
Z 

d, 

..... ~ : R. & M. No. 3687 

• f , 

MINISTRY OF DEFENCE (PROCUREMENT EXECUTIVE) 

AERONAUTICAL RESEARCH COUNCIL 

REPORTS A N D  MEMORANDA 

A Streamline Curvature Through-Flow Computer 
Program for Analysing the Flow through 

Axial-Flow Turbomachines 
By D. H. FROST 

National Gas Turbine Establishment 

L O N D O N :  HER MAJESTY'S STATIONERY OFFICE 
1972 

PRICE 1"30 NET 



A Streamline Curvature Through-Flow Computer 
Program for Analysing the Flow through 

Axial-Flow " /~ Turbomachlnes:, ~ 
, . , ~% 

By D. H_. FROST ,,L ,- 
';%" ,,/ ," 

National Gas Turbine Establishment ~ .... 
b 

Reports and Memoranda No. 3 6 8 7 *  
August, 1970  

o , .V)~  

Summary. 
This Report describes a computer program for the analysis of the fluid motion in the meridional 

plane of axial flow turbomachines. The method uses a streamline curvature approach and the program 
allows calculations within blade rows. Comparisons with experiment and various other methods of 
analysis are presented. 
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1. Introduction. 
The complete analysis of the flow through a turbomachine is a complex, three-dimensional problem 

which, for practical purposes, must, at present, be regarded as insoluble, even with the present day size 
of computers and the advanced techniques available. The problem is therefore reduced to two separate 
and more manageable problems known as the hub-to-tip and the blade-to-blade. 

The aim in the hub-to-tip problem is to solve for the flow only on a meridional surface of the turbo- 
machine. This approach has its origins in the Mean Line method, developed by Howell 1'2 for compressors 
and Ainley and Mathieson 3 for turbines, in that the meridional surface is collapsed onto a mean line 
through the machine. The flow is only calculated in the duct regions between adjacent blade rows on 
this mean line. The Streamline Curvature Duct Flow method, developed in the United States of America 
by Novak 4 and Smith 5 and, in the United Kingdom by Silvester and Hetherington 6 of Rolls Royce and 
the National Gas Turbine Establishment (NGTE), went a stage further by calculating the flow on a 
meridional plane right across the annulus but the solution is still restricted to the duct regions. However, 
Marsh 7, in his Matrix Through-Flow method, was able to extend the calculations to go within the blade 
rows by means of the specification of a meridional stream surface. This method employs a finite-difference 
technique rather than a streamline curvature approach for solving the equations and is restricted to 
subsonic relative flow within the blade rows. In the same way, it is possible to adapt the streamline 
curvature approach so as to be able to calculate the flow within blade rows, by introducing the concept 
ofa meridional stream surface. This Report describes a computer program for such a method which will 
be referred to as the Streamline Curvature Through-Flow method. 

Since the two through-flow methods solve the same equations and make the same assumptions, the 
results obtained from them should be the same. However, the Streamline Curvature Through-Flow 
method is, in theory, capable of obtaining supersonic solutions with the restriction that the meridional 
Mach number should not exceed unity anywhere in the turbomachine. Also, the Streamline Curvature 
method requires far less computer storage than does the Matrix method. 

Section 2 presents in detail the techniques employed in solving the principal equations which are 
derived from the basic aerodynamic and thermodynamic relationships in Appendix 1. This work is not 
essential to the understanding of the results given in Section 3. Results have been obtained for a two- 
stage, highly loaded axial flow turbine and a single-stage low pressure ratio compressor. These are 
compared with experimental data and with predictions from the Streamline Curvature Duct Flow and 
the Matrix Through-Flow methods. Furthermore, the discrepancies in the results from the two Stream- 
line Curvature programs have been investigated with a view to assessing the advantages and disadvantages 
of taking account of the flow within the blade passages. 

The method described in this Report has been programmed in basic IBM Fortran IV for an SDS 
90/300 computer with a core store of 32K and can therefore be run on a variety of computers with only 
minor alterations. 

2. Method of Solution. 

The principal equations to be solved are derived from the basic flow equations for inviscid, steady 
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flow in Appendix I, making use of Figures 1 and 2. Special derivatives of the form - - ,  - - ,  representing 

r g 
the rate of change along the meridional stream surface, are defined and a blade blockage parameter B 
is introduced. Here, it suffices to state the principal equations obtained. 
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The solution of these equations is obtained by an iterative technique at a discrete number of points. 
In the section that follows, a detailed description is presented of the method of solution and the numerical 
techniques employed. 

2.1. The Calculatin9 Grid. 

The flow field over which the equations are solved is bounded on two sides by the inner and outer 
annulus walls of the turbomachine (except for possible boundary layer allowance) and on the other two 
sides by the upstream and downstream boundaries, Figure 3. These boundaries must be normal to the 
axial direction. The grid is formed by calculating planes parallel to the upstream and downstream 
boundaries, each plane having an odd number of equally spaced grid points, the same number for each 
plane, between the inner and outer annulus walls. The spacing of the calculating planes need not be 
uniform and where necessary can be varied locally to provide a detailed picture of the flow. 

Boundary conditions. 

For the upstream boundary, the flow conditions on the first two planes, i = 1 and i = 2, of the flow 
field are specified to be uniform across the annulus and equal to the inlet flow conditions. These are 
calculated from the known mass flow and inlet stagnation temperature and pressure. 

For the downstream boundary, the flow conditions on the last two planes, i = N -  1, i = N, of the 
grid are taken to be equal to the flow conditions calculated at the plane i = N - 2 .  

The boundary condition applied at the annulus walls is that no flow crosses these boundaries, that is, 
the annulus walls are streamlines. 

2.2. The Calculations for One Overall Iteration. 

The equations used in this calculation are equation (1) and equation (2) put in simple finite difference 
form, thus 

ri,j+ 1 - -  ri,j 2 \rid+ 1 -- ri,j/t \ 2 / 

, 1 @ 
wnere P c~r has been denoted as a and the subscripts refer to adjacent grid points on the calculating plane. 



Re-arranging, we get 

hi j+ ~ - h i  j 1 . , ~ (Ti j+ ~ + Ti,j) (Si,j + 1 1 = - s ~ , j )  +-~ (cry,j+ ~ + ~r~,i) (r~a + ~ - r~j)  (3) 

2.2.1. The calculation on a general plane. The calculation takes the form of an integration of 
equation (3) commencing at the mid-radius grid point and proceeding step by step first to the outer wall 
and then to the inner wall. The guess for the mid-radius axial velocity needed to start off the integration 
is taken to be equal to its value on the previous overall iteration except on the first iteration, when the 
mid-radius axial velocity from the previous calculating plane is used. 

Consider the integration from the mid-point to the outer casing. Knowing the flow conditions at 
a grid point (i,j), the corresponding axial velocity at (i,j + 1), denoted by Wz ( i , j+ 1), can be found by 
iteration, as follows. A guess, represented as W X ,  is made for W~ ( i , j+ 1). Given Wz at any grid point, 
it is possible to determine the flow completely at that point, from a knowledge of the mass flow distribu- 
tion, taken from the previous overall iteration, and the flow conditions on the previous plane. For the 
first iteration, it is assumed that the flow per unit area is constant across the annulus for all calculating 
planes. Thus, T~,j+ ~ and s~,j+ 1 can be evaluated and ~,i+ 1 can be obtained from equation (1). The methods 
used for calculating these quantities are described in Section 2.3. Using equation (3), the static enthalpy 
h~j+ 1 is determined and hence, from the energy equation, a new value of W~(i, j+ 1) = W Y obtained. 
Starting with a new W X ,  a new W Y  is calculated and this process is continued until W X  is within 0.01 ft/s 
of W Y .  Details of the adjustment of W X  are given in Appendix II and on Figure 4. 

A particular guess for the mid-radius axial velocity thus determines the flow conditions at each grid 
point on the calculating plane. To satisfy continuity in the thin stream sheet, then 

Ro 

2z~ f r ( 1 - B ) p W z d r  = Q 

Ri 

where Q is the required mass flow and Ri, R o are the inner and outer radii of the annulus*. This integral 
is evaluated using Simpson's rule to obtain a mass flow. The axial velocity at the mid-radius is adjusted 
and the flow conditions re-determined until the calculated mass flow is correct to within a tolerance 
of 0.1 per cent. Details of the alteration of the mid-radius axial velocity for this iteration are given in 
Appendix II and on Figure 5. 

When convergence of this continuity iteration has been achieved, the mass flow or stream function 
distribution is known across the annulus. 

2.2.2. Stream function. The above determination of the flow at each grid point on a plane is 
repeated for each calculating plane, except for the first and last two planes, to obtain a stream function 
distribution ~ throughout the flow field on the nth overall iteration. For an iterative process, numerical 
stability can be a problem and this was overcome by the introduction of a relaxation factor r f .  A new 
stream function for the nth iteration is defined by 

The solution of the principal equations is obtained by iterating on the stream function distribution 
until a specified number of iterations has been completed. 

2.3. Evaluation o f  Terms in Principal Equations. 

*If account is taken of the annulus wall boundary layer, then Ri, Ro will be the adjusted values to 
allow for the boundary layer displacement thickness. 
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d2r 
In equation (1), tan 2 and d-z~ are calculated from the streamline pattern. At each grid point, they 

are the first and second derivatives of the streamline through that point projected onto a radial plane 
and are evaluated by fitting a cubic spine through the grid point and the positions on the two previous 
and two subsequent calculating planes for which the stream function is the same as at the grid point 
being considered. Each position is found by a linear interpolation of the stream function distribution. 

O(tan22) is calculated from the distribution of tan 2 by means of a quadratic fit. The term ½ (?r 

dB 
The term dzz is evaluated from the identity (A17a) in Appendix I, c~B c~B ~z and ~rr being found by using 

(rVo) 
a quadratic fit. In the same way, the term ~ z z  is evaluated with rVo replacing B in identity (A17a) 

in Appendix 1, the distribution of rVo being taken from the previous iteration. For the first iteration, 

d(rVo) is taken to be zero throughout the flow field. 
dz 
To evaluate Mz and tan ~, a knowledge of the stagnation enthalpy and the absolute swirl velocity is 

required. This is obtained by the methods outlined in Sections 2.3.1 and 2.3.2. 
The entropy term in equation (3) is calculated as indicated in Section 2.3.3. 

2.3.1. Calculation qfabsolute swirl velocity. Referring to Figure 6(a), if the streamline A C  lies in a 
duct, then angular momentum is conserved from A to C 

(rVo)a 
(Vo)c = 

(r)c 

If C lies within a blade row, then the flow is made to follow the prescribed stream surface. 
Combining equations (A7), (A18a) and (A18b) from Appendix I, then 

Wo = - Wr tan 2 ' -  W~ tan # ' ,  

which is the geometrical condition that the flow should follow the mean stream surface. 
Applying this equation at C, we get, within a stator row 

Vo = - Wr tan 2 ' -  Wz tan/~' 

and within a rotor 

Vo = - Wr tan 2' - W z tan/~' + ~or. 

The situation where A C  cuts the trailing edge of a blade, as shown in Figure 6b, is a special case. It 
is necessary to find the angular momentum at F and then conserve angular momentum from F to C. 
To enable this to be done, tan 2' and tan #' are prescribed at the trailing edge point F together with the 
position of F. Also, the density is used from the previous iteration (inlet static density for the first iteration) 
and the flow properties are assumed to vary linearly from A to C. 

2.3.2. Calculation of  stagnation enthalpy. Referring to Figure 6, i f A C  lies in a duct or within a stator 
row, then stagnation enthalpy is conserved from A to C. 

H c -~- H A . 
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I f A C  lies within a rotor row, then rothalpy I = H - o ) r V  o is conserved from A to C (see Appendix III) 

H c  = H A -'k 09 c [(rVo) c - (rVo)A] . 

Any other case can be considered as a combination of these two. 

2.3.3. Calculation o f  entropy. Losses are simulated by prescribing distributions, throughout the 
flow field, of two local polytropic efficiencies. 

t h i s  r 
qc = ~ Ior compression 

and 
Ah 

t/r = -ZT--, for expansion, 
ani~ 

where Aha is the change in enthalpy for an isentropic process having the same initial state as the actual 
process. 

Therefore, the changes of entropy and enthalpy are related, thus 

and 

, f T + A T ~  
As = Cp (1 -qc )  ' o g e e s )  

/T+AT  
.T/'°ge T-Y-) 

3. Numer ica l  Examples .  

Two numerical examples are given to il lustratethe use of the computer program. The first example 
is a two-stage, highly loaded, axial  flow turbine s and the second is a low pressure ratio, single-stage, 
axial flow compressor 9. 

As mentioned earlier, there are two alternative methods for analysing the meridional flow pattern, 
known as the Matrix Through-Flow and the Streamline Curvature Duct Flow methods. Both of these 
methods have been applied to the above turbomachines and compared with the method, known as the 
Streamline Curvature Through-Flow, developed in this Report. 

In all the above methods, irreversibility is introduced by the specification of a local polytropic efficiency 
for expansion and one for compression at each grid point. For the turbine, the two efficiencies were 
assumed to be equal and constant throughout the flow field, and were selected such that, for the chosen 
mass flow and rotational speed, the predicted overall pressure ratio was in agreement with the experi- 
mental value. In the case of the compressor, a value of 90 per cent was chosen for the two efficiencies 
at all grid points. 

The assumptions regarding the shape of the mean stream surface were that the value of tan p' varied 
linearly between the design inlet and outlet values, and that 

circumferential blade thickness 
B =  

blade pitch 

3.1. Two-S tage  Turbine.  

This turbine, having an overall loading of 3.25 for the two stages, was fitted with aerofoil camber-line 
type blading. The base profile shape was placed around a parabolic camber line with the position of 
maximum camber at 40 per cent of the chord from the leading edge. In selecting the blade pitch/chord 
ratio, the loading criterion t°, expressed as the ratio of tangential lift experienced by the blade to the 



exit dynamic head, was adopted and limited to the range 0-7 to 1-1. The annulus was flared, with hub/tip 
ratio falling more or less linearly from 0.8 at inlet to the first-stage stator to 0.66 at exit from the second- 
stage rotor. An unusual feature of this machine is the 10 degree radial tilt on the second-stage stator 
blades, that of the other blade rows being negligible. 

The grid used to analyse the flow by the through-flow methods consisted of 34 calculating planes with 
seven grid points per plane, there being seven planes upstream of the first stator row, three planes within 
each blade row, one plane between successive rows, and 12 planes downstream of the second rotor row. 
The grid extended from one mean annulus height upstream of the first blade row to five mean annulus 
heights downstream of the last blade row. The NGTE Streamline Curvature Duct Flow program is 
restricted to a grid consisting of four calculating planes upstream of the first blade row, one plane between 
adjacent blade rows, and five planes downstream of the last row. The number of grid points per plane is, 
however, a variable and for the present study a total of seven grid points per plane was used, as in the 
case of the through-flow methods. The grid extended two mean annulus heights upstream of the first 
row and the same distance downstream of the last row. 

Two flow conditions were analysed, one at 50 per cent and one at 87-5 per cent design speed, and 
the table below gives the measured overall flow conditions. 

Design 

Speed 

N Pi 

Po e i 

50 121"9 40.26 1'4 

87"5 230-1 42.56 1"6 

where 

and 

N = rotational speed, 

T,~ = turbine inlet stagnation temperature, 

P~, Po = turbine inlet and outlet stagnation pressures 

Q = mass flow. 

3.1.1. Overall performance. The overall total-to-total isentropic efficiencies predicted by the 
through-flow and duct-flow methods, together with the local polytropic efficiencies used, are given for the 
two speeds in the table below. These are compared with the experimental values and also with the 
efficiencies predicted by the Ainley and Mathieson 3 mean line method. 



Streamline 
Curvature Matrix 

Through 
Flow Through Duct 

Flow Flow 

94 87 

89.8 86-1 

98.5 92 

97-8 92.2 

Ainley 
and 

Mathieson 
Experi- 
ment 

Design 
Speed 

Local polytropic 
efficiency ~ 94 

50 
Overall isentropic 
efficiency 9/0 89.8 80"8 81.5 

Local polytropic 
efficiency ~ 97.5 

87.5 
Overall isentropic 
efficiency ~ 96.2 85'3 86.5 

It can be seen that the efficiencies given by the simple mean line method agree well with experiment, 
the maximum discrepancy being only 1.2 per cent. The predictions of the three advanced methods under 
consideration are all far too high, the Streamling Curvature Duct Flow method being rather better than 
the through-flow methods. The through-flow methods are, however, in very close agreement with each 
other, as is to be expected since they make precisely the same assumptions. The poor predictions of the 
through-flow and duct flow methods are obviously due to the high levels of local polytropic efficiency 
needed to obtain the correct pressure ratio and it is probable that this in turn is due to the assumption 
of a constant polytropic efficiency throughout the flow field. The effects of this assumption seem to be 
magnified by calculating the flow within the blade rows. These predictions of the overall performance 
show clearly the need for a better model for the representation and distribution of flow losses. 

3.1.2. Flow profiles. Figures 7 and 8 show comparisons of the axial velocity profiles predicted by the 
through-flow and duct flow methods through the second stage, there being greater differences between 
the results in this area of the turbine than in the first stage. The results obtained from the through-flow 
methods are in excellent agreement but differ considerably from those of the duct flow method, except 
after the second stator. This, however, must be viewed in the context of the changing profile through the 
second stage, that is, it is coincidence that the profiles after the second stator are similar for the two 
speeds. 

The theoretical and experimental profiles of axial velocity and swirl angle far downstream of the 
second-stage rotor row are shown in Figures 9 and 10. Once again, the through-flow methods are in 
very close agreement with each other and give a reasonable estimate of the axial velocity profile, parti- 
cularly for the 50 per cent design speed point. The simple duct flow method yields a radial variation of 
both axial velocity and swirl angle quite different to the through-flow predictions and that found experi- 
mentally. The lack of agreement between the through flow predictions and experimental results near 
the walls would appear to be due to the unrealistic distribution of loss, causing the axial velocities to 
increase, rather than decrease, towards the walls. This once again shows the need for a better loss model. 

3.1.3. Annulus wall static pressure distributions. Experiment indicated a radial static pressure 
gradient at outlet from the first stage in the opposite sense to that normally expected for swirling flow in an 
annulus: the wall static pressure measured at the hub was higher than that measured at the casing. It is 
thought that this is probably due to the radial tilt of the second-stage stator blades, which is much greater 
than is normally encountered in axial flow machines, inducing a strong radial acceleration of the flow. 



The distributions of wall static pressures obtained from the Streamline Curvature Through-Flow and 
Duct Flow methods, non-dimensionalised by the inlet stagnation pressure, are compared with experi- 
mental data in Figures 11 and 12. The static pressures obtained from the Matrix Through-Flow method 
are not shown since they were nearly identical to those given by the Streamline Curvature Through-Flow 
method. The inverse pressure gradient was successfully reproduced by the through-flow methods whereas 
the duct flow approach predicted practically no pressure gradient at all, for both speeds. 

3.1.4. Effects of blade blockage and radial tilt. As has been pointed out earlier, the results obtained 
from the Streamline Curvature Duct Flow method differ markedly from the through-flow methods. 
This difference must be attributed to the extra assumptions implied by the absence of computation inside 
the blade rows in the duct flow model, namely, the neglect of blade blockage and radial tilt effects. To 
investigate this further, two special cases were analysed using the Streamline Curvature Through-Flow 
method, for the flow condition at 87-5 per cent design speed, firstly neglecting only blade blockage and, 
secondly, neglecting only radial tilt. For the two cases, the same procedure was adopted for fixing the 
loss distribution as had been used for the previous calculations. A common value for the local polytropic 
efficiencies of compression and expansion was chosen, which was constant throughout the flow field, 
such that the predicted overall pressure ratio agreed with the experimental value. 

The local polytropic efficiency for the case with no blade tilt was 98.5 per cent. Thus, it may be seen 
from the table of efficiencies given earlier in Section 3.1.1 that neglecting the blade tilt did not alter the 
overall pressure ratio. It did, however, alter the shape of the axial velocity and swirl angle profiles and 
this is reflected in the comparison of the far downstream flow profiles given in Figure 13. In fact, the 
profiles obtained are very close to those given by the Streamline Curvature Duct Flow method. 

The value of local polytropic efficiency used for the case with no blade blockage was 90 per cent. 
The resulting far downstream axial velocity and swirl angle profiles, Figure 13, show that the effect of 
blade blockage is significant but far less so than blade tilt. 

A comparison of the wall static pressures at the interstage of the turbine is given in Figure 14. It 
can be seen that removal of the blade blockage and removal of the radial tilt both have the effect of reducing 
the inverse static pressure gradient. 

3.2. Single-Stage Compressor. 
This compressor 9, having a constant hub/tip diameter ratio of 0-5, had inlet guide vanes, a rotor row 

and a stator row. The blading was designed for radially constant axial velocity and temperature rise, 
and stator inlet angle. The rotor row was approximately 50 per cent reaction at the mean diameter, 
where the relative air outlet angles were 25.6 degrees and the pitch/chord ratio was 0.9. The blade profiles 
were of C5/C50 aerofoil section with constant chord of 2 in., giving an aspect ratio of 2.5. 

Analysis of the flow by the through-flow methods was carried out with eight calculating planes up- 
stream of the inlet guide vanes, three within each blade row, three between each pair of blade rows and 
11 downstream of the stator row. The first plane of the grid was placed at 1.5 annulus heights ahead of 
the first blade row and the last plane 2-5 annulus heights downstream of the last row. A total of seven 
grid points were taken on each plane. 

For the Streamline' Curvature Duct Flow method, the positioning of the calculating planes is subject 
to the requirements of the program, as was stated in the description of the grid for the two-stage turbine. 
There were again seven grid points per plane and the extent of the grid considered was the same as that 
used for the through-flow methods. The comparison between the theoretical predictions and experiment 
is made for one flow coefficient of 0.65. The flow coefficient is defined as the ratio of the mean axial velocity 
to blade rotational speed at mean diameter. 

3.2.1. Results. The overall pressure ratio of this compressor was approximately 1.0035 for the flow 
condition considered. The usual procedure of lining up the predictions of pressure ratio with the experi- 
mental value, as applied to the turbine example, was found to be impractical since a large change of local 
polytropic efficiency produced only a very small change in the predicted pressure ratio. However, to 
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allow for the effect of irreversibility, the flow pattern was calculated using an arbitrary value of 90 per 
cent for the polytropic efficiency of compression and expansion at all grid points in all three analytical 
methods, as stated in Section 3. 

The experimental and predicted profiles of axial velocity, far downstream of the stator row, are com- 
pared in Figure 15. It will be observed that, ignoring end wall boundary layer effects, the through-flow 
methods, which are in close agreement with each other, give a fair estimate of the velocity profile. The 
simpler Streamline Curvature Duct Flow method leads to a radial variation of axial velocity which is 
quite different to that given by the through-flow methods and this must be due entirely to the neglect 
of blade thickness effects since there is no radial tilt of the blades. 

4. Conclusions. 

A Streamline Curvature Duct Flow computer program for analysing the flow through turbomachines 
but which only allows flow calculations in the duct regions has been extended so that the flow may also 
be calculated within the blade rows. This has been done by using the concept of a meridional stream 
surface of specified shape and thickness. This model of the flow is known as the Streamline Curvature 
Through-Flow method. 

Two turbomachines have been selected as test cases for the program: a two-stage turbine and a low 
pressure ratio, single-stage compressor. 

The program predictions have been compared with experimental data and with results from the 
Matrix Through-Flow and Streamline Curvature Duct Flow methods. 

Very good agreement has been obtained between the Matrix and Streamline Curvature Through- 
Flow programs. One advantage of the Streamline Curvature Through-Flow approach over the Matrix 
method is that it does not require a computer having a large high speed store. The program described 
in this Report might take up a store of 21K on an SDS 90/300 computer, which has a 24 bit word, whereas 
to analyse the same problem using the Matrix Through-Flow program would require a store of 21K 
on a KDF9 computer, which has a 48 bit word. The corresponding run times would be 15 minutes per 
case for the Streamline Curvature program and 10 minutes per flow condition after an initial 5 minutes 
for a particular geometry using the Matrix program. These figures are only meant to be approximate. 

A comparison between the Streamline Curvature Duct Flow program and the new Streamline Curva- 
ture Through-Flow program indicates that both of the two main effects neglected by the duct flow 
model, ie, blade blockage and blade radial tilt effects, are significant when looking at the detailed flow 
through a turbomachine. 

The comparisons with experiment show that the through-flow methods give a reasonable estimate 
of the axial velocity and swirl angle profiles. An improvement on the measure of agreement calls for a 
better model for the representation and distribution of flow losses. However, by making use of a simple 
loss distribution, the accuracy of calculating annulus wall static pressure distributions, for example, is 
significantly better when the through-flow methods are used, when compared to the simple Streamline 
Curvature Duct Flow method. 

N O T E  

Advice on the use of this program together with a copy of a Note 11 on the preparation of the data 
can be obtained on application to the National Gas Turbine Establishment. Punched paper tape 
versions of the program are also available. 
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N O T A T I O N  

Mean stream surface thickness parameter 

Specific heat at constant pressure 

Force vector 

Static enthalpy per unit mass 

Stagnation enthalpy per unit mass 

Mach number 

Vector normal to the mean stream surface 

Static pressure 

Inlet stagnation pressure 

Mass flow 

Radial, circumferential and axial co-ordinates 

Entropy per unit mass 

Static temperature 

Absolute velocity vector 

Relative velocity vector 

Absolute swirl angle 

Meridional angle 

Angles which define the local shape of the mean stream surface 

Static density 

Angular velocity of the blade 

Derivatives taken along the mean stream surface 
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APPENDIX I 

Derivation of Principal Equations. 

Since this work is apparently the first to introduce the concept of a meridional stream surface into 
the streamline curvature analysis, the derivation of the principal equations is given in some detail. 

For a co-ordinate frame of reference rotating with a blade row at constant angular velocity co, the 
equation of motion for inviscid, steady flow is 

1 
(W_.V_) W_= - - V p + c o z E - 2 c o A  W_ 

P 

assuming gravitational forces are small. 
Using a relative cylindrical polar system (r, 0, z) such that the rotation is about the z-axis and 0 is 

measured in the direction of rotation, the three component equations of motion are 

Wo OWr 1 Op ~3W r OWr W°2 + 2coWo-coZr - , (A.1) 
W~ ~rr + Wz ~z r r O0 p Or 

OW=_~ WoOW z 1 Op 
w~ + w = - s S  r 0 0 -  pOz 

and 
WoOWo 1 Op 

+ 2coWr - (A.3) 
r O0 pr O0" 

The equation of continuity for steady flow is 

g .  (p_v¢) = 0, 

which in scalar form becomes 

1 O(prWr) 1 O(pWo) O(pW=) 
r Or + - -  ~ - 0. (A.4) r 00 Oz 

Also, from the first and second laws of thermodynamics 

1 
T V s =  Vh - 2  Vp. 

P 

Therefore, TOS _ Oh 1 Op 
Or Or p Or" (A.5) 

In general, equations (A.I) to (A.5) have no simple solution and must therefore be simplified in some 
way. In the streamline curvature method, this is effected by reducing the problem to two dimensions, 
as in the matrix through-flow method, by assuming a relationship 0 = O(r, z), taken to be single-valued 
in 0. That is, the solution is only obtained on a prescribed meridional surface S. Thus, any quantity 
q(r, O, z) in the original problem will now be r, z dependent only. 

Let 0q and 0q be special partial derivatives where ~ will be the rate of change of q with r on the surface 
0r ~z 
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S at a given value of z, and Oq will be the rate of change of q with z on the surface S at a given value of r. 
Oz 

Consider the curve F defined by the intersection of the surface S and a plane z = constant, then 

3q dq 
- o n  F 

Or dr 

Oq Oq dO 
- 

Or 90 dr 

But n~ dr + no rdO = 0 

on the curve F, where n~, no, n~ are the direction cosines of the normal to the prescribed surface. It follows, 
therefore, that 

Similarly 

Oq _ Oq 1 n~ Oq 

Or Or r no 20 

Oq _ Oq l n~ Oq 

Oz Oz r no 20 " 

(A.6) 

If the prescribed meridional surface S is taken to be a stream surface, then 

nr W~+no Wo+nz W~ = O. (A.7) 

Expressing equations (A.1) to (A.5) in terms of the special derivatives equation (A.6), and making use 
of equation (A.7), we get 

3W~ Wo z 1 Op 
3Wr + Wz 2 o W  o - co2r = F~ - -  - -  (A.8) 

W~ Or Oz r p Or' 

~ r  ~ OW~ _ Fz 1 Op (A.9) +wz 0z 

OWo OWo Wo 
W'--~-r + Wz-~-z + rWr + 2~°W~ = F°'  (A.IO) 

10(prWr) O(pWz) 1 [- OWN OWz OWo-] 
r Or ~ O ~ -  rnoLnr-~-+nz-~o-+n°-~O-A (A.11) 

Oh 0s 1 0p (A.12) 
and Or = T ~ r + p  O--r' 

where _F is a vector, having the unit of force per unit mass of gas, defined by 

1 10p 
F -  
- nor p 20 n_. 
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0 
To eliminate the ~-0 terms in the continuity equation (A.11), it is necessary to re-derive this equation, 

introducing a thickness parameter -c. 
Consider the volume, Figure 1, enclosed by two meridional stream surfaces containing the surface S 

and distance ~: = rdO apart at P, two planes normal to the z-axis distance dz apart and two circular 
cylinders distance dr apart. Then r is proportional to the circumferential thickness of a thin stream 
sheet whose mean stream surface is the stream surface S. 

Applying conservation of mass to the flow through the element and approximating each surface of 
the element to a trapezium, then 

p ~(pW=). ) 
, e z + :  O~zz drdz dr+ 

, t  

Q~ 

+ PW~+-~r dr ~ + ~ r  ~TzdZ+~O~zdrdz dz- 

Q.4 

W 1" 1~'c \dr-pW~('c+13"c \ 
- . - ,  

Q1 Q3 

Neglecting third order terms, this equation reduces to 

Oz PW= ~z+ Z + pWr drdz = O. 

Therefore, 0(~pW~) ÷ _ _  _ 0. 
~3r cqz 

This is the new form of the continuity equation. 
Letting z = r(1 -B) ,  then (1 - B )  is proportional to the angular thickness of a thin stream sheet whose 

mean surface is S. 
Substituting for z in the above equation and expanding, we get 

_BrW3P+p 3(r(1 - B )  W,.) r(l 
~r 0r 

~p 3(r(1 - B) W=) 
+ r ( 1 - B )  W= ~z+p Oz - 0 .  

The speed of sound in the gas is now introduced through the relationship 

a 2 @ 
dp 

to obtain 

( OB) W=lOp 3W z VV= [" ~B) Wrl ~p OW, Wr -r~-r a 2 p~z aZ p ~ r + ~ r - r  + ~  I - B  -4 t - + ~ - z z + ~ ) ~ - r - ~ z  z = 0 .  (A.13) 
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Eliminating o-p from the axial equation of motion (A.9) and equation (A. 13) then 
Oz 

Wrl Op t_OW~ +W, Wr OB _Wz( ~Wz OWz\ 
a 2 p~rr -&r  r (1-----B)~r ~ -  F~-Wr-&r  - W ~ Z - z ) +  

3W~ W_ 3B 
-F 0~ (1L-B) Oz = 0. (A.14) 

Now, let u be the absolute swirl angle and 2 be the angle that the projection of the streamline on to the 
r, z plane makes with the axial direction. 

Then V o = V~ tan c~. 

Since Wo = Vo-mr, Wz = V~, 

therefore Wo = Wz tan e -  mr. 

Similarly, Wr = W e tan 2. 

Substituting these relationships into the radial equation of motion (A.8) and equation (A. 14) and el iminat- 
gw~ ~w~ 

ing 0 r '  ~z ' t hen  

1 t~p _ i [Wz2 tan2 2 ÷ Wz2tan2~(1-Mz 2) 
p 0r (1 - M z  2 s e c  2 ).) r r 

+ Wz 2 Mz 2 tan 2 -  
0(tan 2) Wz 2 t a n  2/" OB + OB~ 

-- Wz 2 (1-- MzZ) ~ + Mz 2 tan 2 Fz+(1 - Mz 2) Ft. (A.15) 

This equation can be simplified by the introduction of total derivatives. For any quantity q, using the 
equations (A.6), 

~rr Oq l n~ Oq dr 3q l nr Oq 
~ + t a n 2  =Oz rnoOO~-dz Or rno 

Oq 10q/" dr dO'~ 
0z In' Vz +nz+'° 

dq (A.16) 
dz 

20B_F 8B dB (A. 17a) Therefore, tan -&r ~ z -  dz 
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and (A.17b) 
2 0(tan 2)_ t 3(tan 2) d(tan 2) dZr 

tan ~ 0 ~  - dz - dz 2" 

It is also necessary to obtain expressions for the force components Fr and Fz. 
If the geometry of the stream surface is defined by two angles 2' and/z' where 2' is the angle between 

the stream surface and the radial direction in the r, 0 plane and/2' is the angle between the stream surface 
and the axial direction in the z, 0 plane, as shown in Figure 2, then 

tan 2' = r/r - Fr 
no Fo (A. 18 a) 

and tan# '  - nz _ Fz 
no Fo 

Using the relationship (A.18a) with equation (A.10), then 

F r = ( W  3Wo _~r +Wz~_z WorWr+2o)Wr)tan2, 

(wr~(rVo) w~ ~(rVo)'~ 2' 
- Or + 7 Oz ]tan . 

Therefore, making use of equation (A.16), 

W z d(r Vo) 
Fr - tan 2'. 

r dz 
Similarly, using equations (A.18b) and (A.10), then 

(A.19a) 

F~ _ __Wzr ~ tan p' . (A.19b) 

Substituting from equations (A. 17a), (A. 17b), (A. 19a), (A. 19b) into equation (A.15), we get 

l o p _  W~ z ItanrZ2 0(tan22)+(1 2 ftanZc~ d 2 r } ]  
p Or (1-M~ 2 see 2 2) +½ O ~  - M z  ) ~ r dz 2 - 

Wz 2 tan 2 1 dB 
(I - M z  2 see 2 2) (1 - B ) d z  + 

E '1 + (1 - M z  a) tan 2 '+Mz a tan 2 tan #' Wz_ d(rVo) 
r dz (A.20) 

Equations (A.12) and (A.20) are the principal equations to be solved. 
In this analysis, it has been assumed that the equations are not time dependent, that is, that the flow 

relative to each blade row is steady. However, the flow and gas state at exit from a blade row vary cir- 
cumferentially and the following blade row is then subject to a time dependent inlet flow. To overcome 

dB 
this, the flow is assumed to be axisymmetric within the duct regions. This means that the terms dzz and 

d(rVo) . 
dz in equation (A.20) will both be zero and thus, the mean stream surface need not be specified within 

the duct regions. 
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APPENDIX II 

Adjustment of  Axial Velocity. 

Axial velocity iteration--adjustment of W X .  Two typical plots of W X  vs W Y  are shown in Figure 4. 
In both cases, the solution required is the lower intersection with the straight line W X  = WY .  The 

1 
other intersection points result from the term in equation (1) tending to infinity as Mz 2 

1 - M z  2 sec 2 ~. 
sec 2 2, the meridional Mach number Mm, tends to unity, giving an asymptote as shown. This behaviour 
is clearly unrepresentative of the real flow and consequently, the solutions close to the asymptote are 
incorrect. For reasons of convergence, this restricts calculations to those problems for which the meri- 
dional Mach number is everywhere below unity. 

Consider the axial velocity iteration which gives rise to the "high Mach number" curve. As a first 
guess, W X  is taken to be equal to Wz(i,j). This value of W X  with the value of W Y  obtained from it, 
correspond to a point P~ representing the first iteration. For the second iteration, W X  is made equal 
to W Y  from the first iteration. Again, W Y  is calculated, giving a point P2" The third value of W X  is 
given by the intersection of the straight line P1 P2 and W X  = W Y .  Subsequent values of W X  are given 
by the intersection of W X  = W Y  and the straight line through the point corresponding to the previous 
iteration and parallel to P1 P2. 

Mass flow iteration--adjustment of  mid-radius axial velocity. If W~ at the mid-point, denoted by W MS, 
is plotted against the calculated mass flow, a curve of the form shown in Figure 5 is obtained, where 
the line AB indicates the required flow. The left hand section of the curve, labelled 'subsonic', corres- 
ponds to solutions which are either wholly subsonic or partly subsonic and partly supersonic, while 
the right hand section of the curve, labelled 'supersonic', corresponds to solutions which are either wholly 
supersonic or partly supersonic and partly subsonic. The program is written to choose the value of 
W M S  corresponding to the 'subsonic' solution. 

The first iteration will produce a point Px. W M S  for the second iteration is taken to be 97 per cent 
of the starting (first iteration) value of W M S  and the mass flow re-calculated, giving the point P2. The 
value of W M S  for the nth iteration is obtained by a linear interpolation from the values used for itera- 
tions (n-2)  and (n-1).  Thus for the third iteration, W M S  is given by the intersection of P1 P2 and AB. 
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APPENDIX III 

Conservat ion o f  Rothalpy .  

For a frame of reference rotating with a blade row at constant angular velocity co, the equation of 
motion for inviscid, steady flow can be written in the form 

WA (_VA _g0-2oaA _LW= V I - T V s ,  (A.21) 

where I is the quantity rothalpy defined as 

I = H -  oar V o 

and gravitational forces have been neglected. 
Forming the inner product of equation (A.21) with the relative velocity vector _W, we obtain 

_W. V I -  r W. Vs = 0. (A.22) 

As in a stationary frame, entropy will be conserved along streamlines. 

Thus, 

Therefore, using equation (A.22), 

W_ . V s = O .  

_w.vi=o, 

which implies that rothalpy is conserved along streamlines for steady flow in a rotating frame. 
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FIo. 1. An element of the meridional stream sheet. 
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