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Summary. 
In this report four previously unpublished notes, concerned with aeroelastic effects on a particular 

slender delta aircraft configuration, are collected together. 
Some general flutter calculations show that decreasing stiffness leads to instability in the aircraft 

short period mode whilst the higher frequency modes remain stable. The reasons for the instability and 
the implications regarding aircraft controllability are examined by means of a much simpler mathematical 
model. It is shown that the instability is directly attributable to the aerodynamic moments arising from 
aeroelastic distortion defined by the fundamental chordwise bending mode. 

The same mathematical model is used in a study of the bending response of the aircraft to discrete 
step and ramp gusts. It is found that the dynamic overshoot factor due to chordwise bending can vary 
within much wider limits than the dynamic overshoot factor due to spanwise bending of a conventional 
aircraft. 

* Replaces A.R.C. 32 779. 
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PREFACE 

During the three-four years around 1960 a great deal of thought was being given in the Royal Aircraft 
Establishment to the aeroelastic problems of slender wings. Some work done by E. G. Broadhent in 
1958, when investigating flutter behaviour of such configurations, led him to the conclusion that although 
flutter modes appeared to be stable, decreasing structural stiffness led to instability of what is primarily 
the short period rigid body mode. This instability was attributed to the longitudinal bending modes, 
spanwise bending being relatively unimportant. 

The instability of the short period mode was regarded as being symptomatic of difficult handling and 
manoeuvre problems and led J. K. Zbrozek to consider a much simplified mathematical model in an 
attempt to gain better physical insight. The problem was treated by solving the conventional short 
period equations, modified for aeroelastic effects. Only longitudinal bending was considered and the 
aeroelastic effects were calculated by the method of successive approximations. The values obtained for 
period and damping were found to correlate well with Broadbent's results. Zbrozek's main conclusions 
were that his simple approach was sufficiently accurate for the study of large aeroelastic effects, that 
aeroelasticity primarily influenced restoring moment and that, whilst the effects upon stability could be 
easily made small, the effects on controllability could be severe. A further important conclusion was that, 
from a stiffness point of view, a skin thickness would be required of the order of 50 per cent greater than 
that needed on the basis of pure strength calculations. 

Zbrozek went on to assess the effects of longitudinal bending on the controllability of the slender 
delta aircraft, again simplifying the analysis as far as possible but this time defining the aircraft dynamics 
by means of one structural mode together with the two rigid body modes, pitching and heaving. These 
calculations also gave the same variation of short period frequency and damping established by Broad- 
bent. Zbrozek concluded that the model was a reasonable one for studying the dynamic properties of 
the elastic aircraft and showed that the loss of longitudinal stability could be quite satisfactorily explained 
by the aerodynamic moments arising from the elastic distortions defined by the fundamental chordwise 
bending mode. 

Once a reasonable model for the study of the dynamics of a slender aircraft had been established, it 
was decided that further important questions regarding the aircraft response to turbulence needed to 
be answered. In keeping with the philosophy so far adopted the analysis was to be kept as simple as 
possible, and so, as a first stage, Huntley considered the bending response of the flexible aircraft to discrete 
step and ramp gusts, for one aircraft of fixed stiffness and neglecting the pitching degree of freedom*. 
The conclusions reached were that values of the dynamic overshoot factor due to lengthwise bending 
of a slender delta aircraft could vary within much wider limits than the dynamic overshoot factor due to 
spanwise bending of a conventional aircraft. Flying an aircraft at low speed, say M = 0.4, into a sharp- 
edged gust produced a value of the dynamic overshoot factor approaching 3. On the other hand at higher 
speeds, greater than M = 0.9, and for gust ramp lengths greater than 100 ft the factor appeared to be 
less than for a conventional aircraft. 

Now, the work by Broadbent and Zbrozek summarised above was written up and given a very limited 
circulation as RAE Tech. Memos and the work by Huntley issued as an RAE Tech. Note. The Loading 
Actions Sub-Committee of the Aeronautical Research Council thought that it would be regrettable if 
the work was lost sight of. For it provided a rather unusual and nice example of the way in which, from 
an initial rather vague question, ideas were gradually formulated and refined leading eventually to a 
reasonably complete understanding of the mechanisms involved in the problem. Clearly since the time 
this work was done, much more sophisticated analyses have been done for Concorde involving many 
more structural modes and more accurate aerodynamic theories. Further, in the event, the aeroelastic 
properties of Concorde with its relatively conventional body turned out to be more akin to the properties 
of some existing aircraft than those of the integrated aircraft studied by Broadbent. 

* Work was done subsequently by Zbrozek and Huntley on the responses of the same slender aircraft 
to random turbulence (Refs. 1 and 2 of Part IV). 



Notwithstanding these provisos it was agreed that the work should be edited to provide a coherent 
account and published. Had Zbrozek not unfortunately died before the recommendation could be 
implemented a definitive version could have been prepared with supplementary calculations done to 
fill in any gaps. As it was, bearing in mind the time that had elapsed, the best that could reasonably be 
done was for the papers to be presented as they originally appeared with any known errors corrected and 
repetitious detail deleted. Inconsistencies in the discussions and conclusions have not been cut out since 
the development of the ideas as insight was gained was one of the interesting aspects of the exercise. It 
is hoped that, by and large, the flavour of the original notes has been preserved. 

This edited version of the work is written in four parts, each one corresponding to a contribution 
from one of the three authors. Part I by Broadbent gives the results of the initial calculations which 
sparked off the investigation; Parts II and III contain the work by Zbrozek on the quasi-static and 
dynamic aeroelasticity assumptions and Part IV contains Huntley's analysis of the bending response 

to discrete gusts. 



Part 1 - -Some Aeroelastic Calculations on a Slender 
Delta Aircraft 

by 
E. G. BROADBENT 

1. Introduction. 

In an attempt to discover the order of aeroelastic effects that might occur on a slender aircraft some 
general calculations involving rather simple assumptions were carried out. The work was started in 
June 1957 soon after receipt of a preliminary communication due to R. H. Plascott and J. R. Coiling- 
bourne which discussed the use of a slender delta planform for an aircraft designed to cruise at a Mach 
number of 1.8 or a little more. This was taken to be just below the range of important thermal effects 
on a light-alloy structure so that a design Mach number of 2 at 40 000 ft seemed a reasonable assumption 
for aeroelastic calculations. These conditions give a suitable margin of safety over the cruising conditions 
which would occur at an appreciably greater altitude. The planform chosen was the larger aircraft dis- 
cussed by Plascott and Collingbourne, which is a complete delta with 79 degree leading edge sweep, a 
maximum depth of 12 ft, a total length of 226.8 ft and an all up weight of 695 000 lb. 

The form of the calculations was to apply Lagrange's equations in vertical translation, pitch and four 
elastic modes, two of which represented longitudinal bending, and two spanwise bending. In the main 
results of the work the spanwise bending modes were unimportant,  but the longitudinal flexibility led to 
a forward shift of the centre of pressure, analogous to that on a conventional swept wing aircraft or 
that due to fuselage flexibility on a conventional aircraft with an aft tailplane. In the particular form 
of these calculations, for which skin thickness was the principal variable, this adverse shift of centre of 
pressure led to dynamic instability for all skin thicknesses less than about 1/4 inch at the assumed height 
and Mach number. In practice it is likely that other effects would occur first, e.g. complete loss of mano- 
euvre margin, or considerable loss of longitudinal control. The purpose of the present report is to draw 
attention to these possibilities that arise from longitudinal flexibility rather than to give quantitative 
results of precise significance. A few comments are given at the end of this report on other aeroelastic 
effects. 

2. Assumptions. 

2.1. Structural Assumptions. 

The nose of the delta is taken as origin; x is measured aft and has the value 1 at the trailing edge 
(1 = 226.8 ft) and y is measured spanwise. Non-dimensional co-ordinates ~ and q are used and defined 
as follows : 

= x / l  

and r/ = y/l 

so that the equation of the leading edge is 

= q tan A (A is the leading edge sweep) 

and of the trailing edge is ~ = 1. The mass distribution is assumed to have the form 

mass/unit area =/~  = #o(4 - q tan A) (1 - 4) (1) 

where/~o is a constant, together with a localised mass for the engine. The distribution equation (1) means 
that the mass distribution across a fore-and-aft section is symmetric, falling to zero at the edges, and 
with the local CG at the half chord ; this leads to an overall CG at 64-6 per cent of the centre-line chord 



(4=0.646). The fully loaded condition was taken so that the all up weight is 695 000 lb. Of this total 
83 000 lb represents the engine mass and in the early calculations this was located (following Plascott 
and Collingbourne) at the tip. Later the engines were transferred to the centre-line at the same fore-and- 
aft position given by a CG at ~ = 0.889; the corresponding values of t/ are 0.193 and zero. 

The stiffness is assumed to derive entirely from the skin, T inches thick in dural, which is equally effective 
in bending longitudinally and spanwise. The effects of Poisson's ratio, which would provide a coupling 
between bending in the two planes at right angles, are completely neglected. The skin is assumed to be 
complete, with no cutouts; its thickness is neglected in comparison with the depth, and its weight is 
assumed to be included in the mass distribution given above. The maximum depth of the wing, d . . . .  
is 12 ft and the depth d at any other point (4, r/), is given by 

tan  z A \  42 - t/2 |(4.63039~3-10.63339 +6"003004) . (2) d 1 
dmax ] 

This means that the depth on the centre-line rises to a maximum at 37 per cent chord (4 = 0.37) and 
off the centre-line it falls to zero at the leading edge in the form of a parabolic arc along any line of con- 
stant 4- It should be noted that this leads to very small depths near the wing tips, and is much worse 
for example, than an assumption of constant streamwise sections. The latter assumption would lead 
to a linear reduction of maximum section thickness from centre-line to tip; but by equation (2) the maxi- 
mum depth in a streamwise section near the tip derives from the centre-line depths near the trailing 
edge where they are already small (the second factor in equation (2)) and is then reduced further in moving 
spanwise (the first factor in equation (2)). It is assumed that there is no external fuselage tobolster  up 
the stiffness near the trailing edge along the centre-line. 

The six degrees of freedom allotted to the structure are given by the following equation for the down- 
ward displacement, z, of a point (4, r/) relative to the undisturbed structure in terms of the generalised 
co-ordinates qi 

Z, ~ = ql -ff4q2q- 4 2 qa+rl  z q4-}- ~3 q5_.l_ ~3 q6" (3) 

Thus ql and q2 define the amplitudes of the rigid body modes, and for the structural modes (q3 to q6) 
the odd suffixes relate to the modes of longitudinal bending and the even suffixes to the modes of span- 
wise bending. In the main results q4 and q6 are unimportant but we may note that the parabolic and 
cubic modes chosen do not represent the structure very adequately; the fall off in bending rigidity is 
so rapid that modes of higher degree in r/which would throw more emphasis on the tip region should 
be considered. 

These modes taken individually (other than that of ql) are unrealistic in that each has a node at the 
nose of the aircraft, whereas any real mode would have nodes within the area covered by the planform. 
Provided the modes are used together, however, this does not imply any restriction other than that 
imposed by the limited number of generalised co-ordinates, since they are free to combine in any linear 
manner. If, for example, mode 2 were replaced by pitch about the aircraft CG so that the second term in 
equation (3) became (4-4o) q2 where 4o is the value of 4 at the aircraft CG, then the only change would 
be in the calculated values of ql and q2 and not in the physical realism. 

2.2. Aerodynamic Assumptions. 
The basic aerodynamic theory is slender body theory in a rather simple form. The wave equation in 

terms of the velocity potential ~b is 

O2q~ 02(/~ 02(~ 1 // ~ 0 '~2 
+ (4) 



and, as in all forms of slender body theory, the terms in x are neglected. In addition, however, the remaining 
1 ~2~ 

item on the right hand side of equation (4), i.e. ~ ~t~- ' is also neglected in order to obtain a simple solution 

for the generalised forces in the spanwise deformation modes. As regards the main results obtained in 
this report this second approximation is fully justified because the frequency parameter of the instability 
is very small. The solution for the generahsed forces t for the complete wing (tip to tip) can be expressed 
in the form: 

let z = l;fi(~,rl)qi. (5) 

and further let .fl (4, ~/) = 2 g'' 
m 

then the generalised force in the i th Lagrangian equation is 

Qij q j ,  

J 

where 

(6) 

2 VZla(cotA),,+~+2ZV KInK n f (0 ) QiJ=-~P / j m + n + 2  9im (~) +ivo × 
m n 

× { ~"+"+2 (~+i v0) gj.(~) } d~ (7) 

" o~l 
where Vo = - -  

V 

and K m = - -  

For the modes assumed the only values of Km needed are Ko, K z and Ka which after substituting for 
the appropriate gamma functions take the values n, ½n and 4/3 respectively. 

There are one or two points to note about equation (7). The sign of the expression on the right hand 
side is given as positive, and this is appropriate to the left hand side of the Lagrangian equation so that 
the coefficients obtained can be used directly in the flutter equations. The expressions as written applies 
only to a pure delta ; for any other planform, as long as the local span increases continuously from nose 

to trailing edge, replace (cot A) "+"÷2 by where s is the semi-span, and replace ~,,+,+2 by r/7 '÷"+2 

where t/l is the value of t/appropriate to the leading edge and is a known function of 4. Finally the plan- 
form considered here (A = 79 degrees) is not sufficiently slender for the use of slender body theory to 



be rigorously justified at a Mach number of 2, but it should not be seriously misleading and it offers 
the only hope of solutions within a reasonable time*. 

2.3. Solution of the Dynamical Equations. 
The form of Lagrange's equations used is, for the i °' equation 

d/dT'~ 8V E e,,o, = o 
J 

(8) 

where T is the kinetic energy and Vthe strain energy in a generalised displacement. 
The expression for T is, with # given by equation (1) 

1 { cot A 

0 0 

_t_½ me12 (g11_t_~eg12 +~2e g13 +q2e • + 3 q4 ~e 05 + t ]  3 06) 2 (9) 

where me is the total engine mass, (~e, qe) defines the engine CG, and the engine radii of gyration are 
neglected. The usual factor of 1/2 is absent from the integral in equation (9), because the integral itself is 
carried out over half the complete aircraft. 

The expression for ff is 

1 ~j cot A 

V g=2(1ETl2-a s,Jrd{ f drld2{(V2z)2-2(l-a)Lff-x2~y 2 \8-~yJ 1} 
0 0 

0 2 a 2 
where a is Poisson's ratio, E is Young's modulus of elasticity and V 2 = ~3x2 4-~-~v 2 . With the assumptions 

given earlier, including the neglect of o-, this expression becomes 

I ~ c o t  A 

l t, j (,o) 
0 0 

where (d/dm~,,,) is given by equation (2) and (z/l) by equation (3). 
For solution it is assumed that the motion is of the form 

q = C/e z* (11) 

where g/is independent of time, 

tVo "E= 
l 

*Except possibly for piston theory which would be hard to justify in view of the high leading edge 
sweep. 



and Vo is a reference speed, here taken to be the true speed appropriate to the design condition 
of a Mach number of 2 at 40 000 ft. 

All the roots of 2 are obtained for various values of the skin thickness T inches. 

3. Results and Conclusions. 

In general, for each value of T, there are five conjugate pairs of complex roots for 2; the two remaining 
roots correspond to unrestrained vertical motion and have no practical importance. Of these roots 
only one shows any tendency to go unstable and that is the root that represents the short period oscillation 
of longitudinal dynamic stability, which can be distinguished by its low frequency. For the first set of 
calculations with the engine at the wing tip the values of this root as the skin thickness is reduced are 
given in Table I up to the point where it goes unstable. 

TABLE 1 

T (in.) 2 

O(3 

2'0 

1'0 

0"5 

0"375 

0"25 

--0"0734-t-0-161 i 

--0"0705+0'137 i 

--0'0650+0'127 i 

- -  0"0584 + 0"089 i 

-- 0"0526 ± 0'0575 i 

+0"0038+0"0219 i 

It may be noted that the fraction of critical damping (given by the negative ratio of the real part to 
the imaginary part) increases almost to unity before going unstable. The imaginary part of the roots 
curresponds with the definition of Vo given under equation (7), and to get the frequency in cycles per second 
it is necessary to multiply by Ve/2 ~ l or 1.36. The first sojution, for infinite T, is obtained from the rigid 
aircraft binary calculation a n d  gives a frequency of 0.23 Hz. 

In case the results were seriously influenced by the engine mass being carried on a very flexible tip 
the calculation was repeated with the engines transferred to the centre-line. The result was very similar 
and in this case all five roots are given for two values of T in Table 2. 
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T A B L E  2 

T (in.) 2 

0.375 

0.25 

- 0.0267-!-_ 0.0295 i 

- 0 . 0 9 6  +_0.91 i 

- 0 . 1 4 0  +__2.23 i 

- 0 . 0 7 2  _ 10.5 i 

- 0.064 _ 29 i 

+ 0 . 0 0 1 9 +  0.0105 i 

- 0 . 0 9 0  ___ 0.78i 

- 0 . 1 4 9  _ 1.84i 

- 0 . 0 7 2  _+ 8-6i 

- 0-064 _ 23.5 i 

The instability is seen to be of the same order as before. It is also notewor thy  that a l though the other 
roots show no sign of instability the damping of the higher frequency modes, i.e. the spanwise bending 

modes,  is very poor.  
Finally the mode  is given for the short period oscillation in Table 3 for the two values of  T. 

T A B L E  3 

T = 0.375 in. 

T = 0.25 in 

ql 

q2 

q3 

q4 

q5 

q6 

ql 

q2 

qa 

q4 

q5 

q6 

-- 5"25 + 6"73 i 

+0"131+0"215 i 

-- 0"0031 -- 0"00045 i 

of  order  10- s 

+0 .0041 -0 .00771  i 

of  order  10-  s 

+ 6 . 1 8 - 0 . 2 1 9  i 

+ 0.447 + 0.884 i 

- 0 . 0 0 7 3 + 0 . 1 5 1  i 

of  order 10 -4  

+ 0 . 0 0 1 5 - 0 . 1 5 6  i 

of  order  10 -4  

11 



It can be seen that the amplitudes of the generalised co-ordinates that define longitudinal flexure 
(q3 and qs) show a very rapid increase as the skin thickness is reduced from 0.375 in. to 0.25 in., and 
are clearly responsible for the instability. 

It is apparent from these results that this particular problem deserves more attention. Favourable 
features are greater depth towards the trailing edge, and any longitudinal stiffening, such as might be 
possible with a central fin. In addition manoeuvring stability and loss of control should be considered 
since the effect found here is essentially static in character. 

After the basic results, reported above, had been obtained, various modifications to the calculations 
were tried out to test the importance of some of the assumptions, but the principal result remained 
substantially unchanged. The modifications included the introduction of structural deformations of 
higher degree than those represented by equation (3) and also of coupled modes of flexure and torsion, 
e.g. r/z ¢2, mainly to see if any higher frequency instabilities could be found, but in fact all the high fre- 
quency modes remained stable. The effect of a change in planform to an ogee wing with streamwise tips 
was investigated and also the effect of replacing aerodynamic forces based on slender-body theory with 
those based on piston theory, but although the magnitude of the results was affected (piston theory gave 
a smaller range of instability) the general nature of the results was not. The argument for trying the effect 
of piston theory, despite the highly swept leading edge, was that as the number of nodes along a stream- 
wise section increases, the pressure distribution will come to depend more and more on the local dis- 
turbance, as is in fact assumed in piston theory. In all the results obtained, however, it was the funda- 
mental mode of longitudinal flexure that was important, as illustrated by the results of the present paper, 
and for this mode one would expect slender-body theory to be the more realistic. Moreover slender-body 
theory also applies at lower Mach numbers where aeroelastic effects could be equally important. 

No. Author 

1 D.L .  Woodcock 

REFERENCE PART I 

Title, etc. 

Slender body theory. 
Chapter 7 of Vol. 2 of the Manual on Aeroelasticity. 
AGARD. 1962. 
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Part II Quasi-static Calculations of Dynamic 
Stability 

by 
J. K.  ZBROZEK 

1. Introduction. 
From the work described by Broadbent it was clear that, whilst the flutter problem appeared not to 

be a serious one, the dynamic stability and hence aircraft controllability and handling could have been 
unacceptably bad. The following table summarises those results appertaining to the short period mode 
as a function of skin thickness T representing aircraft stiffness. 

TABLE 1 

Skin thickness 
T, in inches 

Period of 
oscillations, sec 

Damping ratio of 
oscillations 

Skin to all-up 
weight ratio 

4"55 

0.415 

2 in. 

[ 

5"38 

0"459 

0"96 

1 in. 

5"31 

0.455 

0.48 

0.5 in. 

8.29 

0.545 

0.24 

0.375 in. 

12.75 

0.68 

0.18 

0.25 in. 

33"6 

-0 .172 

0"12 

The last row in Table 1 shows the ratio of weight of skin alone to total weight. This is meant as an 
illustration only and the structure weight was assumed to be due to skin thickness only, thus, not-so-small 
items such as undercarriage, engines, internal structure, etc., were left out. It was assumed that a skin 
thickness greater than say 0-375 in. would be out of the question. Table 1 shows that the effect of decreasing 
the structural stiffness by decreasing T is to increase the period of short period oscillations. The damping 
ratio though not damping itself, at first increases but after reducing skin thickness below some critical 
value the oscillation becomes divergent. It could be deduced that for T less than say 0.5 in. the handling 
characteristics of the aircraft would be unacceptable and if a conventional elevator control were used, 
the skin thickness required would be probably nearer 1 in. 

At the time when these results first became available, there was a lack of physical understanding of the 
whole phenomenon, except that it was thought that the effects were static rather than dynamic in origin. 
This report describes the attempt made to understand the problem in simple, physical terms and to 
establish whether the problem was basically connected with the narrow delta configuration, or was 
due to some other reasons which could possibly be cured by engineering dexterity. 

2. Assumptions. 
The aircraft geometry, its speed and altitude of flight were those given in Part I in order to be able 

to check the numerical results. 
Aerodynamic loading was calculated using piston theory. In simple terms, 'piston theory' means 

that the air load on a surface element is a function of the incidence of this element only. The incidence 
could be either due to heaving or due to camber or due to pitching velocity. Piston theory was used as 
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this theory is amenable to 'back of the envelope' calculations, and it was thought to be good enough 
for the problem under consideration this being structural rather than aerodynamic in nature. The lift 
curve slope, using piston theory, was taken to be ~ = 4/M = 2. 

The problem was tackled by solving the conventional short period oscillation equations of motion 
modified for aeroelastic effects. 

It was thought originally that aerodynamic and inertia loadings could be lumped together, thus 
simplifying the calculations, but more careful scrutiny of the equations of motion showed that this was 
not permissible and aerodynamic and inertia loads had to be treated separately. Thus the aerodynamic 
moments and forces were calculated without taking account of inertia loading and new moments and 
forces due to inertia loading were introduced. 

All aerodynamic and aeroelastic calculations were made with respect to the CG which was found 
to be at 0"635/giving a restoring margin of 0.032/. The corresponding values quoted in Part I were 0'646/ 
and 0.021/ respectively and the discrepancy was attributed to the different methods of accounting for 
air inertia. The difference was thought to be of no practical significance in the initial stages of the investi- 
gation and the restoring margin of 0-032/was retained for these calculations. 

The aircraft was treated as a longitudinal beam with mass and stiffness varying along its length. The 
aircraft mass distribution used by Broadbent was given by : 

mass/unit area = #0 (4 - r/tan A) (1 - 4) 

with 4, q non-dimensional co-ordinates equal to x/I and y/l respectively, and/~0 a constant. This expression 
when integrated with respect to q gave the following longitudinal mass distribution: 

m(4) = 10.57 __W (42 _ 43 ) 
g 

where W is the total aircraft weight including the engines (Fig. l). In addition the engines were represented 
as a point mass of 0-1195 Wig at 4 = 0.889. 

The shape of the wing surface was represented by: 

d ( q2 tan2A\ 3 
dmax - 1 ~ ) (4 ' 6304  -10.633 42+6.003 4) 

where d . . . .  the maximum depth, was taken to be 12 feet at 4 = 0.37. The longitudinal stiffness distribution 
was then given by: 

8 S  2 
EI = -i5 1 dmax E T  4 (4.630 43 - 10.633 42 + 6.003 4) 2 . 

This is shown in Fig. 2. 
The aeroelastic effects were calculated by the method of successive approximations. It should be 

mentioned that for skin thickness T = 0.25 in., the values of the derivatives were rather less reliable than 
for other thicknesses, due to slow convergence of successive approximations. 

3. Results for Period and Dampin9 Ratio. 

The results of the calculations in terms of period and damping ratio of the short period oscillation 
are presented in Fig. 3. Fig. 4 shows the amplitude ratio of heaving to pitching velocities, both figures 
being plotted against the reciprocal of skin thickness. The circles denote the results of Broadbent's 
calculations. 

It can be seen that using the CG position of 0"635/there is no agreement with Broadbent's calculations 
but upon modifying the calculations to give the CG at 0.646l the agreement for skin thickness greater 

14 



than 0"25 in. is amazingly good. This agreement is even more surprising if one remembers that the present 
calculations were made using a rather simple approach. The conclusion is that for the problem in hand 
the present approach is probably as good as more sophisticated methods. The only significant difference 
occurs at a skin thickness of T = 0.25 in.; the earlier calculations show a divergent oscillation 
(( = -0.172) with a period of 33-6 sec, whereas the present study indicates two aperiodic modes, one 
heavily and the other lightly damped. 

4. Discussion. 

From the remarkable agreement between the present and the earlier calculations (Part 1) it can be 
concluded that the very simple approach used is sufficient for the study in hand. Both approaches show 
the same increase in period of oscillation with decreasing skin thickness and the same increase of the 
damping ratio (Fig. 3). For small skin thickness Broadbent's results indicate oscillatory instability when 
the present work shows pure divergence. It is interesting to note that the total damping, though not 
the damping ratio, decreases with decreasing skin stiffness, (Fig. 5) but only very slowly, till some critical 
value of skin thickness is reached (T = 0-3 in.) when the oscillation degenerates into two exponential 
modes. For further decrease of skin thickness, one of the exponential modes becomes less damped, 
and from extrapolation of calculated results it seems that for T-0 .23  in., this mode becomes divergent. 
It can be argued that basically there is no disagreement between the two sets of results since both indicate 
instability only of'different forms. 

In order to give some idea of the magnitude of the quasi-static aeroelastic effects on calculated moments 
and forces, some examples are presented in Fig. 6. These are not non-dimensional derivatives but moments 
and forces in ft lbs and lbs per unit of input. These show that the main effect of flexibility is on the aero- 
dynamic restoring moment M,~ (Fig. 6(a)) which is counterbalanced by a moment due to normal accelera- 
tion Mn (Fig. 6(b)). The effect of flexibility on other derivatives appears to be comparatively small. 

Thus there are two main factors to consider. Firstly, the very delicate balance which exists between 
aerodynamic and inertia loading distributions and secondly, the great flexibility towards the trailing 
edge of the aeroplane. Fig. 7 illustrates the relative magnitude of bending moments due to aerodynamic 
and inertia loading. In this figure the bending moments (in non-dimensional form) due to heaving velocity 
w are combined with those due to normal acceleration n. It is assumed that normal acceleration is due 
to heaving velocity only so that both moment distributions are directly comparable. This assumption 
is very close to the actual state of affairs. The jump in aerodynamic bending moment at the aircraft CG 
represents the aerodynamic restoring moment and is balanced by appropriate inertia and aerodynamic 
moments. 

It can be seen that the actual bending moment experienced by the structure is the difference between 
two large quantities and a relatively small redistribution either in aerodynamic or inertia loading could 
have a very large effect on actual bending. It should be noticed that the resulting bending moment is 
comparatively large near the trailing edge and remains almost constant long the rest of the rear of the 
aircraft. 

This leads to the second reason for the large aeroelastic effects, namely the assumed stiffness distribution. 
Fig. 2 shows in non-dimensional form the lengthwise stiffness distribution based on skin thickness of 
the wing alone. It can be seen that this stiffness decreases very rapidly towards the trailing edge, just 
where the bending moment is relatively largest. To illustrate this point further Fig. 8 shows a typical 
lengthwise distribution of wing curvature due to lift loading. It may be noticed that the curvature is 
largest near the trailing edge, thus being very effective in producing large pitching moments. 

The actual shapes of airframe deflection are shown in Figs. 9, 10, and 11, for two skin thicknesses 
of T = 1 in. and T = 0.375 in. Fig. 9 shows deflection due to the lift alone; this can be visualised as 
the aircraft being held at its CG at incidence ~ to the free stream. Fig. 10 shows the deflection due to 
normal acceleration alone. This again can be portrayed by applying normal acceleration n9 at the aircraft 
CG. The value of acceleration was chosen to satisfy the expression: n W  = aqSa. This implies that lift 
and normal acceleration are exgctly in phase, which is not very far from the actual facts. 
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Fig. 11 shows the longitudinal wing deflection due to the combined effects of the lift and corresponding 
normal acceleration, this deflection being the sum of the deflections shown in Figs. O and 10. It can be 
seen that the wing rhape is such that it produces a large destabilising moment with comparatively small 
effect on lift ; points which are in fact evident from Fig. 6. It can be shown that a relatively small redistribu- 
tion of stiffness near the trailing edge (behind say ~ = 0'7 or 0"8) by the addition of fuselage, engine or 
fin stiffness, can change the magnitude of the problem. A similar argument applies to mass (and aero- 
dynamic load) distribution, except that in this case one has to remember the CG and aerodynamic centre 
will never coincide. Nevertheless, it should be possible to redistribute the bending moments due to 
inertia. 

It might be worth mentioning that from a structural point of view the slender delta is close to the 
old Junkers idea of a large aircraft in which aerodynamic and inertia loading would be so matched 
that the structure would have no bending or shear to support. This philosophy provides a new challenge 
to the designer of slender delta aircraft. There is a large prize in saving structural weight by clever matching 
of inertia and aerodynamic loads, but also a penalty of danger of instability in numerous aeroelastic 
modes. Before such a concept would have any practical value, not only would it have to be proved flutter 
free, but also a new type of control would have to be invented. The controls would need to provide the 
required moments or forces, not by concentrated forces as given by trailing edge flaps but by evenly 
and suitably distributed loads. It should be strongly emphasised that the narrow delta is not a stiff aero- 
plane, it is rather 'a bag of jelly', success of which depends on intelligent matching of stiffnesses and 
loads. 

It is not very clear at this stage how successful the conventional trailing edge controls might be on 
the narrow delta configuration. There is no doubt that on the configuration studied here trailing edge 
wide-chord controls would produce formidable difficulties due to their aeroelastic effects. The study 
of aeroelastic effects on controllability is urgently required, as it may prove that some control shapes 
tested in wind tunnels (on rigid models) are not practicable when used on a flexible aircraft. Such cal- 
culations should include spanwise, as well as lengthwise, flexibility. 

5. Results of  a Stress Analysis. 

After completion of the aeroelastic investigation which has been discussed so far, it was thought 
wurthwhile to have a brief look into the level of stresses, in order to establish some relationship between 
strength and stiffness requirements for the narrow delta aircraft. At this stage of the investigation only 
the order of stress level was required and so several simplifications were made : 

(1) Only longitudinal bending was considered. 

(2) In the calculations of aerodynamic load distribution the aircraft was assumed rigid but the order 
of aeroelastic effects on load distribution was considered. 

(3) The lengthwise loading distribution considered was that due to aerodynamic lift and corresponding 
inertia forces. The all-up weight of the aircraft and the weight distribution were kept constant 
for all skin thicknesses. 

Under the above assumptions the bending moment distributions were replotted from Fig. 7 and are 
again shown in Fig. 12. As the reference point in the calculations was the CG at 0.635l, the jump in bending 
moment due to aerodynamic forces represents the aerodynamic restoring moment. In the dynamic 
calculations this was balanced mainly by rotary inertia loading and by other aerodynamic loadings 
such as an mq contribution. In the present static case this represents an out-of-trim moment which has 
to be balanced by some form of control force. For the purpose of the present calculations it was assumed 
that the trimming moment is supplied by a trailing edge control, which was represented by a concentrated 
force acting at 0.95l. The bending moment distribution obtained is then as shown in Fig. 12 and marked 
'trimmed'. 

The 'untrimmed' bending moment distribution can be regarded as the distribution due to aerodynamic 
load when the trimming deflection of the control is instantaneously removed by, for example, a step push 
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on the control column. In that case however, there is an additional inertia loading due to angular ac- 
celeration of the aircraft, which would considerably modify the bending moment distribution basically 
increasing bending moment in the front part of aircraft and decreasing it at the rear. Thus the values 
of resultant 'untrimmed' bending moment at the rear of the aircraft can be regarded as an upper limit 
of bending moment in a transient manoeuvre. 

From the bending moments shown in Fig. 12 the maximum stresses were calculated. Of course the 
longitudinal bending stresses will be greatest at the centre-line of the aircraft. The lengthwise stress 
distribution in non-dimensional form is shown in Fig. 13. On the right hand side of this figure scales are 
added which show the stress level in percentage of ultimate for 19(n = 1) load. The ultimate stress was 
assumed to be 25 tons/sq in. It should be underlined that the stress distribution marked 'trimmed', 
corresponds closely to level 19 flight, and approximates quite well to a steady state pull-out where only 
the effect of other derivatives such as mq is neglected. 

The mean effect of aeroelasticity would be to increase the aerodynamic loadings at the front of the 
aircraft and decrease them at the rear, inertia loadings being the same. The overall effect would be an 
appreciable increase in bending at the front part of the aircraft, but at the rear the effect should be much 
smaller due to the counter-balancing effect of less control to trim. It is expected that the bending-moment 
could be easily doubled at the front, but not much change would be expected at the rear. 

It should be added that the relatively high stress level near the trailing edge of the aircraft as shown in 
Fig. 13 is of no practical importance. Firstly, the last 10 per cent of length would be expected to be covered 
by controls and secondly, the aircraft used in this example has a very hin trailing edge. In addition, the 
assumed aerodynamic load distribution produces large loads near he trailing edge, conditions which 
may not be realized in practice. 

Taking the above considerations into account it is suggested that the maximum value of non-dimen- 
sional stress would be of the order 3 x 10- 2 for ' trimmed' flight and of a similar order in 'untrimmed' 
flight, corresponding to sudden stick application. 

When the above value of maximum stress is related to the ultimate stress, it can be seen that even for 
a skin thickness of 0.25 in. this corresponds to 5 to 6 per cent of ultimate for 19 load. This suggests that 
from a pure strength point of view thicknesses considerably less than 0.25 in. should be sufficient, at 
least for the configuration considered. On the other hand, from a stiffness point of view as shown in the 
main part of this report a skin thickness of 0.375 in. may not be sufficient. 

6. Conclusions, 

With regard to dynamic stability the following conclusions may be drawn: 

(1) The present, simple approach is sufficiently accurate for the study of large aeroelastic effects. 

(2) The aeroelastic effects on the slender delta studied, manifest themselves almost exclusively on 
the restoring moment. 

(3) All aeroelastic effects of a narrow delta are results of rather delicate balance between aerodynamic 
and inertia forces and of appropriate stiffness distribution. 

(4) The very large aeroelastic effects found by Broadbent and confirmed by this analysis are partly 
due to an unfavourable mass distribution and partly due to unfavourable stiffness distribution. 

(5) It is believed that in a real engineering approach the problem of dynamic stability as affected 
by aeroelastic effects, will be of the same order on a narrow delta aircraft as on any other 
aircraft of the same size. 

(6) There is an indication that although the effects of aeroelasticity on narrow delta stability could 
easily be made small, the effects on controllability could be severe. 

Conclusions arising from the stress analysis are as follows: 
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(7) It appears that it should be reasonably easy to provide sufficient strength for the narrow delta 
configuration in flight. The concentrated loads of a conventional undercarriage may well 
prove to be the main stressing case. 

(8) The stiffness requirements have an overriding effect on the structural weight when compared 
with the strength requirement. 

(9) It may be profitable to change our approach to structural design, designing for stiffness and 
checking for stress, and not the other way round, as is common practice at present. 

(10) As the stressing involves close balance of inertia and aerodynamic forces, the so-called static 
stressing is not possible without detailed knowledge of the aeroelastic properties of the airframe. 
This points again to the need of starting from stiffness not strength. 
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Part III Dynamic Calculations including Estimates 
of Elevator Effectiveness 

by 
J. K. ZBROZEK 

1. Introduction and Assumptions. 

In this report are presented the results of calculations of short period dynamics and response to elevator 
deflection. The analysis is very simplified but it is thought to make some contribution to the better 
understanding of the dynamic and aeroelastic properties of slender wings. It is assumed that the aircraft 
response in the pitching plane can be approximated by three modes, namely, the two rigid body modes 
in heaving and pitching and one structural normal mode in longitudinal bending. The rest of the assump- 
tions are the same as those made previously. As before two static margins are considered: 0"021/, cor- 
responding to a CG position of 0.646/, and 0.032/. For the latter it is assumed that structural and aero- 
dynamic derivatives other than m w are the same as for a static margin of 0"021l. 

The same assumptions are made regarding wing depth distribution and bending stiffness distribution 
(Figs. 1 and 2 of Part II). The size and position assumed for the elevators are shown in Fig. 1, the ratio 
S~/S of elevator to wing area being 0' 115. In the response to elevator calculations, the elevator was assumed 
not to alter the elastic properties as defined by the first normal mode (Fig. 2). Thus the calculations 
over-estimate elevator effectiveness as they do not take into account, for example, elevator and wing 
twist. 

The first normal mode was calculated by a method of successive approximations, the first guessed 
mode shape being that obtained for static deflection obtained in the quasi-static calculations. The 
final mode shape which satisfies the equation 

d2 [ d2w'] 
dx 2 E1 ~-x2 j = m 022 w, 

is shown in Fig. 2. The corresponding frequency is given by 

g d ~  
022 = 1 5 3 ~ E T .  

This gives 

022 = 480T (T being in inches) 

upon substituting the values g = 32.2 ft sec -2, W/S = 69.5 ft -2, 

dma x = 12 ft, l = 226.8 It, E = 15 × i0 s lb ft -2 . 

2. Results and Discussion. 

2.1. Short Period Mode Frequency and Damping. 

The results of calculations for K,=0-021 are presented in Fig. 3, where period and damping ratio 
of the short period oscillations are plotted against the reciprocal of skin thickness. The results of 
Parts I and II are also included. It can be seen that the numerical agreement between the present and 
previous calculations is surprisingly good, bearing in mind the very crude representation of airframe 
elastic properties. This is probably due to very small spanwise distortions in the first true fundamental 
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mode and also due to relatively small contributions of the other elastic modes to the short period charac- 
teristics. 

Fig. 4 shows the total damping of the short period oscillations and indicates that the present calculations 
predict instability if the skin thickness is reduced below a certain value. The instability is again a pure 
divergence, due to the manoeuvre margin becoming zero because of aeroelastic effects. It should be 
remembered that the results apply only for a static margin of 0-021l. By increasing the static margin by 
50 per cent to 0.032l the problem of aeroelastic effects is substantially reduced as may be seen in Fig. 8. 

2.2. Elevator Effectiveness. 
Let us first consider the definition of elevator effectiveness. One possible definition is the change in 

pitching moment per unit of elevator deflection. However, such a definition is not entirely unique when 
applied to the elastic airframe. Defining the effective elevator power, including aeroelasticity, we must 
also specify the restraint which is necessary to balance the pitching moment of the elevator. On a con- 
ventional aeroplane, where the aeroelastic distortions are mainly those of the tailplane with elevator, 
and of the rear part of the fuselage, the usual approach is to fix the fuselage at the aircraft CG and con- 
sider the distortions of the rear fuselage and empennage. A similar approach was used by W. G. Molyneux 
in some unpublished work on a configuration similar to the one used in the present report and it was 
found that the elevator effectiveness (i.e. the pitching moment with respect to the CG of the aircraft 
restrained in pitch) falls to zero at a skin thickness of T = 0.085 in. (1/T = 11.76). 

A second possible definition of the elevator effectiveness is the amount of normal acceleration per 
unit elevator deflection. This definition includes the aeroelastic and dynamic properties of the whole 
aircraft. This approach has been used in the present calculations giving the results shown in Figs. 5 and 
6. Denoting elevator effectiveness by n/q, expressed in 9 units per degree, we can define relative effective- 
ness as the ratio of the flexible aircraft value of n/q to the rigid aircraft value (the latter corresponding 
to l IT  = 0). The relative effectiveness is shown in Fig. 5 plotted against 1/T for static margins of 0.021l 
and 0.032l. 

The estimated values of '9' per elevator angle for the rigid aircraft are: 

n/~7 ~ - 0 . 8  per degree for K,  = 0.021l 

and n/tl -"- - 0 . 5  per degree for K,  = 0.032l. 

The definition of elevator effectiveness as acceleration per degree of elevator deflection reveals, at 
first sight, a rather unexpected effect of flexibility for reducing skin thickness actually increases the 
effective elevator power. This phenomenon is due to the fact that reducing the airframe stiffness decreases 
the manoeuvre margin more rapidly than it reduces the elevator pitching moment per degree. This point 
is more clearly illustrated in Fig. 6 where the relative elevator effectiveness is plotted against 1/T for 
a wide range of airframe stiffness for three values of the rigid aircraft static margin. It can be seen that 
for the two smaller values of the static margin, reducing the airframe stiffness increases relative effective- 
ness which approaches an infinitive value when the manoeuvre margin approaches zero. For a still 
more flexible airframe it reverses sign, becoming negative, and becomes zero at some quite small skin 
thickness (0.119 in. for K,  = 0-032l and 0-093 in. for K,  = 0.0211). Reducing the skin thickness yet further 
restores the positive elevator effectiveness, because the manoeuvre margin and 'true' elevator power 
are both negative. 

For K ,  = 0.05l, the largest value of the static margin considered, it was estimated that the manoeuvre 
margin should vanish for 1/T-"-9; thus it was expected that the elevator power (pitching moment) 
would decrease faster with decreasing skin thickness than the manoeuvre margin. The calculations of 
the relative elevator effectiveness shown in Fig. 6 confirm this expectation. For  this value of the static 
margin, decreasing the skin thickness decreases the relative effectiveness and a zero value is reached for 
T ~ 0.185 in. 
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It can be concluded that the term 'elevator effectiveness' when applied to an elastic aircraft requires 
careful definition. It has been shown by the present calculations that the effect of elasticity on the relative 
effectiveness is not only a function of the elevator power but can also be a function of the static margin 
of the rigid airframe. We have here a situation similar to that for the lateral response to aileron. The 
stiffness at which the manoeuvre margin vanishes corresponds to the divergence speed, and the stiffness 
at which the elevator power vanishes corresponds to the reversal speed. The main difference is the difficulty 
of defining the elevator-alone power due to lack of an easy definition of the restraint. 

To illustrate further the problem of the definition of elevator power, the relative effectiveness was 
calculated neglecting both rigid body modes. The results are shown in Fig. 6 as a curve labelled 'elevator- 
alone effectiveness'. The physical interpretation of such calculations, which take into account only the 
elastic mode, is rather difficult. It can be said that this 'elevator-alone effectiveness' is the effectiveness 
of elevator on an elastic airframe constrained at the nodal points. There is very little physical significance 
in such a definition. 

A similar method was used by Molyneux in the work referred to earlier in which the elevator pitching 
moment with respect to the CG was calculated for an elastic airframe (analysed by six arbitrary modes) 
restrained at the CG. Molyneux predicted zero elevator effectiveness at T = 0-085 in. From Fig. 6 we 
see that the curve for 'elevator-alone effectiveness' in the present case falls to zero at T = 0.115 in. This 
apparently reasonable agreement is however of little consequence since the results depend upon the 
assumptions about the restraint; these assumptions differ in the two cases and in each case have little 
physical significance. 

2.3. The Structural Mode Frequency and Damping. 

The frequency and damping of the structural mode, as affected by aerodynamic forces and by coupling 
with rigid body are shown in Fig. 7. It may be seen that coupling with the rigid body modes increases 
very slightly the frequency and increases somewhat the damping. The results are almost identical for 
the two values of static margin considered. 

2.4. The Effects of Static Margin. 
The effects of flexibility on the period and damping of the short period oscillation for two values of 

rigid body static margin are shown in Fig. 8. The results are very similar to those obtained in Part II, 
and demonstrate again that the loss in stability is mainly due to the reduction in manoeuvre margin 
with decreasing airframe stiffness. 

2.5. The Effect of Engine Thrust. 
The present approach makes possible a simple assessment of the engine thrust effect. It is assumed 

that the engine thrust acts tangentially to the airframe deflection at the engine CG, i.e. at ~ = 0.889. 
Under this assumption the engine thrust produces destabilising lift and pitching moment increments 
in phase with the structural mode deflection. These increments of lift and moment are small compared 
with the lift and moment due to elastic distortion, and thus the destabilising effect of engine thrust was 
expected to be small. This was checked and confirmed by numerical calculations. They showed that 
the engine thrust reduced the manoeuvre margin further but the numerical values computed were within 
a few per cent of those which neglected engine thrust. 

3. Concluding Remarks. 

The results presented here provide a very rapid and easy to grasp physical picture of the dynamic 
properties of an elastic airframe. The main difficulty was to establish the normal mode shape and fre- 
quency. It was found, however, that starting with a good guess of the modal shape, the normal mode 
could be reasonably quickly established through only a few successive approximations in an attempt 
to satisfy the free-free beam equation. 

The present study leads to conclusions somewhat contradictory to those of Part II. There it was 
stated that '(3) All aeroelastic effects on a narrow delta are results of rather delicate balance between 
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aerodynamic and inertia forces and of appropriate stiffness distribution', and '(4) The very large aero- 
elastic effects found by Broadbent and confirmed by this analysis are partly due to an unfavourable 
mass distribution and partly due to an unfavourable stiffness distribution.' 

The present study shows that the loss of longitudinal stability can be quite satisfactorily explained 
by the aerodynamic moments arising from aeroelastic distortions defined by just one fundamental 
chordwise bending mode. This mode is a basic property of a long beam, which the narrow aircraft actually 
is, and no changes in mass or stiffness distribution can alter fundamentally the shape of this mode. Further, 
the wing area is distributed along this beam, so that whatever the aerodynamic theory and the aero- 
dynamic load distribution assumed, the airframe deflection in its fundamental mode will always produce 
a large pitching moment. There are only three ways of reducing this destabilising aeroelastic effect. 
The first is to have initially large stability (as a rigid body) so that any losses due to elasticity are com- 
paratively small. This is demonstrated in both Parts II and III. The second is to reduce the magnitude 
of aeroelastic distortions and hence effects by increasing the stiffness. The third is to decrease the coupling 
between the rigid body and elastic modes. For example the excitation of the structural, fundamental 
bending mode could be considerably reduced by decreasing the wing area outside the nodal points, 
and increasing it in between the nodal points. This of course brings us back again to the problem of 
'careful balance between the inertia, aerodynamic and stiffness forces'. 

The above argument leads to the much broader conclusion that any aeroplane which structurally can 
be approximated by a long slender beam and has a lifting surface distributed (not necessarily continuously) 
along this beam, will suffer from earoelastic problems akin to those discussed in the present paper. 

It is difficult to define the elevator effectiveness on an aircraft with large aeroelastic effects. It is sug- 
gested that the only unambiguous definition is in terms of the steady state aircraft acceleration response 
per unit of elevator deflection. It is felt that this definition should be satisfactory even when transient 
responses are considered, for example the pitching acceleration due to abrupt deflection of elevator. 

33 



--- 2 2 6 , 8  fro ~ =1 

"I 

-X - - 1 - - - - "  

~ -o,,s ~ ~ ~  
0.07 9 

[ I I I I 
0 O.2 0-4 0-6 0-8 ,~ bO 

FIG. 1. Wing and control planform. 

1.0 

w I 

O.S 

- 0 . 5  
0 

! 

~ = 4BO T 

0"2 )-4 

J 

0.1195 W 
1 

)'6 0-~, I o~ 

FIG. 2. Estimated first normal mode. 

34 



4O 
C.G. at o.~46 ~. 

FIG. 3. 

30 

20 

0. 

0 

, m  

O 
I .  

CD 
c 

° m  

E 
O 
0 

0,~ 

0-6 

0 . 4  ( ) 

0.2 

0 
0 

0 

/ 

0 

/ 

Chapter I resul ts  
Chapter 2 resul ts 
Present calculation, 
coupled modes 

2 3 4 +~in- I 6 

The effect of structural stiffness on period and damping of short period mode. A comparison 
of three methods of analysis. 

35 



m 
I 
U 
e~ 
in 

t ' .  

U pm 

o 
(J 

O~ 

,E 

1.0 

0.8 

0-4 

Q .  
e 0 ' 2  
0 

O 

o Chapter  

Chapter  

= ~  Presen~ 

I results 

2 resul ts  

calculo{ion s 

/ 
/ 

0 

/ 

o K n-- o.ozl Z 
o i z 

0 

! ~-~ in - I  \ \ 
\ 

3 ¢ 

FIG. 4. 

fg~ 

2-0 r-, 

The effect of flexibility on damping coefficient of short period mode. 

I.I 

,_ 1.5 
0 

0 

,~ 1,0 
0 

c~ 

O.S 
0 

f 
I in- I  T=, 

/ 

2 3 4 5 

Fie. 5. The effect of flexibility on elevator effectiveness. 
(In terms of "g"  per ~/). 

36 



2.0 

1.5 ? 

/ ~ = "  " ~  ~ ~ i I I I I I I 

~X/X-~ E l e v a t o r  e f f e c t i v e n e s s  

% ,x / - - - - -o f  "'G" per T/ ( steady 

I~.~ _/x I i I I 

-X" 

I -0 
" ~ "  - - Z Elevator -alone 

= ~,elfec~iveness 
e l  

U 

0 

L 
o 
0 

-0 .5  

. m  

0 

- I .0  
0 I 2 3 4 

I i 

in, terms 
state)  

\ 
\ 

I. -I 

I 
12 

( pitching moment per unit 
elevator deflection ) \ 

~.o.os~ ~~~x-- 
\ " ~  3. / X ' "  

- ; / 2  - "o / I  
\~, f ? '  

/ \ + 
5 6 7 8 9 lO II 

FIG. 6. The effect of flexibility on elevator effectiveness for three values of static margin. Comparison 
of two definitions of elevator effectiveness. 



& 

O 
E 

~m 

U 

U 
C 

O" 

u. 

i No wind 
Strucf, ural mode only 
+ aerodynamic forces 

Structural mode coupled 
• with rigid body modes 

U ~4% 
t,,. 
U 

0 

o 
.~ 30/0 

a 

2°/0 
U 

L 

mo/0 
O~ 
C 

E 
0 a 

/ 

t / 
/ 

/ 

/ /  
/ f  .. / 

• / 

/ i  

f ..s 
/ 

f ,  / 

f 

/ 
1 

.L,  in - I  
0 T 

0 I 2 3 4 5 6 

FIG. 7. Frequency and damping of structural mode against reciprocal of skin thickness. 
The effect of aerodynamic forces and of coupling with rigid body modes. 

38 



30 

20 

I0 
u 

el 

0 
L 

0 

/ 

0.8 

0.4 

0.61 ~ 
,.g 

0.2 

(; 
0 2 

- - -  L ~ =  o . o 3 z ~ z :  

c 

u 
.m  

0 
u 

c 

E 
0 

3 

4O' 

+ 

4 5 1 i n - I  

FIG. 8. The effect of flexibility on period and damping of short period mode for two values of static 
margin. 

39 



Part IV Calculations of the Bending Response to 
Discrete Vertical Gusts 

by 
E. HUNTLEY 

1. Introduction. 
Once it was clear that the model set up by Zbrozek was adequate for a study of the dynamics of a 

slender flexible aircraft it was decided that the next important problem to be studied should be the 
question of the bending response to air turbulence. A complete analysis would have been extensive 
since it should have included aircraft responses in pitch, heave and perhaps several bending modes, 
the effect of skin thickness and various types of gust input including both discrete gusts and continuous 
random turbulence. In this chapter only part of the problem is studied since the aircraft is assumed 
to respond only in heave and longitudinal bending in the first normal mode, the skin thickness is kept 
constant at 0.375 in. and only step and ramp-type vertical gusts are considered. [Further work has 
been done subsequently on the responses of the same slender aircraft to random turbulence by Zbrozek 1 
and Huntley2]. 

2. Assumptions and Equations o.f Motion. 
The same idealised slender delta aircraft studied by Broadbent and Zbrozek is used for the present 

calculations. The aircraft is assumed to be flying at M = 2.0 at 40 000 ft and to have a lift curve slope 
of 2.0. The response to a step gust is derived considering only heave and longitudinal bending in the 
first normal mode, pitching and any other bending modes, longitudinal or transverse, being neglected. 
The gust loads are assumed to act instantaneously at each station as the gust front passes it and neither 
Ktissner nor Wagner effects are included. The aerodynamic loads are estimated by piston theory so 
that at any point they are taken to be proportional to the instantaneous incidence of the wing surface 
at that point. 

The bending moment equation is formulated by considering the general equation for forced vibration 
of a beam by a forcing function F(x, t) and neglecting structural damping 

0 2 // ~2 Z ) t~2 
Ox 2 ~EI(x) ~x 2 (x, t) = - m(x) ~ Z(x, t) + F(x, t). 

This is solved by using the natural modes of vibration of the wing, i.e., by assuming a solution of the 
form 

Z(x,  t) = ) zi (t) wi (x) 
Z..a i 

where wi (x) is the mode shape satisfying the equation for free vibration in the i th mode 

d 2 /' d 2 wi\ 
dx2 ~EI ~-x 2 ) = m~2  wl, 

and the orthogonality conditions 

l 

f o 
m w l w j d x  -- Ofori  =fij 
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! 
# 

m w 2 d x  = Mi and 
, /  
o 

where M~ is the generalised mass in the i th mode. This leads to the following ordinary second order equa- 
tions for the zi(t). 

(Z~+zi co{) Mi = Fi 

1 /1 

where Fi = ~ F w~ d x  is the generalised force in the i th mode. 
id 
0 

Since, in the present case, all bending modes other than the first mode are neglected, a solution of 
the form. 

Z(x ,  t) = z o (t) w o ( x ) +  z 1 (t) w 1 (x) 

is assumed, i = 0 corresponds to the heaving mode with coo = 0 and i = 1 to the first bending mode. 
w 1 (x) had been established by Zbrozek by the method of successive approximations and is shown in 
Fig. 2, of Part III, the frequency of the mode 091 being given by co~ =480T. The generalised force in the 
first mode, F t ,  includes aerodynamic terms from the heaving mode and aerodynamic stiffness and 
damping terms from the bending mode itself. 

Details of the derivation of the equations of motion of the aircraft are given in Ref. 2. The lift equation 
is taken to be that normally used when considering the short period motion of a rigid body together 
with additional terms due to the bending mode. The resulting equations in true time for heaving (1) 
and bending (2), are 

a a( V) Lg(t) 
( O + - ~ ) w - )  0.0406D+0.6256 z l -  p V S ~ '  (1) 

-w+1-414  D2+0.887~D+ 4.4157y+col) z~ = O . 0 4 0 6 p V S a "  (2) 

The lift due to a 1 f.p.s, vertical gust can be expressed analytically in terms of a non-dimensional gust 

penetration parameter 41 = ( - ~ ) ,  

Lg (t) a. 2 
p----~-~ - -  ~ 1  0 ~ ~1 ~'~ 1"0 

a 
1"0 ~< ~1- 

2~ 

The generalised force in the bending mode is only known numerically for 0 ~ ~1 ~< 1-0 as there is no 
analytical expression for mode shape, but 

F l o  ( t )  - -  1"0 1"0 ~< ~1. 
O'0406 p V S a 

Both of these functions are shown in Figs. l(a) and (b). It should be noted that even though the gust is 
assumed to be a step, the input functions Lg (t) and Fig (t) are not step functions since the aircraft takes 
a finite time to penetrate the gust. 
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3. Solution of the Equations. 

When the values of co 1, a, ~, and V appropriate to an aircraft of skin thickness T = 0.375 in., flying 
at M = 2.0 at 40 000 ft are substituted in these equations they become: 

L o (t) 
(D + 0.525)w- (0'0426 D + 5"61)zz - pVS[ (3) 

and -w+l.345(DZ+O.933D+219.7)zl - Fl°(t) 
0.0406p VSa" (4) 

Considering first the stability of the system, the roots of the stability cubic represent a very lightly 
damped oscillation of 2-36 c.p.s, and ( = 3-22 per cent, together with an aperiodic mode. The coupling 
of the bending mode with the heaving mode has a negligible effect on the period and damping of the 
bending mode alone (2.36 c.p.s., ( = 3.15 per cent). 

Taking Laplace transforms of the equations and solving for ~1, 

- A A° o . 0 4 6 - 6 p - v s a j -  s ¢ Lp vs~j 
where 

A = (p + 0.505) (p2 + 0.953 p + 219.7) x 1.345. 

There is a similar expression for ~ but this was not considered further. 
Let 

zz = xz + x 2  

where 

21 - (p+O'525)~V_ Fig(t) -I 
A kO.O406pVSaj 

and 

, 

~2 = - S  ~ Lp--v-s~J' 

then 

z l  (t) = x l  ( t ) +  x2 (t) 

where x 1 (t) and x 2 (t) are the inverse transforms of X1 and X2 and can be considered independently. 
In each case the expression for the response to a unit impulse function was formulated and the inverse 
transform was then evaluated using a convolution integral. In the case of 21 a simplification was effected 
by allowing (p + 0.525) to cancel with (p + 0-505)--a consequence of the small amount of coupling between 
the modes. 

4. Results. 
4.1. Response to a Sharp-Edged Gust. 

The solution of the equations of the previous section is shown in Fig. 2(a) and (b). Fig. 2(a) shows 
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the response z 1 with its component parts Xr and x 2, the curves having been made non-dimensional 
by dividing by the steady state value of xt. , 

The latter is defined as the steady state solution of the elastic mode in equation (4) 

Fig (t) 
1.345(D 2 + 0.933 D + 219.7) zt - 0.0406 pVSa 

which gives 

1 Fro 
z~.~ = 1.345 x 219"70.0406pVSa 

or, in general form from equation (2) 

1 F~g 

z1~~=1.414(!)(co2+4.4151~) "O'0406pVSa" 

The above steady state solution represents the deflection of an elastic beam without the alleviating 
response in heaving, in other words the response of a beam fixed at the nodal points of the mode con- 
sidered. The steady state solution is a static deflection in a particular mode and allows us to separate 
the dynamic loading problem into the dynamic and static parts. The actual dynamic loading can be 
estimated with greater accuracy if the steady state (static part) is computed from static considerations. 
The dynamic loading is then computed by multiplying the static loading by the non-dimensional dynamic 
response function as used in this report. 

x2 represents the alleviation due to the aircraft heaving. As t tends to infinity, xl (t) tends to unity 
but the complete response zl (t) tends to zero. We are mainly concerned with possible maximum ampli- 
tudes of zl and are therefore most interested in the first peak. Since in the present case x2 is small initially, 
because of the longer response time of the rigid body mode relative to the bending mode, we can con- 
centr~tte on xt in the first instance. 

Within the indicated assumptions, Xx is the response of a very lightly damped second order system 
and hence would be expected to have a maximum response to a step forcing function, of approximately 
twice the steady state value. In Fig. 2(a) it may be seen that the peak value is 1.63 which is appreciably 
less than 2.0. This is so because, as already pointed out, the forcing function due to a step gust, F ~  (t), 
is not a step function but may be regarded as an 'oscillatory' function followed by a step function. In 
Fig. 2(b) the x~ response has itself been broken down into two parts, namely, response to the 'oscillatory' 
part of the input and response to the step. Both of these responses are oscillatory and of the same fre- 
quency but they are out of phase and consequently the peak value of xt is less than that due to a step 
input alone. 

The possibility exists that at different conditions of speed and/or aircraft stiffness, these contributions 
to xl will not be out of phase but will, on the contrary, reinforce each other. In order to investigate this, 
with the minimum of computation time, we considered the effect of altering the time scale of the forcing 
functions whilst leaving the equations of motion unaltered. It is convenient at this stage to introduce 
the parameter 'period ratio', defined as the ratio of the time duration of the 'oscillatory' part of the 
input to the period of the bending mode including aerodynamic stiffness. An increase in period ratio 
can be regarded in some ways as a decrease in speed since it is an indication of the time taken to penetrate 
the gust, but to change speed whilst leaving the equations unaltered implies two further assumptions, 
namely, that a/~ is kept constant and that the effect of the two terms involving speed explicitly is small 
(equations (1) and (2)). The assumption of constant aft is equivalent to saying that the heaving response 
contribution to the bending response is unaltered with changing speed. Keeping constant the terms 
involving speed explicitly (equations (1) and (2)) implies that changes in speed do not affect the damping 
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and frequency of the bending mode. It was expected that the effect of the above assumptions on the 
bending mode response would be small when compared with the effect of changing 'period ratio'. It is 
shown later by some more rigorous calculations that this simplified calculation gives a very good ap- 
proximation (e.g. Fig. 4), indicating that the 'period ratio' is the most important parameter. Calculations 
have been made for various period ratios up to 1.82 and the x t responses plotted (Fig. 3). As anticipated, 
conditions occur where the two parts do reinforce and, for period ratios around 1.3, give peak amplitudes 
approaching three times the steady state response ofx~. Thus we have the significant result, that, regarding 
the aircraft as being fixed at its nodal points (i.e. neglecting x2) the response to a unit step gust can in 
certain conditions have a peak amplitude approaching three times the steady state value. 

These peak amplitudes are shown in Fig. 4 plotted against period ratio. The 'equivalent' Mach number 
scale is included for an assumed constant height of 40 000 ft. This curve is useful in that it indicates 
a trend. However, since the assumptions of constant a/~ tends to over-estimate the damping of the bending 
mode at lower speeds, certain calculations have been repeated using more appropriate values of the 
parameters. The following cases have been considered. 

M h a/~ ( °/o 
0"90 20 000 1-095 3"16 

0"42 10 000 0"737 2.42 

0"30 S.L. 0-738 2.42 

A constant value of 2'0 was assumed for lift slope a. 
The results are shown in Fig. 5 and the peak amplitudes included in Fig. 4. Fig. 5 shows that the res- 

ponses are of the same form as before; Fig. 4 shows that provided the maximum responses are plotted 
against period ratio (and not Mach number) the curve based on the M = 2.00 equations provides a 
very reasonable indication of the variation of the maximum response with speed. 

4.2. Response to a Ramp-Type Gust. 

It has been seen how, due to dynamic overshoot, maximum bending amplitudes of up to three times 
the steady state values can arise from a sharp-edged gust. The sharp-edged gust is, of course, a mathema- 
tical idealisation and the response to gusts having ramps of various lengths, H, is of more practical 
interest. The ramp-type gust is also an idealisation and in any detailed study the gust inputs should be 
represented by spectra; however, the ramp could have some physical significance in regions of severe 
up-draught as, for example, near cumulo-nimbus clouds. 

The response to a ramp is immediately obtained again by using a convolution integral but in this 
case on the total response z I to a sharp-edged gust. Since the ramp is bound to reduce the amplitude 
of the peak response, the most interesting case to consider is that giving a maximum response of nearly 
3 to a sharp-edged gust. This has been taken as M = 0.42, h = 10 000 It, period ratio 1.I, the response 
curve being that shown in Fig. 5. The results of the calculations are shown in Fig. 6 where the responses 
zl (t) are given for various ramp lengths H. It can be seen that increasing ramp length rapidly reduces the 
magnitude of the response but it will be noted that with a ramp length of 104 ft, near to the present stan- 
dard of 100 ft, the peak response is still greater than 2-0. However, the standard of 100 ft is of uncertain 
significance. It has not been established by observation as a realistic parameter describing gusts but 
has, nevertheless, for many years enabled a comparison to be made between new aircraft and existing 
proven aircraft. In this sense it has been useful since aircraft shapes have not altered radically. However, 
in the case of the slender delta aircraft it is not possible to draw definite conclusions as to the order of 
bending deflection to be expected on the basis of a 100 ft ramp length. In the present example (Fig. 7, 
M = 0.42) for a ramp length of 100 It, the dynamic overshoot factor is 2.1 ; for H = 150 ft it is 1.2 and 
for H = 200 fl it is 0.9, and there is no positive evidence to indicate which of the ramp lengths should 
be used. It appears that the only sensible method is to define the gust input by a spectral representation. 
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It is interesting to compare the effect of ramp length of input on peak response of the slender aircraft 
considered in this report with that of a simple mass, spring, damper system. The response of a simple 
mass, spring, damper system, when expressed in non-dimensional form of an overshoot factor, is very 
similar to the elastic response of an unswept wing to a gust front parallel to wing span. This has been 
done in Fig. 7 where the abscissa is the product of co, the frequency of the oscillation, and T the ramp 
length in time (or the equivalent H in feet divided by aircraft speed). The curve for the simple second 
order system with zero damping is given by 

sin co T/2  
R(T)  = 1+ co T /2  " 

It starts at 2.0 and goes to unity at a series of cusps at intervals of coT of 2m The effect of a small amount 
of damping is merely to reduce the peaks and increase the troughs but in all cases the response is greater 
than or equal to unity. In the case considered, of the aircraft with longitudinal bending, flying at M = 0.42, 
the response starts at 2.9 and decreases much more rapidly but this also has minima at coT values which 
are near multiples of 2~z. These minima are less than unity mainly because of the manner in which the 
curves are non-dimensionalised; the total response Z, takes into account the alleviating effect due to 
heave, whereas the steady state value chosen for non-dimensionalising does not. It is in fact the influence 
of the second degree of freedom on the motion. 

In order to estimate the effect of period ratio, the responses were also evaluated for the following 
case : - -  M = 0.9, h = 20 000 ft, period ratio = 0.55. The peak responses are plotted in Fig. 7. The results 
show no unusual feature, the peak response decreasing steadily in value with increase in coT and having 
a value always less than the response of a second order system. 

5. Discussion. 

The longitudinal bending response of a slender delta aircraft to single gust inputs has been considered 
and the following main conclusions drawn. 

Firstly, due to the finite time for immersion of the aircraft into a sharp-edged gust, the dynamic over- 
shoot factor (the maximum non-dimensional value of bending response) is a function of immersion 
rate and thus of forward speed, in the present report measured by 'period ratio'. In contrast, the dynamic 
overshoot factor of an unswept wing is independent of immersion rate into a sharp-edged gust, and 
depends only on the damping ratio of the wing mode considered. For small damping, (say < 8 per cent) 
the dynamic overshoot factor of a straight wing due to a sharp-edged gust is approximately ( 2 - ~ ) ,  
and thus is always less than 2. For  the aircraft considered in this report, where the longitudinal bending 
is a predominant feature, the dynamic overshoot factor due to a sharp-edged gust is a function of im- 
mersion rate (Fig. 4) and its value ranges approximately from 1.5 to 3-0. 

The values of dynamic overshoot factors discussed above are decreased somewhat by the aircraft 
response in rigid modes. In the cases considered in the present report this alleviation, due to heaving 
only, is of the order of 5 per cent. 

Secondly, the bending responses of a slender delta aircraft to ramp-type gusts are similar in character 
to those of straight wing aircraft, when the dynamic overshoot factor is plotted against the ramp length, 
Fig. 7; the numerical values, however, can be widely different. Taking as an example the conventional 
gust of 100 ft ramp length, it is found that the value of the dynamic overshoot factor is 2-1 at a forward 
speed of M = 0.42, and 1-45 at M = 0.9. It is expected that the value of this factor at M = 2 would be 
of the order of 1.5 for a 100 ft long gust. 

For the aircraft considered, the maximum value of the dynamic overshoot factor occurs at low speeds; 
the value of this factor at high speeds appears to be of the same order as for the conventional aircraft. 
It might be suggested that the problem of gust load magnification due to the longitudinal bending is 
not so severe as might have been expected. Nevertheless the fact remains, that the values of the dynamic 
overshoot factor can be much higher for this type of aircraft, when compared with a more conventional 
design. 
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The fundamental question is: for what type of discrete gust sho/ald this aircraft be stressed? If a typical 
ramp length of a strong up-draught is less than, say, 100 ft, then the slender delta aircraft can be much 
worse off than a more conventional layout. If on the other hand, the typical ramp length of an up-draught 
is of the order of a few hundred feet, then the slender delta aircraft appears to have some advantage over 
the conventional design. 

It might be added that the neglected degree of freedom, pitching, should have a very small effect on 
the loads due to a short gradient gust. The period of short period oscillations is of the order of 3 4  sec 
for the type of aircraft considered, i.e., the wavelength of short period oscillations is of the order of 6000 ft 
to 8000 ft. The response of an aircraft to gusts a few hundred feet long is not strongly modified by a mode 
of having a wavelength measured in thousands of feet. 

More rational assessment of gust loads on a slender delta aircraft can be obtained using power spectral 
techniques~l, 2). This is necessary in any case, in order to study the aircraft responses to continuotts turbu- 
lence. There is evidence that this type of turbulence persists to the highest altitudes flown at present. 

6. Conclusions. 

The values of the dynamic overshoot factor due to the lengthwise bending of a slender delta aircraft 
can vary within much wider limits than the dynamic overshoot factor due to spanwise bending of a 
conventional aircraft. 

Flying at low speed (M-"-0-4) into a sharp-edged gust produces a value of the dynamic overshoot 
factor approaching 3. 

At higher speeds (M > 0.9) and for gust ramp lengths greater than 100 ft, the dynamic overshoot 
factor appears to be less than for a conventional aircraft. 
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