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Summary. 
The thin-jet model, applied by Spence to the study of the jet flap, is combined with the vortex-sheet 

model, applied by Mangler and Smith to the study of leading-edge separation, to study the effect of 
blowing from the leading edges of a delta wing at incidence. A jet-vortex sheet, supporting a pressure 
difference related to the curvature of the streamlines in it, leaves the leading edge in a direction tangential 
to the wing plane and rolls up into a spiral above the wing. The inner part of the spiral is replaced by an 
asymptotic representation and the properties of this configuration are calculated by slender-body theory 
for the case of conical flow. The effects of the three basic parameters--the coefficient of blowing momen- 
tum, the initial angle between the jet streamlines and the leading edge and the ratio of the angle of 
incidence to the apex angle of the wing--are covered in the calculations. 

Blowing is shown to increase the lift on the wing and to increase the circulation about the vortex, 
while displacing it upwards and outboard. The limited comparisons which can be made with experimental 
results are encouraging. 

*Replaces RAE Technical Report 71077-A.R.C. 33 029. 
tSchool of Mathematics and Physics, University of East Anglia. This work was carried out under a 

research agreement between the University and the Ministry of Defence (Aviation Supply), monitored 
by Aerodynamics Department, RAE. 
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I. Introduction . . . .  : , ,  

When a slender delta wing is placed at incidence to a uniform stream, the sh'e~ layers which separate 
from the leading edge roll up to form two strong vortex cores close to the upper surface of the wing. 
One feature of such concentrated vortices is the very low pressures that can be included in their core 
regions. Such low pressure regions existing just above the wing upper surface can contribute an appreciable 
amount to the lift. 

In this Report we calculate the effect on such a flow, of a thin jet of air blown out from the leading edges 
of a flat plate delta wing, the initial direction of the jet being in the plane of the wing. We shall show that 
in general there is an increase in the normal force on the wing, and a tendency for the vortex to strengthen 
and to move both outboard and upward. Solutions have been found for different jet strengths and direc- 
tions, and for various incidences, for a flat plate delta wing with a semi-apex angle of 20 degrees. 

The Report is divided into six sections. In this section we first outline the formulation of the problem 
and discuss the use of a vortex-sheet model for the flow, then follow with the approximations that are 
necessary to enable us to find a solution, and conclude with a brief discussion of the results. In Section 2 
the mathematical problem of constructing a velocity potential in terms of the unknown position and 
strength of the two jet-vortex* sheets is formulated, together with the boundary conditions that the 
potential must satisfy. In Section 3 the iterative numerical technique for calculating the position and 
strength of the two vortex sheets is described. The programming techniques used are outlined in Section 4 
where the range of solutions obtained, and the role of the tolerances allowed in satisfying the boundary 
conditions in the iterative procedure is also discussed. Section 5 contains a discussion of the results and 
in Section 6 comparisons are made with previously obtained experimental results. 

1.1. Previous Solutions for  the Leading-edge Vortex  Problem. 

The general three-dimensional flow problem described above has, as yet, proved intractable, and the 
solution attempts that have been made so far have relied upon certain simplifying assumptions suggested 
by experimental features. The assumptions which have been made in general take the flow to be inviscid 
and conical, and incorporate a slender-body approximation. A conical flow is one in which the velocity 
of the fluid is constant along any half-line through the apex of the delta wing. 

Early calculations for the leading-edge vortex problem were performed by Legendre 1'2, Brown and 
Michael 3, and Mangler and Smith'*. The models for the flow proposed by these authors involved con- 
densing all the vorticity contained in the flow field onto singular lines and surfaces and treating the rest of 
the flow field as irrotational. The assumptions of conicality and of slender-body theory reduced the 
problem to one of solving a two-dimensional Laplace equation in a plane normal to the wing centre line, 
the cross-flow plane. The feeding of vorticity from the leading edge to the vortex core was not represented 
sufficiently well for these models to produce good agreement with experimental results. 

Smith 5 proposed an improved numerical technique whereby the boundary conditions which are to be 
satisfied on the vortex sheet, and which represent the feeding of vorticity, can be applied at as many 
points as is deemed necessary. Thus the flow near the leading edge can be more accurately represented 
than in the earlier works referred to above. The results obtained show better agreement with experiment. 

Further analysis has been carried out by Stewartson and Hall 6 on the structure of the core region of a 
leading-edge vortex, where an inviscid outer solution has been found and matched with a viscous inner 
solution. Mangler and Weber 7 investigated the structure of a core region for a tightly rolled vortex 
sheet where some of the assumptions of slender-body theory that are used in this Report are violated. 
A significant result of Mangler and Weber's work was that the leading terms of the velocity components 
in the expansion given for the core region agree with those of Hall s, who considered a vortex core with 
distributed vorticity. An inviscid compressible leading-edge vortex core problem has been investigated 
by Brown 9 and a more general study of vortex cores has been carried out by Kiichemann and Weber 1°. 

1.2. Assumptions. 

The method used for the solution of the title problem is an adaptation of the numerical technique 

*Defined in Section 2. 



developed by Smith 5, incorporating the thin-jet approximation exploited by Spence 11 in his treatment 
of the jet flap. The basic assumptions made for the flow include those made by Smith and are mentioned 
only briefly below. For further discussions of the implications of these assumptions reference may be 
made to the work of Smith. The assumptions made include, 

(i) The effects of viscosity are ignored and an inviscid model studied. Although viscosity is important 
in establishing the flow, its effects are confined to the very small regions near the core centre, along the 
viscous shear layers, and in the boundary layers on the wing surface. These regions are considered to be 
small enough for viscosity to be neglected throughout. We shall also ignore the effects of the smaller 
vortex that can form owing to the secondary separation of the flow as it is swept outboard under the 
main vortex. 

(ii) All the vorticity in the fluid is assumed to be condensed onto two vortex sheets originating at the 
leading edges. In the numerical treatment of the model the inner parts of these vortex sheets which 
represent the core region of the vortex are replaced by two line vortices. The shear layer which springs 
from the leading edge is thus represented by a finite vortex sheet. Apart from these singular lines and 
surfaces the flow is assumed to be irrotational. 

(iii) Experimental flow studies indicate that the flow over the forward part of a delta wing is approxi- 
mately conical. The assumption of conical flow which we make, simplifies the problem greatly by reducing 
the number of independent variables from three to two. 

(iv) The equation for the velocity potential in compressible inviscid isentropic flow is highly non- 
linear. Since a flat plate delta wing of small semi-apex angle at low incidence is considered, we can reduce 
the three-dimensional non-linear equation to a two-dimensional Laplace equation in the cross-flow 
plane by making the assumptions of the slender-body theory of Munk, Jones and Ward. This approxi- 
mation becomes exact in the limit as the incidence and semi-apex angle tend to zero in constant proportion. 

(v) The effects of the jet blowing air out from the leading edge are calculated using the thin jet flap 
approximation of Spence it. The jet is considered to have width 6 and is separated from the main flow 
by two vortex sheets. These vortex sheets must from Helmholtz's theorem form stream surfaces in the 
inviscid flow. Any entrainment of fluid from the main stream into the jet is not represented in the model 
and the magnitude of the momentum flux in a jet streamtube remains constant. The flow in the jet between 
these two vortex sheets is considered to be inviscid and irrotational, and from these assumptions we can 
calculate the pressure jump across the jet. If we define J to be the momentum flux in the jet per unit 
length, then we have that J = 6psV 2 where pj is the density and V the speed of the jet fluid. It can be 
shown that the pressure difference across the jet at any point is proportional to the product of the 
momentum flux J and the curvature of the jet streamline at that point. Finally we take the double limit 
6 ~ O, V ~ ~ keeping J constant. The limit effectively reduces the jet of air to a singular surface originating 
from the leading edge. This new surface is coincident with the vortex sheet, forming a combined sheet 
called a jet-vortex sheet. A jet-vortex sheet is a vortex sheet which carries a pressure difference across its 
surface. The presence of this pressure difference across the jet-vortex sheet contributes to the distribution 
of vorticity on the sheet. The mass flux in this jet-vortex sheet is equal to lim 6pjV which is, of course, zero. 

~ 0  
However, the source effect of a thin jet is usually negligible compared with the effects of the momentum 
flux in the jet. 

The effect of the assumptions (i) to (v) outlined above is to reduce the problem to that of solving a 
free boundary value problem for the two-dimensional Laplace equation in the cross-flow plane. Boundary 
conditions have to be satisfied on the wing surface, at infinity, and on the jet-vortex sheets which spring 
from the two leading edges of the wing. As in the case with no blowing, we have to calculate the position 
and strength of a singular jet-vortex sheet embedded in the fluid. In the absence of blowing, the pressure 
difference across the sheet is zero, the effect of the jet is to enable the surface to sustain a pressure jump. 
The pressure jump across the sheet is calculated as a function of the sheet shape which is unknown 
a priori. 

Morgado and Craven 11 attempted a solution to the leading-edge blowing problem by assuming that 
in the thin-jet limit as 6-~0, the jet streamlines could be considered to lie in the cross-flow plane, and 
hence the momentum flux of the jet along the trace of the sheet in the cross-flow plane is constant. 



However Maskelll 3 pointed out that in an inviscid fluid the fluid particles in a thin jet will only experience 
a force due to the pressure difference across the sheet. Consequently the direction of acceleration of these 
particles, which lies along the principal normal to the path which they follow, must also lie along the 
surface normal of the sheet. Hence the principal normal of the path of a particle in the jet must coincide 
with the surface normal of the sheet. This is the condition for the particle path to be a geodesic line in 
the sheet surface. 

The assumption of conical flow implies that the sheet is a conical surface, and so the calculation of 
the geodesic lines is relatively straightforward. Also since conical surfaces are developable, a useful 
overall picture of the jet-vortex sheet is available as follows. A developable surface is one which can be 
'unrolled' or 'rolled' without stretching or tearing the surface. The jet-vortex sheet can, therefore, be 
'unrolled' into a plane surface. The geodesics, since they are lines of shortest distance in the sheet, become 
straight lines in this 'unrolled' plane. If we consider Figs. 1 and 2 we see that the particles of fluid issuing 
from the leading edge to form the jet only extend a finite distance along ,the trace of the vortex sheet in 
the cross-flow plane. The distance the jet extends along the sheet clearly depends on the angle between 
the initial direction of the jet and the wing centre •line, but is independent of the jet strength. 

Since the calculations described below are carried out in the cross-flow plane, we need to know the 
pressure jump across the trace of the sheet in this plane. The pressure jump is a function of the curvature 
of the jet streamline at the point under consideration, and of the jet strength. Hence as we follow the 
trace of the sheet around in the cross-flow plane we calculate the curvature of separate geodesics as they 
intersect this plane. The last such geodesic on the trace is the one that originates from the apex. This 
geodesic is a straight line in the vortex sheet and hence has zero curvature. In a conical theory we must 
have a conical jet, thus the strength of the jet increases linearly as we move away from the apex, and the 
strength of the jet geodesic originating from the apex is zero. In the calculation, the curvature and pressure 
jump are calculated along the trace until the curvature reaches zero at which pohat the pressure jump 
across the sheet becomes zero, as in the case of no blowing. 

1.3. Solution Procedure. 

The calculation described in Section 2 is carried out in the cross-flow plane. The simplifying assump- 
tions which we make reduce the problem to the solution of a two-dimensional Laplace equation, and 
thus a transformation of the cross-flow plane can be made to simplify the problem. Since the position of 
the jet-vortex sheet on which boundary conditions are prescribed is unknown, it is not possible to use 
a transformation which will transform the sheet into some simple, known curve. However, it is possible 
to transform the plane so that the wing centre line becomes part of the line of symmetry, and in that way 

w e  can automatically satisfy the boundary condition on the wing. 
The jet-vortex sheet is split into two parts, the inner part is represented by an isolated line vortex, and 

is joined to the end of the finite outer part of the sheet by a cut which renders the dynamic variables 
• . single-valued. The position and strength of the finite outer part of the vortex sheet is determined numeric- 

" • ally b y  its position and strength at n discrete 'pivotal' points along its length. The length of the finite 
outer part .of the sheet can be varied and the number of pivotal points that specify it can also be varied. 

. This allows a more accurate representation of the jet-vortex sheet using either a longer finite part or 
perhaps an increase in the number of pivotal points or both. The positions of these pivotal points are 
measured in polar coordinate form in the transformed plane with the isolated vortex as origin. The polar 
angles are held fixed throughout the whole calculation, thus the n polar distances, the n values for the 

• strength of the sheet, and the position and strength of the isolated vortex, form a set of 2n + 3 unknowns 
t o  be determined. 

The length of the part of the jet-vortex sheet which carries momentum depends primarily on the 
angle r ,  the angle between the initial direction of the jet and the wing centre line. For sufficiently large fl 
the jet streamlines or geodesics may extend beyond the end of the finite representation, or outer part of the 
vortex sheet, in the cross-flow plane. The position of the inner part of the jet sheet is calculated using an 
asymptotic method not dissimilar to that of Mangler and Smith 4. The effect of the pressure jump across 
this inner part of the jet sheet is represented as a force which has to be sustained by the vortex and cut. 
Hence the force on the vortex and cut is only zero, as in the case without blowing, when the angle fl 



is small enough to keep the effect of the jet within the length of the finite outer part of the jet-vortex sheet. 
The calculation procedure outlined below determines the 2n+3 unknowns subject to the following 

2n + 3 conditions. 
(i) A Kutta-Joukowski condition that the velocity is finite at the leading edge. 
(ii) A condition that the force sustained by the vortex and cut is equal to the force arising from the 

pressure difference across the inner part of the jet sheet. Since the two components of the force must 
vanish separately, this represents two conditions. 

(iii) A pressure condition that the pressure jump across the sheet is prescribed as a function of its shape. 
This condition is applied at n intermediate points on the sheet, that is at the n -  1 points halfway between 
the pivotal points and at one point between the first pivotal point and the leading edge. 

(iv) A velocity condition that the velocity at the surface of the sheet is consistent with the sheet being a 
stream surface in the three-dimensional flow. This condition is also applied at the n intermediate points 

The determination of the 2n+3 unknowns is iterative and follows closely the successful procedure 
devised by Smith 5 in the case where there is no blowing. A good approximation to the solution to start 
the procedure is necessary to ensure rapid convergence. The calculation consists, essentially, of three 
separate nested iterations. For convenience we label these three iterations A, B, C. 

Iteration A first calculates the pressure jump across the jet-vortex sheet at the n intermediate points 
using the initial approximation for the shape of the sheet. With the isolated vortex and sheet position 
fixed, it then calculates new values for the strengths of the isolated vortex and the finite part of the .vortex 
sheet at the n pivotal points by satisfying the pressure condition and the Kutta condition. The equations 
involved are non-linear and an iterative method is used for their solution. Since the iteration scheme 
does not change the shape of the sheet, the pressure jump due to the jet need only be calculated at the 
beginning of this iteration. The new values obtained for the strengths are used as the new approximation 
and the process repeated until the maximum change in any of the strengths is less than a prescribed 
tolerance. 

The pressure and Kutta conditions thus satisfied, iteration B finds a vortex position which satisfies 
the force condition on the vortex and cut. With the new values for the strengths replacing the old in the 
initial approximation, iteration B calculates the force due to the inner part of the jet sheet and then the 
force on the vortex and cut due to the flow field. The difference between these two forces is stored. The 
isolated vortex is moved to a new position and the polar distances of the pivotal points are adjusted 
since they are measured from the isolated vortex. The adjustments are made so that the end of the finite 
part of the sheet moves with the vortex, and the end near the leading edge still joins the leading edge 
smoothly. Iteration A is recalled and a new set of strengths for the isolated vortex and the jet-vortex 
sheet are calculated for this new vortex position. The second force difference is calculated and stored 
The vortex is then moved to a third trial position, the sheet shape is adjusted, and iteration A calculates 
a third set of sheet and vortex strengths. The third force difference is calculated and stored. We now have 
the values for this force difference for the vortex in three trial positions, in each case with the pressure 
and Kutta conditions satisfied. We use the method, proposed by Warner 14, as used by Levinsky, Wei and 
Strand 15 which assumes that the correct vortex position, which satisfies the prescribed force condition, 
is a linear function of the force difference. The three trial positions give six equations from which the true 
vortex position can be estimated. The vortex is moved to this new position, the sheet adjusted, and 
iteration A calculates the vortex and vortex-sheet strengths associated with this positior~ A test is applied 
to check if the absolute value of the square of the new force difference is less than a prescribed tolerance. 
If this is not the case the 'worst '  trial position is then replaced by the new one, and another vortex position 
is calculated. The iteration is repeated until a vortex position is found for which the absolute value of 
the square of the force difference is less than the prescribed tolerance. 

With the pressure conditions, Kutta  condition, and the force conditions satisfied iteration C calculates 
the changes required in the n pivotal distances for the sheet to satis~ the velocity condition. If these 
changes are found to be greater than a prescribed tolerance, it is necessary to scale down the changes 
before they are added to the polar distances, in order to prevent the procedure becoming unstable. 
When the shape of the sheet has been adjusted in this way the pressure, Kutta, and total force conditions 
will no longer necessarily still be satisfied and the whole procedure is now repeated from the beginning 



This continues until the changes in the polar distances are less than some prescribed tolerance at which 
point a solution is said to have been found. 

1.4. Results. 

Attention has mainly been centred upon the lift increments, or more correctly the normal force incre- 
ments ACN, that can be obtained by blowing with different strengths in various directions. This normal 
force increment is the increase in the normal force on the wing obtained for a particular configuration, 
in excess of that obtained for the same configuration without blowing. For a fixed blowing coefficient C, 
the normal force increment ACN increases steadily with the blowing angle fl until it reaches a maximum 
for a blowing direction approximately normal to the leading edge. This contrasts with an experimental 
survey by Alexander 16 whose results suggested that the lift increment was approximately constant for 
various blowing directions, only falling to zero when the blowing direction was close to the leading edge. 
Comparison of the magnitude of ACN can more appropriately be made with the results of Trebble ~9 
who employed a slot of conical geometry on a delta wing. If the calculated increment in normal force is 
reduced to allow for the effect of the trailing edge in the same proportion as the basic normal force is 
reduced, then reasonably close agreement is obtained with the measured variation of ACN with C,. 
The relevance of the experimental results is discussed in more detail in Section 6. 

As the effect of the blowing increases (by increasing the momentum flux J or the inclination of the jet, 
fl), the vortex system moves outboard and upwards. At the leading edge the curvature of the jet-vortex 
sheet decreases, and towards the core region it becomes less tightly rolled. The circulation about the 
isolated vortex is shown to increase as the blowing angle increases, but the circulation about the part of 
the sheet near the leading edge decreases. The net effect is one of increased total circulation associated 
with the positive normal force increment. The variation of total circulation with blowing angle shows 
the same general characteristics as the variation of ACN with blowing angle. The above general features 
of the changes in the flow field which take place as the blowing angle increases for a fixed blowing co- 
efficient are reflected in the surface pressure distribution. These show that the suction peak is larger than 
for the case of no blowing and that it is displaced outboard. Since the pressure difference across the wing 
surface does not now fall to zero at the leading edge, the effect of the presence of the jet is somewhat 
similar to an end-plate effect. 

2. Mathematical Treatment of the Model. 
2.1. Governin9 Equations. 

With reference to Fig. 3 we introduce a right-handed coordinate syst~n Oxyz with origin 0 at the apex 
of the delta wing, x-axis along the wing centre line, z-axis normal to the wing surface, and y-axis to 
starboard. Let the wing apex angle be 27, and the initial direction of the jet issuing from the leading edge 
in the plane of the delta wing be at angle/3 to the wing centre line. The wing incidence ~ to a uniform 
stream U is assumed to be small, as is Y, so c~/7 is 0(1). We write the velocity potential for the flow as 

Ux+~ (1) 

where, since cos c ~  1, • represents the potential of the disturbances introduced by the wing in a uniform 
stream U, together with the z-component U sin ~ of the uniform stream. From the assumptions which we 
make, and which have been described in Section 1.2, • can be shown to satisfy the two-dimensional 
Laplace equation, 

Oyy + O= = O, (2) 

with boundary conditions 

Oz = 0 on the wing, z = 0, lYl ~< s, (3) 

@4 Uz~ as Z = y + iz~ ~ ,  (4) 



together with conditions on the jet-vortex sheet itself. The calculation takes place in the cross-flow plane 
in which the wing semi-span is of length s = x  tan 7. 

The potential (I) can be written as the real part of a complex analytical function W ( Z )  in which x enters 
as a parameter. Z is defined in equation (4), and is a complex representation of the cross-flow plane. 

We now consider the conditions on the jet-vortex sheets. The trace of the sheet in the cross-flow plane 
is shown in Figs. 3 and 4. Let s denote the wing semi-span, a the arc length of the trace, let n be the unit 
normal to the trace, and let the radius vector from the origin have length ?~ and be at angle 0~ to the y-axis. 
The angle ~ is defined as the angle between the radius vector ?~ to a point on the trace and the tangent to 
the trace at that point. From the condition that the jet-vortex sheet, given by S(x,  ~1, 0t)=0,  is a stream 
surface in the flow, which is required by Helmholtz's theorem, we must have 

v . v s = o  , (5) 

where V= U i +  RD, or 

s o ,  o 
USx + cI)¢~ S~, + ~o~ .iT - • (6) 

Now in the cross-flow plane we have 

So, d?1 

S~, dO 1 
i t cot ok1, (7) 

and hence the condition (5) that S is a stream surface reduces to 

1 S~ 
* , = - -  *o, cos ~ , - O r ,  sin ok, = U sin ~b, ~--, 

rl  
(8) 

where @, is the component of velocity in the cross-flow plane normal to the trace of the sheet. If we let 
rl  = ?l/S, then since for a conical surface Sf fS} ,  = - F ~ / x  equation (8) reduces to 

• , =  - U tan 7 rl sin qS~. (9) 

This is the same condition as was derived in Ref. 5. 
Consider now the pressure condition. The pressure coefficient is given from Bernoulli's theorem, 

according to slender-body theory, as 

c p =  - 2 , ~ J v -  (~,~, + , ~ ) / v  2 + ~ ,  (10) 

where the higher order term (t'I)Z/U 2) "m neglected. For conical flow q5 must be homogeneous of order one, 
and by Euler's theorem on homogeneous functions 

@ = x@x + Y@r + Z@z, (11) 

therefore 

Cp = 2(y(I)y + zO z - O ) / U x  -(¢~2 + ¢b~)/U 2 + c~z . (12) 



Let 3 denote the difference operator across the sheet so that 3Cp is the pressure jump across the sheet 
(inside minus outside). Then from equation (9) we have that Aq),=0 and thus 

3(y~y + z ~ )  = y y , 3 ~  + z z o 3 ~  = r t s cos c~ a 3qb~ (13) 

and 

~ 2 2 A(~, +~=) = 3(~ 2) = 2~.. 3 ~ . ,  (14) 

where qb~m is the mean of the tangential velocities on either side of the sheet. Operating with 3 on equation 
(12) and using equations (13) and (14) we have 

3Cp = 2(r13 cos qSt 3(I)~- 3 ~ ) / U x -  2 ~  3 ~ / U  2 . (15) 

The pressure condition which we must satisfy on the jet-vortex sheet is that the jump in pressure 
across the sheet is prescribed in our model according to the jet flap theory of Spence 11. With the pressure 
jump given, we may write the pressure condition from equation (16) as a condition on the jump in 
across the sheet, thus 

3(I) = 3(I)a(Y 1S COS ~1  --Sff)~rm/U t an  y)- 3CpUs/2 t an  7 .  (16) 

If 3Cp = 0, this reduces to the condition derived in Ref. 5. 
The Kutta condition can be written simply in terms of the complex potential W(Z), thus 

d W .  
- -  is finite ~ r  Z = i s .  (17) 
dZ 

This Kutta condition implies that the initial blowing direction must lie in the plane of the delta wang. 
In order to apply equation (16) we must now calculate the pressure jump AC z If we consider a jet of 

air width ~5, velocity _V, density Ps issuing from the leading edge then the magnitude of the momentum 
flux in the jet per unit length measured normal to _V is given by 

J = pj6V_.V_ = ps6V 2. (18) 

If we take the limit as ~--*0, V--,oc, keeping J fixed as in the jet flap theory, the pressure jump across the 
sheet is given by the equation 

3C~ = - xJ/(½p U2), (19) 

where ~c is the curvature of the jet geodesic. In a conical theory the shape of the jet must be conical and the 
pressure difference across it must be constant along its generators. The momentum flux of the jet from 
the leading edge varies linearly with the distance from the apex, and the magnitude of the momentum 
flux along the streamline which emerges, say, from the point with wing semi-span s = s o remains constant 
along that streamline, and is given by 

J = Mso (20) 

where M is a constant. We recall that the jet streamlines will beogeodesics in the jet-vortex sheet. If we 
then follow the trace of the jet-vortex sheet in the cross-flow plane round from the leading edge, the 
magnitude of the momentum flux decreases, since each geodesic streamline in the jet originates at a 
point closer to the apex, at which point s o = 0. 



The magnitude of the flux of momentum from a length dl of one leading edge is, by the definition of J, 

Jdl sin (/3- 7). 

Hence, using the proportionality of J to x represented by (20), we find the magnitude of the momentum 
flux from one leading edge by integration as 

½M sec 7 sin (/3- 7) (wing area). 

So, defining a coefficient of blowing momentum C u by referring the sum of the magnitudes of the momen- 
tum fluxes from both edges to the wing area and the free-stream kinetic pressure, we have : 

2M sin (/3-7) (21) 
C, - pU 2 cos7 

The static axial thrust coefficient is then C~, cos/3. In terms of the blowing coefficient C~,, and using equation 
(19), equation (16) can be written as 

,~(I) 3 ( I ) a (F  1 COS ~/) 1 - -  (Dgm/( U tan V)) XSo C. cos 7 
(22) 

Us tan 7 U tan 7 2 sin (/3-7) tan2 7" 

The quantity tcs o may be conveniently calculated in terms of the shape of the trace of the jet-vortex sheet 
in the cross-flow plane at the station s. We note that as we move along the trace of the sheet in the cross- 
flow plane both the curvature ~c and the quantity So tend to zero, as we approach the point where the 
geodesic from the apex intersects the cross-flow plane. Beyond this point 3Cp = 0. 

An expression for ~:s o is derived in this section, as equation (43) below, where it is seen, through (27) 
and (29), to depend explicitly upon the sheet shape and the quantity w(O)= So/~(O) associated with the 
geodesics, where ~ is the wing semi-span at any station. In Appendix I1 a geometrical construction is 
given which yields the quantity w directly, and it is shown that ~So tends to zero like the cube of the 
polar angle from the end of the jet sheet measured at the vortex centre in the cross-flow plane. We here 
pursue an analytical development for the geodesic lines in the conical jet-vortex sheet. 

With reference to Fig. 4 let r =f(0)  be the equation of the trace of the jet-vortex sheet in the cross-flow 
plane, where rs is the radial distance from the isolated vortex to a point on the trace of the jet-vortex 
sheet. Let the vortex centre in the cross-flow plane in which we work be at position y = 21s and z = 22s 
and let e be the angle between the line joining the vortex to the leading edge and the y-axis. Then if ~ is 
the wing semi-span at any station, the equation for the conical jet-vortex sheet is given by 

and 

where 

y(~, O) = (,h + f(O) cos (0 -  e))g, 

z(g, 0) = (22 +f(O) sin ( 0 -  e))g 

x(~, 0) = ~ cot 7, 

22 
tan a - , and f(0) = x/(1 - 22~ + 2~ + 22). (24) 

1 - 2 1  

(23) 

I 
Thus _R(s, 0) = x i + ) j + z k  with x,y,z defined by equations (23), and id',k unit vectors parallel to 0x, 0y and 
0z, is the vector equation describing the conical jet-vortex sheet. If we further restrict ,~, 0 such that 
.~ =,c;(r) and 0 = 0(r) are functions of a single parameter r, then _R traces out a curve in the jet-vortex sheet 
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as z varies. Now if a dot denotes differentiation with respect to z, and a dash denotes differentiation with 
respect to O, the condition that _R traces out a geodesic as z varies if given by (see Willmore 17) 

dz\a~ -~s/l,]-ffff-\d-z~\~ 0 - 0 ) ) ~  - = 0 '  (25) 

where 

T(~, ~, O, O) = ½(a(O)~ 2 + 2b(O)g~O + c(O)~Z02) , (26) 

with 

and 

OR OR a(O) = ~3-g" a--g- = c°t2~ + 22 + 2z z + 2f(O) (21 cos (0 - e) + 22 sin ( 0 -  e)) + f2(O), 

1 ~R 8R b(O) . . . .  21(f'(0 ) cos (0 -  e ) -  f(O) sin ( 0 -  e)) + 

+)~2(f'(O) sin ( 0 -  e) + f(O) cos ( 0 -  e)) + f(O)f'(O) 

1 aR 0R 
c(O)-g2 00" 0-if = f2(0) + fiE(0)" 

(27) 

The differential equation (25) determines one of the two functions g(z), O(z) and since the equation for the 
geodesic has been written in a parametric form we are free to choose the other. In particular if we let 
0=v and hence g=g(O), then the differential equation (25) eventually reduces to 

q~g"--2qg'2--½q'gg'+pg2=O, (28) 

where 

and q(O)=a(O)c(O)-b2(O) 1 (29) 

p(O)=c(O)b'(O)-c2(O)-½b(O)c'(O). 

The two boundary conditions required to determine g(0) from the second order differential equation (28) 
are given by the value So of g in the cross-flow plane from which the geodesic originated at the leading 
edge 0 =0, and the initial direction of the geodesic streamline at this station. Thus at 0 = 0 

and 

~(O)=so, (30) 

9 I =tariff (31) -7 
3( 0 = O  

where x and y are defined by equations (23). These conditions reduce to 

~(0) = So (32) 

11 



and 

s o f ( O )  tan ? 
= ( 3 3 )  

(tan f l -  tan 7) sin e'  

where the condition that the sheet is tangential to the wing has been used. It is convenient to make the 
transformation 

w(O)= So 
g(O) '  (34) 

so that the equation (28) becomes the linear equation 

,, 1 q' , w, (35) w w 

with boundary conditions 

w(0)=l (36) 

and 

f(O) tan 7 
w'(O)= (tan f l -  tan 7) sin e" (37) 

As we have already indicated, the geometrical construction for w, obtained in Appendix II, provides 
us with a solution of equation (35), subject to (36) and (37); it is simply 

w -  . sin7 x / ~ s i n ( f l - y - v )  
sin ( f l -  y) 

d v  x/q which may be verified by direct substitution into (35). Unfortunately, at the time when where d~= ~ - ,  

the results presented in this Report were obtained this simple solution of (35) was not available, and the 
differential equation was integrated using a Runge-Kutta method. The details of the procedure adopted 
are discussed later. 

To find the curvature of the geodesic we proceed as follows. Let t ~ and n" be unit vectors along the 
tangent and principal normal to the geodesic. Then, if a denotes the arc length along the geodesic, the 
curvature, •, is given by 

so that 

Now 

so that 

d t_ ' /da  = ~cn ~ , 

d t  ~ 
N ~ _  n a  . - z -  . 

- d a  

d R / d ~  
t_ ~ = d_R/da  - 

d a / d ' c  ' 

kt d a  d_R = w / ~ ,  by (26) 
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and 

d2R/t'   2 d_ d2 /t'a  Y 
d . - ~ / \ ~ ;  d~ ~ 1 \ ~ ]  " 

Since n ~ is no rmal  to t ~, n ~ dR 0 _ _ _ . ~ - =  and 

d~_R / {d ,~V ~ a~R I 

Since _n" is the principal normal  to the geodesic, it is also the surface normal .  Hence it is normal  to any 
two vectors in the tangent  plane. In par t icular :  

By (23), _R = g_F(0) and so 

Hence  

02R 02R 1 8_R 

Og 2 = 0 and 0003 - g 80 " 

?/~ • - -  _ r / ~  - d-~---"lk0gz-s +28-0~s0+0--~ -t/ ) = f  8 0 2 ~  ' 

since n" is no rmal  to O_R/dO. With • - 0, 0 = 1, and so, by (38), 

(_R~, _R0, _R00) ~(F, F', F") 
x= 2T[R~ A R0t- 2 T I F A F ' I  ' (39) 

where the n u m e r a t o r  is a triple scalar product .  This can be evaluated from (23) and the determinanta l  
expression for the triple p roduc t  as 

(F, F' ,  F") = cot y ( 2 f  '2 - f f ' +  f 2 ) .  (40) 

T o  express the denomina tor ,  we note  that  

[_FAg ' ] .  [_F A-F'] =(_FAg' ,  -F, _F') = ([_F A-F'] A-F). -F' 

= ((_F. _F)_F' - (F_. -F')_F). _F' = (_F. _F) (_F'. _F') -  (_F. _F,)2 

= a c -  b 2 = q ,  by (27) and (29). (41) 

By (26) and (34) 

and so, by (39), (40), (41)and (42): 

2 T = s 2 ( aw  '2 - 2 b w w ' +  c w 2 ) / w  4 

cot y ( 2 f  ' 2 -  i f ' +  f2)w3 
rCSo = (aw,  2 _ 2 b w w '  + c w 2 ) x / ~  

(42) 

(43) 
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Thus given s o we can determine w, g, tc as functions of 0, and we require in equation (22) ~CSo for the 
separate geodesic lines in the cross-flow plane .~ = s. However, from the simplifying assumption of conical 
flow, w and tcs o are functions of 0 only and so the same for all cross-flow planes. Hence ~CSo is given by 
equation (43) as a function of 0 in the plane .~ = s, in terms of the shape of the trace of the jet-vortex sheet 
and the solution w(O) of equation (35). 

The shape of the sheet is represented in the solution procedure by its distance from the vortex centre 
at n discrete pivotal points. However, since we use a Runge-Kutta method to solve the differential equation 
(35) for w(O) we need a smooth representation for f(0), the shape of the sheet in the cross-flow plane. We 
obtain this by fitting a low order polynomial to the discrete points which represent the shape of the sheet 
in the cross-flow plane. A cubic polynomial has proved satisfactory and is used throughout the solution 
procedure. For values of 0 between the leading edge and the first pivotal point the cubic was fitted to the 
leading edge and the first two points of the sheet. The fourth condition on the cubic is provided by the 
fact that the blowing direction is in the plane of the wing, so that the sheet must merge smoothly onto the 
leading edge at 0=0.  For other values of 0, the four points necessary to determine the cubic are used in 
such a way that two points lie on either side of the value of 0 at which f ,  f ' ,  f "  are required. The last four 
points are used for values of 0 between the last two points specifying the sheet. 

2.2. Construction of the Velocity Potential. 

In the absence of a transformation which allows a simplified treatment of the conditions on the jet- 
vortex sheet of unknown shape, the cross-flow plane is transformed so that the wing boundary conditions 
are automatically satisfied. Such a transformation is given by 

Z .2 =Z  2 - s  2 . (44) 

The leading edges are transformed into the origin of this Z*-plane and the wing into a finite part of the 
imaginary axis. The symmetry of the flow about the imaginary axis of the cross-flow plane has been 
preserved by this transformation so that the wing boundary condition of zero normal velocity on the 
wing surface is now automatically satisfied. Furthermore the condition at infinity is left unchanged by 
this transformation. In Fig. 5 let Z* =Z*(0*) be the equation of the starboard jet-vortex sheet in the 
transformed plane. The angle 0* is the polar angle between the line joining the centre of the jet-vortex 
spiral to a point on the spiral and the line joining the centre of the jet-vortex spiral to the origin. The 
complex velocity potential W(Z*) can be constructed from the upward component of the uniform 
freestream U sin c~, together with the contribution from the two jet-vortex sheets given by the equations 
Z* = Z*(O*) and Z* = - Z*(0*). Thus 

,zo 

dZ * = - i U a +  2nidO*J Z*-Z*(O*) Z * + Z * ( 0 * ) d O * ,  (45) 

since sin c~_~c~, and dAcl)/dO* is a measure of the strength of the vortex sheet at each point. The velocity 
components in the cross-flow plane are given by 

dW Z dW 
dZ - Z* dZ* " (46) 

The mean tangential and normal velocity components along the sheet itself are given from the following 
equation, where the singular integral involved in the calculation is interpreted as a Cauchy Principal 
Value, 

¢b~ - icl) , -  d W _ d W  dZ I Z I dZ* dW (47) 
da dZ da Z ;  da* dZ*' 

The transformation and form of the velocity are as given in Ref. 5. 
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To summarise, the problem now is to determine the strength and position of the jet-vortex sheets 
springing from the leading edges of the wing so that the complex velocity potential (45) satisfies (i) the 
pressure condition (22), (ii) the Kutta condition (17), and (iii) the normal velocity condition (9). The wing 
boundary condition and the condition at infinity are already satisfied by the expression for dW/dZ* in 
equation (45). 

2.3. Representation of the Inner Part of the Jet-Vortex Sheet. 
In Section 1.2 we stated that the inner part of the jet-vortex sheet would be represented by a line vortex 

and cut, since the numerical representation of an infinite angular spiral, with which we are concerned, 
is too complicated. Thus we represent the jet-vortex sheet by an outer part, a jet-vortex sheet of finite 
angular extent springing from the leading edge; and an inner part, an isolated line vortex with a cut 
joining the end of the finite outer part of the jet-vortex sheet to this line vortex. If the strengths of these 
two isolated vortices are F and - F  and they are at positions Z * =  Z* and Z * =  - Z * ,  then equation (45) 
for the complex velocities can be rewritten 

1) 
dW _ iUa + 2~i Z*--- Z~, Z* + Z* + dZ* 

+ 2ni-d~- ,] \Z*-Z*(O*) Z + ( )] ' 
(48) 

where 0~ is the value of the angle 0* at the end of the finite outer part of the jet-vortex sheet. 
The conditions to be applied to the isolated vortex and cut are derived from the conditions that would 

have been applied to the inner part of the complete jet-vortex sheet. For cases when the extent of the jet, 
blown from the leading edge, exceeds the length of the finite outer part of the sheet in the cross-flow 
plane there is a force on the fluid which is to be represented in some way as a condition on the vortex and 
cut. To do this we estimate from an asymptotic analysis, the position of the inner jet-vortex sheet and the 
pressure jump across it. This pressure jump can then be integrated along the length of the inner jet-vortex 
sheet and the force, per unit length in the x-direction, sustained by it can be deduced. The condition that 
is applied on the vortex and cut is that the force to be sustained by the vortex and cut is equal to the 
force sustained by the inner jet-vortex sheet. The asymptotic method used to calculate the shape of this 
inner sheet is similar to that of Mangler and Smith 4 for the case when there is no blowing. The details 
of the calculation of this force are omitted here and can be found in Appendix I. The shape of the sheet 
is obtained as the solution of a differential equation ; in the case when the blowing coefficient is zero the 
solution is given explicitly as 

k 1 
f(O) = k - ~ '  kl, k2 constants,  (49) 

which is the solution obtained by Mangler and Smith. For Cu 4 0  the differential equation is solved 
numerically and the curvature and pressure jump along it are calculated. As outlined in Section 1.2 
these two quantities tend to zero as the effect of the jet extends only a finite distance along the jet-vortex 
sheet in the cross-flow plane. Thus the non-dimensional force F= FY+ iF z (F ,  U are the components in 
the y- and z-directions) is given by the integral of the pressure jump along the asymptotic solution for the 
inner part of the jet-vortex sheet. Thus the integration commences at the value of 0(= 0o) corresponding 
to the end of the finite outer part of the jet-vortex sheet and terminates at the value of 0(= Ore) where the 
curvature falls to zero. In the case when the blowing coefficient is zero, or when the blowing angle fl is 
small enough for the effect of the jet to be contained within the outer finite part of the jet-vortex sheet, 
then the force to be sustained by the vortex and cut reduces to the zero force condition used by Smith s . 

Using the complex representation of the cross-flow plane, let Z = Z E be the position of the end of the 
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starboard finite jet-vortex sheet, and Z = Z v  be the starboard vortex position. Now since q)y and ~z are 
continuous across the cut, the pressure difference across the cut is given from equation (15) as 

Ap~=½pUZACp = - p U F / x  , (50) 

where F(=Aq~) is the circulation about the starboard isolated vortex. Since the pressure difference is 
independent of the shape of the cut, the force on the cut, per unit length in the x-direction, is given by 

- i(Zv - Z~)Aps = ip U tan y F(Zv - Zg)/s .  (51) 

The force on the vortex is given from the Joukowski formula and is equal to 

- i p F N ,  (52) 

where N is the component of velocity normal to the line vortex Z =  Zv,  and can be written as 

N = - U t a n y Z v / s +  lira ( d W  F 1 (53) 
Z - , Z v k d Z  ~ i ( Z - Z v  " 

Thus the condition that the force sustained by the vortex and cut be equal to the force obtained by 
integrating the pressure jump across the inner part of the jet sheet can be written 

( ( ½ t J U 2 t a n 2 y s F = - i P  F - U t a n T Z v / s +  lim d W  
Z--* Zv  -cIZ 

+ ipU tan y F(Zv - Z e ) / s ) ,  

F i  I 2~i ( Z - - Z v )  + (54) 

where the force F on the part of the jet beyond the finite part of the sheet is given by equation (I.26) of 
Appendix I. 

2.4. Finite D~fference Representation. 

The position of the finite outer part of the sheet is represented by the distance and angular displacement 
of n pivotal points on the sheet relative to the isolated vortex in the transformed plane. In Fig. 5 the 
quantities 

d2,  d4  . . . . .  d2 n , (55) 

are the values of the distance of the pivotal points on the sheet from the isolated vortex, divided by the 
wing semi-span s. The corresponding polar angles measured from the line between the isolated vortex 
and the origin in the transformed plane are given by 

hi, hz . . . . .  h , .  (56) 

The 2n quantities d21 , hl ( i= 1 . . . .  , n) define uniquely the position of the finite outer part of the sheet. 
For simplicity the intermediate points where the sheet boundary conditions are to be applied are at 
polar angles given by 

1 1 gh t, ~(h 1 + h2) . . . . .  ½(h._ 1 + h.), (57) 
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and at polar distances given by 

• l=g(dzn-2- t -d2n) ,  dt =½(do+d2),  d3 = tz-(dz + d4) . . . .  den- 1 (58) 

where do is the non-dimensional distance from the vortex to the origin. The strength of the jet-vortex 
sheet at the pivotal points is represented by the quantities 

- 1  dA~ 0*=h~ j = l ,  n (59) 
g j =  Us tan y dO* . . . . .  

The strength and position of the isolated vortex are represented by the quantities 

and 

g = F / U s  tan y (60) 

+ i$ = Z * / s .  (61) 

The non-dimensional cartesian coordinates (y*/s,  z*/s) of the pivotal and intermediate points in the 
transformed plane are represented by 

and 

where 

y~ ~ + iz* j = y + i~ - d 2 f  "b + h~) 1 

Y~ j-- 1 -}- iz~ j -  t = Y + i~ -- d z j_  t ei(b + O. 5 (hi- 1 + hi)) 

j = l , . . . , n ,  (62) 

b = arg (Y + i~). (63) 

The non-dimensional polar coordinates of the pivotal and intermediate points in the cross-flow plane 
relative to the wing semi-span, with wing centre line as polar origin are given by b~ and cj and can be 
written using equation (44) 

b j2 e 2icj -- (y j* + iz*) 2 + 1 j = 1,.. ., 2n. (64) 

The vortex position Z v  and the end of the jet-vortex sheet Z~ are represented in the cross-flow plane 
by the quantities 

a o + i a l  = Z v / s = , J ( ( ~ + i z ) 2 +  1) ] 

and l (65) 
a 2 -t- ia3 = Z J s - - -  w/((y*n + iz*n)  2 -t- 1). 

The derivatives along the sheet at the intermediate points which are needed to evaluate the various 
boundary conditions on the sheet are given by the following formulae, which represent the simplest 
choice possible. 
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and 

I d? t b2j-b2j_ 2 ] 
S dO* - h j -  h j_ 1 =f2j-  1, 

I dO ~ Czj - c 2 j -  2 -~.f2j , 
dO* h j -  h j_ 1 

1 dr* d2j-d2j_2 [ 
sdO*-  h j - - h j _  1 -= e 2 j -  t 

1 da*_ 2 + e ~ j _ l ) ~  = 
s dO -~ - (d2j- 1 e2/ 

j = l , . . . , n ,  (66) 

where 

b o = l ,  c0=0, and h 0 =0 .  (67) 

For the complex velocity given by equation (48) we use the trapezium rule to evaluate the integral, and 
thus using the above notation 

l dW i a + g {  1_ 1 "~ 
U tan 7dZ* 2n i \ (Z* / s -~ - i~ )  (Z*/s+y-i~)J + 

+ ~ i  gj(hj+l-hj-1) (Z*/s-y*j - i z* j )  
j= l  

1 ) 
(Z*/s + y ' j -  iz*j) 

(68) 

where 

h,+ 1 = h ,  and a = e/tan y. (69) 

We have assumed that the integrand vanishes at 0"=0 .  This assumption is correct for all Z*:p0 since 
the Kutta condition (17) implies that dA~/dO* vanishes at 0"=0 .  The special case Z * = 0  is evaluated 
when we use the Kutta condition in the next section. 

3. Solution Procedure. 

The procedure splits up into three nested iterations. The first calculates the strengths of the sheet and 
the isolated vortex from the pressure and Kutta conditions, the second calculates the vortex position 
from the force condition, and the third calculates the sheet shape from the normal velocity condition. 
A good approximation to the 2n+3 unknowns is needed to obtain a solution, for example for small 
fl or C, calculations may be commenced using the solutions of Smith s for Cu=0. 

3.1. Determination of the Strength of the Sheet and Isolated Vortex.from the Pressure and Kutta 
Conditions. 

The n + 1 values for the strength of the isolated vortex and the strength of the sheet at the n pivotal 
points are calculated by applying the pressure condition (22) at the n intermediate points and the Kutta 
condition (17) at the leading edge. We calculate the pressure jump ,dC, across the sheet from equation (19), 
using the initial approximation, and linearise the non-linear term z~@~O~m in equation (22) by also 
calculating qb~m numerically in terms of the initial approximation. The equations then reduce to a set 
of n linear equations in terms of the vortex strength g and the n values for the sheet strength at the 
intermediate points. The equations are solved for the sheet strength at the intermediate points in terms 
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of the vortex strength 9. The sheet strengths at the pivotal points are found in terms of 9 by interpolation. 
The unknown vortex strength 9 is then calculated by substituting the values for the sheet strength into 
the equation obtained from the Kutta condition, thus determining a new set of strengths 9 and 9~ 
( j = l  . . . . .  n). 

In order to find ACp,  we need the curvature of the geodesic. This is given by equation (43), where w is 
the solution of equation (35) subject to the boundary conditions (36) and (37), or is found by the method 
of Appendix II. Using the initial approximation and a given C, we can calculate f12, the last term in 
equation (22), at the n intermediate points as 

tcsoC u cos ~ ] j = 1,2 . . . . .  n. (70) 
fir 2 sin ( f l -  ~) tan 2 ~ j~h int . . . .  diate point 

For the coefficient of A ~ J U  tan 7 in the second term of equation (22) we introduce c~j, writing it in terms 
of the initial approximation : 

~ j = s - - ~ a ( c b , ~ / U  tan ? - r l  cos q~l) jthint . . . .  diate point 

(Y2j-  1 b2j- l f  2j- ) b2j_t ( qb,,. ,2 ±. , ,2  ,~ T z ' 2 j -  1! 1 
- -  , f - - - -  , 2  

e 2 j ( Y 2 j _ l W Z 2 j _ l )  \U  tan ~ b2j_ 1 e2j 

(71) 

for j =  1 , . . . ,  n, where ~ , ,  is given at the jth intermediate point as 

I ~ l  jth intermediate point 

, 2  , 2  (Y2j - i +Z2j - 1) ½ 

b2j- l 

= ~ (uj + iv j) - ia + ~zi(y~j_ 1 + i z* j_  1 - Y - i2~)(y*j_ ~ + i z~ j_  1 + Y - i f )  
b (72) 

n 
9~Y*k(hk+ 1 -- h k -  1) * . * 

• " * * T , 2  T y  j±;Z*j-I±'Zk--ZZ2k ~ + 2 x i ( y * j _  1 + iz*~_ 1 - Y2k - tZ2k)(Y2j-  1 
k = l  

and where 

dZ*=  dO* (Z*  - s(y + [ dr* . 
u +ivJ=d * de*\ r* 

( Y ~ j -  1 "]- iz~j_ 1 - -  Y - -  ff)(e2i- 1 + ida j -  t) 

d2j- te2j 

(73) 

Thus the quantities ej, flj (j = 1 . . . . .  n) just defined are calculated in terms of the initial approximation. 
The jump in • across the sheet can be written as 

0* 

3 ~  = F -  d ~ dO*.  
0 

(74) 

Employing the trapezium rule for the integration, we have 
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B 

I jth =~÷~ Ljk~k U S ~ - R ~ I  int . . . .  diate point 
k=l  

j = l  . . . .  , n ,  (75) 

where 

1 dAO 1 

Yk = -- Us tan 7 dO* J kth im . . . .  diate point 
(76) 

is the value of the strength of the jet-vortex sheet at the kth intermediate point, and 

Ljk=O j > k ,  1 
= ¼ ( h j + t - h j - 1 )  j = k ,  

=¼(hk+l +hk--hk-z--hk-2) j < k ,  

(77) 

with 

h o = 0, and h. + 1 = 2h, - h._ 1 • 

The pressure equation (22) may now be written 

n 

g + ~  Ljk7 k = O~j7 j ÷ flj , j -~ 1 . . . . .  n, 
k=l  

(78) 

where for our iteration scheme aj, fir are given from the initial approximation, and 9, 7j are the unknowns 
to be calculated. The equations (78) are solved for the quantities 7~ in terms of the unknown 9- The values 
for the strength of the sheet 9i at the pivotal points are then calculated in terms of the vortex strength 9 
by interpolation between the quantities 7j. To finally calculate the unknown vortex strength 9, we use the 
Kutta condition (17) which can be written in terms of the transformed plane as 

dW 
= 0 at Z* = 0.  (79) dZ* 

The integrand in equation (48) is not determined at the point 0* = 0  when Z * = 0 .  We assume, therefore, 
that its value is a linear function of 0* at this point, and hence we can extrapolate to find its value Io at 
0 " = 0  in terms of its value I t at O*=h 1 and its value Iz at O*=hz. 

Thus 

I o  = ( h 2 1 1  - hl l z ) / (h  2 - h 0 . (8o) 

The real part ofdW/dZ* at Z * = 0  is zero by symmetry and setting the imaginary part to zero and using 
equation (80), the Kutta  condition reduces to 

- h~Y*gt I- @3 
2~a = y29y~  -F (h2_hz)(y~2 + z~ 2) 

_hlh2 ) Y4*0   + 
(h 2 - -  h z)J (Y* 2 + z* 2) 

Y~kgk + (hk+ 1 -- hk- I) (y,~ ,2 , 
+zzk) 

k=3 

(81) 
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where h ,+ l=h , .  The values 9i in terms of 9 obtained by interpolation from the solution of (78) are 
substituted into equation (8 I) to determine the value of 9. The new values obtained in this way for the 9 
and 9i are used to recalculate the quantities ~i in equations (71), (72) and (73). The quantities fli remain 
unchanged since the shape of the sheet has not been changed in the calculation just described. A further 
approximation to the 9 and 9i can now be obtained and the process continued until the maximum change 
from one iteration to the next in any of the 9 and 9i is less than a prescribed tolerance e~. 

At this stage we have, for the initial approximation to the vortex position and the sheet shape, the 
values of the 9 and 9i which satisfy the Kutta condition (17) and the pressure condition (22). 

3.2. Determination of  the Vortex Position f rom the Total  Force Condition. 

With the pressure condition satisfied for a particular configuration, we have now to find a vortex 
position which satisfies the force condition (54). Thus using the fact that 

lim (Z___ 1 1 ~_  - s  2 
z *  ( z * - z * )  2' 

(82) 

the total force condition (54) can be written as the equation 

P = O ,  (83) 

where 

p ( ; + i ~ ) ( 2 a o - 2 i a l - a 2 + i a 3 ) . .  ig . _ _ _  1 ) 
ao+ta l  -I-la 4re + (ao+ia02(;+i~)  + 

i ~ Y~i iF(; + if) (84) 
+ -2-~ /_..I g J( h i + l - h i : l ) (y - y*j + ff - iz~ j)(~ + y~ j + i~ - iz*j) 29( ao + ia O " 

j = l  

The quantity P is complex and equation (83) represents two conditions from which the vortex position 
can be found. With the isolated vortex at the position of the initial approximation and the pressure 
condition satisfied as outlined in Section 3.1, the force F is calculated as described in Appendix I. The 
value of P corresponding to this vortex position can then be found and if [p2[ is greater than a prescribed 
tolerance e2, a new vortex position has to be found. We denote the real and imaginary parts of P by 
~P] and 6P~ for a first trial vortex position. The vortex is now moved to a second position (9> ~2). To 
maintain a realistic representation of the vortex system, the finite part of the sheet must also, at least in 
part, be moved. However, since the sheet coordinates are measured from the isolated vortex position, 
the polar distances of that part of the sheet near the leading edge must be adjusted so as to ensure that 
the sheet still joins the leading edge smoothly. The following transformation is thus applied to the polar 
distances 

[d21],ew = [d21]o,d + (hk-- h i) (d 'o - do)/hk j <~ k ] 

and I (85) 
[d21]new = [d21]o,a J > k 

where do = (;2 + z , , -o = ~y2 T L,2! • 

From the kth pivotal point onwards the sheet moves with the vortex, as it is considered to be part of 
the core region. 

With the isolated vortex and the inner part of the finite outer part of the jet-vortex sheet in a new 
position, the whole of the first part of the calculation, including the calculation of the curvatures, is 
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repeated and a second set ofg and gj obtained. The values 6P~, fiW 2 are stored. The procedure is repeated 
for a third trial vortex position. Let yj+ffj j= 1,2,3 denote the three trial vortex positions used, and 
6P~, 3P.7 J = 1,2,3 be the corresponding values of the force difference P. The vortex position Y4 + iz4 which 
satisfies the force condition is assumed to be a linear function of 6PY and 6W. Hence 

_ _ c~y 

and 

r 3~ 

Using the three trial vortex positions we have six equations given in matrix form as 

(86) 

(~PY2 bP~2 Oy ~y 

5P~ 6P~ ~4 

t .v l  ~11 
= Y2 z 2  

.~3 Z3 

(87) 

from which Y4 + iz4 can be easily found. The vortex is then moved to this new position and using trans- 
formation (85) the sheet is adjusted accordingly. A new set of g and gj are found. If for this new vortex 
position [p2[ > F,2, where e 2 is some prescribed tolerance, then that trial vortex position with the maximum 
value of [W] is abandoned in favour of the newly calculated position Y4+i~4 and a further position is 
calculated as above. If the value of [pz[ at Y4 + iY4 is larger than that at any of the three trial positions, 
the calculation of,v4 and ~4 is repeated using a new set of trial positions which are spaced more widely. 
If [P21 < e, a then the current set of parameters satisfy the pressure condition, the Kutta condition, and 
the total force condition to within the prescribed tolerances. 

3.3. Determination of the Sheet Shape from the Normal Velocity Condition. 
In general the normal velocity condition (9) will not be satisfied at this stage. We assume that the 

changes it is necessary to make in the polar distances in order to satisfy the condition are small and that 
the velocity field is unaffected by them. The required values of O~m and ~,  are evaluated using equations 
(47) and (68) at the intermediate points in terms of the current approximation obtained as in Sections 
3.1 and 3.2. Now 

[r l sin ~b 1 ] j,h int . . . .  diate point L s da _1 j,h int . . . . .  diate point 

b~j-,f2j 
- -e  ,2 (88) 2j(y2 j -1 + z ~ _  1)" 

The positive (anti-clockwise) rotation r/j j = 1 . . . . .  n of the tangent at the jth intermediate point which is 
necessary if the normal velocity condition is to be satisfied is given by 

F,I,./u tan ~q-r 1 sin 
q~]-] j =  1 . . . . .  n. 

" J = L  ~ a m / U  t ~ n  ~ .J jth int . . . .  diate point 
(89) 

If the quantities r/j are small, as assumed, then the corresponding change 6j to be made to the jth polar 
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distance d2j is then given by 

dzj + d2j- 2 - -  2d2jdzj- 2 COS (90) d2jSj- i 2 2 (h i -  hi_ t) 
8J d2j- 2 d2j- 2 sin (hj - h i _  t) r/j ,  

as shown in Ref. 5, for j =  1 . . . . .  n, with 60=0 since the sheet remains fixed to the leading edge. We 
introduce the quantity fir, where 

6J I (91) tim=max ~2j j = l  . . . . .  n. 

If tim is greater than a prescribed tolerance ca, the pivotal distances are adjusted in the following manner. 

If fire'am, 

and if fl~ < am, 

a m 

[dzj]..w = Ed2~]o,d +fl-£ 6j 

Edzj].¢w = Edzj]oad + 6j 

j =  1 . . . . .  n, (92) 

where the quantity am is the maximum proportional change to be allowed in the polar distances. With 
these new values for the d2j we return to the innermost stage of our iteration scheme (3.1) and repeat the 
whole calculation until fl,, becomes less than e3, at which stage it is concluded that a solution has been 

obtained. 

4. Solution Technique. 
4.1. Solutions Obtained. 

The value of the semi-apex angle y was held fixed at 20 degrees for all the solutions described in this 
Report. This value is the same as that of the model used by Alexander 16 in his experiments, and of the 
model currently being tested at Cranfield by J. J. Spillman. Two different sheet representations were 
used, a long finite sheet of about 16 radians in angular extent specified by 39 pivotal points, and a shorter 
sheet of about 3 radians specified by 14 pivotal points. The program written for the longer sheet was 
only used for blowing angles fl < 70 degrees for which the jet sheet lies within the length of the finite 
vortex sheet. There was no facility in this program for calculating the force to be sustained on the vortex 
and cut, hence this force was set to zero which is correct when fl < 70 degrees in the particular case. The 
program for the shorter finite sheet could, in principle, be used for all angles of fl from 20 to 200 degrees 
although in practice it was only used for values of fl up to 120 degrees since, as already mentioned, ACN(fl) 
has a maximum at fl = 110 degrees. The jet itself was only contained on this shorter finite jet-vortex sheet 
for values of fl < 35 degrees, consequently a useful check for 35 degrees < fl < 70 degrees could be made 
between the results obtained from the two programs. In all cases the asymptotic method used for calculat- 
ing the force to be sustained on the vortex and cut used in association with the 14 point program produced 
satisfactory agreement. Results for the 14 point and 39 point programs are given at the end of Table 1. 
Comparison of the normal force coefficient reveals differences of less than 1.5 per cent. The slight dis- 
crepancy in the position of the isolated vortex is similar to the discrepancy that Smith found in the 
no-blow case 5. 

The solutions obtained can be conveniently split into two separate categories :-- 
(i) The 14 point program was used to obtain solutions for a =0.75, Cu = 0.1, y = 20 degrees, increasing 

fl until a maximum in the lift increment was reached. This occurred for a value of f l -  110 degrees so that 
solutions were obtained for 20 degrees~<fl~< 120 degrees. Further solutions were found for C, =0.025, 
0.05, 0.075 for selected values offl over the range 20 to 120 degrees. 

(ii) Although earlier results indicated that the 14 point representation was an adequate model in 
calculating quantities like the normal force, a number of solutions had already been found from the 
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39 point program for an angle of fl = 40 degrees. The longer 39 point program was thus used for a survey 
varying both a and Cu for a fixed ~(= 20 degrees) and fl(= 40 degrees). Solutions for a ~< 0.25 proved too 
difficult to obtain on account of the inordinate length of time required to reach a solution, which was 
apparently related to an unrealistic point of inflexion which developed in the sheet shape close to the 
leading edge. Similar difficulties were experienced by Smith s for these low values of a. The 'carpet' of 
solutions obtained using this program extended over the range 0.35 ~<a ~< 1-00, 0.00 ~< Co ~< 0.10. 

4.2. Tolerances. 

The value of the quantity am used in the outer loop, and the values of the tolerances 51, ez, 53 were 
chosen from the experience gaiaed by Smith in his calculations. The tolerances et, 52, ea were held fixed 
for all solutions and were set equal to the values 2.0 x 10-4, 1.0 x 10-5, and 5.0 x 10 -3 respectively. It is 
felt that these values produce a sufficiently accurate solution in a reasonable amount of computing time. 
The value chosen for a,,, the maximum proportional change in the pivotal distances, influenced the time 
in which a solution could be reached considerably. This is because changes in the shape of the sheet 
significantly affect the curvature of the geodesics, and hence, the force that is sustained on the vortex and 
cut and the pressure jump across the sheet. The value that Smith used for a,, was 0.05, this was found to 
be too large in the present case and was reduced to 0.01 and in some cases, for the 14 point program, 
to 0-005. In addition, the value of am was halved each time the iteration began to oscillate. These measures 
were largely successful in preventing oscillations in the iteration process. 

4.3. Initial Approximations. 

The first initial approximations used in the solution procedure were those obtained by Smith for 
C, = 0. The values of the polar angles, held fixed throughout the procedure, were set equal to those used 
by Smith for his 14 point and 39 point sheet representations. For small values of C~, or for/ /close to ?, the 
solutions of Smith were adequate as initial approximations for each a. However, it was found that as the 
numerical procedure progressed and new solutions for larger C, and fl were generated, the sheet shape 
tended to flatten out close to the leading edge. The first pivotal point, being close to the leading edge, 
thus moved very close to the y-axis. During certain stages of the calculation, when the .vortex position 
was varied, this first point could be pushed below the y-axis, causing the curvature and the pressure jump 
to change sign at the first intermediate point. This unrealistic phenomenon made the procedure very 
unstable and generally caused the iteration to diverge. The problem was overcome by removing this 
first point altogether and making up the number (to 14 or 39) by adding an extra pivotal point to the end 
of the sheet, thus increasing slightly the angular extent of the finite representation. 

As long as the parameters a, C, ,  fi, were not altered by a large amount, it was possible to use the 
previous solution as an initial approximation for the new solution. In this way starting with the solution 
for fl = ~;, which corresponds to the no blow case of Smith, it was possible to calculate solutions for fixed 
a, C,, 7 increasing/? from 20 degrees in steps of 2.5 degrees. Later it was found that the step length could be 
increased to 5 degrees by extrapolating to the new initial approximation using the two previous solutions. 
Any larger step length in ~ either caused the procedure to diverge or increase its time length by an 
excessive amount. By incrementing each of the parameters a, C, ,  fl in turn it was possible to calculate 
the solutions required. It was found that some solutions were obtained more quickly by varying particular 
parameters. But no universal rule emerged as to which parameter it was best to vary. 

At one stage one particular solution was calculated by following two different routes in the parameter 
space a, C, and ft. The two solutions agreed well, suggesting that the solutions obtained by this method 
are unique. 

4.4. Programmin9 Technique and Computer Operation. 

The program was written in Fortran IV and first used on the ICL 1905E computer at the University of 
East Anglia. When a successful program had been developed, the 39 point version was converted to run 
on the SRC Atlas computer at Didcot. On the 1905E computer the compilation and consolidation of the 
program generally took about 6 minutes. The program was, therefore, stored on disc in a loadable 
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binary form, from where it could be loaded onto the computer in a few seconds using only a few punched 
cards. Since the time to reach a solution could vary between 15 and 60 minutes, a dump and restart 
procedure was used, and the program run for a specified amount of time. This meant that if the iteration 
did not converge within the time allowed, the program was dumped onto disc from where it could be 
restarted later from the point where it left off. As the program became more sophisticated it was overlaid 
to conserve space. The dump and restart procedure was removed and the current approximation was 
dumped out on cards at the end of the specified time. The iteration could be recommenced by feeding in 
this current approximation as the new initial approximation. 

During the initial stages a Minimop on-line system was used to develop the program. Such a system 
allows the programmer to run his program from a console enabling him to correct and run his program 
5 or 6 times during one hour. It was on this system that the program first converged to a solution. 

Figs. 7 and 8 give a flow diagram of the program. Fig. 8 is the innermost loop of the program, code 
named DEUCE, and is shown separately for clarity. 

5. Results. 
5.1. Normal Force. 

Due to the singularity in the complex transformation the values of the pressure and velocity fields are 
less accurate close to the point corresponding to the leading edge in the cross-flow plane than elsewhere. 
Because of this singularity the normal force calculated by integrating the pressure difference presents a 
difficult numerical problem. The normal force is therefore obtained by calculating the flux of downward 
momentum due to the presence of the wing and of the vortex system. If in the solution procedure there 
were no approximations, then the calculation of the normal force by this method would yield the same 
results as the pressure integral, because the jet leaves the leading edge tangentially to the wing. For the 
case in which there is no blowing Smith has shown that, although there are small unbalanced forces in 
the flow field, the values of the normal force obtained by the two different methods show close agreement. 

Let the normal force coefficient be denoted by CN and define L 2 such that 

CN = L2 tan 2 Y. (93) 

The quantity L2 is calculated from a consideration of the flux of downward momentum produced by 
the wing and vortex system; in the absence of blowing, L2 is a function of a only. Since the fluid in the jet 
does not mix with the mainstream, the total flux of downward momentum across the cross-flow plane is 
the sum of the flux of downward momentum in the main flow, denoted by L2~, and the flux of downward 
momentum in the jet, which is embedded within the main flow, denoted by L22. For the main flow we have 

{f--usW a(Z/s)} L21 = - 2N t a n ~  
C 

(94) 

where C is a contour surrounding the entire system of wing, vortex sheets, isolated vortices and cuts in 
the cross-flow plane. The expansion of W for large Z*/s gives 

W = c _  1 Z * / s  -~- c O --[- C l S / Z *  --~ . . . .  (95) 

and if we take the contour C to be a very large circle then equation (94) reduces to 

L 2 1 = 2 g J { 2 c l - c - 1 }  (96) 

where 

c_1= - ia  (97) 
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and 

n 

cl =tgy + ~  V 9j(hj+ hi_ 1)Y~i, rc 2~ /__a 1 - 
j = l  

(98) 

in our finite difference notation. 
To calculate the quantity L2z , let _t" be the unit tangent vector of a particular jet geodesic in the conical 

jet-vortex sheet. Let V be the speed of the fluid in the jet, pj its density, and ~ the jet thickness. The rate 
at which downward momentum is carried across the cross-flow plane by the two leading-edge jets is 
then given by 

E22 = - 2 f pfiV(t_'.k_)V(t_'.i_)d~r, 
Cs 

(99) 

where C~ is a contour along the starboard jet trace in the cross-flow plane, / and k are unit vectors parallel 
to Ox and Oz, a is the dimensional distance measured along this trace and Lzz = ½pUZs 2 tan ~ Lz2. Now 

R t - t ?=-  (s(O), o) 
LR'I (100) 

where _R(.~(0), 0) is defined by equations (23) and g(0) is defined by the differential equation (28). The 
flux of downward momentum, after taking the thin-jet limit, is given, from equations (99) and (100), by 

2 = - 2 f J { [22 + f sin ( 0 -  e)]g' + [ f '  sin ( 0 -  e) + f cos (0 - e)]g}g'sd~ 

C~ 
(aS '2 + 2bgg' + c32) tan (lOl) 

Substituting for ~(0) from equation (34) in (101) and using equations (20), (21), (96), (97), (98) and (I.8) 
we find that 

L2 = L 2 1 +  L22 

=27ta+49Y+ 2 ~ g~(hj+ ~ -hi_ t)y*j- 

J = l  

f Cp cos ~ x//c ww'{[22 + f sin ( 0 -  e)]w' } 
o~ ( - I f  s i n ( O - e ) + f c o s ( O - e ) ] w }  

- 2 sin ( f l -  7) tan 2 Y ( a w ' 2  - 2bww + cw 2) dO 
0 

(lo2) 

where 0m is the value of 0 at which the pressure jump across the sheet goes to zero. For the case when the 
jet exceeds the finite jet-vortex sheet the functions w(O) and f(O) are calculated using the asymptotic 
method outlined in Appendix I. The integral involved in equation (102) is evaluated using the trapezium 
rule. The magnitude of Lz2 is about 10 per cent of the increment in L2 due to the introduction of the jet. 

We define the normal force increment AC N to be equal to the normal force calculated for a particular 
set of parameters (a, Cu, fl, 7) minus the normal force calculated for the same configuration but with 
C, =0. In Fig. 9 ACN is shown as a function offl for various values of C,. For all values of C~, ACN reaches 
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a maximum at fl = 110 degrees within the numerical accuracy of the calculations. This represents an 
initial jet direction which is normal to the leading edge. This maximum is seen in Fig. 11 to be an increasing 
function of Cu. In Fig. 10 the value of CN is shown as a function of Cu for various values of a at a fixed 
angle of/3 = 40 degrees. For each value of a there is, as we expect, an increase in CN corresponding to an 
increase in C u, although there appears to be little difference with a in the rate of increase. This point is 
illustrated in Fig. 12 where for two values of a the value of ACN is shown as a function of Cu. Adding 
further curves for other values of a does not help to establish any consistent variation of ACN with a. 
Thus over the range of values of C~ considered, the variation of ACN with C u is approximately independent 
of the value of a for 0.35 ~< a ~< 1.00, at least for/3 = 40 degrees. The variation of ACN/C, with Cu is shown 
in Fig. 13. The percentage gain in ACN falls offas Cu increases, a fact that is apparent for all the values 
of/3 considered. 

The net effect of introducing a jet blowing air out from the leading edge, and in a direction normal to 
the leading edge, is to increase the normal force on the wing by as much as 25 per cent for a =0.75 with a 
blowing coefficient of Cu=0"l. The results for fixed/3 show that the normal force increment is largely 
independent of a. We note that for a value of a = 0.35 the gain in normal force is about 25 per cent even for 
the relatively small value of/3 = 40 degrees with Cu = 0.1. 

5.2. Vortex Sheet Shape and Position. Circulation. 

In Figs. 14 and 15 the effect of the jet on the shape of the jet-vortex sheet is shown. Fig. 14 shows the 
shape obtained, using the 39 point representation, for values of a = 0.35, 1-00 and for Cu = 0. Fig. 15 shows 
the corresponding shapes for C~=0.1. The larger one in each case corresponds to a =  1-00. There is a 
considerable reduction in the curvature of the sheet near the leading edge, an effect which occurs even 
for smaller values of Cu. The reduction in curvature is more marked for the lower value of a. Otherwise 
the jet-vortex sheet spiral expands slightly and becomes less tightly rolled as either C, or 13 is increased. 
This effect can be seen more clearly in Fig. 16 where the two spirals corresponding to a = 1.0 in Figs. 14 
and 15 have been superposed so that their centres coincide. 

Corresponding to the flattening out of the sheet at the leading edge is the general outboard movement 
of the vortex system as a whole. This effect is demonstrated in Fig. 17 where the sheet shape and vortex 
positions are shown for a=0-75 and various values of/3 using the 14 point representation. The case 
/3= 20 degrees corresponds to no blowing since the jet then degenerates into a straight line along the 
leading edge and can sustain no pressure jump. These outboard movements are demonstrated again in 
Figs. 18 and 19 where the vortex position is shown as a function of/3, Cu and of a, Cu respectively. Although 
the vortex moves outboard and away from the wing as/3 increases initially, we see that as/3 approaches 
110 degrees the vortex, although continuing its outboard movement, moves closer to the wing plane. 
For decreasing values of a the vortex movements become larger for given values of C~ and/3. 

In Fig. 22 the total circulation about the vortex system is shown as a function of/3, together with, 
in Figs. 20 and 21, the variation with/3 of the circulation about the finite outer part of the jet-vortex sheet 
and about the isolated vortex respectively. The 14 point representation is employed in Figs. 20-22. We 
see that there is an effective transfer of vorticity from the outer part of the jet-vortex sheet to the vortex 
core as/3 increases. In fact the local strength of the jet-vortex sheet close to the leading edge ultimately 
changes sign for the larger values of/3 considered, as can be seen in Fig. 23. Thus in Figs. 20 and 21 we 
see that the increase in circulation about the isolated vortex is counterbalanced to some extent by a 
decrease in circulation about the finite part of the jet-vortex sheet. This decrease arises from the intro- 
duction of vorticity by the curved jet which is opposite in sign to the vorticity usually associated with the 
leading-edge vortices. In order to appreciate this point we recall that z~ps is positive across the jet-vortex 
sheet, which implies that the speed of the fluid leaving the upper surface of the wing at the leading edge 
is greater than that leaving the lower surface. The consequence is a contribution to the streamwise 
vorticity of opposite sign to the main vortex system. The net effect on the overall circulation is to increase 
the circulation with/3 in a manner which is closely paralleled by the variation of ACN with fl in Fig. 9. 

5.3. Pressure and Velocity Distributions on the Wing Surface. 

To obtain the components of velocity in the cross-flow plane we use equation (46), 
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d W  Z d W  
O y - i ~ =  dZ Z* dZ* '  

where dW/dZ* is given in finite difference form from equation (68) as 

U t a n y d Z *  ia+ Z * / s - y - r z  Z * / s + p - i  + 

+4-~i g j ( h j + l - h j - 1 ) ~ Z * / s - y * j - i z ~ j  Z * / s + y * j - i z ~ ) "  
j = l  

The velocity component  Ox is given from equation (11) as 

(I) 1 x :  - (qb - y@y _ z@z) ' 
X 

where (I) = ~{  W}, 

and 

W 

Us tan 7 
ia Z*/s + g~ log Z*/s - y - tz 

2~i Z*/s + y - tz 

1 2 Z * / s - y * j - i z * ~  
+ ~ gj(hj+ 1 - h2-1) log Z*/s + y*j - iz*j" 

j = l  

(103) 

In order to calculate W on the wing surface we must remove the ambiguity involved in determining the 
logarithm of a complex number and so we proceed as follows. Denote by Log Z the value of log Z for 
which the imaginary part lies in the range ( - ~ , ~ ] .  Then to evaluate W on the imaginary axis of the 
transformed plane, at the point Z* where ~ { Z * } = 0 ,  we use the following values for the logarithms 
involved. 

For 

J{Z* / s }  1> ~,, log c = Log c 

for 

> J {Z*/s} >~ 0,  log c = Log c + 2~i 

for 

0 > J{Z* / s}  , log c = Log c,  

where c - Z*/s - y~ - ~z 
Z*/s + y~ - i~" 

Similar formulae are used when (y~j, z'j)  replace 05, ~,) for the other logarithms involved in equation (103). 
This determination displaces the discontinuity involved in evaluating the logarithms so that it occurs as 
we cross the jet-vortex sheet. 

From the values of(I) x, ~y and (I) Z so obtained we calculate the pressure distribution from equation (10), 
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Cp/tan 2 y= - 20x/U tan 2 ~ - ( 0  2 + ~2)/U2 tan 2 Y + a z . 

In Figs. 24 and 25 we see the effects on the wing-surface pressure distribution of introducing a jet with an 
initial direction/~=40 degrees, and a blowing coefficient Cu=0"I. For both the values of a shown there 
is an increase in the magnitude of the suction peak together with a slight outboard displacement of it. 
These changes are consistent with both the increase in strength of the isolated vortex and its lateral 
outboard movement. Fig. 26 shows the effect on the surface pressure distribution of changing the initial 
direction of the jet for a fixed value of the blowing coefficient. Again an increase in the suction peak is 
induced together with a slight outboard movement. Another effect of the jet is to reduce the drop in 
pressure on the lower surface of the wing as the leading edge is approached, thus maintaining the favour- 
able pressure difference up to the leading edge. This occurs even for small C, which perhaps explains the 
larger values of ACN/Cu obtained at the smaller values of C,; the effect is similar to an end-plate effect. 

In Fig. 27 the lateral velocity ~y/U tan y on the wing surface is shown for fixed/?=40 degrees for two 
values of a and C~. Apart from the changes due to the outboard movement of the vortex system there is 
little difference between the cases where there is blowing and the cases where there is no blowing, except 
near the leading edge where the direct effects of the jet are most significant. As/~ is increased the increase 
in the lateral velocity becomes more marked as can be seen in Fig. 28. Similar effects are exhibited by the 
longitudinal velocity ~b~/U tan 2 y shown in Figs. 29 and 30. 

Associated with the wing surface velocities qbx and qby are the bound vortex lines which are found by 
integrating the differential equation 

dy 3d9~ 

dx Ad~y 

where 3qb~ and 3tI)y are the differences across the wing surface of the longitudinal and lateral velocity 
components respectively. In Fig. 31 the bound vortex lines in the presence of edge blowing are shown for 
various values ofa. The changes brought about in these bound vortex lines are seen to be most significant 
for the smaller values of a. In Fig. 32 we observe that even for large values of fl the changes in the bound 
vortex lines brought about by blowing are still quite small for a = 0.75. 

6. Comparison with Experiment. 
Comparison with experiment is difficult, since none of the experiments carried out with leading-edge 

blowing has produced the conical flow conditions which are assumed in the theoretical calculations. 
The experiments have been at subsonic speeds, for which the upstream influence of the trailing edge 
reduces the lift below that which would be expected on the basis of slender-body theory, whether in 
attached flow, separated flow, or with leading-edge blowing. On the other hand, where the experiments 
have employed blowing over the forward part of the leading edge only, a given blowing momentum C, 
is more effective in producing lift than when it is distributed in a conical fashion along the whole leading 
edge, since the momentum blown from near the trailing edge has little chance to influence the wing. 

The only experimental results which cover variations in fl as well as in C u and a are those of Alexander 16, 
who used a cropped delta wing. In Fig. 33 the variation with fi of ACN from both theory and experiment, 
is compared for a=0.75. The conclusion drawn by Alexander was that, for blowing angles not too close 
to the leading edge, the normal force increment is approximately constant. The present theory conflicts 
with this conclusion since the normal force increments attain a well-defined maximum at fl = 110 degrees. 
An additional point from the experimental work of Trebble 19 is also shown in Fig. 33 and corresponds 
to f l= 110 degrees. In Trebble's model air was blown, as far as was possible, from the whole length of 
the leading edge in a conical fashion, unlike Alexander's cropped delta wing model which had a large 
section at the rear from which no air was blown. As mentioned above, this section would experience the 
beneficial effects of the jet as it is swept back over the wing surface. Except for Alexander's results for 
fl = 30 and 40 degrees the experimental values of ACN are lower than the predictions for a given fl and C~. 
This probably arises because the theory does not take into account the trailing edge effect, and hence 
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overestimates the normal force on the wing. The fact that Alexander's results appear to be less sensitive 
to variations in the angle fl is probably due to the large section at the rear of the model from which no air 
is blown. For small values offl much of the air that is emitted near the trailing edge of the wing is rapidly 
swept away downstream and hence makes a smaller contribution to the local flow properties than air 
blown at a larger angle. Moreover the conical nature of the jet in our model enhances this effect since 
more air is blown out as we approach the trailing edge. In Alexander's model the unblown section at 
the rear will experience the effects of this 'lost' air even for low values offl, and the variation ofAC N with fl 
will be much less than if blowing had occurred along the whole length of the leading edge. 

In Fig. 34 ACN is shown as a function of Cu, for various values of a, with fl = 110 degrees. These may be 
compared with the experimental results obtained by Trebble which are also displayed. Since, as we have 
already mentioned, air was blown conically from as much of the leading edge as possible in Trebble's 
experiments, we may anticipate that the difference between these experiments and the present theory 
may be traced to the trailing edge effect referred to above. To test this hypothesis we have also included 
in Fig. 34 the variation of AC* with C, where 

Here CN~ and CNT are the experimental and theoretical results obtained, in the absence of blowing, 
by Kirby 2° and Smith 5, respectively, at the appropriate value of a. We believe that we are justified in 
concluding that the trailing edge effect accounts for most of the discrepancy between the present theory 
and a finite wing experiment with conical full-edge blowing. 

As we have already indicated, the experimental investigations have concentrated upon total force 
measurements. However, Alexander ~6 presents surface pressure measurements sufficiently close to the 
apex of the wing for the flow field to simulate, approximately, the conditions of the present theory. 
Alexander's results for the spanwise pressure, on both the upper and lower surfaces of the wing, are shown 
in Fig. 35 where a comparison is made with the theoretically predicted pressure distribution. It should be 
noted that in this particular comparison we have allowed a factor of two between the blowing coefficient 
used by Alexander and that used here. This is because in Alexander's model the edge blowing terminated 
at a point which divided the area of the wing into equal parts. The agreement between theory and experi- 
ment on the upper surface of the wing is better than that in analogous comparisons made by Smith 5, 
in the absence of blowing. This is because the secondary separation close to the leading edge is less in 
evidence when there is edge blowing. The agreement is less good on the lower surface and the normal 
force coefficients calculated from the theoretical and experimental pressure distributions differ by 10 per 
cent. This is probably due to the thickness of the forward part of Alexander's model. 

For various reasons, comparison between theory and experiment is not easy in these situations. 
However, the agreement obtained, with the trailing edge correction, between the theory and Trebble's 
total force measurements, and between the theory and Alexander's pressure measurements at a forward 
station, encourage us to believe that the theoretical results indicate the main features of the flow which 
may be expected in practice. 
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a(O) 
a 

am 

ao, at, a2, a3 

b(O) 

bj 

c(O) 
cj 

CN 

c~ 

CNE 

CNr 

Cp 

Cu 

C_ 1, CO, C1 

dr 

ej 

f 

F 

F r, F ~ 

g 

gj 

hj 

J 

k 

Ljk 

L2 

L2t 

L22 

LIST OF SYMBOLS 

Conical sheet function, see equation (27) 

= a/tan y 

Maximum proportional change allowed in d2~ 

Real and imaginary parts of Zv/s, Z J s  

Conical sheet function, see equation (27) 

Values of r 1 at points on sheet 

Conical sheet function, see equation (27) 

Values of 01 at points on sheet 

Normal force coefficient 

= CN x \ C N r J  

Experimental normal force coefficient for C. = 0 

Theoretical normal force coefficient for C. = 0 

Pressure coefficient 

Blowing coefficient 

Coefficients in expansion of W for large Z* 

Values of r*/s of sheet in transformed plane 

Sheet derivatives, see equations (66) 

Function of sheet shape in cross-flow plane 

Sheet derivatives, see equations (66) 

Non-dimensional force sustained by inner jet sheet 

y and z components of F 

= FlUs tan y non-dimensional circulation of vortex 

[-dA~ / ~] 
= L - ~ - / U s t a n  at the n pivotal points 

Polar angles of pivotal points in transformed plane 

= lim ~pjV 2 momentum flux of jet 
g~O 

Index of point on sheet beyond which sheet moves with vortex 

Matrix used in satisfying pressure condition 

= CN/tan 2 

Contribution to L 2 from flow field 

Contribution to L 2 from jet 

Dimensional contribution to L 2 from jet 
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LIST OF S Y M B O L S - - c o n t i n u e d  

M 

n 

n 

N 

Ps 

p(O) 

P 

q(O) 

6 p  ~, ~p~ 

"F 

r • 

Pl 

F O, r I 

R 

s 

8o 

S 

t • 

T 

U 

o 

V 

V 

V1, Vz  

w 

W 

X, y ,  Z 

~?, Z, 

y,  Zj 

y], q 

= J/so, conical jet constant 

Number of pivotal points specifying finite sheet 

Normal to trace of jet vortex sheet in cross-flow plane 

Unit principal normal to geodesic 

Component of velocity normal to line vortex 

Pressure 

Conical sheet function, see equation (29) 

Excess force on vortex and cut 

Conical sheet function, see equation (29) 

y and z components of P 

= f(0), non-dimensional distance from trace of sheet in cross-flow plane to the vortex 

Non-dimensional distance of trace to the origin in the transformed plane 

Non-dimensional distance of trace to the origin in the cross-flow plane 

= rls  dimensional distance of trace to the origin in the cross-flow plane 

Values of r at 0, 0 +2n near the centre of the core region 

Vector specifying conical sheet 

Wing semi-span of a particular cross-flow plane 

Wing semi-span of the point where a particular geodesic originates 

Wing semi-span of any cross-flow plane 

Equation of conical surface 

Tangent of geodesic 

Geodesic shape function 

Speed of undisturbed flow 

Angle in 'unrolled' vortex sheet, see Fig. 2 

Speed of jet fluid 

= V(I), velocity vector 

Speed of fluid in core region 

= So~g, function determining geodesics 

= (I)+ i~,, complex potential 

Cartesian coordinates 

Non-dimensional coordinates of starboard vortex 

Trial positions used to find a new vortex position 

Non-dimensional coordinates of sheet point in transformed plane 
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Zv 

o~ 

ccj 
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F 

6 

A 

6j 

V 

~1~ '~2~ ~3 

tlj 

0 

O* 

01 

Oo 

Om 

0 

t¢ 

2 

21, •2 

P 

Ps 

LIST OF SYMBOLS--cont inued 

= y +  iz, complex representation of cross-flow plane 

Complex representation of transformed plane 

Position of end of the starboard vortex sheet 

Starboard vortex position 

Wing incidence 

Quantity used in linearization of the pressure equation 

Angle of jet with wing centre line 

Pressure jump across the sheet at the intermediate points 

6j 
m a x  - -  

dzj 

Wing semi-apex angle 

Strength of the sheet at the intermediate points 

Circulation of starboard vortex 

Width of jet 

Angle of constant flow through core region, see Fig. 6 

Increment due to blowing 

Difference operator across the sheet and wing surface 

Changes in d2j 

Laplacian operator 

Angle between line joining vortex to leading edge and the y-axis 

Tolerances 

Non-dimensional arc length of trace in cross-flow plane 

Required rotation of tangent to sheet 

Polar angle of trace with vortex as origin in cross-flow plane 

Polar angle of trace with vortex as origin in transformed plane 

Polar angle of trace with centre line as origin in cross-flow plane 

Value of 0 at end of finite jet-vortex sheet 

Value of 0 at end of inner jet spiral 

see Fig. 4 

Curvature of geodesic 

Angle of outward normal of sheet with y-axis, see Fig. 6 

Real and imaginary parts of Zv/s 

Density of freestream fluid 

Density of jet fluid 
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O" 

O'* 

O-~ 

-g 

4,1 

¢ 

Dimensional arc length of trace in cross-flow plane 

Dimensional arc length of trace in transformed plane 

Dimensional arc length of geodesic 

Geodesic parameter 

Angle between radius r and tangent of trace 

Angle between radius r 1 and tangent of trace 

Velocity potential 

Angle between y-axis and tangent of trace 
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APPENDIX I 

Force on the Vortex and Cut, Using the Asymptotic Method of Mangler and Smith 4. 

The problem is to calculate the shape of a tightly rolled jet-vortex sheet that carries a pressure jump 
across it. The conditions which must be satisfied on the sheet are those already outlined in Section 2.1, 

namely 

@, = - U tan 7 r ~ sin 4) 1, (9) 

3@ 3@~(rl cos 4)1 -@~,./(U tan Y)) •soC. cos 7 + (22) 
Us tan 7 U tan 7 2 sin (f l -7)  tan2 7" 

With reference to Fig. 4, let s20 be the length of the line between the vortex and the origin in the cross-flow 
plane, and let 0 be the angle it makes with the y-axis. Let the polar coordinates of a point on the trace of 
the sheet in this cross-flow plane relative to the origin and with the y-axis as initial line be rls and 01, 
and relative to the vortex with the y-axis as initial line be rs and 0. Let 4)1 and 4) be the corresponding 
angles between the corresponding radial vectors and the tangent of the trace of the sheet in the cross-flow 
plane. Let qJ be the angle between this tangent and the positive y-axis. Now 

rl cos 01 = 20 cos ~ + r cos 0, 

and 
r t sin 01=2o sin 0 + r  sin 0 

4)1+01=~', 

4)+0=¢,. 

(I.1) 

Therefore we have 

rl c o s 0 1 = r l  cos 4)1 c o s O + r l  sin 4)1 sin ~ ] 

and I (I.2) 
rt sin 0i = r l  cos 4)1 sin ~ - r t  sin 4)1 cos 4-  

From an equation similar to equation (7) we have that 

cot 4)= f'(-O)/f(O) (I.3) 

for a plane curve r = f(O), and hence 

cos ¢ = f ' /x/( . f  2 + f,2), sin 4) = f / , j ( . f z  + f ,2).  (1.4) 

From equations (27) we can write 

c(O)= f2(O)+ f , 2 ( O )  . (27) 

Thus it can be shown that 

r l cos ¢1 = c-~(2of '  cos ( 0 -  ,9) - 2o f  sin (0--~) + f ' f )  
and (I.5) 

r 1 sin 4)1 = c-~(;tof cos ( 0 - 8 ) +  2of '  sin ( 0 _ 8 ) +  f z ) .  
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The curvature  tcs o is calculated using the spherical approx imat ion  which is outlined in Appendix II 
and is given by 

( f2  _ f f , , +  2f ,2)  sin 3 (f l_ 7(1-4- 0) 
sos° = sin (fl-- ~) C 3]2 (II.13) 

where ( is the non-dimensional  arc length along the trace of the sheet. 
With reference to Fig. 6, let V 1 be the effect of the outside flow field on the core region and let it be 

taken as a parallel uniform flow at angle 5 to y-axis. Let V2 be the transverse componen t  of velocity 
where V2 is assumed to be a slowly varying function o f r  only. If r ~ and r ° are the radii of the trace at angles 
0 + 27: and 0 respectively, then the amoun t  of fluid flowing across the arc ABC in Fig. 6 equals the amount  
flowing out  of AC. Thus,  

0 + 211 r o 

(I.6) 

which can be written using equat ions (9) and (I.5) 

O+2u 

- I U tan 7 (2of  cos (O-O)+2o.f' sin ( 0 -  ~)+f2)sdO 

0 

r o 

= - - f  ( V 2 - -  V1 s i n  (O-5))sdr, 

r I 

(I.7) 

where we have used the fact that  

d (  - 2 

dO=,j( f + f , 2 ) = , , ~ .  (i.8) 

We now assume that  the non-osci l latory terms in equat ion (I.7) must  cancel, so that  

O+2n r o 

- f  U tan T f2dO= - f V2dr . 

o r ! 

(I.9) 

Since we are close to the centre of an infinite angular  spiral we assume f to be a slowly varying function 
of (~ Thus if we assume that f 2  and V2 are constant  over their respective ranges of integration then 
equat ion (I.9) reduces to 

- (0+  2n - O)U tan y , f  2 ( ~ )  = _ ( f ( O ) - . f ( O +  2n))V 2 , (i.lo) 

from which we deduce that  

Vz = - U tan y .fz(o)/f'(O), (I.:I) 
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where since V 2 is a function of r only, we interpret the 0 on the right-hand side to be f-l(r).  
We now assume the trace r = f(O) forms an ever decreasing spiral, so that a circle with centre at the 

spiral centre intersects the spiral at only one point. Maskell ~s suggested that the core has a sinusoidal 
dependence on the polar angle 0 and that the derivative of f(O) was of the form 

f'(0) = - ~-~ (1 +q l  sin 20-p l  cos 20). 

The assumption that f(O) is an ever decreasing spiral is valid provided that kz >0 and p2 +q~ < l  since 
these conditions imply that f'(O)<O. Since the jump in potential, 3qb, is equal to the integral of the 
tangential component of velocity along a path which joins a pair of points on opposite sides of the sheet, 
we can find 3~b by integrating around such a circle. 

2r~ 

~t~= ~ V2d(rsO ) 
t )  
0 

Hence from equation (I. 11) 

Now 

and hence 

=2xrsV 2 . (I.12) 

,d@= -2r~sU tan 7 f 3 / f , .  

~30_ o3o oo__ OM, s,fi 
~3 0 &r O0 &r 

(1.13) 

= - 2 ~ U  tan 7 c - ~ ( 3 f E - f 3 f ' / f ' z )  • (I.14) 
0G 

Since V1 and V 2 a r e  the only velocity components with non-zero mean values in this core region 

O~) = V2 sin q~ + V 1 cos ( 0 -  3), 
nl 

(I.15) 

and from equation (I.11) 



C /-,,3 sin 3 (,8-7(1 +~)) 
2~'4( ''2 = {'sff'"- I- --,- 

4n tan g 7 sin2 (fl-- 7) 
(I.18) 

Thus equation (I.18) defines the shape of the inner part of the jet-vortex sheet. Three boundary conditions 
are necessary to solve for ~(0). Since this inner asymptotic representation is required to join onto the 
finite outer representation of the jet-vortex sheet, we apply the initial conditions for equation (I.18) at 
this point. If ~o, fo, fd, 0o are the values of ~, ./;, f ' ,  0 at the end of the finite outer part of the vortex sheet, 
they can be calculated from the current approximation to the solution for the finite sheet shape. Hence 
the conditions used in the solution of equation (I.18) are 

~(0o)=~o, } 
~'(0o) =f0, 

U'(0o) =f ; .  

(I.19) 

The shape of the asymptotic inner jet sheet has now been determined. 
In Fig. 6 let the angle between the outward normal to the trace and the y/s axis be ~l. Let 0,, be the 

value of 0 at the point where the curvature rCSo goes to zero. Then the force F, per unit length in the 
x-direction, sustained by the inner part of the jet-vortex sheet is equal to the following integral. 

0 = 0 m  

F= f lpU2ACp(cos )tq- i s i n  2)d(s~). 
0 = 0 o  

(I.20) 

From equation (II.13) in Appendix II and equations (19), (20), (21) we have 

,dCp = - Cu( f2  - i f " +  2f'2) sins ( f l -  y(1 + ~)) 
sin / ( f l -  7)c312 

We now define a force coefficient F as 

p . 
F -  t p U 2  tan 2 ys 

and hence, using (I.8), 

F -  

0m 

C, f ( f z _ f f , , + 2 f , g )  sin 3 (fi-y(1 +~))e iz 
tang 7 c s~n ~- (~---~ dO. 

0 

Now 

"t 
and cos 2 = sin qJ = sin ( 0 -  e) cos 4) + cos ( 0 -  g) sin ~b, l 

sin 2 = - cos g, = - cos ( 0 -  e) cos ~b + sin ( 0 -  e) sin ~b. J 
Using expressions (I.4) it can be shown that 

ei~. = c -  *~( f _ i f  ,)ei(O-~) . 

0.21) 

(1.22) 

(I.23) 

(I.24) 

(I.25) 
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Assuming again t h a t f  '2 ,~ f2 a n d f "  ~ f a n d  using equations (I.25), the force equation (I.23) reduces to 

0rn 

C, I s  ina (fl - 7( 1 + ~)) (1 - if'/f)e it° -')dO. (1.26) 
F =  sin2 (fl-7) tan2 Y 

Oo 

The value 0,, is the value of 0 at which fl=y(1 +0, at which point it can be shown (see Appendix II) 
that the curvature of the jet streamlines has gone to zero. The value of F in equation (I.26) is the value 
used in Section 2.3 to establish the total force condition. The force F is a complex quantity and a typical 
value calculated for it is (0.43, 0.16). 
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APPENDIX II 

Geodesic Lines on a Conical Surface. 

If R = R(g, O) is the equation of the conical jet-vortex sheet, then R = R(sow(O), O) is the equation for a 
geodesic line in this sheet, where w(O) is the solution of the differential equation (35). The function w(O) 
may be obtained in an alternative geometrical manner by considering the jet-vortex sheet to be 'unrolled' 
into a plane surface. Thus in Fig. 2 let C and C' be neighbouring points on the 'unrolled' trace of the 
sheet. If v is the angle between OC and the leading edge OB, and sh(v) is the length of OC, the distance, 
measured along the trace, from C to C' is given by ~a where 

00 ̀2 = s2(h2t~v 2 -k- 3h2). (ILl) 

Since distances measured along a path remain unchanged when a developable surface is 'rolled' or 
'unrolled', we find from Fig. 4 that 

_ 2 2 d f  2 2 (II.2) 

where we use the fact that r =f(0). 
Now in Fig. 2 the line OC is a generator of the conical surface and thus remains a straight line when 

the surface is 'rolled' up. Thus on the conical surface the line OC forms part of a right-angled triangle 
OAC, the base of which, AC, can be seen in Fig. 4. Hence we have 

s2h2= x2 + s2r 2 . (II.3) 

The connection between the two sets of polar coordinates (r, 0) and (rx, 01) yields the result 

r 2 =22 +22 + 2f(21 cos (0 -  e) +22 sin (0- -  e ) ) + f  2 

= a(O) -- cot  2 y 

(II.4) 

where 21,22 can be found in Fig. 4 and a(O) is defined by equations (27). Substitution of equations (II.4) 
into (II.3) gives 

h = x / ~ .  

From equations (II.l) and (II.2) we deduce, in taking the limit as 60--+0 that 

z ( d f y = h z f d v ' ~ 2  [ ' d h '  2 

(II.5) 

(II.6) 

and substituting in (II.6) the value of h given in equation (II.5) we find, using the identity da/dO = 2b, that 

~O= X/~/a , (II.7) 

where q(O) is given by equation (29). 
From the triangle DCO in Fig. 2 we see, using the sine rule, that 

OC OD 
sin (fl - 3')- sin (fl - 7 -  v)' 

42 



o r  

s ~  So cosec 7 

and consequently, using (II.5) 

sin ( f l -  7) sin ( f l -  7 -  v)' 

w(O) =s°  = . sm~_ , x / ~  sin ( f l -7-v(O)) .  (II.8) 
s smtp-7~  

Thus-equation (II.8) is an expression for w(O) in terms of the function v(0), which itself is determined by 
integrating equation (II.7) using the condition that v(0) = 0. The expression for w(O) given by equation 
(II.8) may be substituted directly into the equations (35), (36) and (37) to confirm that it is the appropriate 
solution of the differential equation satisfied by w. 

If the quantity w(O) given in (II.8) is substituted into the expression (43) for tCSo, we have 

cos 7 -2-,2 . . . . .  2-1/a~ 3/2 
 SO-sin nT)(  - j j  + j  sin 3 

For very small apex angles 7, since 

(II.9) 

a(O) ~- cot 2 y,  (I I. 10) 

q(O) "~ cot 2 Y c(O), (II.11) 

we can simplify the expression for the curvature xso. The arc length along the trace of the jet-vortex 
sheet in the cross-flow plane made dimensionless using s is 

0 

~(o) = t c~(O)dO, 
0 

and, using the fact that 7 is small, we find from equation (11.7) that 

v(O) = ~ tan 7 ~- 7((0)- (I I. 12) 

Thus substituting equations (II.10), (II.11) and (II.12) into equation (II.9), we have 

1 
(2f,2 _f f , ,  +f2)c -  3/2 sin 3 (fl _ 7 -- 70.  (1I. 13) 

XSo ~-- sin (fl -- Y) 

Thus the curvature falls to zero, marking the end of the jet-vortex sheet, when the non-dimensional 
arc length ( reaches a value (,. given by 

(m =f l /Y-  1. (II. 14) 
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TABLE 1 

Vortex-Position Circulation 

N 

14 

14 
39 

a 

0-75 

0-75 
0-35 

C~, 

0-000 
0.025 

0.050 

0.075 

0.100 

0.0643 
0.1286 
0.1928 
0.0866 
0.1732 
0.1182 
0-1970 
0.1200 
0.2000 
0.1182 
0.1970 
0-0000 
0.0171 
0.0342 
0.0513 

40 
50 
80 

100 
110 
120 
40 
50 
80 

100 
110 
120 
40 
50 
80 

100 
110 
120 
40 
50 
60 
70 
80 
90 

100 
110 
120 
60 
60 
60 
80 
80 

100 
100 
110 
110 
120 
120 
40 

CN 

1.0219 
1.0594 
1.0719 
1.0989 
1-1085 
1.1084 
1.1082 
1.0798 
1.1032 
1.1496 
1.1658 
1-1673 
1.1651 
1.0978 
1.1296 
1-1960 
1.2151 
1.2176 
1.2157 
1.1142 
1.1524 
1.1872 
1-2162 
1.2371 
1.2518 
1.2620 
1.2667 
1.2635 
1.1413 
1.2222 
1.2899 
1.2146 
1.3452 
1.2948 
1.4168 
1-3020 
1.4272 
1.2970 
1-4212 
0.3939 
0.4189 
0.4320 
0.4497 

y/s 

0.7591 
0.7714 
0.7784 
0.7888 
0,7934 
0.7950 
0.7945 
0.7794 
0.7862 
0.8056 
0.8103 
0.8130 
0-8144 
0.7841 
0.7940 
0.8169 
0.8246 
0.8265 
0.8278 
0.7890 
0.8024 
0.8117 
0.8193 
0.8253 
0.8306 
0.8345 
0.8363 
0..8385 
0.8010 
0.8196 
0.8332 
0.8217 
0.8464 
0.8399 
0.8608 
0.8428 
0.8644 
0.8433 
0.8645 
0-8662 
0.8819 
0.8885 
0.8961 

z/s 

0-1809 
0.t856 
0.1860 
0.1871 
0.1870 
0.1858 
0.1856 
0.1886 
0.1910 
0.1931 
0.1933 
0-1923 
0.1907 
0-1923 
0.1954 
0.1999 
0.1996 
0.1985 
0.1970 
0.1954 
0.1990 
0.2026 
0.2052 
0.2066 
0.2068 
0.2067 
0.2059 
0.2035 
0.1949 
0.2089 
0.2220 
0.2026 
0.2256 
0.2122 
0.2334 
0-2116 
0.2327 
0.2091 
0.2295 
0.0783 
0.0849 
0.0887 
0.0944 

3-3454 
3.4651 
3.4920 
3.5741 
3-6024 
3.6072 
3.6098 
3-5230 
3.5898 
3.7208 
3.7791 
3.7847 
3.7817 
3.5823 
3.6703 
3-8577 
3.9180 
3.9333 
3.9320 
3.6370 
3.7319 
3-8319 
3.9162 
3.9783 
4.0206 
4.0534 
4.0771 
4.0733 
3.6913 
3.9332 
4.1265 
3.9101 
4.2728 
4.1478 
4.4767 
4.1782 
4.5176 
4.1751 
4.5196 
1.3990 
1.5058 
1.5587 
1.6271 
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TABLE 1---continued 

Vortex-Position Circulation 

N a C~ ~ CN y/s z/s 

39 0.35 40 

0.40 

0.50 

0.75 

1 "00 

14 0-75 
39 
14 0.75 
39 
14 
39 
14 
39 
14 
39 
14 0.75 
39 

0.0684 
0.0855 
0.1026 
0.0000 
0.0171 
0.0342 
0.0513 
0.0684 
0.0855 
0.1026 
0.0000 
0-0171 
0-0342 
0-0513 
0.0684 
0-0855 
0-1026 
0.0000 
0.0171 
0.0342 
0.0513 
0.0684 
0.0855 
0.1026 
0.0000 
0.0171 
0.0342 
0.0513 
0-0684 
0.0855 
0-1026 
0.0000 
0.0000 
0-0174 
0-0174 
0.0342 
0.0342 
0.0423 
0.0423 
0.0500 
0.0500 
0.0574 
0-0574 

40 

30 
30 
40 
40 
45 
45 
50 
50 
55 
55 

0-4644 
0-4776 
0-4895 
0-4619 
0.4888 
0.5025 
0.5177 
0.5317 
0.5444 
0.5562 
0.6063 
0.6356 
0.6519 
0.6634 
0.6740 
0.6848 
0.6983 
1.0122 
1.0404 
1-0594 
1-0735 
1.0857 
1-0958 
1.1060 
1-4730 
1.4976 
1.5176 
1.5340 
1.5473 
1.5583 
1.5692 
1.0219 
1.0122 
1.0381 
1.0253 
1-0682 
1-0596 
1.0852 
1-0776 
1.1034 
1.0952 
1.1215 
1.1138 

0-9003 
0-9042 
0-9072 
0-8511 
0.8666 
0.8731 
0.8792 
0.8839 
0.8883 
0.8911 
0.8233 
0.8379 
0.8435 
0.8500 
0.8545 
0.8584 
0.8613 
0.7684 
0.7793 
0.7863 
0-7913 
0-7948 
0-7988 
0-8019 
0-7300 
0.7373 
0.7434 
0.7478 
0.7521 
0.7559 
0.7581 
0.7591 
0.7684 
0.7630 
0.7745 
0.7740 
0-7863 
0.7801 
0-7915 
0.7862 
0.7984 
0.7939 
0.8039 

0.0995 
0.1042 
0.1086 
0-0904 
0-0965 
0.1000 
0-1042 
0.1088 
0.1130 
0.1169 
0.1146 
0.1199 
0.1238 
0.1262 
0.1295 
0.1326 
0.1355 
0.1767 
0.1796 
0.1819 
0.1841 
0.1864 
0-1879 
0.1901 
0-2348 
0-2370 
0.2388 
0.2407 
0.2418 
0.2430 
0.2449 
0.1809 
0.1767 
0.1830 
0.1778 
0.1871 
0.1819 
0.1891 
0-1846 
0.1910 
0.1864 
0.1928 
0.1888 

1.6869 
1.7367 
1.7843 
1.6248 
1-7334 
1.7855 
1-8467 
1.8993 
1-9514 
1-9944 
2-0965 
2.2015 
2.2599 
2.2993 
2.3465 
2.3878 
2.4308 
3.3435 
3.4293 
3.4919 
3.5365 
3.5767 
3.6097 
3.6417 
4.7067 
4-7710 
4.8280 
4.8756 
4.9139 
4-9470 
4.9808 
3.3454 
3.3435 
3.3981 
3.3875 
3.4898 
3.4919 
3.5353 
3-5428 
3-5898 
3.5894 
3-6372 
3.6431 
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TABLE 1--continued 

Vortex-Position Circulation 

a C~ ~ Cu y/s z/s 

0.75 

N 

14 
39 
14 
39 
14 
39 

0.0643 
0.0643 
0.0707 
0.0707 
0-0766 
0-0766 

60 
60 
65 
65 
70 
70 

1.1413 
1.1338 
1.1628 
1.1529 
1.1807 
1.1733 

0.8010 
0.8096 
0.8060 
0.8152 
0.8116 
0-8199 

0.1949 
0.1915 
0.1974 
0.1942 
0.1993 
0-1971 

3.6913 
3.6966 
3.7587 
3.7445 
3.8113 
3-8002 
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