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Summary 
Turbulence and mean velocity measurements have been made in two mixing layers with free stream 

velocity ratios of 0"30 and 0"61 and these measurements are compared with the classical free mixing 
layer investigation of Liepmann and Laufer. The experiments indicate changes in the intensity levels and 
the structure of the turbulence with changing free stream velocity ratio. 
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1. Introduction 
There is little experimental data on the mixing of two non-zero velocity airstreams and published 

experimental results are often contradictory and of doubtful accuracy. Extensive turbulence measure- 
ments exist for the case of a flee mixing layer only. Knowledge of how the structure of a mixing layer is 
modified by the presence of a secondary stream is of great practical importance particularly in connection 
with the problem of jet noise. Previous experimenters have found that most of the exhaust noise of a free 
jet is produced within the first fifteen nozzle diameters of the jet where a mixing layer type of flow is 
dominant. The presence of a secondary stream is relevant to an aircraft in flight and to the ducted jet 
or ejector type of flow. 

Experimenters have made a bare minimum of measurements in a comparatively large number of 
mixing layers with different free stream velocity ratios. Their measurements were almost entirely restricted 
to mean velocity distributions and consequently the effects of the turbulence in the separating plate 
boundary layers, in the free streams and in the boundary layers on the walls of the channel restricting 
the flow were neglected. Because of this the results of these experiments show a remarkable disagreement 
between each other and with a few exceptions they are of use only in showing the sensitivity of a mixing 
layer to deviations from ideal conditions. 

The present worker recognised the importance of turbulence measurements in mixing layers not only 
for discovering whether (and where) the assumed ideal flow conditions existed but also as a means of 
discovering how the basic structure of a mixing layer adapted itself to the presence of a secondary stream. 
Only two free stream velocity ratios were used for the present experimental investigation but detailed 
turbulence measurements were made in each of the mixing layers and particular attention was paid to the 
accuracy of the measurements and to the accuracy of the flows as representations of the ideal self- 
preserving flows. 

2. Summory of Previous Work. 
it may be deduced from the momentum equation that a mixing layer between two constant velocity 

incompressible free streams can be self-preserving with a constant rate of increase in thickness (see for 
example Hinzet). Simple dimensional analysis shows that for a self-preserving mixing layer the rate of 
spread is some function of the fi'ee stream velocity ratio U2/U 1 only (see Fig. 1). 

Tollmien 2 obtained an analytical solution for the self-preserving mean velocity profile of a mixing layer 
with one stream at rest (i.e. U 2 = 0, the free mixing layer). The boundary layer approximation of the 
turbulent momentum equation was solved by applying Prandtt's mixing length hypothesis for the turbu- 



lent shear stress. Kuethe 3 extended Tollmien's approach to the general case of two non-zero velocity 
streams. The solutions required the evaluation of an empirical constant which was related to the spreading 
rate and thus dependent upon U2/UI. In addition to the two boundary conditions which fixed the mean 
velocity as U1 and U2 at the inner and outer edges of the mixing layer respectively, a third boundary 
condition was needed which effectively fixed the lateral position of the mixing layer relative to the co- 
ordinate system. Kuethe considered the flow produced by the mixing of two semi-infinite, initially parallel 
free streams, the Ox axis being parallel to the initial directions of the streams (see Fig. 1). For such a flow 
the mixing layer produces deviations in the mean streamlines of the free streams in a similar fashion to 
those occurring in the free stream of a boundary layer flow. However, the absence of a solid surface makes 
it impossible to use a simple third boundary condition (such as V = 0 at Y = 0 for the boundary layer) 
and Kuethe used a qualitative third boundary condition which was suggested by von Karman i.e. 

U1V~+U2V2 = 0 (1) 

Kuethe's analysis produced a relatively simple equation for the mean velocity distribution but it 
suffered from discontinuities in the velocity gradients at the edges of the mixing layer. 

G6rtler 4 solved the same problem as Kuethe by using Prandtl's second hypothesis for the turbulent 
shear stress, (i.e. the constant eddy viscosity hypothesis). No attempt was made at fixing the lateral 
position of the solution by using a third boundary condition. G6rtler's solution, though more complex 
than that of Kuethe, was later found to give very good agreement with the shape of experimental velocity 
profiles and the solution, or an approximation to it, is very often used in mixing layer investigations. Like 
Kuethe the solution required the empirical knowledge of a parameter, a, related to the rate of spread of 
the mixing layer, d6/dx, and thus to the free stream velocity ratio, U2/U 1. The constant eddy viscosity 
analysis is considered in sections 4 and 5. 

Liepmann and Laufer 5 made an investigation with hot wire equipment in the free mixing layer formed 
at the boundary of a half-jet issuing into the ambient atmosphere. Their mean velocity and turbulence 
measurements indicated that the mixing layer quickly became self-preserving and with suitable choices 
of the respective empirical constants the solutions of Tollmien and G6rtler agreed well with the measured 
self-preserving mean velocity distribution, with the constant eddy viscosity solution having slightly 
better accuracy. Several other workers have investigated free mixing layers by using mean velocity 
measurements only and the results were generally in agreement with those of Liepmann and Laufer (e.g. 
Albertson 6 et al). The experiment of Liepmann and Laufer remains the most reliable and extensive invest- 
gation of a self-preserving mixing laver. 

Ting 7 used a method of matched asymptotic expansions to demonstrate that the third boundary 
condition of yon Karman equation (1) was valid in the laminar case and implied that it could be used 
as a first approximation in the turbulent case. Mills s and also Baker and Weinstein 9 used this third 
boundary condition in their numerical solutions for the mean velocity distributions in mixing layers 
and they used the same constant eddy viscosity assumption as that made by G6rtler. The analytical mean 
velocity profiles derived for mixing layers at different mean velocity ratios by Mills, Baker and Weinstein 
and G6rtler are in agreement with each other. 

Both Baker and Weinstein to and Mills performed experiments with mixing layers with several different 
free stream velocity ratios. Mills investigated two adiacent half iets exhausting into the atmosphere and 
Baker and Weinstein's mixing layers were produced by two streams mixing in a constant area duct. By 
suitable choices of the empirical constant related to the spreading rates of the mixing layers the mean 
velocity distributions in the mixing layers were found to agree well with the constant eddy viscosity solu- 
tions. However the absence of any extensive turbulence measurements in their experiments made it 
impossible to prove that the mixing layers were truly self-preserving and measurements of ~- made by 
Baker and Weinstein appear to indicate rather thick boundary layers on the walls of the duct and on the 
separating plate and a lack of self-preservation in the mixing layers. As will be shown later there was little 
correlation between the spreading rates measured by these workers at different velocity ratios. 

Experiments upon two stream mixing by Zhestkov et al (unpublished) and Yakovlevskiy I~ were 



reported by Abramovich ~ 2. Abramovich superimposed the velocity measurements of these experimenters 
for several velocity ratios and he concluded that there was no change in the shape of the self-preserving 
mean velocity profile with the velocity ratio. However the measurements of Mills and Baker and Weinstein 
do show changes in the shapes of the velocity profiles the mosl noticeable being a more rapid approach to 
the value of the lower velocity stream as Ue/U~ increases. This change in shape is also predicted by the 
constant eddy viscosity analysis. Abramovich applied dimensional assumptions regarding the lateral 
diffusion of the turbulence and deduced the following expression for the variation of the spreading rate 
with the velocity ratio 

1 U2 
U, d6 constant x (2) 
U2 dx 1 + - -  
U1 

where ?i is the mixing layer width. Abramovich stated that the results ofZhestkov et al and Yakovlevskiy 
agreed with equation (2) for Uz/U1 ~ 0.4. Sabin ~s investigated two stream mixing with a water channel. 
The velocity profiles are lacking in experimental points and only two traversing stations were used for 
each velocity ratio. 

Miles and Shih 14 demonstrated the very wide scatter in the spreading rates measured by Sabin, Zhestkov 
ct al and Yakovlevskiy and they proposed that this scalier was caused by the persistence of separating 
plate boundary layer effects in the mixing layers. They performed experiments with apparatus of the 
open jet type in which separating plate boundary layers were removed by suction and they found a 
smooth variation in the spreading rate with changing velocity ratio. No turbulence measurements were 
made but their experimental results must be regarded as the most reliable to date for mixing layers with 
non-zero velocity secondary streams. 

Wygnanski and Fiedler ~ s investigated a free mixing layer and they made extensive measurements of the 
turbulence components in a similar investigation to that of Liepmann and Laufer. However their turbu- 
lence levels and rate of spread differed significantly from those measured by Liepmann and Laufer. This 
discrepancy is discussed by Yule l 6. 

3. Basic E~luations and Coordinate System. 
Instead of the flow proposed by Kuethe and other investigators which assumed the mixing of two 

initially parallel free streams an ideal self-preserving flow is assumed here. It can be shown from the 
equations of motion that a mixing layer can only be self-preserving if the free streams have constant 
velocity components U~, 1/1, U2 and V2 at the edges of the mixing layer. As can be seen from Fig. 1 this 
requires pressure gradients in the flow considered by Kuethe et al but pressure gradients are not strictly 
compatible with the requirements of self-preservation. The ideal self-preserving flow proposed here 
assumes that the free streams have uniform and constant velocities outside the mixing layer but their 
directions differ due to the entrainment action of the mixing layer (see Fig. 2). The Ox axis is chosen to 
be in the direction of the higher velocity stream so that there is the exact third boundary condition, 
VI = 0, and not the approximate third boundary condition equation (1) involved in Kuethe's flow. The 
origin of the coordinate system is at the virtual origin of the mixing layer. 

For a mixing layer with no longitudinal static pressure gradients in the free streams the longitudinal 
equation of motion is (see Townsend 1 v) 

U Ox ~y +--~y = 0  (3) 

The experiments of Liepmann and Laufer and those of the present author show that the normal stress 
term and the viscous term in Townsend's equation (equation (8.3.3)) are at least third order and can be 
neglected for the present purposes. 



The condition for incompressibility is, 

OU OV 
I - - -  = O. ( 4 )  

Ox oy 

A similarity variable r /=  y is defined with self-preserving functions ,f(r/) and gO?) so that 
X 

U = U 2 + ( U 1 - U z ) f ( ~ l ) ,  and u-~ = (U l - U 2 )  2 g(r/). Note that .f and ,q are also dependent upon the 
velocity ratio Uz/'U~. 

The self-preserving form of equation (3), substituting for Vfrom equation (4) is 

with V = 0 a t  .v = - co. 
Integrating equation 

q 

Vl ' ' f (?_  U l _ U 2 r l f  + f  1 ) d t l -  g 
- - 7 "  

= 0, (5) 

(5) with respect to r/ from t/ = - c o  to an arbitrary value yields, 

U~ t / ( . f - 1 ) -  (.?-l)drl + ( f - l ) ( f - 1 ) d r l -  (.f-1)2d,/. 
- U I - U 2  -~, - ~  _~ 

If the mean velocity distribution in a self-preserving mixing layer is known accurately equation (6) 
can give the turbulent shear-stress distribution. 

The value of the transverse velocity component in the lower velocity stream may be found by integrating 
the self-preserving form of equation (4) to give 

+ c o  

V 2 = (U~ - Ua) j~ rl dr/. (7) 

--oF 

The angle c~ between the two streams is thus (see Fig. 2) 

c~=tan-~  V2 = t a n - t  fr/drl . 

- z ¢  

(8) 

It is necessary to find the position of the Ox axis when the shape of the mean velocity distribution is 
known. This is most easily achieved by assuming definite values for the edges &the  mixing layer rh and tlz 
such that r /=  ~12 a t . f =  0 and tl = t/l a t . f =  1. Equation (5) is integrated across the mixing layer to give, 

U I - -  U 2 U 2  - 

r/t U1 UI-~-U2 (9) -- ,,, "-/ dt 1 -~ f dt 1 

Only the shape of the functionfis  needed to evaluate r/1 and hence t/2 from equation (9). 

4. 7he Constant Eddy Viscosity Solution. 
G6rtler 4 assumed the eddy viscosity, vr, to be constant across any section of a mixing layer and he used 

Prandtl 's second hypothesis to write, 



Vr = K ~ a ( U ~  - U2) (10) 

ul) 

OU 
where K~ is a universal constant and Vr - . G6rtler wrote equation (3) in terms of a non-dimensional 

Oy 

self-preserving stream function F(~), where ~" = o'y and 
x 

= ½x(Ut  + U2)F(() (11) 

He obtained the following equation, 

F'"  + 2 ~ F F "  = 0, (12) 

where the similarity parameter, ~r, was defined as 

J 'K d8 U t - U 2  }-'=-. 
G=½~ ~Uxu,+u2 (13) 

The boundary conditions of equation (12) are F' = 1 + U1 -U_2 
- U t + U  2 

(12) as a power series expansion of the form 

at ~ = -± ~v. G6rtler solved equation 

aF(c~) = F0(~) \ U l +  F,{~) \ U l + t a 2 J  (14) 

The first two terms of G6rtler's solution in terms of the mean velocity distribution are, 

U I _ U  2 ) U l q - U 2  I-] er f~ .  (15) 
U - 2 UI--~-U 2 

It is seen that G6rtler arbitrarily selected an O x  axis direction so that U = (U~ + U 2 ) / 2  a t  ~" = 0 in his 
first order solution. Ting 7, Mills 8 and other workers reco~nised the need for a third boundary condition 
to fix the lateral position of the solution (i.e. if F(() is a solution then F(( +any  constant) is also a solution 
if only two boundary conditions are known). Mills and Baker and Weinstein solved equation (12) numeric- 
ally and used equation (1) as a third boundary condition. In the ideal self-preserving flow which is assumed 
hire the solutions of Mills, Baker and Weinstein and G6rtler for the U-velocity distribution are applicable 
but the lateral position of the solution is fixed by the third boundary condition V = 0 at y = - ~ which 
is most easily applied by using equation (9). 

5. The C o n s t a n t  E d d y  14scosity H y p o t h e s i s  and the Spread in  9 R a t e s  o f  M i x i n 9  Layers. 

The self-preserving form of the mean velocity in terms of G6rtler's similarity variable ~" is 
U = U2 + (U ~ - U2)f(~). 

G6rtler's eddy viscosity analysis is incomplete in that it provides no relation for the similarity parameter 
a in terms of the mean velocity ratio U z / U  t. However Yule 16 demonstrated that the constant eddy 
viscosity hypothesis does imply an analytical relationship for a without the use of further assumptions. 
It is found that 

and 

1 U 1 -{- U 2 1 -~ U2/U 1 
cr = - -  = ao (16) 

4KGA U1- U2 1 -  U z / U  1 

db m d x  A t7 -  I (17) 

6 



where b is the local mixing layer length scale, A is a constant and cr o isht e value of a at U2/U 1 = 0. Equation 
(16) is also implied by Abramovich's relation for the spreading rate equation (2). As was shown by Miles 
and Shih x+ and Yule 16 equation (16) is not in agreement with experimental results. 

Yule ~6 showed that a more logical form of the eddy viscosity hypothesis was obtained when the eddy 
viscosity was based upon the energy containing turbulence in the mixing layer and the following equation 
was derived 

1 (!_q_Zma0~-._~- ' U1 + Ue (18) 
a - 4KyA \ ( U ~ - U 2 ) f  U1--U2' 

wherc K ~. is a constant. It is seen that if the turbulence structure of a mixing layer is the same for all values 
of U2, U~ so that (q2 .... )~ o ( ( U ~ - U 2 )  as was implicitly assumed by Abramovich, then equation (18) 
reduces to equation (16). 

6. Apparatus. 
The mixing layer apparatus (Fig. 3) was installed in the Low Turbulence Tunnel of the Mechanics of 

Fluids Department's Laboratory at the University of Manchester. Contractions and pressure dropping 
gauzes were used to produce two streams with steady uniform velocities and equal static pressures. (See 
Yule 18 for a full description of the apparatus and its design). The dimensions of the working section in 
which the mixing layers existed were 0.28 m (height), 0-5 m (width) and 1.2 m (length). The trailing edge 
thickness of the separating plate was 0'3 mm and the trailing edge was 0.14 m above the floor of the working 
section. This horizontal floor was flat and parallel to the separating plate trailing edge and it was drilled 
with traversing stations and static pressure tappings at intervals along its complete length. The shape of 
the roof of the working section was adjusted to achieve the constant longitudinal distributions of static 
pressure required for self-preservation. 

Flow measurements were made with DISA hot wire equipment. Miniature 55AI 5 probes were used for 
U and (u-7) ~ measurements and miniature cross-wire probes were used for (~)~, (~)~ and u-~ measurements. 
The electronic equipment consisted of two 55A01 constant temperature anemometers with two 55D10 
linearizers and a 55A06 random signal indicator and correlatorl The frequency spectra of the 'u' com- 
ponent of the velocity fluctuations was measured by feeding the oulpu! of ~1 hol wire- anemometer 
linearizer combination to either a Muirhead D-788-A low frequency analyser or a D-888-A high fre- 
quency analyser. These instruments had a combined range of 5 cps to 22 Kc/s so that the limiting fre- 
quency to which the spectra of the turbulence could be measured accurately was determined by the 
characteristics of the hot wire--anemometer -linearizer. DISA quote a fiat response curve for such a 
combination for frequencies up to 10 Kc/s. 

Lateral spatial correlation coefficients were measured with one hot wire probe holder fixed vertically 
to the tunnel floor so that the wire recorded the 'u' component of the fluctuating velocity and another 
parallel hot wire was traversed in the same vertical plane in the direction of the lower velocity free stream. 
Longitudinal spatial correlation coefficients were measured by using a fixed wire and a moveable wire 
downstream. The moveable wire was displaced 2 mm above the horizontal wire and also to one side so 
that wake effects were minimised. 

A traversing apparatus allowed probes to be .traversed vertically across the centre of the working 
section for 0 ~< x' ~< 1 m where (x', y') is a coordinate system based upon the geometry of the apparatus 
(see Fig. 3). The position of a probe was known to within _+ 0.05 mm with the aid of a travelling telescope. 

7. Experimental Results and Discussion. 

7.1. Basic Measurements. 
Two mixing layers were investigated with velocity.ratios U2/U1 = 0.30 and U2/U 1 = 0.61 and with UI 

the same for each mixing layer at 18 m/s. The measurements in both of the mixing layers consisted of a 
cumber o~vertical traverses across the complete working section for 0'5 mm ~< x' ~< 0-9 m from which the 

distributions of U, (u2) ~, (v2) ~, (w2) ~ and uv were derived. Measurements of the lateral spatial correlation 



coefficient were made in each of the mixing layers and measurements of the longitudinal spatial correlation 
coefficient and one-dimensional frequency spectra were made in the mixing layer with U2/U1 = 0.61. 
All hot wires were calibrated before and after each traverse and if the amount of drift in calibration was 
greater than 2 per cent the measurements were repeated. 

Full measurements are presented for the mixing layer with Uz/U1 = 0-61 and the self-preserving 
distributions of the mean velocity and turbulence components are presented for U2/UI = 0.30. Figs. 4 to 

U - U 2  
8 give measurements in the dimensionless forms (j- Z ~ "  (~)~/(U, - U~), (v~)~/(U~ - U 2), (w~Z)~/'(U1 - U2) 

and uv / (U , -  U2) 2 using the dimensionless transverse coordinate y where y = (Y'-Y'o.9)/(Y'o.1-Y'o.9). 
Subscripts 0-1 and 0.9 denote values at ( U -  Uz)/(Ut - U2) = 0-1 and 0.9 respectively. 

A comparison of the distributions at the different longitudinal positions shows that the mixing layer has 
a region in which geometric similarity exists for each of the quantities and in this region the mixing layer 
is self-preserving. For U2./U, = 0.61 self-preservation applies for traverses with x' >1 0.60 m and, for 
U2/'U~ = 0.30, for traverses in the range 0.20 m ~< x' ~ 0.60 m. For x' > 0.60 m with Uz/U~ = 0.30 the 
boundary layer on the roof of the wind tunnel began to interact with the mixing layer and for x' < 0.60 m 
with UffUI = 0-61 and x' < 0.20 m with U2/U~ = 0.30 the mixing layers are developing from the 
boundary layers at the end of the separating plate. These boundary layers were fully turbulent and had 
displacement and momentum thickness (6* and 8"* respectively) as follows- for U2/U1 = 0-30, 61" = 1.4 
mm, 6,** = 0"7mm,62" = 1'5mm, 62"* = 0.6mmandforU2/Ul = 0"61,61" = 1-Tmm,6t** = 1.1mm, 
,52* = 3-0 mm and 62** = 1.8 mm. 

The considerably longer distance required for the mixing layer with U2/UI = 0.61 to attain self- 
preservation is explained qualitatively by the higher convection velocities which are present for the 
turbulence in this mixing layer and also by the larger trough in the velocity distribution at the separating 
plate edge which must be filled by entrainment. For both mixing layers the (U - U2)/(U~ - U2) distributions 
possess similarity over far larger longitudinal ranges than the ranges for which the turbulence component 
distributions are similar. Thus the similarity of mean velocity measurements cannot be used as a sole 
criterion for the assumption that self-preservation exists in a mixing layer. This observation has bearing 
upon the accuracy of the results of experimenters who relied upon mean velocity measurements alone. 

The solid lines in Figs. 4 to 8 are the experimental self-preserving distributions of the dimensi0_nless 
quantities. The self-preserving distributions corrected for hot wire yaw effects by the method of Davies 
and Bruun '9 are also shown. In order that experimental and constant eddy viscosity solution velocity 
distributions can be compared the rates of spread of the experimental mixing layers must be derived. The 
lateral scale, ,  0.1 -Y'o.9 is plotted against x' in Fig. 9 and both mixing layers are seen to possess the linear 

d , , 
rates of spread which accompany self-preservation. It is found that ~-,0'o.l-Yo.9)= 0'095 for 

0.30 a n d d d  (Y'o.1-Y'o-9) = 0.046 for Uz/UI = 0"61. Uz/U1 

The coordinate system of the experimental mixing layers must be changed to the (x, y) system for self- 
preserving mixing. The virtual origins of the self-preserving mixing layers (i.e. the origins of the (x, y) 
coordinate systems) are the same for both velocity ratios, being 40 mm upstream of the separating plate 
edge and 5 mm vertically below the horizontal plane through the separating plate edge. The directions of 
the x-axes in the self-preserving mixing layers were found by using equation (9). 

7.2 Mean Velocity Distributions. 
Experimental values of a were found by matching the analytical and experimental f (O distributions 

(Fig. 10). The analytical distributions of Baker and Weinstein were used. The distributions are matched 
by choosing a values which equalize the gradients of the analytical and experimental curves at their 
inflexion points. This is the method used by Miles and Shih and it ensures matching in the central regions 
of the mixing layers where the constant eddy viscosity assumption is most accurate. It was found that 
a = 19 for Uz//UI = 0"30 and ~r = 36 for U2/U~ = 0.61. The shapes of the analytical and experimental 
velocity distributions are in excellent agreement apart from some divergence at the edges of the mixing 
layer with U2/U~ = 0"61. The increasing 'S' type symmetry with increasing velocity ratio which is pre- 
dicted by the constant eddy viscosity analysis is also evident in the measured distributions. 



7.3. Shear Stress Distributions. 
The shear stress calculated from the measured mean velocity for U2/U~ = 0.61 by using equation (6) 

is included in Fig. 8 together with the measured values after applying the hot wire correction. Both of 
these agree reasonably well with the distribution given by the constant eddy viscosity analysis with 
a = 36. 

7.4. Distributions of the Total Turbulence Intensity and its Components. 
Liepmann and Laufer 5 measured u-~ and v -y in a self-preserving free mixing layer and these results are 

compared with the present measurements in Figs. 11 and 12. The peak intensities of both components 
are seen to increase with increasing velocity ratio and the positions of the peaks move towards the lower 
velocity stream relative to the mean velocity distribution. These observations also apply to the present 
self-preserving distributions of (w--Z)~/(Ut- U2), in Fig. 7. 

Comparing the magnitudes of the different intensity components it is seen that, although the magnitudes 
of the peaks do not differ by more than 15 per cent in any of the mixing layers, in general ~ max > ~ max 

> V2max • This relation is obeyed in experiments in other types of free mixing flow e& Bradbury's T M  

plane .jet. 

The self-preserving distributions of the non-dimensionalised total turbulence intensity q-~/'(U1- U2) 2, 
are calculated from the distributions of the intensity components by summation. ~ is calculated from 
Liepmann and Laufer's data by assuming (following Townsend iv) 

q2 = :}(u 2 + v2). (19) 

This relation is obeyed to within 5 per cent of q~'max for the present measurements. Distributions of 
~/'(UI - U2) 2 are given in Fig. 13 using r/as the variable to demonstrate the differing spreading rates of 
the mixing layers. The dimensionless peak turbulence intensity is seen to increase by 80 per cent from 
U2/U1 = 0 to U2/U1 = 0.61. 

7.5.7he Eddy Viscosity Hypothesis in the Light of  Experimental Results. 
Fig. 14 shows the wide scatter in the experimental values ofa. Yule 16 pointed out that the most reliable 

measurements should be those of Liepmann and Laufer, Miles and Shih, Wyganski and Fiedler and the 
present results and all these were found to give poor agreement with equation (16) but were well repre- 
sented by an empirical curve 

a (1 + Uz/U1) ~ 

O" o (1 - -  U2/U1) 
(20) 

where a,, = 11. By combining equations (20) and (18) Yule 16 showed that the experimental a distribution 
implied a linear distribution of q2 ....... / (U~-( ;2)  2 which gave fair agreement with the experimental values. 
"['he observed increase in q-~ ...... /(U~ - U2) z with U~/U, is connected with changes in the structure of the 
turbulence with changing velocity ratio and these changes are best observed by exalnining the spatial 
correlation and frequency spectra of the turbulence. 

7.6. Lateral and Longitudinal Spatial Correlation Coefficients and Frequency Spectra. 
The lateral spatial correlation coefficient is defined as, 

Rl1(o, r, o) - u(x, y) u(x, y + r) (21) 
(u2(x, y))~ (u2(x, y + r)) ~ 



and the longitudinal spatial correlat ion coefficient is defined as 

u(x, y) u(x + r, y) 
RI l(r, o, o) - . (22) 

(U2(X, y))} (b/2(X -.t._ r. yt)  ~- 

Figures 15 and 16 show R~ 1(o, r, o) measurements  at two longitudinal posit ions in the mixing layer 
with U=/U j = 0.30. As a further check upon the self-preservation of the mixing layer the measurements  
were made at the same values ofli, at each longitudinal position. The wire separation,  r, is made dimension-  
less by the local length scale, Y'o.l -Y'o.9. It is seen that the distr ibutions at each longitudinal position are 
similar which is a proper ty  of self-preservation. Small differences between the distr ibutions occur when 
one wire is far from the mixing layer and these are explained by the interference of the boundary  layer on 
tlw roof of the tunnel which was indicated by the u 2 measurements  for x' > 0.60 m. The measurements  
lot x = 0-34 m are therefore assumed to be representat ive of the self-preserving mixing layer with 
Uz/U~ - 0.30. Figure 15 includes some of the measurements  of Bradshaw et a121 for the mixing layer 
region of a round free jet and the distr ibutions are in agreement  with present measurements  for 

r 
. . . . . . .  <0 .5 .  

Y ' o .  l - Y '  o.  9 

Fig. 17 shows R~I (o,r,o) measurements  in the self-preserving region of the mixing layer with 
(I :,'U~ = 0.61. The measurements  shown in Fig. 17 are for lateral posit ions in the mixing layer which have 
the same values of the dimensionless mean velocity ( U - U ~ ) / ( U 1 -  Ue)as those used for U2/UI = 0-30. 
A compar ison of Figs. 15 and 17 indicates that differences exist between the turbulence structures of the 
two mixing layers. These differences are more  easily seen by replott ing R I~ (o, r, o) measurements  as 

contours  in the Y~oi;--);'o.;' plane (Figs. 18 and 19). For  small wire separat ion distances 

( r  ) .... < 0.5 say the contours  for both of the mixing layers are approximate ly  parallel to the 

5 axis across most  of the widths of the mixing layers. This indicates that the medium scale, energy contain- 
ing turbulence may  be approximate ly  homogeneous  across the mixing layers. 

It is seen that contours  for LSz/'U ~ = 0-61 are more  widely spaced than the equivalent contours  [or 
U2,"U~ = 0.30 which suggests that >%.1-Y'o.~ is not a suitable length for scaling the medium scale 
turbulence. The use of the length scale, b = Ax,,,'a (from Ref. 16) greatly reduces this discrepancy and this 
is a further justification of the new constant  eddy viscosity hypothesis  (Yule16). 

Figs. 18 and 19 indicate that the large eddy mot ions  of the two mixing layers differ markedly.  This is 
evident from the negative correlat ion t rough which extends to much higher values o f y  for U>,"U~ = 0'61 
than for U2/U ~ = 0"30 and is indicative of a relatively s tronger  periodic large eddy mot ion  at the higher 
velocity ratio. 

Fig. 20 shows R ~ ~ (r, o, o) measurements  at three transverse posit ions in the self-preserving region of 
the mixing layer with U2/U 1 = 0.61. The measurements  of Bradshaw et al at the same values of 
y in the mixing layer of a round free jet are included in the figure. The distr ibutions for Uz,,"U ~ = 0.61 are 

t 
seen to coincide for < 0.5 approx imate ly  which again infers a homogeneous  lateral distr ibution 

Y'o.1 --Y'0.9 
of the medium 
the associated 

approximate ly  

F - -  < 
J/O. 1 - -  Y~O.9 
local isotropy 

scale turbulence. If the Rj~ (r, o, o) measurements  for U2/'U~ = 0'61 are compared  with 

RI~ (o , r ,o )  measurements  (Fig. 171 it is seen that any value of R l l  ( r ,o ,o )  occurs at 
r 

twice the magni tude of - at which the same value of R11 (o, r, o) occurs (for 
Y'O.  I - -  Y ' o . 9  

0-5). This propor t ional i ty  is a proper ty  of iso t ropic  turbulence and it infers that approx imate  

for the medium and small scale turbulence is possible. 
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The present measurements and Bradshaw's measurements agree at the centre of the mixing layer (at 
= 0.27) but do not agree at the edges of the layer. The differences are most likely due to the axisymmetric 

nature of Bradshaw's flow. This axisymmetry is expected to be most strongly reflected in the longitudinal 
correlations and it may result in a stretching of the eddies at the outside of the jet and an opposite effect 
upon the eddies at the inner edge of the mixing layer. Bradshaw's curves for the inner and outer edges of 
the mixing layers are in qualitative agreement with this. 

Frequency spectra of the u 2 intensity component were measured in the mixing layer with U,/U1 = 0-61 
at x' = 0.57 m and at transverse positions which had the same values of(U - U 2)/(U~ - U2) as the positions 
at which Bradshaw measured spectra in the mixing layer of a round free jet. The same non-dimensional 
frequency as that of Bradshaw is used to present the measurements, i.e. cox/U~ where oo is the angular 
frequency. Following Bradshaw the spectral density of u-~, F~ t, is normalised so that 

J,.  

Fl i  \U t / t  
0 

(23) 

The present measurements and those of Bradshaw are shown in Fig. 21. 
It is seen that the spectra for the mixing layer with U2/U1 = 0.61 are at higher values of the non- 

dimensional frequency than those for Uz/U~ = 0. This is expected because of the higher convection 
velocities at the higher velocity ratio. By converting the measured frequency spectra into the approximate 
one-dimensional wave number spectra the effect of the differing convection velocities is removed and an 
approximation of the distribution of the turbulent energy in the different eddy sizes is obtained. Thus the 
structures of the turbulence in the two mixing layers may be compared directly. 

If it is assumed that all the turbulent eddies at a point in a mixing layer are convected along with the 
same mean convection velocity, Uc, then the one-dimensional wave number component kx and the 
frequency are related by 

(D 

kx = ~ .  ¢24) 

In fact turbulent eddies of a certain size can possess a wide range of convection velocities but Wills 22 
measured the convection velocities in the mixing layer of a round free jet and his measurements indicate 
that the assumption of a mean convection velocity which is independent of eddy size is a reasonable 
approximation. Both Wills and Bradshaw 23 et al reported identical distributions of Uc across the mixing 
layer of a round free jet. The method of finding the peak spatial covariance of the signals of two hot wires 
with a fixed time delay was used. Wills pointed out that U~ may be defined and measured in at least three 
different ways. However the full energy spectra of Wills and of Bradshaw (which were measured at two 
different positions_ in the same mixing_ layer) show that the different definitions yield essentially the same 

values for U,.. It was found that Uc varied from being 20 per cent less than U at the inner edge of the 
mixing layer to being 20 per cent of U1 greater than U at the outer edge. 

The normalised one-dimensional wave number spectra, q5~1 for the free mixing layer have been derived 
from Bradshaw's frequency spectra by using the Uc distribution given by Wills and Bradshaw and equation 
(24). The spectra are normalised to aid comparison between measurements at different transverse positions 
and also for comparison with the measurements for U2/U~ = 0.61 so that 

zc, 

f 4.l  dkx = 0 
O, 

(25) 

Measurements of U c have not been made in the present experiments but since the variation in mean 
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velocity across the mixing layer is small compared with the absolute mean velocities it is reasonable to 
assume that the differences between the local values of U~ and U are also small compared with the differ- 
ences found in the free mixing layer. Thus the wave number spectra for U2/'UI = 0.61 (Fig. 2) have been 
derived from the frequency spectra by assuming that U,, = U in equation (24). 

Considering each mixing layer separately it is seen that wave number spectra for different lateral posi- 
tions in a mixing layer collapse on each other outside the low wave number range. This supports the sug- 
gestion of approximate homogeneity for the lateral distribution of the medium and small scale turbulence 
which was inferred from the spatial correlation coefficient measurements. 

The Universal Equilibrium Theory of Kolmogoroff  proposes that at high Reynolds numbers an inertial 
subrange might exist in the spectra between the energy containing and energy dissipating wave numbers 
and in this subrange dimensional arguments show that for isotropic turbulence 

qSll = constant x kx -s/3 (26) 

This proportionality is included in Fig. 22 and the experimental spectra are seen to approach the power 
law relation closely. This must not be taken as proof thai the assumptions involved in the Universal 
Equilibrium Theory are valid for the two mixing layer flows (see for example Gibson24). However the 
spectra and spatial correlation measurements described above are all consistent with approximately 
locally isotropic and laterally homogeneous distributions of the medium scale turbulence and the small 
scale energy dissipating turbulence. 

The wave number spectra of the mixing layers with velocity ratios, U2/U1 = 0 and Ue/U, = 0"61, are 
now compared. Fig. 22 indicates that at similar mixing layer widths comparatively more of the turbulent 
energy is contained in the larger eddies at the higher velocity ratio. Thus the larger eddies appear to in- 
crease in strength relative to the rest of the turbulent motion as the velocity ratio, Ui/U l, increases. It will 
be recalled that the g l l  (o, r, o) measurements in the mixing layers with U2/UI = 0-30 and U2/U1 = 0-61 
also indicated a stronger large eddy motion at the higher velocity ratio. Furthermore the peaks in the wave 
number spectra are indicative of a strong, periodic large eddy motion which is not so pronounced at the 
lower velocity ratio. Wave number spectra is were also derived by integration of the R l~ (r, o, o) curves 
using a curve fitting technique. These curves are not included in Fig. 22 for reasons of clarity but there was 
good agreement with tile curves derived from the measured frequency spectra. A discussion of the turbulent 
energy balances obtained from the present measurements will be given in a subsequent paper. 

8. Conclusions. 
The magniiudes of the non-dimensional turbulence components in a mixing layer, {142)~,/(Ui- U2) , 

(c2)'/(U ~ - U2) and (w2)~/(U1- U2) are observed to increase with increasing velocity ratio, U2/UI. The 
peak non-dimensional total turbulence intensity increases by 80 per cent from U2/U 1 = 0 to Uz/U ~ = 0.61. 

The presence of a secondary stream has most effect upon the large eddy motion in a mixing layer and an 
increase in the large eddy strength relative to the rest of the turbulence is indicated for increasing U2/U1. 

The meditlna and small scale turbulence has approximately homogeneous and locally isotropic lateral 
distributions across a mixing layer. 
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x-direction wave number component 
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