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S u m m a r y  

A theoretical analysis is presented for the determination of the fluctuating lift generated by a moving 
blade-row interacting with the potential flow disturbances of an upstream blade-row. This analysis is an 
extension of the existing theories, Refs. 1 and 2, for an isolated airfoil moving through transverse and 
chord-wise gusts to include the effects due to a cascade of airfoils. When the case of infinite spacing 
between the airfoils of the cascade is considered the present analysis gives the same results as the isolated 
airfoil theory. 

The mathematical representation of the cascade of airfoils is by a continuous distribution of vorticity 
on a reference blade and in the wakes of all the other blades. The effect of the bound vorticity of the 
neighbouring blades is simulated by a vortex at their quarter chord points. This representation is suggested 
by the steady state cascade analysis of Tanabe and Horlock 11 and the present analysis gives the same 
results as Reference 11 for steady flow. Using thin airfoil theory an expression for the unsteady lift acting 
on a two-dimensional cascade of thin, slightly cambered airfoils moving through a sinusoidal disturbance 
in through flow velocity, is derived. This expression can be expressed as a function of a reduced frequency 
(as for an isolated airfoil Ref. 7) and other parameters representing the effects of the neighbouring blades. 

The resulting expression for the fluctuating lift for a cascade of airfoils with circular arc camber lines at 
small angle of incidence is presented. 

* Replaces A.R.C. ~2 368. 
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1. Introduction. 
Methods for the prediction of the fluctuating lift on an isolated airfoil, moving through gusts normal and 

parallel to its chord, are presented in Refs. 1 and 2. The basis of these methods is an unsteady thin airfoil 
theory in which the airfoil is represented by a continuous distribution of vorticity on its chord and wake. 
The assumption ofa  sinusoidally varying gust velocity, allows the strength of this vorticity and hence the 
unsteady lift on the airfoil to be determined. 

The extension of these methods to predict the fluctuating lift of a cascade of airfoils has been attempted 
by several authors. For a cascade of rigid (not vibrating) airfoils moving through either the potential flow 
disturbances of the adjacent blade rows or the viscous wakes shed from the upstream blades, the work of 
Refs. 3 and 4 is best known. However this work only includes the effect of the unsteady part of the circula- 
tion of the reference blade and hence neglects the effect of all vortex wakes except that shed by the reference 
blade. The isolated airfoil theory is used to include the effect of the unsteady part of circulation of the 
reference blade. For a cascade of vibrating airfoils the unsteady representation has been more general and 
includes the effect of the unsteady part of the circulation of all the airfoils in the cascade. Ref. 5 presents 
such an analysis for a cascade of flat plate airfoils in which each airfoil is replaced by a finite number of 
vortices and its wake is represented by a continuous distribution of vorticity. Ref. 6 is an extension of this 
work to thin, cambered airfoils. 

Now, in the analysis of an isolated airfoil Refs. 1 and 2 the fluctuating lift is expressed as a function of 
the reduced frequency, which is the ratio of the airfoil chord length to the wave length of the disturbance. 
Such a relationship is invaluable to the designer since for a given disturbance the chord length can be 
chosen to minimize the lift fluctuations. The effect of camber can similarly be included. However similar 
functions, accounting for the full effect of all the blades in unsteady flow, have not been developed for a 
cascade of airfoils. The approaches to the solution of blade vibration Refs. 5 and 6 include these unsteady 
effects, but the solutions are by numerical methods and as such are best suited for the analysis of a given 
blade geometry and disturbance characteristics. 

The present method gives a functional relationship for the fluctuating lift on a cascade of airfoils similar 
to that for an isolated airfoil. This analysis is limited to the interaction of a single rotor with potential flow 
disturbances, Figure 1 and assumes two-dimensional, incompressible, inviscid flow. 

2. Representation q f  the Cascade and the Formulation o f  Induced Velocities. 
The approach used is that of unsteady thin airfoil theory. In this theory the airfoil is replaced by a 

continuous distribution of vorticity y along its chord line and it is assumed to have zero thickness. The 
resulting induced velocities are calculated on the chord line in terms of the vorticity y. Further it is assumed 
that the flow is two-dimensional, inviscid and incompressible. 

From the cascade geometry shown in Figure 1, the normal and chordwise induced velocities dv and du 
at a point Xp on the reference blade, due to an element of circulation (7, dx) on the nth blade of the 
cascade, can be determined. These are 

1 7,(x,) ns cos ~ dx,  
duo (x v) = 2n (ns cos ~)2 + ( x , -  xp + ns sin 4) 2 

1 7.(x.) I x . - X p  + ns sin 4] dx,  
dv o (xp) = 2n (ns c o s  4) 2 oF ( x  n - X p  ~1- ns sin 4) TM 

(1) 

It is assumed that the circulation on each of the blades in the cascade is of the same amplitude but there 
exists a constant phase difference from blade to blade. Therefore, 

Yn(Xn) = ~o(x)e inr 

where z = 2ns/l. As in Refs. 1 and 2 it is assumed that all changes with time are sinusoidal. Hence 



"~0 ~ ~0 eivt 
VO = f)O eivt 

and Uo = rio eivt (2) 

Substitution of these relations into equation (1) gives 

dfio(Xp) - 
1 ~o(x)e i"t ns cos ~ dx .  

2re (ns cos ~)2 + (x .  - x v + ns sin ~)2, 

1 ~o(X)e i "~[x . -Xp+nS  sin~]dx.  

df)°(xP) = ~ (ns cos ~)2 + ( x . -  Xp + ns sin ~)2" 
(3) 

These expressions give the velocity induced at a point xp on the reference blade by an element of circula- 
tion associated with the nth blade and located at a point x,. These expressions can be integrated from the 
leading edge and along the wake of the nth blade to obtain the total velocity induced at xp. Before this 
can be done it is necessary to relate the wake vorticity to that on the blade. 

Consider an element of wake vorticity of the reference blade of strength ?ow = 7o~ eiv' which is trans- 
ported away from the blade with velocity W2 in a direction parallel to the chord. Then at any location 
(2, 0) downstream of the trailing edge. 

iv ~ - ~  ] ; o e  i v t=  constant e ( w ~ )  (4) 

During an interval of time, &, the bound circulation on the blade changes its strength by 

_ F e ivt 
dFo 6t d( o ) iJt = ivFo e i~t 6t 

dt dt 

c 

where Fo = fTo dx. This change in bound circulation results in an element of wake circulation which is 

o 
shed at 2 = c and moves downstream a distance W 2 c~t in time fit. This wake circulation is of opposite sign 
to the change in circulation on the blade. Therefore from equation (4) 

ivFo eiVt (~t ( c )  
- constant e iv t - ~  

w2 & 

thus determining the constant in equation (4) and leading to an expression for the strength of the wake 
vorticity, 

%w- w2r°e iv~T (5) 

Since this analysis is restricted to lightly loaded thin airfoils it is assumed that the relative velocity at the 
exit W 2 can be replaced by the mean relative velocity Wm= (W1 + W2)/2. This assumption is employed in 
the remainder of this Report. 

It is next assumed that the vorticity on the nth blade is concentrated at a chordwise point xc, while the 
vorticity in its wake is continuously distributed. The circulation on the nth blade is related to that on the 
reference blade by F, = F0 e i"~. Also the cordinate axes are transformed to the mid-chord of the reference 

2 
blade, i.e. x + = x -  1 and the chord length of the blades is assumed equal to 2. Substitution of these 

c 
assumptions into equation (3) gives the total velocity induced by the nth blade at the point x~ as 



ro io A f ri°(x+) = -4=--~®(Z+)+~-~ - e-i*J~+ ®(Z~)d2+ 
1 

and Vo(X~-) - 
Fo¢ + o~Ac('°~_ix + 

1 

(6) 

The total velocity induced at the point x + by all of the blades can be found by taking the summation of 
equation (6) from n = - oo to n = + oo. In addition, it is assumed that the vorticity on the reference blade 
is continuously distributed rather than being a concentrated vortex of strength Fo. If x + is written as x + 
then equation (6) becomes 

ao(X +) = _ _ _  

-i oo -i ~ ~ 

(2 2) + c(2 2) f 4zcs + ®(Z~ ) + ~ -  -s + e-~'°a+ ® (7"~) d2+ 
-m i -oo i i 

~o(X +) = - A • 

- 1  m 1 

4his + tZ~) ~ J ( x ~ - _ x  +) 
- 1  - o o  1 

--I cO oO oO . + 

(~-~a 2 )  J e  c ° k f  e-'~'~ d2+ +-Y£~a 7c + -;o>. ¢(x; )d,t + + UU,,J -(;c-_-_ x + ) 
- c o  1 1 I. 

(7) 

Within the assumptions of thin airfoil theory the reference blade induces no chordwise velocity Uo on 
itself whereas the second and fourth integrals in the expression for O0(x +) represent the effect of the 
reference blade. If only the effects of the reference blade are considered, equation (7) reduces to that of 
Ref. 9, equation 5-328, which considers the unsteady lift on an isolated airfoil. 

3. Determination of  Vorticity Distribution on the Reference Blade. 
The determination of the unsteady lift generated in a cascade of rigid airfoils experiencing a sinusoidal 

perturbation in its inlet velocity requires that the vorticity yo(X +) on the reference blade be known. To 
determine this vorticity the approach outlined in Ref. 9 for an isolated airfoil is followed. 

The basis of this solution is the use of the Sohngen Inversion Formula i.e., 

I 

l _ ~ ' f ( ~ )  d~ 
if g(a) = - 2~J 

- 1  

1 

_2 i,_oLl,+< .<<, thenf(a)  = re'k/1 + a  7 - ~  ( a - ~ )  
- 1  

- -  d~  

(8)  



wheref(a) is the desired unknown function. Comparison of this inversion formula and equation (7) leads 
to the following expression for 9o(X +) 

! 

2 / 1 - x + f ~ / l + x ?  go,x?)dx~ 
%(x+) = -~ ~TVx+ i - x ?  (x+-x~) 

- 1  

1 oo 

4 1  + x  + + 
- 1  1 

- 1  oo 1 

2 /1--x + ( 2 + V ' ~  I / l + x  ? F0 q) + dx? 
+ ~ /  ~--~v~+ L.d O,4 i - - ~  U~is (z~ ) (xVT~t ) 

- 0 o  I - 1  

- - I  co cO 

2 / l - - x + ( 2  ~)i~jl+x?o)A;f 
n ~1 +x + + i - x ?  4~z e -i,,,;,* @()~2) - -  

-oo 1 -1  1 

d2 + dx? 
(x +-~?) 

(9) 

where the + has been removed from the integral since the same result can be obtained by first 

oo 1 

considering only the reference blade and the nth blade and then performing the summation. 
Only the induced velocity go(X +) appears in the expression for '2o(X +). go(X +) will eventually be specified 

through the boundary conditions on the airfoil; at the same time the influence of ~o(X ?) will be discussed. 
By interchanging the order of integration in equation (9) and introducing the expression for @(X +) given 

by equation (A.5) Appendix I, %(x +) becomes 

%(x+, 2 /1--x + f~l+x~ fio(x+)dx? 2o)A / 1 - X  + l+x? 
~ ' k / l + x  + i - -x?  ( X + - - X • )  i :re2 q l + x  + e-i'~a" i - - x ;  

- - I  l - 1  

dxt 
(2.+ - x ? ) ( x + - x  t) 

F 0 / 1 - - x + ( Z  2 )  i.~ [" / l + x  ? 1 -t 1 dx? 
n2~,  ~ 1 -1- X +  c¢ -~ 1 e -Jl ~/i72-7}-~ g~-x-~- h~- x ~- (x + - x [)  

(lo) 

c°Ax/1-x+(Einz  ~ + E )  ei"~ re_i~,a+ r / l + x ?  1 1 dx~ 

where 9~ = x+ +n/ia, gz = 2 + +n/ia, h~ = x + -n/ib and hx = 2 + -n/ib. 
The products of the form (s'-x+) - 1 (x + - x? ) -1  which occur in equation (10) can be rewritten as 

, 1 1 { 1  
(s ' -x~i)(x+-x?) s ' - x  + x + - x ?  s ' - x ?  " 

Substitution of this relation into equation (10) allows the integrals with respect to x + to be evaluated 
using relations l and 2 of Appendix II. However the quantities x +, 2 +, go he, 9a and h a must be examined 
to assure that they fulfil the conditions for using these integrals, i.e. x +2 ~< 1 and 2 +2 > 1. Ifp represents 
x + or 2 + in the general case then, 



.- 4n2s 2 
9 2 = h~ = p2 + 4ns sin ~-P ¢2 

C 

Thus for application of relation 2, Appendix II, it is necessary that 

4ns sin 4n2S2 _p2. 
c 4 + - 7 -  > 1 

For practical reasons both s/c and sin(i) are positive. The condition that the inequality hold for p2 = 1 
is sic > sin ~ for all values of n except n = 0 which is excluded from the summation. With the left hand 
side of the inequality positive, the most severe restriction on s/c occurs when p2 = 0. For this condition the 
inequality is true if s/c> ½. Therefore the use of relation 2, Appendix II, is restricted to values of s/c > ½ 
or sin ~ depending upon which is larger. These restrictions are similar to those derived in the analysis of 
the steady lift of a cascade whose blades are represented by concentrated vortices (Ref. 11). 

With the above conditions imposed equation (10) becomes 

1 

2 I i - x  + I / l + x +  v°(x~()dx~( 
f°(~+) = 7 x / 7 - g T v J q V - x  + (-;~-~7---7 

- 1  

oo 

2icoA I i - - x + f 7 2 + + l  e -̀ ~°a+ 
rc X / I + x  + ~7--1 (2 + - x  +) 

1 

d2 + + 

-2){ . t o  /1-x+ / P  1 /g~+l 1 /h<+l 
+ i  17..+ + (9c--x+) ? ~ 4  (he_x+) ~hc- 1 , c ? l + x  t L  e'"* 

- - ~  1 

Is ? ~ t ~  + & ) e  1 v ~ i  

io92 + e -'~'a+ ~ /hz+l  e- ~_#)d2 + . 
( g a -  x +~ d2 + + , j N / ~  1 (h a - 

1 

(11) 

From this expression for 9o(X+), the total circulation on the reference blade, Fo, can be obtained by 
integration of equation (11). Again bringing the summations outside of the integrals and employing 
relations 1 and 2 of Appendix II, 

2Fo ( I I + x ~ _ ,  + +Fo P /9<+1 /h<+l _q 
2 jN[I_--~I VotX, )dx~ + e'" - 

_1 c _ Lx/~7~--~- ~ +,/h--;-q-- ~ - ~J 

{" l rr/"++'-] (Z rl-/"*+l - 2~e ' < ° j L .k / 2+ _  1 1 e -i'°~+ d2+-ioge '<~ + e i"" 1 -oo 4 LX/g-~-I 1 e-i<°;:d2++ 

f l - / h ~ + , _ , ]  : , o .  ,,.,+ 
+JLq ha-1 ] (12) 

Using the definition of terms in Appendix III and relation 3 of Appendix II, the total circulation Fo 
on the blade becomes 



I 

.( II+xt-, + ,  

"* t . /  l _ ~  ' VotXl ) dx~( 
j x l  - 1 

- L . ( 1 3 )  F o  ~ - 1  --1 - 1  

i c ~ e ' ~ ' [ H { 2 ' ( ( . o ) + i H t o 2 ) ( o o ) ] + ( Z + 2 ) e ' " : [ C , + C 2 - 2 ] - i m e ' ~ ° ( 2 + 2 ) e ~ " * [ D , - D 2 ]  

-cO -cO -cO 1 

The numerator and first term of the denominator represent the total circulation on an isolated airfoil as 
derived in Ref. 9. 

4. Determination of Unsteady Pressure Distribution. 
To determine the unsteady lift on an airfoil it is first necessary to determine its unsteady pressure 

distribution. This can be derived from the unsteady Bernoulli equation, Appendix IV. The resulting 
expression for the pressure difference at a point a + is 

t7 + 
+ c o l  + + 

- Ap'(~ +) = p:ppe,-- P'I . . . .  = P W,n~(~7 + ) Jr- pUd~O,(O" ) -}-p ~ ~ -  J ]~(X 1 ) d x  1 

- 1  

(14) 

where the velocity along the blade (parallel to its chord) is (W,, + ud) with ue the chordwise disturbance 
velocity of o(e). The velocity W,, is the mean of the inlet and exit relative velocities, i.e. W,, = (W 1 + W2)/2. 
The total local vorticity on the airfoil, ?(a+), is made up of a steady part 1)0s(a +) and an unsteady part. 
Following the approach outlined in Ref. 9, the chordwise disturbance u e is assumed equal to zero and 
variations in Ap' are assumed to be of the form Aft=Ape ~t. The effect of u e is introduced at a later 
stage of the analysis. Making the above substitutions equation (14) becomes, 

XP(°+) / 
pW,, - f°(~+)+ic° f°(x+)dx~" (15) 

- 1  

The integral in equation (15) is determined by the integration of equation (11) between the limits - 1  
and a+. Using the same techniques as in the derivation of equation (11) i.e. removing the summation from 
the integrals and reversing the order of integration, together with relations 4 and 5 of Appendix II gives 



ir .oA(2 2 )e , ,~  f /gz+l[-rc . _ 
x + l~9~-- f - lL5  +sin ' °'+ +A(a+'0a) e-i°'a+ a2+ + 

- c o  I 1 

+ ~ l h - ~ _ l L ~  +sin a + +A(a+,ha) e-iO, a+ d2 + . 
1 

(16) 

Following the steps outlined in Ref. 9, this expression can be simplified by subtracting from it the product 
/ 1  1 .  i 

of equation (12) and the quantity ~ + ~  sin- o -+ ] .  This leads to, 

o "+ 1 co 

fgo(x+)dx. ~ 2f~o(X~)D(a+,x~()dx + 2 ~ A f  . . . .  e-iO,~+A(a+,2+)d2+ + 
7~ 

- 1  - 1  1 

- 1  m 

E ] + + e i"~ A(G+,ec)+A(a+,hc)- 
--CO i 

*2) {i } } io, A ( ~  e i"~ e-i~,a+ A(a+, Uz) d2 + + e -i°z+ A{a+, h~) d2 + . 

\ / . .a  i i i 

(17) 

Substitution of equations (11) and (17) into equation (15) gives the unsteady pressure differential 
Ap at a point a + on the blade exclusive of the effect ofua. Using 6 and 7 of Appendix II and the definition of 
terms in Appendix III Ap(~r +) can be expressed as 

1 1 

-Ap(,+) 2 /1-o'+fN/l+x+fb(x~()dx~ 
pw~ - ,~ ,41+~ + i - ~ T  (~+-xD 

- 1  - 1  

2~o fOo(X~)n(~+, x~i)dx ~ 
7~ 

_ ~ A H ~ o 2 , ( o o ) / 1  - °'+' 
~/l+a + 

- 1  co 

2iAooe-~ + a ,  + 

--cO 1 

+ Ae- i~ 
7"(. 

- t  m II 1 /9-c + 1 
x/'l -':r+ (~-a ~ ) e i n ~ l l  { + + 

- -o0  1 

1 / h ~ + l  . io~ t [  
- + r - - - l o , ) e  [ B I + B 2 ]  (hc-a )~hc-1  JJ (18) 



5. Determination of Unsteady L!ft for the Case of Zero Chordwise Disturbance Velocity. 
The lift on a blade in a cascade can now be determined in terms of the velocity t?o(X ~ ) induced normal to 

its chord. The lift is given as 

1 1 

L = 2 f - A p ' ( a + ) d a + =  -ei~'fAp(a+,dc:r + 
- 1  - I  

(19) 

since c = 2. From equation (18) and relations 1, 8 and 9 of Appendix II 

1 i 

p w , # " -  - 2  ~o(X~i)dx; - 2 ~  , /1  - x i  ~2 ~o(xt)dx;- - 
a w l  - x ~  
- 1  - 1  

- 1  co 

_~xoAH~02)(co) 2i°°Ae-i~'(2 ~ )  - -  + e in~ [A1 + A 2 - - A 3  - A 4 ]  - -  
TC 

- c o  | 

- 1  oe  eiO(2+ ) eln E ei , l+B2  ,c1+c2 ,2o, 
--,::C 1 

This expression for the lift can be written in a form similar to that for an isolated airfoil by substitution of 
equation (13) into equation (20). 

1 1 

L _ -2G{o),s/c,~)[ / l+x~( f p Wmei, t j ~ /1 -~ l  ~ o( X ~( )dx ~ - 2ko ~ /1 -  x ( 2 go( X ~( )dx ~( (21) 
- 1  - 1  

where 

G(c9, s/c, 3) = 1 + 

t 
- 1  m 

ico~[H]Z)(o~)+iH~o2)(co)]+(2+2)ei"~{e-i'~[C 1 + C 2 -  2] -/o)[D1 + D 2 ] }  
(22) 

6. General Expression for Unsteady Lift in a Cascade with a Normal and Chordwise Disturbance. 
As shown in equation (14) an additional term pUdTo,(a +) contributes to the pressure difference across the 

blade when a chordwise gust Ud is present. Since equation (21) was derived assuming ua = 0 and the subject 
analysis is linear, the term 

1 

f U~os(x~ !dx~ 
W m  ezvt 

- 1  

(23) 

10 



can be added to equation (21) to include this effect. Thus, the total lift becomes, 

1 

L . _ f aayo~(X~)dx~( 
p W~e ''t Wm 

- 1  

1 1 

f 2G(co, s/c,~) 1--~x~ eo(X~)dx~(-2~ x /1 -x~ (  2 Oo(x?)dx~( 

- 1  - I  

From equations (11), (12) and (22), with co = 0, the steady circulation ?0~(x[) can be expressed as, 

2 / 1 - x  + ~ / l + k  1 
 o,(X;l = j y 

o,osjc ' c,  
2 9C-x~() F (h¢ vo~(k)dk 

- -03 1 

(25) 

where G(o, s/c, 4) is the modified Theodorsens function with co = 0 (as defined after equation (30)). 

7. Specification of  Induced Velocity Vo. 
The expression for the lift on an airfoil in a cascade, equation (24), is written in terms of the velocity go 

induced normal to the chord of the airfoil. To obtain a solution for the lift it is necessary to introduce the 
induced velocity g0 through the specification of the boundary conditions on the airfoil. Following thin 
airfoil theory, the boundary condition at any point on the airfoil requires the flow at that point to be 
tangential to the camber line of the airfoil, i.e. 

IV,, sin ai + Vo + va dye 
Wm cos cq + Uo + Ua dx 

(26) 

where c~ i is the angle of incidence of the airfoil and yc the coordinate of the camber line. The subscripts o 
and d denote the induced and disturbance velocities, respectively. 

The model chosen to represent the cascade of airfoils allows several simplifying assumptions to be 
made regarding equation (26). The major simplification concerns the induced velocity uo. The mathe- 
matical representation of the cascade by a distributed vorticity on the reference blade and concentrated 
vorticity on the remaining blades is identical to that used in Ref. 11 for the steady flow. A comparison of 
the results obtained in Ref. 11 using this representation and a boundary condition which neglects the 
chordwise induced velocity with the exact inviscid analysis of Weinig is shown in Figure 2. Also shown on 
this figure is the range to which this unsteady analysis is restricted, i.e. s/c>½ or sin 4. 

Figure 2 demonstrates that for the analysis of the steady lift in a cascade the neglect of the chordwise 
induced velocity produces adequate results for all values of s/c if the stagger angle ~ is ~< 50 ° and for 
s/c > 1.5 if~ = 70 °. On the basis of these results, the chordwise induced velocity Uo is neglected. With this 
assumption the boundary condition becomes 

Wm sin ei + Vo + vd dye 
= - -  ( 2 7 )  

W,, cos ~i + ua dx " 

The steady state boundary condition, i.e. ua = va = 0, becomes 

vo= = W,, cos ei ~ -  IV,, sin oh. 

• 8. Steady Lift of  a Cascade. 
Using the analysis presented above the steady lift generated in a cascade can be determined. This 

derived lift is identical to that predicted by the analysis of Ref. 11 thus providing a check on the validity 

11 



of the present analysis. 
The steady lift in a cascade of airfoils can be expressed as 

L s = pWmFo~ = crW,, fyo=(x+)dx + (28) 

- 1  

where W m is the mean relative velocity of the cascade. From equation (11) with co = 0 the steady circulation 
distribution yo~(X~() is 

1 

7 q l + x  + ]-x~i (x+-xr) 
- 1  

- 1  co 

ro~/1-,< + ( ~  ~'~r c, c~ 1 
~,~ ,-m;~+ t ~  + ~ ) L ~ + ~ J  

- -co  1 

(29) 

With co = 0 then go = ~;o,, Fo = Fo~ and Vo = Vow. 
Employing relations 1 and 2 of Appendix II and the definition 

1 

Fos = f ~o=(X+)dx+ 
- 1  

then 

Defining G(o, s/c, 4) = 

f yo,(x + )dx = 
- - 1  

- 2 j X [ ~  
- 1  

- - 1  c~ 

--CO 1 

--cO 1 

the steady lift becomes 

1 

1 + 

dX/a - x l  
- 1  

(30) 

(31) 

The function G(o, s/c, 3) represents the cascade lattice coefficient discussed in Ref. 11 and the quasi- 
steady value, (i.e. co = 0) of the modified Theodorsen function G(o), s/c, 3). In Figure 2 values of this 
function are shown for various values of s/c and ~ and the comparison is presented between Weinigs 
lattice coefficient and that presented in Ref. 11. 

9. Unsteady Lift of a Circular Arc Cascade with Incidence. 
The unsteady lift for a particular cascade configuration can be determined by substitution of the 

12 



proper boundary conditions into equation (24). Consider the case of a cascade of circular-arc thin airfoils 
operating at a steady state angle of incidence % The assumption is made that the angle of incidence is 
small so that equation (27) can be written as 

dy 
vo+vd = (W,.+u2 ~ -  w,. c~i. 

The equation describing the displacement yp of a circular-arc camber line from the chord line as a 
function o fx  + is 

- X p  ) y~- - -  Ymax( 1 +2 

where Ymax is the maximum displacement of the camber line. Thus, the boundary condition becomes 

Vo + vd = - 2ymax (W,. + ua)x + -- W,, cq (32) 

where Vos = -W, , (2ym,x  X + +el) represents the contribution due to the steady flow. Substitution of this 
steady boundary condition into equation (25) and the employment of relations 13, 14 and 19 of Appendix 
II, the steady circulation distribution becomes 

- 1  co 

yo,(X~[) = W , . ~  4(1 -t-X'~)Ymax-}-20~i-'}-(O;i-l-Ymax) G(o, s/c, ¢) -t- kgc -x~  ~ j ) "  (33) 
- -  c ~  1 

This relation is used to determine the contribution of Vo, to the unsteady lift. 
If only the unsteady portion of the flow is considered and the disturbance velocities ve and u e are of the 

form 

constant e ivt e - i~x t  

the unsteady boundary condition from equation (29) becomes 

Vo = -- 2/~YmaxX~- e - i ~ t -  -- 9e-~'o~t" (34) 

Substitution of equations (32), (33) and (34) into equation (27) with the use of relations 10, 11, 12, 15, 16, 
17, 18 and 19 of Appendix II gives the following expression for the unsteady lift of a circular-arc cascade 
of airfoils with incidence c~ experiencing both a chordwise and normal disturbance, 

2npW,.eiV, - rid Ymax[3Jz(CO)-t-Jo(O,))] + ~XJo(cO)+ iJl(co)] + YmaxG(Co, s/c, ~) [Jo(~O)-J2(w)-i2J1(~o)] + 

O O'SJC'  (2+2) 
--0V 1 

+ ~{a(m, s/c, ~) [so(~)-is,(m)] + is,(o) }. (35) 

The summations indicated in this expression represent the contribution of the neighbouring blades to the 
steady circulation of the reference blade. As seen from relation 18 of Appendix II this contribution is of 
the form of an infinite sum of Bessel functions of the first kind. Since the analysis presented here is limited 

13 



to a circular-arc camber line, the contr ibut ion of those terms involving Jk(03) for k />  2 are neglected by 
the same reasoning as used in Ref. 3. 

The reduced frequency and the disturbance velocities are referred to the mean relative velocity Wm 

vc rather than the inlet or exit relative velocity. Thus the reduced frequency 03 - 2W,,' Equat ion (35) is 

expressed in terms of the maximum amplitudes ~ and ~ of the velocities u d and v d. Referring to Figure 1 
the unsteady lift ~,can be written in terms of an upstream disturbance velocity wd = ~ e  ~(t-~'+/w~ 
where Ud = W~ COS ~ and Vd = -- Wd sin ~. Thus the unsteady lift becomes 

2rcp WmCVe ~ ' -  cos ~ 'm~× [-3J2(03) + Jo(03)] + cq[Jo(03) + i J1 (03)] + Yma~G(03, s/c, ~) [Jo(03) - J2(03) - i2J~ (03)] + 

(Ymax -[- ~i) -I 
2 

- i  oc 

(36) 

- sin ~{ G(o), s/c, ~) [Jo(03)- iJ1(03)] + iJ,(03)}. 

10. U n s t e a d y  Li f t  on an l s o l a t e d  Airfoil .  

To check the validity of equat ion (36) consider the case of an isolated airfoil in a turbomachine  which 
experiences an upstream disturbance Wa. This case is similar to that considered in Refs. 7 and 2. To make a 
direct comparison with these previous results, equat ion (36) for s = m is expressed in terms of the dis- 
turbance perturbat ions parallel and normal to the inlet velocity direction, fi~ and ~ respectively. Hence, 

( 

= ~ cos { = ~} + ~ai  

= - ~ sin { = - ~ + ~ct~ 

because the angle of incidence a,. is assumed small. Since the modified Theodorsen 's  function G(03, s/c, ~) 
equals C(~o) the Theodorsen  function for an isolated airfoil, for s = m see (Appendix V), equation (36) 
becomes 

E 
27cp Wm ely' -- Ymax(Ud + ~a~i) { 3J2(03) + Jo(03) + C(03) [Jo(03) - 

- J2(03)- i2J,(¢o)] }+ (fi~ + O'~ai)ai{Jo(03 ) + iJ1(03)} + ( u ~ i -  0~) {C(03) [Jo(03)- iJ 1 (03)] + iJa(03)}. (37) 

Following the nomenclature  of Ref. 7 the term C(03) is expressed as C(03) = 1 -  (a '+  ib'). Substitution of 
this relation into the above and neglecting the higher order  terms containing Ymax~i and a2 gives 

£ 
2rip Wine i*' - UdYm,,,{ [(2 + a)J2(03 ) + (2 - a)Jo(03 ) - 2bJ1(03)] + 

+ i[2(a - 1)J1(03)- bJo(03) + bJ2(03)] j + ~ai{ [-(2 - a)Jo(03 ) - bJ1(03)] + 

+ i[(a + 1 )J1 (o3) - bJo(03)] } - ~ { [-(1 - a)Jo(03) - b J1 (co)] + i [aJ  1 (03) - bJo(03)- ] }. (3 8) 

In terms of the functions S(03), T(03) and T'(03), the Sears, Horlock and Holmes functions of Ref. 7, this can 
be rewritten as 

2~p Wine iv' - ~'~[aiT(03) + YmaxT'(03)] - O~S(o~). (39) 

14 



Thus the expression derived in this report for the unsteady lift in a cascade of circular-arc airfoil at an 
incidence c~ i, equation (36), reduces to the solution for an isolated circular-arc airfoil when the spacing 
of the cascade is allowed to become infinite. 

11. Discussion. 
An alaysis for the prediction of the unsteady lift in a cascade of airfoils which experiences an upstream 

disturbance has been presented. The essential features of this analysis are : 
(1) The assumption of thin airfoil theory has been made thus restricting this analysis to thin airfoils with 

small camber operating in an incompressible, inviscid, two dimensional flow. 
(2) The disturbances considered are perturbations to the steady flow and do not include the interference 

of adjacent blade rows. The analysis is therefore restricted to small disturbances in the incoming flow to a 
cascade of rotating blades. 

(3) The representation of the neighbouring blades in the cascade by concentrated vortices restricts the 
use of this analysis to values of spacing to chord ratio, sic > ½ or sin 4, where ~ is the stagger angle. The 
reference blade of the cascade and the shed vorticity of all the blades are represented by continuous 
vorticity distributions. It is assumed that all trailing vorticity is transported downstream with a velocity 
equal to the steady velocity. 

(4) Because of the restriction ofs/c > ½ or sin~ the effects of chord wise induced velocity can be neglected 
as in the similar steady cascade analysis of Ref. 1 I. The effect of chord wise disturbance velocities are 
included however since for certain stagger angles these can be of the same order of magnitude as the 
transverse disturbances. 

(5) An expression for the unsteady lift generated in a cascade of circular-arc airfoils with incidence ~ is 
presented in equation (36). The resulting unsteady lift is of a form similar to that of an isolated airfoil 
experiencing the same disturbance. The effect of the cascade is represented by the modified Theodorsen 
function G(o~, s/c, ~), equation (22). For the case of infinite spacing the results of this analysis reduce to 
those presented in Ref. 7 for an isolated airfoil. 

(6) When only the steady lift generated by a cascade of airfoils is considered this analysis reduces to that 
presented in Ref. 11. This condition together with the case of infinite cascade spacing serve as a check on 
the validity of the present analysis. 
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A P P E N D I X  I 

Cascade lnfiuence Functions.  
Consider the terms in equation (2) which relate the velocity induced by a vortex on the nth blade of the 

cascade at the point  xp i.e. 

A = 
e in* n c o s  

+ n sin { + (n c o s  3) 2 

(A.1) 

and B = 

ein [ +nsin ] 
e + n sin ~ + (n cos ~)z 

Following the approach presented in Ref. 8, these can be rewritten as 

A = ½ {e-'¢.f(z) + eief(~)} 

1 
and B = - ~  {e-~¢.f(z)-eiCf(~)} 

e im - -  X n - -  X p  
where Z = i ze-  <, Z = - ize I¢, z = and f (z )  - 

s z + n  

If the following definitions are made 

O(Z) = e- '¢  f ( z ) - e ' ~  f(~) 

(A.2) 

and O(Z) = e -  ic f ( x  ) + e~¢ f(-z) 
(A.3) 

then 

A = ½ ®(Z) 

= - ~ i  ¢ ( z ) .  
a n d  B 

Consider next a t ransformation of coordinates such that x+ = _2c x -  1. Then z + = \(-x+ -~- x+ ] s and ' ]  c 

X + = iz +e-  i¢. Therefore 

A + = ½0(Z +) 

and ]3+= - 1 0 ( X + ) .  (A.4) 
2/ 

The expression for ~(Z +) can be written as 

¢(Z+ ) ei,~ ( e -  i¢ = ÷ 
+ c e - i ¢  

iIx +. - x ) - T S - - +  n 

e" } 
i(x + - x +) cei¢ 

- ~ s -  n 
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(A.5) 

ein~ h .  - x + lc 

ce - i~ cei~ 
whereg ,=x ,  + - ~ , h . = x  + + b , a = T a n d b =  2s 
Similarly, 

2s { 1 
O(Z+) =-~C ein~ gn--X + 1 } (A.6) 

h n - x + 

APPENDIX II 

Tabulation of Integrals. 
The following is a tabulation of those integrals which are used repeatedly in this report. Also indicated 

are the restrictions which are placed upon their use and where appropriate the reference from which they 
were obtained. 

1 

I/l+s, 1. ,J~lT--~' ( t - s ' ) -  ~ for t 2 ~< 1 (Ref. 10) 
- 1  

r I,+., /.+, 2. j~/ i - - -raP ( . -~ '~)  = - "  l -x /~_--27 for ~ > 1 

. 

co 

( f  / s '+l  } e -ik 
J'[?s-rL-i-1-1 e-ik~'ds'= -27~[H]Z)(k)+iH~°2)(k)] ik 
1 

(Ref. 12) 

. 

cr y _sds_  
+ s' ( r -  s') 2 

- 1  

/ r - 1  Atr, + sin- 1 G + ~/~-~-]- ( r) for r z > 1 

where A(o-, r) = 2 tan -1 1 ~  \ r -  1] rc 

o" 

5. l+s '  ( r - s ' i= -2+sm tr+ ~ f ~ ( c r ,  r) forr 2 < 1 
- 1  

1 __ o.r_ 1,,/i--~_ r2 lx/i--S~_ az • 
oo 

f e-~k{ 117(1- -a )  (?+  I)1 6. A(a'r)e-ikS'ds' = T 2 t a n -  ~ ~ -re 
1 

o9 

1 (" '1--~r[ f i z Z _  1 / r + l  1 .]e_ikS,ds, w h e r e r = s , + d , ? = l + d "  +~ J~7-~ ~-,,/r- 1 ( ,~ - r ) j  

(Ref. 12) 

(Ref. 12) 
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t 

(" I 1 - s '  , 
7. jx/ Tds ==. 

- i  

8. f f~(s', r)ds' = 
- 1  

~ / 1  - r  2 where r 2 ~< 1. 

oo 

ff e - iks ,  7~ 

9. / - -~2~= ds' = - i H~o2)(k). 

1 

(Ref. 12) 

10. 

1 

Jk /1  - s  
- 1  

(Ref. 12) 

1 

11. f vT l l - s '2e - i k"ds '=  k-J l (k) .  
- 1  

l 

[" / 1 - s '  - i k s "  , 12. J ~ / l ~ ; e  ds = g[Jo(k )+iJ t (k ) ] .  
- I  

1 s,2ds, 

13. 
- 1  

1 

f- I s'2ds' 
. . . .  ~ - -  7~r. 

1 4 .  X ~  1 - s ' 2 ( r - s ' )  

1 

I / 1 - s '  . = )z [ J2 (k )_Jo(k )_ i2J l ( k ) ] .  15. JX/1 + s' s'e-'k~'ds' 
- 1  

(ReE 12) 

(Ref. 10) 

(Ref. 10) 

I l l  +s'  . = n J 16. j ~ _ s , S ' e - ' k " d s '  ~ [ J o ( k ) -  2(k)- iZJ~(k)] .  
- - 1  

17. 

l 

f s ,x / /~_s ,  2 e_ikS,ds , = izc [J l (k )+  Ja(k)]. 

- - t  

18. 

1 oo 

~ 4 - 1 ;  s" iTZ-- ~7) ds -- = x] r +I  ~/ r +1 ~_a ( -  1)' 
- 1  1 
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19. 

1 

f l l+s '  , , r ~  , ]  ~ - s '  s as = -~ . 

- 1  

APPENDIX III 

Cascade Functions. 
The following is a tabulation of those functions which arise in the solution of the unsteady lift in a 

cascade and are not represented by a common mathematical function. 

1. C I=~ /g~  +1"-1 

. 

. 

. 

Ih c + 1 
c2 = ~/ C_1 

oo 

j t Vg-~-~- ~ -1  
1 

it,/h +l_ 
D2 =1 [ i ~ h ~ - I  1 

F 1 ( l - - d r + ~  ib 
5. A1 = j  tan- / X / ~ I + G +  ! ---g-- do -+ . 

6. A2 =ftan -* l--G+ ~a+2 ~ &r+" 

- t i a  . 

. d ( x  + . 

. 

- 1  1 n 

do  + . 
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09 

= f e - im;t * 

oo 

: f e  -i~'+ 1o. j 

2 2 , + hc { x / / ~  _ 1 _ h c ]  . 11. L =  gc { w / ~  2 -  1 - g o ,  2 2. 

A P P E N D I X  IV 

Pressure  Dif ference Across  Airfoil.  
To obtain the lift on an airfoil it is necessary to calculate the difference in pressure across the airfoil. 

This is done using the unsteady Bernoulli equat ion for a flow in which a velocity potential  q~ is assumed 
to exist. This can be written as 

9¢ 
~_½q2 + ~  = f ( t )  (D.1) 

& p 

where q is the total velocity along the airfoil. The pressure difference Ap' = f fupper--Ptl  . . . . .  then becomes 

t } A p ' = - p  - -  1 2 Ot (alp,- ~at) +~(q ,  - q2) (D.2) 

In general, q2= ( V . . ~ _ U ) 2 I _ / ) 2  where V is the free s t ream velocity along the chord and u and v the per tur-  
bation velocities of order e parallel and normal  to the chord. Therefore,  

2 2 = 2 V ( u u _ u l ) + ( u Z  2 2 -us)+(v. -4). q .  - qs  

Now,  u , ,=ua+7 /2  and u s = u a - 7 / 2  where u d is the dis turbance velocity carried with the free s t ream 
velocity and 7 the local vorticity. Since the airfoil is a solid boundary ,  v u = - v s. Thus  neglecting velocities 
of  order  e a, 

q2 _ q2 = 2 V(u,  - us) + 2ua7 = 2(V + ua)Y (D.3) 

if+ c; 
since u, - us = 7. F r o m  this relation, q~.-  Cs = ~ 7dx ~(. Therefore  the pressure difference at a point a + is 

- 1  

o -+ 

+ c O  f + - A p ' ( a  +1 = p ( V + u 2 ~ ( ~  ) + P ~ - ~  7( x ,  ) d x  +. 

- 1  
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The vorticity ?(a +) is made up of a steady and unsteady part, i.e. ?(a +) = ?~(a+)+?,.~.(a+). As with the 
usual linearized unsteady flow theories 7s=0(1) and 7 .... =0(e). Since Ud=O(e) the neglect of terms 
0(e 2) gives 

~+ 

+ + cO f -A 'p(a  +) = pV~(a )+pUdYs(a ) + p ~  ~,(x+)dx-?. 
- 1  

(D.4) 

APPENDIX V 

Modified 7heodorsen Function for the Case of Infinite Spacing. 
The case of infinite spacing, s = o% represents a unique condition for the modified Theodorsen Function, 

G(o~, s/c, 4) equation (22). At this condition, G(co, s/c, 4) can be shown to reduce to the familiar Theodorsen 
Function C(~o) associated with an isolated airfoil. 

To examine the value of G(co, s/c, 4) it is necessary to consider the limits of the cascade functions, 

Appendix III, as s ~ oo. This requires the determinate of lim /94 + 1 /~4 + 1 and lira The first of 
s ~ ~ X/9-~--1 s-~ oo ~ / h z - l "  

the limits can be written as 

I 2  + + 1 + ~-~ sin 2ns ) 

I lim /94+1 lim _ _ _  . 

s ~ ° ° \ ] g 4  - - - ~ - s - + ° °  ~+--1 + _ ~  sin ~_  i 2_~ cos ~ ] 

Dividing both the numerator and denominator of this expression by s gives 

l 2 + 1 2 n .  ~ 2n t ~ - - + - + - - s i n e - i - - c o s  lim g4___+_+l_ lim s s c c 
s ~ o o x / g a - i  s ~ o o  2 + 1 2n 4 i 2n 

- - - - + - - s i n  - - - c o s  
S S C C 

= 1 .  

Similarly, 

s ~ G o x ] h - ~ - - l - -  1, x/go-- = l a n d  - 1. s --. oo 1 s ~ oo ~/ hc-1 

From Appendix III the following values of the cascade functions are obtained as 

1 

lim C 1 1 lira A1 ftan -1 [ l - a +  + 
_- __ X/1--£~G+ d~  S - +  O0 S ' - +  O0 

- 1  

1 

lim C1 1 lim A 2 ftan -1 [ l - a +  + 
--  --  X/l-TUG+ d a  S---~ O0 S---+ O0 

- 1  
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lim D 1 = 0  lim A3 = f tan- l ' , /1 /1-a+ da+ 
s ~  s - ~  ~ - + ~ +  

- 1  

1 

lira D 2 = 0 l im A4 = f tan-1 ~//1-a+ 
s ~ oo s -~ ~ ~ l + a  + da+ 

m 

- 1  

The remaining cascade functions B 1 and B 2 involve a term of the form {x/g2~-1 ] -  1 which becomes zero 
when s --+ Qo. Hence 

lim BI = 0 and lim B 2 = 0. 

S---~ O0 S---+ O0 

Substitution of the above limits into equation (22) gives the following expression for G(~, sic, 4), 

co~ H~oZ~(co) 
G(co, oo, ~) : 1 + iron [H(t2){co) + iH(o2)(co)] 

= H~2)(co)+ iU~o2)(co)" 

This latter expression is identically equal to the Theodorsen function C(o~). It should be noted that the 
term e i"~ involves the spacing s and is undefined as s ~ ~ since it represents the summation of sines and 
cosines. However its value does remain finite and drops out through the multiplication by zero. 
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FIG. 1. Cascade of blades moving through a disturbance in the flow. 
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