the present report), 
but even in cases in which perturbations in cable forces caused by cable weight and drag do have to be 
considered, it might be profitable to seek an alternative to a representation in terms of cable derivatives. 

The classic paper on the dynamics of towed objects is by Glauert j. He considered the shape and 
dynamics of a light inextensible wire when used for towing, and examined the stability of a towed object 
subject to assumptions that permitted of separate longitudinal and lateral equations of motion. More 
recently Etkin and Mackworth ° produced an analysis, which (although they were unaware of this) 
corresponded to an approximation given by Glauert. They applied the analysis only to lateral stability. 
Lipscombe 7 also developed the same sort of theory independently. 

Glauert started by determining the shape of the wire following an assumption that the aerodynamic 
lbrce on an element of length 6L would be normal to the element and proportional to sin 2 r, where e. 
is the angle between 6L and the airstream. This was based on work by McLeod 8. Glauert then examined 
the modes of motion consistent with small perturbations for a wire supporting an object, but assumed 
at first that the aerodynamic forces acting on the object remained constant during the motion. There 
were three such modes, which he interpreted as 

(a) a transverse 'pendulum oscillation', 
(b) a 'pendulum oscillation' in the vertical plane of symmetry, 
(c) a 'bowing (or normal) oscillation' in the vertical plane of symmetry. 
Finally he added the effect of incremental aerodynamic forces on the towed object, and the equations 

of motion included terms in X,,. Z,.. Z,. M~, M, and in Y,.. Y,., N,,, Nr. The separated longitudinal equations 
yielded a sextic stability polynomial, and, because derivatives of the rolling moment were ignored, the 
lateral equations yielded a quartic. For typical parameter values, the sextic factorised approximately 
into a quadratic that always represented a stable mode of motion together with a quartic that was anal- 
ogous to the lateral quartic, Zw being considered as the counterpart of Yv, Mw of -N~,  and so on. 

Etkin and Mackworth make more drastic assumptions from the outset, as in the present report, which 
lead directly to the lateral quartic. They have sought corrections to account for the influence of cable 
drag and mass in approximate fashion, but it seems unwise to toy in such a way with the more general 
problem, as there is a host of additional interrelated contributions once we depart from the simple 
straight-cable. Great care must then be taken in making a consistent set of assumptions. They suggest 
that the simple uncorrected analysis might be accurate enough when the cable drag and mass do not 
exceed about 10 per cent of those of the towed object, but no positive evidence to support this is known. 



The present report makes use only of the simple quartic stability equation, but describes a fairly 
complete analysis of the consequences of variations in aerodynamic design or moment of inertia of 
the towed object. 

Generalised stability diagrams are outlined, and examples for typical parameter values include a 
mapping of unstable regions, and give loci that define the maximum degree of instability possible. General 
expressions for calculating such loci and other quantities are derived. An analysis of the unstable region 
is important in some applications when the operational pattern cannot completely avoid the region 
although it may be traversed quite quickly. 

()nly the equations for lateral motion are given, but as already indicated the basic assumptions are 
such that the analysis can be applied to the longitudinal motion merely by replacing lateral parameters 
by corresponding longitudinal ones. For zero aerodynamic forces on the cable the correspondence is 
exact, and not merely approximate as indicated by Glauert in the general case. 

It should be noted that except in some trivial respects the notation follows that described by the author 
elsewhere 9, and also by the Royal Aeronautical Society I 0. A table of corresponding symbols and expres- 
sions used by Glauert 3 and by Etkin and Mackworth 6 is given in the Appendix. 

While the present report was being prepared, Pinsker 13 investigated the stabilit3< of fiee-flight model 
aeroplanes when on tow prior to release. He decided that aerodynamic lift was important and that a 
good approximation would be obtained by suppressing the yawing freedom but retaining the rolling 
His stability equation is therefore a quartic that is quite different from the one considered here, and 
the two reports are complementary. 

2. Equat ions o[  Mot ion.  

Consider an object such that, when towed at a steady speed V,, in level flight, its weight is balanced by the 
vertical component of the cable tension. The only aerodynamic force is then the drag, which is balanced by 
the horizontal component of the cable tension. If the cable is inextensible and connected at the centre of 
gravity, and its mass and drag are negligible, it assumes the shape of a straight line. The configuration 
in the steady state is depicted in Fig. 1, and perturbations from this state are shown in Fig. 2. 

Earth axes O,,x,,v,,z,, provide a reference for the point ofcable attachment G and for changes in altitude 
of the towed object. The origin 0,, travels at speed V,. and is always at a distance L from the" towing-point 
P: 0,, is also behind and below by amounts a,., h~, respectively. The vertical separation h,, will be found 
to have great significance in the motion of the object. The Xoy,, plane is horizontal and the xo axis is in 
the vertical plane through O o. 

Any displacement of G relative to O o is represented by the components xo, y,,, z o. Aerodynamic-body 
axes G x y z  are employed for dealing with the equations of motion, and for defining perturbations in 
attitude in terms of the deviation angles qS, O, ~. Since in this application G x y  is horizontal in the datum 
flight condition, the yaw-deviation angle )fi corresponds to a displacement in a horizontal plane and 
the pitch-deviation angle 0 to one in a vertical plane. The roll-deviation angle <h is equal to the hank 
angle. 

Equations of motion are obtained in the usual way, but terms representing the effect of the cable 
tension have to be included. Consider the components of the tension Tin the perturbed state. The com- 
ponents along earth axes are given by the column matrix IX.,.,, Yr,, Zro~,, or {X.ro', in abbreviated form, 
where 

XTo = T ( a , , -  Xo)/L, 

Yro = - T ,o/L,  

Zzo  = - T(be + Zo)/'L. 

The components along body axes are given by 

{x l = s{X ol, 



where S is the axis transformation matrix. 
If we assume perturbations to be small, linearised approximations are forthcoming as follows: 

- 0  ¢ 

T = Te+ T ' ,  T' small, 

X T = X r , + X :  r ,  etc., 

{X 'T}=(I -S){T~a~/L ,  O, -TebJL} -T~{xo /L ,  yo/L, zo/L}, 

where I is the unit matrix, or 

X'r = T d b f l -  Xo)/L + a~T'/L, 

YT = - T~(a~, + bed~ + Ye)/L' I (1) 

Z'T = T~(a~O-- Zo)/L- beT'/L. 

When these force increments are included in linearised equations of motion that could otherwise be 
separated into two independent sets, longitudinal and lateral, a similar separation is still feasible pro- 
vided that x o, z o, T' are related only to longitudinal variables, and Yo only to lateral ones. The linearising 
procedure automatically looks after xo. Yo. zo, for 

.so = u, ;~o = ve ~ , + v ,  ~-o = - v ~ O + w ,  

where u, v, w denote the scalar increments in velocity components, and it follows that a separate set of 
linearised lateral equations is always obtained. 

I'n the more general cause of a curved cable, consistent and reasonable assumptions can be made 
that also lead to separate lateral and longitudinal linearised equations (see Glauert, for example). 

The lateral equations of motion used here have a particularly simple form since it is assumed that 
no rolling motion develops and hence q5 is zero. The variables are then v, ~, Yo. Moreover, it is assumed 
that the cable bears the whole towed weight. 

We may proceed at once to normalised forms according to the scheme of Ref. 9. Basic derivatives 
of aerodynamic forces and moments are aero-normalised, and concise derivatives are dynamic-normal- 
ised. The dip overscript ( ,~ ) and cap ( , , )  are unnecessary, and Y~ will stand for Yv, 1,'~ for ~ as explained 
in Ref. 10. The equations of motion in dynamic-normalised form become 

(D+y,)v+D~ = Y~,, 

//v v -k- (D 2 -I- n,.D) t) = O, 

Dyo = ~ + v ,  

where all quantities are interpreted in terms of a unit of speed V~, unit of force ½peVZ~S, unit of time r = pl/Ve, 
and /t is the relative density parameter m/'½peSl. Since in the steady state the horizontal and vertical 
components of the cable tension balance the drag and weight, the second of equations (1) in terms of 
these units becomes 

Yi  = - (Coe 4, + Cw4) + yo /C) ,  

where CDe is the steady-state drag coefficient, 



C w  t 2 = mg/~peVeS,  

be V2e 
C = be/#lC w -  #212g (2) 

The final form of the equations is therefore, for q~ = 0,  

( D + 3 ¥ ) v + ( D + C D e ) ~ + y o / C = 0 ,  | 

n~v + (D 2 + n~D) ~ = O, 

- v  - ~ 9 + D y  o = O. 

The force and moment derivatives are given by 

o 

Y. 
Y" = - Y~ = ½ p : V e '  

o 

pN~, N~ 
n v - -  , N v  - 

o 

N,. N~ 
n,. - i_ ' N~ - ½peSl2 V~' 

(3) 

where i. is the yawing inertia parameter I=/mF, 
o o o 

and Yv, N~, N~ are derivatives expressed in ordinary dimensional form. 

The characteristic or stability equation is the quartic 

• ~¢+J323+J2~2+J12- [ -Jo  = O, (4) 

where 

J3 = Yv+n~, 

J2 = Y~nr+nv+ 1/C,  

J l = C~effv + n~/C , 

Jo = nv/C,  

and ff~ has been written for -n~ as this is usually positive. 

(5) 

3. Stability Quartic and Stability Boundaries. 

If the aerodynamic forces were negligible, because the speed is low, for example, the quartic would 
approach the degenerate form 22(.~ 2 +Jz),  where J2 = I /C or in ordinary units g/b~. The factor (.~2 +J2)  
would represent a 'pendulum' oscillation with period 2~(be/g)k The remaining factor 22 merely represents 
the neutral properties due to the absence of aerodynamic forces. 

If, on the other hand, the aerodynamic forces were important but the incremental transverse force 
Yi" due to the cable were negligible, the equations of motion would reduce to 

(D+ y~) v +  D@ = O, 

n~,v + (D 2 + n~D) ~ = 0,  



which yield the stability equation 

23 + (Yv + nr) 22 + (y~n, + ii~) 2 = O . 

The factor 2 again corresponds to neutral stability, and the remaining quadratic represents a 'directional' 
mode of motion. Such a mode is usually oscillatory for an aircraft because fi~ is appreciable on account 
of a rear fin, and the undamped period is then approximately equal to 2nz/co, where (D 2 = ~v" It will 
be seen from equations (1) that one way of imagining the condition of zero Y~ to be approached is to 
have a very long cable and also to have an object with very small drag/weight ratio, since 

Teae/ L = De,  Teb e/ L = W.  

It is shown later than an undamped oscillation can be present with combinations of b, and V,. that 
satisfy the relation beV,~ = constant, and that two such constants exist for any particular towed object. 
The be, Ve plane can theretore be charted into three regions, the one for which motion is unstable being 
flanked by regions of stability (see Fig. 3). The region of instability can be further charted to show the 

severity of instability. 
In order to proceed with the analysis in a generalised form it is useful to change the unit of time by 

the factor ~o, and write 2 = c~s, so that the stability quartic in terms of s becomes 

s 4 + J3 sa + J2 $2 -t- J l s  + J o ,  (6) 

where 

and 

Ja = (Y~ + n,)/o~, "~ 

J2 = 1 + yvn,./¢o2 + 1/K , 

J l = CDe/c° + nr/c°K , 

Jo = 1 / K ,  

K = o ) 2 C .  

(7) 

(8) 

Further rationalisation is achieved by introducing the parameters 

since then 

./" = n , . / . ~ .  

x = ydn~,  

d = CD~/y~, 

]~212 g 

k = 1/K - b~V~o~ 2 

g 

03 2 b e ' 

J3 =.f(1 + x), 

J2 = l + ~ x + k ,  

J1 = j (dx  + k), 

Jo = k. 

(9) 

(1o) 



It is worth noting that K can also be expressed a s  (P1/P2) 2, where P, is the basic 'pendulum' period, 
and P2 the basic 'directional' period, which were mentioned when discussing the elementary modes for 
degenerate cases. 

In order to determine the critical values of beV ~ we merely have to determine C, or in effect K or k, 
and the next section discusses the variation of the critical values with f, x, and d. 

Stability boundaries. 

A mode of motion with zero damping will exist when the stability equation (2-4) has a factor 2 or 
(22+const.). The first possibility corresponds to nv/C being zero, and for finite values of b~ and V e this 
implies that/i~ would have to be zero. The second possibility corresponds to a factor of the form (s2+ Bo) 
existing for equation (6), and therefore would require that 

Jo-J2Bo+B~ = 0 , ]  

J1-JaB o = 0. I (11) 

These are equivalent to the condition 

B2-go(l  +d- . /~)+d = 0, (12) 

where 

k+dx 
B° - 1 + x  (13) 

The quadratic in B 0 has rather simpler coefficients than the corresponding quadratic in k, which is 

k 2 - k  [(l +d- f2)+ x( l -d- . f2)]+d( l  + x)(l +f2x)-d2x = O, (14) 

and it is therefore a convenient basis for drawing stability boundaries. 
Consider a given towed object with particular values of d, x , f  From (12) we obtain two critical values 

of B o, and hence of k by applying (13). By a l lowingf to  wtry we can draw in the/i  B 0 plane the locus of 
points corresponding to an undamped oscillation. Two such loci are sketched in Fig. 4, the typical one 
having a turning point at B 0 = x/d , f= 1 -x/d. When d = 0 the curve degenerates into two branches: 
B 0 = 0 and B 0 = 1-/~. The loci reach the Bo-axis at B 0 = d and B 0 = 1. An equivalent locus in the 
./i k plane is shown in Fig. 5. Representative points on the Bo-axis should be interpreted with care, since 
.l.'v = y+,fl,) and fllx = CDe/~O, and the stability quartic for n~ = 0 is 

s4 +Yvsa +(l  +k) sz+CDe-s +l¢ = O. 
(.o (D 

When k = d, the factors are 

As ;1,.--+0, x--+~ and the point / '=  0, k = 1 + x - d x  approaches infinity. When k is very large in this 
way. the .qability factors are of the form 

( +oe v )( ) 
s2+ ~k s + l  s2+ s+k , 



and in the limit become 
R O Y A L  A , ' 2  ,:- :: ........ 

Although we may wish to produce a diagram like Fig. 3 for an existing towed object, a generalised 
form is useful for design purposes, and Fig. 6 seems suitable. Here be/g is plotted against Vd~)/#1, each 
corresponding to a particular value of k. 

To illustrate the use of Fig. 6, consider a proposed design with d '=  0.04, x = 0-4,f = 0.3. From Fig. 4 
we deduce the critical values B o ~ 0.04, B 0 ~ 0.9, and hence from equation (13) the corresponding 
k ~ 0.04, 1.25 (compare Fig. 5). In this case, Fig. 6 happens to show curves for k = 0.04 and k = 1.3, 
but if necessary additional curves can be drawn quickly since the equation is merely [be/g ] [V~oJ/IM] 2 = i/k. 

4. Effects o f  Varying the Aerodynamic Design or Moment  o f  Inertia. 

We have shown that the two stability boundaries given by constant values of b~Ve 2 are determined 
by the two values ofk obtained, for a given value off, from points such as A, B, in Fig. 5. The aerodynamic 
parameters considered are the drag coefficient Co~, the acro-normalised derivatives Y,,,~ N,., N,., and the 
moment of inertia I~. These are contained in the parameters k , f  x, d which appear in the fbrmulae and 
diagrams of this Report. For convenience, the definitions are collected together below. 

Yo = - Y ~ ,  k = 1/C~, where C = bJZ/#21Zg , 

Nr = - i z n , ,  f = nJx/(Yzo) , Yzo = - no, 

No = id~n,, x = y J n , ,  

I= = i=ml 2, d = CoJyo .  

We shall first discuss the effects of varying CDe , Yv, N,., No when I, is constant. Variations of Yv are reflected 
in Yv and hence in x and d, those of Nr in n,. and hence i n l a n d  x, and those of No in ~o and hence in k 
and f. 

Variations in CDe and Y~. 

Fig. 5 brings out the salient features since the shape of the stability boundary is determined by x and 
d. It is clear that as d increases towards a value of unity the two critical points on the k-axis approach 
coincidence, and the whole boundary shrinks towards the point k = 1, f = 0. For d > 1 the stability 
boundary reappears with a peak a t f  = x / d -  1. When d = l the stability quartic factorises into the form 

(s 2 +fs  + 1) (s 2 + f x s  + k) ,  

which for positive values off ,  x, k represents stable modes of motion. As indicated in Section 3, points 
on the k-axis have to be considered according to whetherf is  zero because nr is zero or ~v infinitely large. 
Thus, if nr = 0 t h e n f  = 0 but.f'~ = yv/~9. 

In terms of Fig. 3 we conclude that the location of curve B depends directly on x, as it corresponds 
to the point B in Fig. 5, and that the location of curve A relative to curve B depends directly on d. The 
sensitivity to changes in d is in effect illustrated in Fig. 6, since, as described in Section 3, k ~ d for curve 
A in many cases. 

The main point of design seems to be that the unstable region can be made small by arranging for 
Coe to be comparable with Yo, although considerations of performance and cable characteristics will 
set a limit in many cases. 



Variations in N~ and N~. 

By plotting/2 against k, as shown qualitatively in Fig. 7, we can represent changes in ~,,, with Cn 2 
constant, by a point moving along a straight line through the origin 0. This line may intersect the stability 
boundary at two points such as A, B, and these define the range of ~, within which instability would 
arise. The values ofk  defining this range are the roots of 

k2(l + e  + e x ) +  k{dx(l  + e  + e x ) - ( 1  + x +d)} +d(l  + x - d x )  = O, (15) 

where e = Cn if, and the corresponding wdues of B 0 are the roots of 

B~(I + e + e x ) -  Bo(l + d + e d x ) + d  = O, (16) 

i.e. 

o r  

The solution of this equation is 

where B0, as before, stands for k + d x .  
l + x  

There is a value of e for which the points A, B become coincident, as at T or S. It is obtained more 
easily from equation (16) than (151, as it must satisfy' the condition of equal roots given by 

(1 + d + edx) 2 = 4d( 1 + e + ex) ,  

(1 - d -  edx) 2 = 4ed,  

l - d - e d x  = +2x/(ed). 

which implies two values o fe  : 

+ ! + l_ +](;l 

l l + l ~ d ' ]  + 1_] 2 

For small values of x and d, e is approximately equal to 

,1 x 2 or 3 2- 

For example, when x = 0.4, d = 0.04, these approximations yield e = 737.1, 4.623, whereas the true 
values oblained from equation [17) are 740.1, 4.864. These correspond to those given by Glauert on 
page 20 of Re['. 3, as his equation (63)is equivalent to our (I 7). 

The vcrv large wdue correspond'~ lo the tamzent OS, and the smaller wdue of OT. We deduce that 
instability cannot arise when Cn, 2. lies between 4.864 and 740.1, whatever the value of ii,.. ["or positive 
values of ii~,, instability cannot arise when Cn2~ exceeds 4.864; or in general 

!V 1Zd 8]  2 approximately. 
d[ 2 

The inset diagram of Fig. 7 shows the nature of the relevant part of a stability boundary drawn in the 
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nv, C plane. The value of ~ below which the motion is always stable corresponds to the point P, that 
is to the peak on the curve in Fig. 4. This fly is therefore given by 

r 

x/(~v)-  1 - ~ f d '  

Fig. 8 illustrates results for x = 0.4, d = 0.04. The special value of C corresponding to the slope of 
4.864 implies a special value of b y  2, which for 'typical' numbers l = 2(ft), p = 200, and n,. = 4 comes 
to about 1.5 x 106. Thus for a modest cable length, say b e = 100 (It), the speed must exceed about 122 ft/s. 
On the other hand, we can say that the motion is stable for all values of b e and V~ provided that n,./,~(~,,) 
is greater than 0.8. Although this sort of value may be impossibly large for a given towed object, there 
could be considerable design freedom when the object is a carrier of goods or equipment, and then 
arrangements of forward and rear fins which are unusual in aeroplanes might achieve a favourable value 
ofn,./\/(fi,). The fins might well be dorsal and ventral and extend alon~z a considerable length of the body. 

The use of larger fins to increase n,. will also result in an increase of y,. so that the value of x is unlikely 
to change very much. In terms of Fig. 5, we see that the critical value k = 1 + x - d x  is therefore also 
unlikely to change significantly. 

The total damping available to be shared among the modes of motion (typically two oscillations 
somewhat analogous to the pendulum and directional modes described in Section 3) is (Yv-n,.), so that 
a large.value in relation to x/'(~) would be expected to be beneficial. A very low value of ~, would cause 
the towed object to tend to wander about, as a poorly damped exponential mode of motion would be 
present. 

Variation in I~. 
For a given aerodynamic design n,. and nv are inversely proportional to the moment of inertia I=, and 

hence f2~zc 1/I~ whereas kocI=. It follows that an increase in I+ can be represented by a point moving 
from left to right along a rectangular hyperbola f2k = constant superimposed on Fig. 7. An increase 
in the moment of inertia therefore improves stability if the original value corresponds to a point in the 
vicinity of the right hand branch of the stability boundary, but diminishes stability if the original point 
is near the left hand branch. 

5. Mapping o[ Unstable Region. 

An analysis of the unstable region may be beneficial. As we have seen fiom Fig. 3, the unstable region, 
when it exists, stretches to infinity in the directions of both axes. In applications where either cable length 
or speed have a range of values it may then be impossible to avoid spending some time in a potentially 
unstable condition. Strictly speaking, wc cannot apply a stability diagram that relates to constant datum 
values to a condition in which parameters vary continuously, but it is reasonably sali: to assume that 
the likelihood of building up an oscillation, while traversing a region that has been labelled unstable 
fl"om a panlineart  analysis, is a function of the degree of instability predicted by that same analysis. 

For the stability equation considered in this Report it is found that the degree of instability increases 
as we penetrate further into the region between curves A and B in Fig. 3, but there is a definite limit 
.and a locus of maximum instability exists within the region, as illustrated in Fig. 9 by the heavy dashed 
curve. 

In preparing such a diagram it is assumed that the stability equation (6) has a factor ( s 2 - A s + B ) ,  
which corresponds to a growing oscillatory mode with persistence index a = ½A, and angular frequency 
(B-~2)I-, expressed in the special time scale associated with s. In other words the mode has the form 
exp(o't*) sin [(B - 0"2) ½ t :~ -~- e l ,  where t* = ~ot/r. 

t i t  has been proposed by Hopkin and Thomas tt that linear differential equations with constant 
coefficients be called panlinear. 
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In Fig. 9 the curves numbered 1, 2, 3, 4 are respectively loci of constant  persistence given by A = 0, 
0.025, 0.05, and 0.0654 (max), and one striking feature is the dispari ty in the gradients as we proceed 
inwards from the two stability boundaries.  This was taken to be the explanat ion of an apparent  dis- 
agreement between theory and experiment  in a part icular  case. Excellent agreement  was obtained in 
mapping  out the lower stability boundary  but not the upper  one. Th*' discrepancy, however,  seemed 
hardly surprising when theory predicted a very low rate of change of A in the vicinity of the upper  boundary ,  
as the difficulties inherent in pinpoint ing a condit ion of zero damping  by experiment  would be increased 
considerably.  

It is interesting to draw contours  of constant  persistence within the f ramework of Fig. 5 or Fig. 4, 
and an example is illustrated by Fig. 10. We find that the loci of constant  A are closed curves that con- 
verge to a point P representing the peak value of A. This is of  course not the max imum value referred 
to in Fig. 9, because in that example  the value o f f  was fixed at 0.3. The loci in Fig. 9 thus correspond 
to the points 1,2, 3,4 in Fig. 10. For  an existing design the value of f would be known, and a d iagram 
like Fig. 9 might be drawn. During a design study, however,  it might be worth determining the point 
P. as this corresponds  to the worst possible combina t ion  of parameters  as far as stability is concerned. 

The equalions that are required for carrying out this \ \o lk  are given in Appendix 2 and illustrated by 
Figs. 10 to 13. 

6. Modes of  Motion. 

It is i l luminating to try and identify the nature of the two typical modes  of iscillalion. Working  in 
our special lime scale, we correlale a separate  pendulum mode  with a factor (s2+ k) and a separate  direc- 
tional mode  with [s2+.l(l + x ) s + ( l  + f ix ) ] .  

Consider  the stability factors and values of k associated with the points 1,2, 3,4, 3,2, 1 on Fig. 10, 
as follows. 

Factors 

(s 2 + 0.0442) (s 2 + 0.42s + 1.038) 

(s 2 - 0'025s + 0-2486) (s 2 + 0.445s + 1.063) 

(s 2 - O-05s + 0.4336) (s 2 + 0.47s + 1' 119) 

(s 2 - 0.0654s + 0"6346) (s 2 + 0.4854s + 1.185) 

(s 2 - O.05s + 0.7837) (s2 + 0.47s + 1.289) 

(s 2 - 0-025s + 0.8594) (s 2 + 0.445s + 1.335) 

(s 2 + 0.9058) (s 2 + 0 .42s+ 1-382) 

k 

0.0459 

0.2642 

0.4851 

0-7522 

1-0102 

1-1476 

1.252 

For  the values taken (1'= 0.3, x = 0.4, d = 0.04) the basic directional mode  corresponds  to 
(si+0"42s+ 1"036), and for the left hand point l we can thus be safe in calling the undamped mode  a 
pendulum mode. The position is not clear, however,  as k becomes larger and of the order of unity, since 
the basic modes  then have very similar fi'equencies. It is ternpling to say that the lwo points on the stability 
boundary  correspond to a pendulmn- lype  mode  [small h') and a direcl ional- type mode (1< ~ 1L these 
being associated in turn with the lo,aer and upper  boundar ies  in Fig. 3 and Fig. 9. It is unwisc, howc~er, 
1o guess in this way, and a more reliable basis would be to observe or calculate the dynalnic behaviour.  
Perhaps we could go so far as to say that it would not be surprising if a more  complicated m o t i o n  a 
combina t ion  of pendulum swinging and yawing oscillation were obtained for a large critical value of 
k in contrast  to a more  nearly pure pendulum mot ion  for a small critical value of k. 

7. Discussion and Conclusions. 

Although the analysis developed in the present report  is based on drastic simplifying assumptions,  
there is evidence that it forms a valuable guide for avoiding or remedying designs that result in unstable 
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oscillation of a towed object at certain combinations of cable length and towing speed. Many aspects 
of the theory were found to be realistic in recent work by Mettam t2 and in associated work in France, 
to which he refers. 

The existence of stable or unstable motion depends on the relative values of the normalised parameters 
Yv, nv, nr, CDe and a quantity C = beVea/l,t212g, so that it is impossible to discuss briefly all the significant 
combinations. A general stability boundary can, however, be drawn (Fig. 4). This shows the great import- 
ance of the quant i t ies . f= n,./,,/(//,.), d = Cn~/y,.. The one factor that call reduce the unstable region to 
zero is the ratio CDe/yv, the value unity being the best. 

The benefits from other variations in aerodynamic design or moment of inertia are less definite and 
have to be studied in detail, as modifications to the body or tail (or fin) can significantly affect all the 
parameters at the same time. It is possible in principle to ensure complete stability (~ubject of course 
to the basic assumptions), for all combinations of cable length and towing speed, by designing nr/x/(fz~) 
to be greater than 1-(CDe/y~) ~, but this much freedom of design may not be available in a particular 
application+. 

If an unstable region exists as illustrated in Fig. 3, it may nevertheless be possible to operate wholly 
within the lower stable area or the upper stable area. On the other hand it may be necessary to operate 
in the one or the other at different times during the same flight. If this be so, a flight procedure might 
be found such that the growth of an oscillation is acceptably slow while the transition through the unstable 
region is carried out. For example, it could be beneficial to lengthen the cable while the speed is low 
enough to maintain stable conditions, and then increase speed so as to reach the upper stable region 
after crossing a relatively narrow unstable band. Another possibility is to raise or lower the towed object 
while the speed is high, as this also corresponds to a narrow band of instability. In a given case the maxi- 
mum degree of instability and the period of oscillation should be calculated in terms of ordinary time 
units in order to asses the nature of the modes of motion likely to be encountered while the unstable 
region is traversed. 

?If CDe > Yv the crilical value ofn,./.](ii,.) i.~ ~('D,..t,.) -" -- 1. 
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LIST OF SYMBOLS 

= 2a (coefficient of - s  in quadratic stability factor) 

Maximum value of A for specifiedf 

Peak maximum value of A 

= A,. /J 3 (normalised value of Am) 

Horizontal separation between towed object and towing aircraft in steady flight 

1 +am 

Constant coefficient in quadratic stability factor 

Value of B when A = Am 

Value of B when A = 0 

Vertical separation between towed object and towing aircraft in steady flight 

1 -Bm 

= b e V J / ~ 2 1 2 g  

Drag coefficient of towed object in steady flight 

Normalised weight, W/½peVe2S 

Differential operator with respect to time 

= Coe/Yv 

= l - d  

= C , ~  

= 1 / , f  

Coefficients of quadratic in F., (i = 0, 1, 2) 

= ~r/(O 

Coefficients of cubic inf ( i  = 0, 1, 2) 

Acceleration due to gravity 

Coefficients of sextic in A,. (i = 0, 1, 2, 3, 4, 5, 6) 

Coefficient of stability quartic (i = 0, 1, 2, 3) 

C fi~, C ~  2 2 z = = = P1/P2 

= 1/I,; 

Moment of inertia of towed object about z-axis 

Yawing inertia parameter (normalised value of I~), iz = L/ml  2 

Length of towing cable (constant) 

Representative length 

Mass of towed object 

Aero-normalised derivatives of yawing moment 
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LIST OF SYMBOLS -continued 

Concise dynamic-normalised counterparts of N,.. Nr In, = - pNJi:,  n~ -- Nr/i=) 

= --g/v = 032 

Yawing component of angular velocity 

Representative area 

Axis transformation matrix 

Root of stability equation, s = 2/co 

= 2~(be/g) ~, period of free pendulum mode 

= 2~#l/coVe, approximate period of free directional mode 

Tension in towing cable 

Time in ordinary units 

Time in special units, o~t/r 

Function used for determining am (see Section 5) 

Resultant speed of towed object (associated with vector V) 

Value of Vin steady datum flight condition 

Component of Valong y-axis 

Weight of towed object 

= 1 / x  

Components of cable tension Talong body axes 

Components of cable tension Talong normal earth axes 

Coefficients of quadratic in x,. (i = 0, 1,2) 

Yv/nr 

Components (along normal earth axes) of displacement of body-axes origin relative 
to position in steady flight 

Aero-normalised derivative of transverse force 

Concise dynamic-normalised counterpart of Y~ (Yv = - Y~) 

Coefficients of quadratic in z (i = 0, 1, 2) 

Am~(1 - d )  

Pitch-deviation angle 

Root of stability polynomial for dynamic-normalised equations, 2 = ~os 

Relative density parameter, m/½peSt 

Ambient air density for steady datum flight condition 

Persistence index of oscillatory mode of motion 

Dynamic-normalised unit of time, m/½peSV~ 
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LIST OF SYMBOLS- continued 

Roll-deviation angle 

Yaw-deviation angle 

x/(~v) (approximate angular frequency of free directional mode in dynamic-normalised 
units) 

Datum values 

Values corresponding to maximum persistence index 

Values corresponding to peak maximum persistence index 

Components along normal earth axes 0 o Xo Yo zo 

T' denotes increment in T ( T =  T~+ T'), and so on 

2 denotes dx/dt, and so on 

nv denotes - n v 

Identifies derivatives in ordinary units 
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A P P E N D I X  1 

Corresponding Quant i t ies  in T h r e e  Nota t ions .  

A P P E N D I X  2 

Contours  o f  Cons tant  Pers is tence  and Loci  o f  the M a x i m u m  Persis tence.  

The following conditions must be satisfied in order that (s 2 -  A s +  B) should be a stability factor. 
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Jo-(J2q-J3A-t-A2)B-t-B 2 = 0, l (A.2.1) 

(JI + J2A + J3A2 + A3)-(J3 + 2A) B = O. ) 
The second of these equations is linear in k and B : 

B [ ( f +  A) + @~: + A)] = k(f+ A) + Ordx + A)+ A(f+ A) 0Cx + A). (A.2.2) 

We can therefore derive a quadratic in either k or B, with coefficients that are functions off ,  x, d, A. 
In the case A = 0 we have shown that the quadratic in B is simpler than the k quadratic, and this is 
also what happens when A is not zero. 

We find that 

and this equation reduces, as it should, to (12) when A = 0. 
The two values orB correspond to pairs of points such as 1, 1 and 2, 2 in Fig. 10, and Am, the maximum 

value of A, therefore corresponds to two equal values of B. The condition for equal values reduces to 

jax2(1 - d )  2 + 2Tf2x(1 - d ) + 0  a - 4 )  T 2 = O, 

where T = (f+ A m) ~ + A,~), and hence to 

There are two possibilities : 

with associated values for B and k : 

B,, 

km 

fx(1 - d ) + ( f + 2 )  T =  0,  

= 1+(f+Am), ] 

(A.2.4) 

(A.2.5) 

For positive f, x, A,, we must have T >  0, and hence the possibilities reduce to the following. 

For d < 1 : fx(1 - d) + ( f -  2) r = 0, ] 

Bm= 1 - f - A , , ,  I (A.2.6) 

k,, = Bm( l + fx + A,,) . 

F o r d  > 1" fx(1-d)+Oc+2) T= 0 , ]  

B,, = 1 +f+A, , ,  l (A.2.7) 

km= B,~(1 - f x -  Am). 
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To examine the case d = 1 we must  return to equat ion (20), which then becomes 

( B - 1 ) [ B -  I-J(f+ A)] = 

so that it is impossible to have equal roots  except when f = O. 

Only the case d < 1 is considered here in more  detail, as this applies to a large variety of towed objects 
and fur thermore the analysis for d > 1 may  be produced quickly by analogy• For  objects designed to 
have little drag a typical value of d is less than 0.1, and quite draggy shapes have values less than unity. 

The first of equat ions (A.2.6) can be expressed in a slightly different form to enable the drawing of 
generalised curves. Writ ten in full the equat ion is 

A~+A,d'(1 +x)+gx-~ .¢,c(1 - d )  _ 0 (A.2.8) 
• f - 2  ' 

and if we write A m = amJ  3 = aml~l +X), we obtain  the equivalent  equat ion 

2 1 
(A.2.9) 

where F stands for l / f  For  given values of a,, and d, we can therefore draw a curve relating F and x. A 
curve of more general applicabili ty is, however,  obta ined by plott ing the function u(F) and F. This is 
done in Fig. 11. for d = 0 and d = 0.04, and it is seen that there are two a sympto te s '  one given by F = ½ 
and ano ther  by 

u(v)  = ½F(I - J ) - ¼ ( 3  + d) .  

The alternative of drawing families of curves relating F and x is illustrated by Figs. 12 and 13. The 
abscissa is ( x +  1/x) but an equivalent scale for x is also given• Since the min imum value of ( x +  l/x) is 
2, a n d f i s  known to be less than (1 - x / d )  in the unstable region, we need look only at one branch of the 
curve. This corresponds  to the upper  branch in Fig. 11. 

Curves have been drawn for a,, = 0, 0'1, 0'2, 0.4 for both  d = 0 and d = 0.04. A value of 0.4 for a,,, 
represents a large degree of instability, in that one oscillatory mode has procured 140 per cent of  the 
total system damping  {.I~) leaving the other  mode unstable with - 4 0  per cent. For  the range of values 
considered the asymptotes  provide good approximat ions ,  but the exact expressions are not unwieldy. 

One interesting conclusion is that ( x +  l/x) appears  as a significant quantity,  and that x, the ratio of 
5¥ and n ,  can vary over the typical range 0.5 to 1.0 without  altering ( x +  l/x) very much. Variat ion of 
./'is much more  important .  

In order to work backwards  and predict what values of x and f would produce a specified a,, and 
Bm for a given d, we may  use the relation 

b l F  m = a. ,Zm+a 1 , 

where 

a 1 = l + a  m 

bl = 1 - B i n ,  

together with a quadrat ic  equat ion for either xm or Fro, namely 

(A.2.10) 

(A.2.11) 

J2x2m-t- X 1 x m - l -  X o  = O,  (A.2.12) 
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where 

F2FZ~ + F~F,, + Fo = O, 

X2 = 2alb 1 -  1 + d ,  F a = X 2 ,  

X1 = 2abl + a l ( X 2 - b ~ ) / a ,  t~ 1 = 2 a 2 - a l b l  _ a l F 2 / b l ,  

Xo = b l ( 2 a l - b O ,  Fo = l + 2 a .  

(A.2.13) 

Determination of  the peak value of  A. 

The typical diagram Fig. 10 shows two values of f corresponding to a maximum and a minimum on 
each locus of positive constant A, so long as A is less than the value at the peak P. At the peak the maxi- 
mum and minimum have coalesced, and the condition for this is that equation (A.2.8) must be satisfied 
by two equal values off. Writing the equation as a cubic 

.fa _ Gz.f2 _ G1 f -  Go = 0 ,  (A.2.14) 

we express the condition for two equal roots as 

-4G~+4G~Go+27G~+I8GzG1Go 2 2 -G2Go = 0. (A.2.15) 

The G coefficients are given by 

Gz = 2 - y A , , ,  

G1 = 2 y A m -  dl - X A ~ ,  

Go = 2XA~ ,  

w h e r e X =  1Ix, y =  l + X,  d~ = 1 - d .  
The result of substituting in the condition (A.2.15) is a sextic 

6 5 
H6Am + HsA,~ + . . . . . . . .  + H~Am + H o = 0,  (A.2.16) 

and the peak value AM is a root of this equation. The H coefficients are given by 

H6 = x Z ( 4 X _ _ y 2 ) ,  

H 5 = 4 X y ( 4 X - y 2 ) ,  

H4 = X2(32+ 12d0 + y Z ( S X - 4 y  2 -  2d lX) ,  

H a = 1 6 y ( 4 X - y Z ) + 4 d t y ( y 2 -  X) ,  

H z = 16(4X - yZ) _ dlX(80 - 12dl) + d ly2(32-  dr), 

H~ = d ly(16-2OdO,  

H o = -4dZ~d. 

For problems where Ara is small some of the terms in equation (A.2.16) could be ignored in order to 
furnish an approximation. One such approximation is a root of the quadratic 

(A.2.17) Z 2 z 2 - I - Z 1 z - { - - Z o  = O,  
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where 

and 

H 6 = - 14.0625, 

H 2 = 164.6784, 

Am = ( 1 - d ) z ,  

Z2 = 15y 2 - 4X + d ( 5 6 X -  30y2), 

Z t = - 4y(1 - 5d), 

Zo = - 4 d .  

As an example consider x = 0.4, d = 0.04. The coefficients of the sextic become 

H 5 = - 78-75, H4 = - 142"05, H 3 = - 5.04 

H1 = - 10.752, H0 = -0 .147456,  

and there is a root +0-07713 as indicated in Fig. 10. The approximate  quadrat ic  is 

164-6784 z z - 11.2 z - 0 - 1 6  = 0 ,  

i.e. 

(A.2.18) 

164.6784 (z + 0"012124) (z - 0-080135) = 0 .  

The root 0-080135 corresponds to A,, = 0.080135 x0.96 = 0.07693, and this differs from the true AM 

by just  0-0002. 
It is interesting to note that as d approaches zero, the approximate  quadrat ic  approaches 

(15y 2 - 4 X ) z  2 - 4 y z  = O ,  

and the root we are seeking approaches the value 4 y / ( l  5 y  2 - -  4X). At the same time z ~  A M. For tile example 
considered above the limiting value is 14/173'75, i.e. 0.0806, so it seems likely that the limit would provide 

quite a good approximat ion  when d is small. 
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