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Summary. 
The vortex-sheet model of leading-edge separation previously applied to flat-plate delta wings has 

been applied to thick delta wings in the form of rhombic cones. The simplifications introduced by the 
use of slender-body theory and an asymptotic treatment for the core of the vortex have been retained. 
The results show that the vortex sheet leaves the wing tangentially to the lower surface. The calculations 
reproduce the observed trends with increasing thickness: the vortex core moves upwards and outwards 
and the circulation and both the linear and non-linear parts of the lift fall off. The quantitative agreement 
between theory and experiment worsens somewhat as the thickness increases, probably indicating an 
increase in the influence of the secondary separation. 

*Replaces RAE Technical Report 71057--A.R.C.33 024. 
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1. Introduction. 

The phenomena of leading-edge separation from wings of low aspect ratio have frequently been 
described. A number of theoretical models have been developed to treat the flows which result. The 
phenomena and the earlier methods have been reviewed by the author 1. Subsequently, Polhamus 2 has 
published a successful heuristic correlation between the non-linear lift produced and the leading-edge 
suction predicted by the theory of attached flow. Ermolenko 3 has calculated the flow past a rectangular 
wing of low aspect ratio, assuming a form for the vortex sheets from the side edges, and Belotserkovskii 4 
has further advanced the treatment of side edge separations. Nangia and Hancock 5 have applied the 
single-vortex model, as used by Brown and Michael 6, to delta wings in subsonic flow. Of these con- 
tributions to the problem of leading-edge separation, Refs. 2 and 5 both allow, explicitly or implicitly, for 
the upstream influence of the trailing edge and are therefore applicable to the calculation of overall 
forces in subsonic flow, unlike slender-body theory methods such as that of Ref. 1, which are only valid 
well upstream of subsonic trailing edges. However, as with the methods of Gersten 7 and Garner and 
Lehrian 8 the flow model has to be simplified to permit this. 

Other recent work, by Sacks, Lundberg and Hanson 9 and by Levinski et a1.1°'11, retains the slender- 
body approximation, at least for the non-linear lift. Ref. 9 deals with non-conical thin wings, mounted 
symmetrically on bodies of revolution, by tracing the paths of discrete vortices shed from points along 
the leading edge. The consequent rolling-up process is naturally irregular, but the overall force and 
moment are not very sensitive to this if enough vortices are introduced. The shedding rate at the leading 
edge can be determined either by applying the Kutta-Joukowski condition there or else on an empirical 
basis. Levinski and Wei 1° extend the author's method I to deal with combinations of thin delta wings and 
conical bodies of circular or elliptic cross-section. Levinski, Wei and Maki 11 treat non-conical combina- 
tions of thin wings and bodies with circular or elliptic sections, using the vortex-sheet model of Ref. 1 
and the body representation of Ref. 10. They write the boundary conditions as ordinary differential 
equations with the streamwise distance as the independent variable, as in Ref. 12. Finally, there have 
been two further applications of the single-vortex model: Jobe 13 has treated cambered wings and Portnoy 
and Russell 14 have treated conical wings with small, but non-zero, thickness. 

So far no calculations have appeared involving the formation of a vortex sheet from an edge at which 
the upper and lower surfaces meet at a non-zero angle. Maskell's similarity theory 15.16 draws attention 
to the importance of edge angle in determining the development of the vortex, edge angle being one of 
the parameters of the similarity relations. Rott ~ 7 has conjectured that difficulties would arise in calculating 
a vortex-sheet model for separation from a wedge of non-zero angle. Delta wings in the form of cones 
with rhombic cross-sections have been studied in a wide range of experiments. At low wind speeds, 
Kirkpatrick has measured the normal force is on the forward part of models, where the flow is almost 
conical, the position of the core of the vortex 19 and the circulation about the vortex 2°. Russell 14 has 
measured surface pressure distributions and surveyed flow fields, also at low speeds. Pressure distributions 
have been measured by Britton 21 at supersonic speeds and by Smith and Kurn 22 at subsonic and transonic 
speeds. Wyatt and East 23 have measured skin friction and pressure distributions at low speeds. 

The present paper presents calculations made by the method of Ref. 1 for the flow past wings in the 
form of rhombic cones with flow separation from the leading edge. The method involves the representation 
of the circulation in the vortices in the real viscous flow by spiral vortex sheets arising from the leading 
edges in an inviscid, potential-flow model. The position and strength of these sheets are determined by 
the conditions that they form stream surfaces with no jump in pressure across them. The inner parts of 
the spiral sheets are replaced by isolated vortices, on the basis of asymptotic solutions. This model is then 
treated by slender-body theory. 

The numerical treatment uses the simplest finite difference representations and finds vortex-sheet 
shapes and strengths, and isolated vortex positions and strengths, which satisfy the boundary conditions, 
by using three iterative procedures. One of these, that which determines the vortex position, was a source 
of difficulty in the solutions for a flat wing, so a modified procedure has been devised. Levinski and Wei 1° 
use a third, apparently very satisfactory, procedure. The only other change from Ref. 1 arises from the 
change in wing shape. The use of slender-body theory reduces the problem to the solution of Laplace's 



equation in the cross-flow plane and the first step is the conformal transformation of the cross-section 
of the wing. Since this is now a rhombus, a Schwarz-Christoffel transformation is needed instead of the 
simple Joukowski transformation used previously. The boundary condition on the wing is satisfied by a 
distribution of sources on the transformed contour. 

Starting approximations for the iterations are readily available from the previous solutions for flat 
plates. Solutions have been found for wings of gradually increasing thickness at constant incidence and 
then further solutions found for wings of typical, fixed thickness through ranges of incidence. In this way, 
the same combination of incidence and thickness is arrived at along different paths in the incidence- 
thickness plane. When this happens, the solutions are found to be very close. For the flat plate, the tangent 
to the vortex sheet at the leading edge lies in the wing plane and is therefore symmetrically placed with 
respect to the upper and lower surfaces. As the thickness increases, the solutions which emerge from the 
iterative procedure show that the sheet remains tangential to the lower surface of the wing. No difficulty 
was encountered in calculating the solution near the leading edge. 

The calculated solutions show variations of normal force, vortex position and circulation with thickness 
and incidence which are very similar to those observed. However, the small discrepancies between 
calculation and experiment observed in Ref. 1 for flat plates become larger as the thickness increases. It 
is likely that this can be attributed to a growing influence of the secondary separation as the thickness 
increases and the primary vortex weakens. Such an increase in the role of the secondary separation was 
predicted by Rott 17 in an analogous problem. For the thinner wings, which are of greater practical 
importance, the agreement between theory and experiment is satisfactory. In particular, the theory 
confirms the existence of appreciable reductions in lift from the flat-plate values at small edge angles, a 
point which complicates comparisons between calculations for wings of vanishing thickness and measure- 
ments for thin plates with chamfered edges. 

The material of this Report was given a brief interim presentation at the eighth Biennia! Symposium on 
Fluid Mechanics at Tarda, Poland in September 1967. 

2. Formulation o f  the Problem. 

The mathematical model of the flow is the same as that used in Ref. 1 and the treatment of it is similar. 
An abbreviated presentation is therefore sufficient, keeping the same basic notation. 

Fig. 1 shows the wing, the coordinate system and the vortex models. The origin O of a rectangular 
cartesian system is taken at the apex of the wing with Ox along the axis of the wing, Oy to starboard 
and Oz upwards. The undisturbed stream of speed U makes an angle c~ with Ox. The section of the wing by a 
plane x=cons t an t  is a rhombus, of semi-span s =  Kx,  with an interior angle 6 at the leading edge. It is 
convenient to introduce ~. = (n - b)/2n, so that en is the angle shown in Fig. 1. Then ~ = 0, e = 0-5 corresponds 
to the flat plate, 6=n /2 ,  e=0.25 corresponds to a wing of square cross-section, and when 6 ~ n ,  e ~ 0  the 
wing disappears into the vertical plane of symmetry. 

On the port half-wing is sketched the rolled-up spiral vortex sheet of indefinite extent which i's taken 
in the first place to represent the circulation distribution of the leading-edge vortex. On the starboard 
half-wing is shown the approximation used for calculation purposes. All the circulation on the sheet 
from a line OE onwards is concentrated into a line vortex along OV. This leaves behind a cut, across 
which the velocity potential jumps by an amount equal to the circulation of the line vortex. This is the 
configuration to which we are to apply slender-body theory. 

Ward 's  24 development of slender-body theory uses axes related to the undisturbed stream, but the 
transition to the present system presents no difficulty for small angles of incidence. He finds that the 
velocity potential can be expressed as the sum of a function of x, which depends on the Mach number and 
takes different forms for subsonic, transonic and supersonic speeds, and a harmonic function of y and z. 
It is convenient to write the slender-body approximation to the complete potential as 

U(x + bo(x)) + ~ , 

where 
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1 X 

2~bo(x)= S' (x) In fl/2 +~ (S"(t) In ( t -  x)dt-½ f S"(t) In ( x -  t)dt , 
; o 

with f12= 1 - M  2, for subsonic speeds, and 

2zcbo(x)= S'(x) In B / 2 -  ~ S"(t) In ( x -  t)dt , 

"o 

with Bz= M 2 -  l, for supersonic speeds, where S(x) is the cross-sectional area of the body. Then 

and 

O y y + O ~ = O  (1) 

. S ' ( x )  
- ~ . z - f - ~  In r, (2) 

where r 2 = y 2  + z  2, at large distances from the wing, and Ux +¢b satisfies the boundary  condit ions on 
the wing and vortex sheets. For  present purposes  there is n.o need to consider bo(x) further. 

The first boundary  condit ion on the vortex sheet is that  it is a s t ream surface, which means  that  

KUr . 
q ) , -  - -  sin go, (3) S 

as in Ref. 1, where n is the inward no rma l  and (p the angle between the tangent  and radius vector  as 
shown in Fig. 1. The second boundary  condit ion on the vortex sheet is that  there is no pressure difference 
across it, which means  that  

s ~ ),  
Aq5 = Aq)~ r cos g0 - ~ ~,~ (4) 

again as in Ref. 1, where A is the difference opera tor  across the sheet, cr is the arc length round  the cross- 
section of the sheet and the suffix'm denotes the mean value across the sheet. The boundary  condit ion 
on the wing follows from (3), noting that  r sin q0 = s cos e~z on the wing : 

rb, = - KU cos e~. (5) 

The Ku t t a - Joukowsk i  condit ion of finite velocity at the leading edge, appropr ia te  to separat ion there, 
must  also be satisfied. 

When  the circulation from the sheet beyond E is concentrated into the line vortex at V, we may  suppose 
that  the cut which remains is of  a form which satisfies (3). However ,  since A@~=0 and A O ¢ 0  on it, 
equat ion (4) cannot  be satisfied. The best that  can be done, fo l lowingBrown and Michael  6, is to arrange 
that  the total force on the vortex and cut is zero. The force on the cut arises from a constant  pressure 
difference across it, since A@ is p ropor t iona l  to x, and so depends only on the end points E and V. The 
force on the vortex depends on the velocity normal  to it induced by the rest of  the field, in the usual 
way. In t roducing a complex variable Z = y + iz and a complex potent ial  IV,, such that  op = 0~{ W}, we can 
express the condit ion of zero total  force as 

lim d /  ~ F 1 ') 2 Z v - Z E  
Z ~ Z v  2rci Z - -Zv ,  = K U  s ' (6) 



as in Ref. 1, where F is the circulation of the starboard isolated vortex. 
Provided W is an analytic function of Z, equation (1) will be satisfied automatically. To construct 

such a complex potential it is convenient to introduce a conformal transformation of the region of the 
Z-plane to the right of the wing and the imaginary axis into the half-plane ¢~{(} >0, see Fig. 2a. Consider 
the Schwarz-Christoffel transformation 

f /  t 5o 
z = s +  

0 

(7) 

in which the points A and C on the centre line of the wing transform into points ( =  _+ id. The point B 
at the leading edge of the wing clearly transforms into the origin ~ = O. We have 

d7 = • 

To complete the definition of the transformation, we write ( - i d = r l e  i°1, (= r2 ei°2, ~+ id=r3 el°3, as in 
Fig. 2a, and specify 

dZ dZ eie(2o2-o1-03) 

Z = 

Then, as (~oo ,  01--;'02--+03 and dZ /d (~ l ,  so the neighbourhood of the point at infinity is preserved. 
Also we have" 

on AD, 01 = 0 2 = 0 3 = ~  
dZ 

and arg ~ = 0,  
a t  

n n dZ 
on AB, 01 = - ~ ,  02 = 0 3 = x  and arg ~-~ = h e ,  

Z a t  

n 0 _ n  dZ onBC,  0 1 = 0 2 = - ~ ,  3 - ~ a n d a r g ~ - = - n e ,  

n dZ 
on CD, 01 = 0 2 = 0 3  = - -~  and arg -;-== 0. 

a t  

The transformation therefore correctly distorts the boundary of the region and is obviously analytic 
within it. It is therefore the transformation required. The lengths d and s are related by considering the 
point A or C: 

id 

is cot en = s + f e ie= 

0 

t2 ~* 
dr. 

This can be written as 

1 
S ('t / t 2 "~ 
i=s in~n  l ~ ]-L-[~) dt 

0 



= sin eTr r(e + ½)r(1 - ~)/Tz + = ½ sin en B(e + ½, 1 - e), (8) 

using the same notation as Gradshteyn and Ryzhik 25 for the gamma and beta functions. The variation 
of s/d with e is shown in Fig. 2b. 

The boundary condition (5) of constant normal velocity on the wing can be satisfied by a distribution 
of sources on the image of the wing in the (-plane. The normal velocity needed in the (-plane is 

]dz I K U  cos eTz -~- , directed outwards from the slit ABC. 

This distribution of normal velocity is produced by a distribution of sources of strength 

jaz[ 2 K U c o s e n  ~ per unit length on ABC. 

The total source strength is then 

A A 

2KU coseTr -d--( ere BJ -d~-e -7- 

= - 4ie- i'~K U cos erc(Za - Z~) = 4sK U cot e~ = US'(x). 

Hence the sources produce the logarithmic behaviour of @ at large distances which is specified by (2). 
The remaining term in (2) is produced, without disturbing the wing boundary condition, by a uniform 
stream parallel to the imaginary axis in the (-plane. The complex conjugate of the cross-flow velocity 
for the attached flow in the (-plane can therefore be written as 

id 

f I r d, -io~U+ 1 2KUcose~z \ t ~  / ( - - t  i 
-~  

(9) 

To complete the velocity field, the same representation of the leading-edge vortices in the (-plane 
is used as in Ref. 1, i.e. an isolated vortex of strength F at (v, a sheet extending along ( =  ((0) from 9 = 0 to 
0 = 0 ..... and the images of these in the imaginary axis, as sketched in Fig. 3. Taken with (9), these produce 
a complex conjugate velocity 

id 

- id 

~tmax 

2rc i~ ( - (v  ~-~(v,] 2-~ ! ~---d-ff-,] \~-~(0)  (-t-~(0)) d0" (10) 
0 

The complex potential W defined by (10) represents a flow field with the correct behaviour on the wing 
and at infinity, containing a representation of the leading-edge vortices. The numbers F and (v and the 
functions dAcb/dO and ((0) are to be determined so as to satisfy the Kutta-Joukowski condition at the 



leading edge, the conditions (3) and (4) on the finite part of the sheet, 0 < ' 9 < 0  . . . .  and condition (6). 
As in Ref. 1, the Kutta-Joukowski condition is used for F, equation (6) for ~v, equation (4) for dAOo/'d'9 

and equation (3) for ~('9). The details are given in the next section and the results are discussed in Section 4. 

3. N u m e r i c a l  T r e a t m e n t .  

The numerical treatment follows the same lines as that of Ref. 1. The extra complication arises from 
the more awkward conformal transformation (7) and the more involved expression for the attached 
flow (9). A more efficient method is used to determine the position of the isolated vortex from the condition 
of zero overall force (6). 

In the numerical work, the distance d has been used as the unit of length; so, ha this section, appropriate 
factors d must be re-introduced if proper dimensional equations are required. 

3.1. Fin i te  Di[ference Represen ta t i on .  

The shape of the outer part of the starboard sheet is specified in the transformed (~) plane by the values 
of the polar distance, f, 

d2, d4, • • •. d2 n 

of a set of n pivotal points on the sheet measured from the position of the starboard isolated vortex, ~v, 
as shown in Fig. 3. The points are located at fixed, arbitrarily chosen, values of the polar angle, ,9, measured 
about -~v from the line joining it to the origin. These values of O are denoted by 

h l , h  2 . . . . .  h , .  

The boundary conditions on this part of the sheet are applied at n points intermediate between the 
pivotal points, at polar angles 

½hi, ~(h2 + hi), ½(h3 + h2) . . . . .  ½(h. + h._ 1) 

and at polar distances 

d t = ½(do + d2), d3 = ½(d2 + d4) . . . . .  d2. -1 = ½(dz" - 2 + d2.), 

where do = I~vl is the distance of the vortex from the origin. 
The strength of the sheet is specified by the values of the derivative of the circulation with respect to 

the polar angle, dAOo/d,9, at the pivotal points : 

1 dA~] j = I , 2  . . . .  n. (11) 
g J -  K U  dO ~=hj 

The strength of the starboard vortex is represented by 

F 
9 -  (12) 

K U  

and its position is at 

~v = fi + iE = do elb . ( 13~ 

The coordinates (Y2j, z2j) of the pivotal, and (.~2j-1, E'zj-1) of the intermediate, points now follow: 



and 
Y2j + iz2j = ~ + i~ -- d2je i(b + hi) 

f~2j- 1 + iz2j-  1 = f~ q - i z - d 2 j -  l e i{h + ,h, t ÷ l h j ~  
j = l , 2  . . . .  n.  (14) 

This completes the specification of the configuration in the (-plane. Related quantities are now needed 
in the Z-plane. 

The semi-span, s, is given by equation (8). If e is small, the integrand has a weak zero at t =0,  and 
if e = 0.5 it has a square-root singularity at t = 1. The transformation 

t = 1 - 5 ~ 4 + 4 ~  5, d t = - 2 0 ( 3 ( 1 - ~ ) ,  0~<~<1 

takes care of both difficulties. Equation (8) becomes 

1 

sin J 
0 

(15) 

so that the integrand, as a function of ~, has at least a linear zero at t = 0, ~ = 1 and at least a linear zero at 
t =  1, 4=0 .  Equation (15) was evaluated numerically by dividing the ~-interval (0, 1) into tenths and 
using the Gaussian five-point formula in each. 

The set of pivotal and intermediate points on the sheet is extended by adding the origin at one end and 
the position of the isolated vortex at the other, to give a sequence of points 

( o = 0  ; (~=9 j+ i~ j ,  j = l , 2  . . . .  2n ; ( 2 n + l = f i + i ~ .  

Equation (7) defines a sequence of corresponding points Zj in the Z-plane. It is convenient to refer these 
to the semi-span, s, so that we write 

Z 0 = s ;  Z j = s ( y j + i z j ) ,  j = l , 2  . . . .  2n ;  Z 2 , + ~ = s ( y + i z  ).  (16) 

The points are then calculated in turn, writing (7) as 

~j+ I 

Z~+ Z s +  f / tz ~ 

~J 

j=0 ,1  . . . .  2n 

1 

f // t2 \~d 
(17) 

where t = (j + ~((j+ 1 - (j). The integration with respect to ~ was performed using the Gaussian five-point 
formula, on the basis that the points are closely spaced. 

Since the boundary conditions (3) and (4) involve the quantities r and q), we need the moduli and 
arguments of the points on the sheet in the Z-plane : 

yj  + izj = bje icj j = 1,2 . . . .  2n. (18) 



Derivatives along the sheet are approximated in the simplest way, giving, at the jth intermediate point" 

1 dr . ,~ b E j  - b2j_2 
sd-O- h~-hj_l  =fEj-  1, (19) 

dO ,.., c2. / - CE.L_ 2 =.fE./, (20) 
dO h i -  h j_ 1 

and 

dP ,.~ d2j - dE j_ E 
d-O - - h j -  hj_ 1 =eEj- 1 (21) 

dff 2 l + eEj- ~ 
- d ~ ' ~ ( d E j  - 1) = e z j  (22) 

for j = 1,2 . . . .  n, with b o = 1, c o = 0, and h0 = 0. Here # is the arc length along the sheet in the transformed 
plane. 

We now need finite difference forms for the integrals in equation (10). Consider first the contr ibut ion 
of the source distribution on the transform of the wing. Setting d = 1 and reducing the interval of integra- 
tion by changing the sign of t in the negative half, we have 

id i.  

- i d  0 

if? mY) /c°s  -) 
= ~ i (  

o (E + sin E x~ 
2 

where t = i sin ~ .  Since we do not need to evaluate this on the wing surface, the integrand is non-singular. 

It has weak zeros at the ends of the interval, but no special consideration was given to them. The interval 
(0, 1) in ~ was divided into tenths and the Gaussian five-point formula applied in each to evaluate the 
integral. If c~1,.., c~ 5 are the points and fl, . . . .  //5 are the weights, such that 

1 5 

fF(t)dt~-~EfliF(~zi), 
o 1 

the values ¢k=(i+TylO, k=5i+j ,  i=0,1 . . . .  9, j =  1,2 . . . .  5 are chosen. Then, if 

Yk = sin cos and 6k = ~sln ~ - )  

we have 

id 

- i d  

t 2 "~c 
5 9 

dt zci~ ~--~ ~ ~5i+j 
¢-t-i6 /___~PJ ~2+651+j" 

j = l  i = o  

(23) 
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Now consider the contribution from the vortex sheet and its image. At a general point (, we simply 
apply the trapezium rule, as in Ref. 1 : 

~max 

o 

n 

=KU V 9sY2j(hj.+,-hs-,) 
/ /  a ( (  - -  Y 2 j  - -  i z2 j )  ( (  q- Y 2 j  - -  i z2 j )  
j = l  

(24) 

where, conventionally, ho=0 and h,+x =h,.  This representation assumes that the integrand vanishes 
at 0 =0, which it does for ~ ~ 0. In order to apply the Kutta-Joukowski condition at the leading edge, 
we also need a representation valid for ~ = 0. 

The integrand on the left of (24) may well be infinite at 0 = 0 if ( =  0. Consider the first factor : 

daub dAO dA~da dAOldZ I ..dA~ 2~ dA@o2 ~ 
dO d8 da d8 = &z 7 (  ~ ~ ~-fa-~ " 

Now, if the Kutta-Joukowski condition is satisfied, dA~/da must be finite at the leading edge, since it 
represents the difference in tangential velocity across the sheet. Further, if the condition of continuity of 
pressure, equation (4), is satisfied at the leading edge, dA~/&r is non-zero there. Hence 

dAq)_ 02~. 
dO 

The second factor is straightforward : 

1 1 2YZ(() 1 

 -i-oS=-W-5 • 

Hence the integrand tends to infinity like 0 2e -  1. If the integrand is written in the form 

we find 

f = klO2e- 1 nt_ k2 

hi 

f k h 2e 
f(O)dO = ~ +  k2h t 

o 

=h, f ,  \2e J h ~ - ' - h l  " - '  

where f t  = f(hO and f2 = f(h2). We now apply this rule over the first interval and the trapezium rule 
over the remainder to obtain : 

'~max 

1 f (  dA~/ '  1 1 ~,^ (hl-l-h2)g,~ 2 
K v  j t, aa= + + 

o 

I1 



n 

+ 2ee- h22~-1 h21.- t \~]+22 92+~22]+ , (25) - . ~ ] j + ~ ] j  
j = 2  

with h,+ t = h , .  

3.2. Expression of the Boundary Conditions. 
Since the flow separates at the leading edge, the Kutta-Joukowski condition must he applied there. 

This implies a finite velocity in the cross-flow plane and therefore a stagnation point at the origin of the 
transformed plane. Putting dW/d(=O for ( = 0  in (10), and using (23) and (25), we find 

?/ 

.~ "q- Z Z . d  - 2  - 2  ' • Y2j "~- Z2j 
) = !  

(26) 

where we have divided through by KUi/27z, set o(K=a, used (12) and (13) for F and (v, and introduced 

(1 - 2e)h 2~ (1 - 2e)h 2~ 
A,=h,+h2 e(h2t_l h2e_,) , A2=ha-hl+ (h2e_, h2~_l) ' 

Aj=hj+ t - h j _  1 for 3 <~j~n. 

The condition of zero total force on the vortex and cut is given by equation (6). We multiply through 
by dZ/d( at V and obtain" 

lim (dW F dZ 1 vt=KU22V-Z~dZ I 
(--~(v ~ 2~i d( Z -  Z s d( v (27) 

Now the only term in (10) which is singular as ( ~ ( v  is F/2~i((-(v), so we need to consider 

1 d Z  1 

- (v  d( Z - Z  v (28) 

for ( near (v. The Taylor series gives 

dZ J 2 d2Z I 
z -  z , ,  = (¢- ~v) 7(  v + ½((- (v) y(~ v + 

I d2g I dZd(_dZd~ v+ ( ~ - ( v ) ~  v + . . .  

therefore 

( -  (v dZ 
Z -  Zv d( 

d2Z/d(2 ] 
l + k(~-(v) 727g(- + . . . .  

Hence the limit of(28) as (--'(v is 

1 dZZ/d( 2 I 
2 dZ/d~ v - ( v ( l + ~ 2 ) '  by (7). 

12 



Introducing FKU for the difference between the right and left-hand sides of (27), we can use this limit 
with equations (10), (23) and (24) to write 

( h F - 2(y - iz) -s(Y2" - iz2,) 1 + (y + i~) 2] + ia - 

5 9 

ig C 2e ) ( y + i D c o s e = ~  ~ ?sk+, 
4rt -~ (y;+i~)(1T(y+iD 21 10 flJ (y+iD2+aSk+~ 

j = l  k=O 

n 

i ~ 9jY2j(hi+ 1 - hi_ 1) 
+ ~ (y + i~- Y2j -- i~2j) (y + i~ + f ; 2 j -  iz2j)" 

j = l  

(29) 

Then the required condition is that the real and imaginary parts of F should be zero. 

To express the conditions that the sheet is a stream surface (3), with no jump in pressure across it (4), 
we need expressions for the components of the cross-flow velocity normal and tangential to the sheet at 
the intermediate points. It is the mean velocity across the sheet which is required and this is what is 
given by the formulation (10) applied at a point of the sheet. Although it is velocities in the Z-plane 
which appear in equations (3) and (4), i t is more convenient to work in the (-plane. Let v,., and v, be 
the mean tangential and normal components of velocity, so that 

dW dW d( 
v,m-iv.= -&-= d( d--g (30) 

The first factor on the right is given by (10), in conjunction with (23) and (24). On the sheet 

-= (V -- ~'ei(b + a) 

and so 

d ~ ( - ( v (  dp ) 
dO- ? -d-O + ii: " 

di:/d;~ and d6/d,9 at the intermediate points are given by (21) and (22), so that, at the jth intermediate point' 

d( d { /d~  ( y 2 j _ l + i z a j _ l - y - i z ) ( e a j _ i + i d a j _ l )  

-25/75 d@ d2j_ l e 2 j  
(31) 

From (10), (23) and (24), at the jth intermediate point : 

1 dW 
KU d~ 

5 9 

ia+(ygJ-'+iz2j-1)--TO-~_.afi' ij-,2i_, + i~2j_ ,)2 + 65k+, 
l = l  k=O 

igy 
:/'C@2j- I -]- i z2 j -  1 - -  Y - -  i z )  ( , . 92 j -  1 -[- i z 2 j -  1 + Y - -  iD 
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n 

i ~"-~ Okf~2k(hk+ i -- hk- ,) 

2~z 2.._a (5"2-/- 1 + i z 2 j  - 1 - Y 2 k  - -  i Z 2 k )  ( . ~ 2 j -  1 -}- i 2 2 j -  1 + .~2k - -  i Z 2 k )  " 
k = l  

(32) 

Equations (30), (31) and (32) express the required velocity components. 
The condition of zero pressure jump (4) can be written, at the jth intermediate point, as 

K U  e =  K-U -do Jp/- / '  (33) 

where 

dr) g.=dO(s v,m d# r ~  a tP j  
dtT\ K U  d¢ 

d( s(~" r dr I d~ d~ - dz \Ku  atPj 

= e 2~ (Y2 -/7 ~ + iz 27 -- ,) ~- \ K U I p, - e E-/ ' 

where v, , , /KU at Pi follows from (30) (32). The n equations of the form of (33), together with the Kutta- 
Joukowski condition (26), are used to determine the n +  1 quantities 9 and 9j, J=  1,2 . . . .  n, for fixed 
geometrical quantities. The procedure used is an iterative one in which values of 9 and 9-/derived at the 
previous step are used to find vtm/KU at the intermediate points, and hence the values of e-/in (33). The 
set of equations (33) are written as linear equations in the values of dA~/dO at the intermediate points 
and solved explicitly as follows. Let 

2 j -  1 dAqb (35) 
K U  dO e~ 

Now 

hn 

KU Pi K U  d-O dO. 
½(hi _ 1 + hi) 

(36) 

This integral is then approximated by the trapezium rule over the intervals between the intermediate 
points and by assuming the integrand is constant over the interval between the nth intermediate point 
and the end of the sheet. Hence (35) and (36) enable us to write Aq~ at P-/as a linear combination of 9 
and ;t~, and the set of equations (33) can be written as 

4g + (h-/+ 1 -h-/_ 1)2./+ ~ (hi+ i + h i - h l -  1 -hi-2)2i=42-/e,j, 
i = ) +  1 

(37) 

for j =  1,2 . . . .  n, where h0 =0  as before, but now h,+ 1 = 2 h n - h , -  1. 
The set of n equations (37) can be solved for 2-/in terms of 9. Starting with the last, the solution is 
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2, = 4g/ff, , 

2j = (#j+ 1 + v2+ 02j+ 1/#i j =  n -  1, n -  2 . . . .  1 
where 

#j ~ -  4ej -- hi+ ~ + hi_ t j = 1,2, . . .  n 
and 

vj=hj+t  + h j - h j _ ~ - h j _ 2  j = 2 , 3 , . . . n .  

(38) 

Linear interpolation and extrapolation now give the g~ in terms of the 2j thus : 

g j =  [(h i -  hi_ 1)2;+ 1 + (hi+ 1 - hi)2j]/(h;+ 1 - h~_ 1) [ 
and t (39) 

g ,=  [(h,+ t - h , _ z ) ) ~ , - ( h , - h , _  1)2,-1]/(h,-h,-2) 

j =  1 , 2 , . . . n - 1  

where h.+ 1 = 2 h , - h , _  1. Equations (38) and (39) together express the quantities gi in the form 

g~ = B f l  , (40) 

where the B~. can readily be written down (see equation (A.7)). Introducing these into (26) we obtain an 
equation for g : 

n 

g ~ ~2 + ~2 -2 ! 
/._.~ } 2 j ' q -  Z2j .  , 
j = |  

(41) 

where the Aj are defined after equation (26). Equation (41) yields a value of g and then (40) gives values 
for 9j. These values are then used to recalculate the ej and the iteration is repeated. When the values 
of g and gj found are little altered from the previous cycle, the Kutta-Joukowski condition and the con- 
dition of continuity of pressure are regarded as being satisfied. 

The final condition to be expressed in a form suitable for computation is the condition (3) that the 
vortex sheet is a stream surface. We first replace (3) by the equivalent condition in the transformed (~) 
plane : 

v, I d Z ] r  . ( ~ ) 2 d O / d f f  (42, 
K U -  -d( -s sm qg= - s  dO~dO'  

using the standard expression sin q~ = rdO/&r. Equations (30)-(32) provide the values of v . /KU at the 
intermediate points and the values of the right-hand side at the same points follow from (15), (18), (20) 
and (22). What is needed is a method for using the discrepancy that will exist between the two sides of 
(42) at any stage of the calculation to modify the shape of the sheet. If the tangent to the sheet at the 

jth intermediate point were rotated anti-clockwise through an angle Zi, the mean velocity along the new 
normal would be 

v. cos Z j -  v~ sin Xi • 

If this new direction is such that (42) is satisfied, 

1)n . 1)tm [ 
K U ej cos Z j -  ~-~ I sin Z3 = - sb~j_ 1 fzHe2i. 

Pj 
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Since we can only think in terms of small changes to the shape of the sheet, we can regard )9 as small and 
solve this equation for it, giving 

v. faj'~ ./vtm ZJ= (-K~ Iej-t-sb2J-le2i -I/ K~ pj • (43) 

The final step is to convert this rotation of the tangent at the intermediate points to changes in the polar 
distances from the vortex to the pivotal points. Suppose each distance, dzi, is increased by an amount 6j, 
as in Fig. 4, with the pivotal points Qj moving to Q). The tangent at the jth intermediate point is taken 
to be parallel to Qj_ 1Qj, s o  that the angle between Q j_ tQj and Q'j_ 1Qj" is the )~ of equation (43), as 
shown in Fig. 4. The elementary geometry needed is most conveniently expressed in vector notation. 
Denote VQi ~ by a, Qi ~ Q'i i by 2a, VQj by b and QiQ'i by #b. Then Qj_~ Qi is b - a  and Q'i-~l Q'i 
is (1 +#)b- (1  +2)a. If k is a unit vector out of the plane of the figure: 

and 

(b -a )  A ((1 + #)b-(1 + 2)a)= I b - a  I I(1 + p )b -  (1 + 2)alk sin Xj, 

a~ b=  la Ilblk sin (hj-hj_ 1), 

[ b - a [  2 = ( b -  a) ( b -  a) = bb + a a -  2ab 

ab= [allb [ cos (hj-hj_ 1). 

(44) 

(45) 

(46) 

(47) 

The right-hand side of (44) is already a small quantity of order )~j, so the difference between the first two 
factors, which is also of order Z j, can be ignored. Equations (46) and (47) then allow us to reduce the 
right-hand side of (44) to 

(Ihl2+lal2-2la[lbl  cos (h j -  h j_ 0)kzj + 0(X~). 

Expanding the vector product on the left-hand side of (44) and using (45), we reduce it to 

(,,t-#)lallb I sin (hi-hi_,). 

Equating these two expressions and reverting to the scalar notation we find 

(~j (~j- 1 d~j+d~j_z-2dzfl2)_ 2 cos (hj-hj_l) 
#=dz j=d2 j -2  dzid2j_2 sin (hj-hj_ i) Zj. (48) 

Since the beginning of the sheet is fixed at the origin of the C-plane, 6 o =0. Equation (48), with )~j given 
by (43), enables us to calculate/il, fi2 . . . .  8, in turn. The way in which this and the other relations obtained 
in this sub-section are used is explained in the following sub-section. 

3.3. iteration Scheme. 
The problem is to determine the flow field of a given wing at given incidence. The wing and incidence 

are specified by values of e, and a. The flow field is determined by the position and strength of the vortex, 
i.e. ~, ~ and g, and by the shape and strength of the sheet, i.e. sets of d2j and gj appropriate to a set of 
angles hi (j = 1,2 . . . .  n). The method consists of three nested iteration procedures. 

The innermost iteration leaves the position of the vortex and the shape of the sheet unchanged and 
determines values of g and gj which satisfy the Kutta-Joukowski condition at the leading edge exactly 
and satisfy the condition of continuity of pressure along the sheet to within a prescribed tolerance. 
The second iteration leaves the shape of the vortex sheet unchanged and adjusts the position of the 
isolated vortex until the condition of zero overall force on the vortex and cut is satisfied, again within a 
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certain tolerance. Throughout this process the innermost iteration is used to change g and gj in step with 
the changes in y and ~,. The outermost iteration modifies the shape of the sheet to make it conform more 
closely to a stream surface of the threedimensional flow. These three iterative procedures will now be 
described in more detail. 

An initial approximate solution can be taken either from Ref. 1 if the wing is very thin or from a solution 
already obtained for some slightly different value of a or e. If solutions are being generated from a sequence 
of values a or e, a good initial approximation is obtained by extrapolating linearly from the two previous 
solutions in the sequence. Most of the results described in this Report were obtained sequentially in 
this way. 

All the geometrical quantities needed are derived from the equations of Sub-Section 3.1. The innermost 
iteration then starts. In principle, the mean tangential velocity at the intermediate points is calculated 
(equations (30), (31) and (32)) and used to form {e j} (34). These values are used to give {/~} and {v j} arid 
hence {B j} (38)-(40). Equation (41) determines 9 and (40) determines {g j}. The value of 9 is compared 
with the initial approximation and, unless the change is less than a tolerance e', the cycle of operations 
is repeated. In practice, the method uses a number of other intermediate quantities to speed up the 
procedure as explained in Appendix I. 

The next step is to adjust the position of the vortex (y, ~) until the modulus of the complex function 
F(y, ~), proportional to the force on the vortex and the cut, is less than a prescribed tolerance, or until 
the vortex is sufficiently close to a minimum of IF[. F is given by equation (29) in which the quantities 
g and {gi} depend on (y, ~) through the iteration process just described. The method chosen exploits the 
fact that, near the vortex location sought, the surface IF(Y, ~,)1 resembles a closed valley with its long 
axis roughly in the direction of the axis of ~. This emerged from the calculations of Ref. 1. We seek the 
bottom of the valley, assuming that F will be zero there. Fig. 5 illustrates the procedure. First, we march 
across the valley, i.e. parallel to the axis of y, calculating F at each step and stopping when ]F[, after 
initially decreasing, begins to increase. The conditional minimum along this line ~ = constant is located 
by interpolation and stored. We then march across the valley along another line of constant ~, and again 
store the conditional minimum. We then march along the line joining the two conditional minima until 
a third (conditional) minimum is reached. We assume that this point is within a few steps of the actual 
minimum sought. If the initial steps have to be rather large, because the location of the valley floor is 
uncertain, the set of three marches can be repeated, starting from the approximate minimum found, 
with a reduced length of step. In this way we can expect to get as near to the minimum of IF(Y, ~')1 as we 
please. If at any point the modulus o f f  falls below a tolerancef',  we seek no further. A minor complication 
arises in that, when the vortex is moved, the part of the sheet closest to it has to be moved with it, whereas 
the further end of the sheet must remain attached to the leading edge. The first k of the distances {d2j} are 
adjusted each time the vortex is moved, as described in Ref. 1. 

The scheme requires something akin to the continuity ofF(y,  ~). Since F depends on the iteration 
which determines g and {g j}, it is certainly not continuous in the classical sense. Nonetheless, provided 
the tolerance e' is small enough in relation to the step size, F behaves sufficiently like a continuous function 
for the scheme to work successfully. A feature of its occasional failure to work is the occurrence of three 
consecutive values of IF[ with the middle one higher than the other two. If this happens a diagnostic 
message 'local maximum' is printed and the computer program jumps to the next part of the calculation. 

Apart from such hazards, the calculation has now positioned the isolated vortex close to the point at 
which the condition of zero total force is satisfied, with a circulation distribution satisfying the Kutta 
condition and the condition of continuity of pressure across the sheet. The next step is to change the 
form of the sheet so that the condition on the normal velocity is more closely satisfied. Equation (48) in 
the previous section gives the changes {6j} that would be needed in the {d2j} to satisfy the condition, 
if these really were small. There are three possibilities : 

(a) the largest of the proportionate changes called for in the polar distances may be so small (less 
than a parameter g') that we can regard the solution as having been obtained, 

(b) it may be larger than this but still small enough (less than a parameter h') for the whole of the 
change to be applied without seriously violating the assumption on which it was calculated, or 

(c) it may be larger still. 

17 



In case (a) the calculation for the current values of a and e is complete. In case (b) the changes called 
for are applied to the polar distances and the entire calculation is repeated. In case (c) the changes called 
for are scaled down so that the largest of them is equal to h' and these scaled changes are applied before 
returning to the beginning of the calculation. The size of h' is regulated by the need to suppress a tendency 
for the sheet to oscillate in and out. If the change called for in the last polar distance, d2,, is in the opposite 
sense to that called for on the last passage through this iteration, the maximum permitted proportional 
change, h', is halved before proceeding. 

A somewhat simplified flow diagram of the computer program which performs this calculation is 
given in Fig. 6, with the intention of making clearer the description of the course of the calculation. The 
subroutine R referred to in Fig. 6 is laid out in Fig. 7. Note that R has a normal exit and an exit to the 
fixed point A at the top right of Fig. 6. The conventions of Ref. 26 have been followed in that the flow is 
from top to bottom and from left to right unless arrows indicate the contrary, and that flows merge at 
T-junctions but do not interact at intersections. 

3.4. Choice of Parameters. 

It is clear from the description of the numerical treatment given above that the solutions obtained 
from the iteration scheme will depend, not only on the real parameters e and a (representing the thickness 
and incidence of the wing), but also on the tolerances used in the iterations, on the extent of the finite 
part of the vortex sheet and on the number of points used to define this part of the vortex sheet. The 
choice of these incidental parameters will be described here. 

In the earlier work on the flat plate it was concluded that an angular extent of the finite part of the 
vortex sheet of 157 degrees was adequate, where this was measured about the isolated vortex in the 
transformed plane. This conclusion was based on the very small changes in vortex position, in lift and in 
overall circulation, and the very local changes in pressure on the wing, that were produced when one or 
two further complete turns of the sheet were added. It was also found that doubling the number of points 
used to define the sheet produced small changes in its shape, when the sheet extended for one and a half 
turns about the vortex and the number of pivotal points rose from 21 to 42. Consequently a similar 
distribution of pivotal points was used, requiring I I to define the present sheet extending for 157 degrees 
instead of 21 to define the sheet of extent 517 degrees in Ref. 1. The values of the angular coordinates hj 
are given in Table 1. The parameter k was taken equal to n = 11. 

TABLE 1 

Values of angular coordinates of pivotal points. 

j 1 2 3 4 5 6 7 8 9 10 11 

hj 0.12 0.25 0.39 0.54 0.70 0.87 1-05 1-27 1.57 2.04 2.75 

e ~ ' 

. f r ,  

gr  

a p, 

The tolerances that must be considered are : 

the tolerance on the change in the strength 9 of the isolated vortex ; 
the tolerance on the quantity IF[ proportional to the force on the isolated vortex and the cut; 
the tolerance on the largest proportional change called for in the {d2j } ; 
and 

the size of the step by which the isolated vortex is moved in the search for a minimum of ]F[. 

Unless the first of these, e', is small enough, the search procedure for the minimum of [F[ will fail, as 
discussed in Sub-Section 3.3. Hence, so long as the search proceeds satisfactorily we can assume e' is 
small enough. A value of 10-3 was used for the bulk of the cases computed and found satisfactory. In 
Ref. 1, it was the largest of the changes in the {g~} that was inspected, with a tolerance of I or 2 x 10 -4. 
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Since the largest of the {9i} is between 5 and 10 times smaller than 9, the levels of accuracy are comparable. 
The second tolerance, f ' ,  can be set to zero, and in some cases it was. The search for the minimum of 

IF[ then proceeds through all the stages set out in Sub-Section 3.3. However, this is wasteful if all the 
values of IF[ being found are small, so it is more economical to use a non-zero value of f ' .  In the bulk of 
the cases calculated/" was taken as 10-3. In Ref. 1, the corresponding tolerance was 10-5 on a quantity 
equivalent to IF[ 2, so the present calculations are at least as accurate as the earlier ones in this respect. 

With f ' =  10 -3 the search procedure usually terminated when ]FI fell below f ' .  However, in some 
cases the approximate minimum of IF] was located and found to be larger than f ' .  In such cases it is 
the length of the step, a', that governs the accuracy. For the present calculations a' was chosen to be 10-3, 
and we should expect that errors in vortex position arising from failure to satisfy exactly the condition 
of zero overall force would be of the same order. 

The remaining tolerance, 9_', was taken to be 2 x 10-3. This is the lower of the two values used in Ref. 1 
for the same quantity. As a check on the adequacy of this level, the value of 

c = ~  z~. , 
j = l  

(49) 

where 2j is defined in equation (43), is printed. This gives a direct measure of the error made in satisfying 
the normal velocity condition approximately. In the solutions calculated c did not exceed 6 x 10-s, 
which, with n = 11, corresponds to a mean error IX j[ in the direction of the tangent to the sheet of 2'3 x 10-3 
or 0.13 degrees. 

4. Results. 

Eight sequences of solutions were obtained, in each of which either the thickness, ~, or the incidence, a, 
was held constant while the other was changed in steps of uniform size. The first sequence was for s = 0.5, 
corresponding to ~=0,  and served to check that the present calculation was consistent with that of 
Ref. 1 for flat plates. 

The next three sequences were for fixed values of a=0 '5 ,  1.0 and 1"5, with s decreasing from 0.5 in 
steps of 0.01. At each value of a it became difficult to obtain solutions at the smaller values of s and each 
sequence terminates with s just above 0.1, i.e. 6 just less than 144 degrees. 

The final four sequences were for fixed values of s =0.418, 0'), 0.25 and 0-16, corresponding to ~ = 30, 
60, 90 and 120 degrees. For each value of t  a starting solution was obtained by interpolating in the sequence 
mentioned above with a = 1 and s varying. Then a was varied upwards and downwards from 1 in steps 
of 0-02. No difficulty was found in proceeding to larger incidences, the sequences usually terminating 
at a stage when the computer time requested was exhausted. Convergence difficulties were found at 
small values of a, as in Ref. 1. In fact, for s=0.5 the sequence terminated at almost the same value of 
a as in Ref. 1. The lowest value of a that could be reached is different for different values of s, but too 
much emphasis should not be placed on the apparently irregular variation with s, as no very strenuous 
efforts were made to obtain convergence at lower values of a. 

The principal parameters of the solution in the eight sequences of results are listed in Tables 2-9. 
In each table the first two parameters shown against the current value of a (or s) are the coordinates 
(y, z) of the isolated vortex in the physical, cross-flow, plane, referred to the semi-span, s, as unit of length. 
The second two parameters are the circulation of the isolated vortex, F, and of the finite part of the sheet, 
F~; in each case referred to KUs ,  where K is the tangent of half the apex angle of the wing. The final 
parameter is the coefficient of normal force, C N, divided by K z. The factors K are those needed to produce 
quantities which depend on a (=  a/K)  and s only. By equation (12) with an appropriate factor d introduced, 
we have 

r =gj I5o) 
K U s  s ' 
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where s (or s/d) is given by (15). Using equation (11) and integrating by the trapezium rule we have 

Fs 
KUs 

~m~x 

d 1 /" dAq~ 
s KUd J ~ - d O  

0 

n 

=2~ (hJ+~-hJ-1)gj'withh°=Oandh"+l=h"" 

j = l  

(51) 

The normal force is given by (B.7). 

The procedure described above for obtaining the solutions sequentially suggests that the solutions 
for s:=0.416, 0.3, 0.25 and 0.16 for a=0.5  and 1.5 were each obtained along two independent paths in 
the (e, a) plane. In fact only for e = 0'25 was the value ofe exactly the same, so there are just two comparisons 
that can be made without interpolation. They are given in Table 10. 

TABLE 10 

Comparison of Solutions Reached along Independent Paths. 

Proceeding along At the point y z g CN/'K 2 

a =  1.5 

e,=0.25 

a=0.5  

c,=0.25 

e=0.25 

a = l . 5  

e,= 0.25 

a=0.5  

0.9117 0.3443 2-5343 12-776 

0.9118 0.3443 2.5343 12.776 

0.9707 0.1137 0.4956 2.8796 

0.9717 0.1116 0.4926 2.8723 

In view of the differences between the entries for a = 0"5, those for a = 1 "5 must be regarded as coincidentally 
close. The difference in vortex position for a=0 '5  is consistent with that expected in Sub-Section 3.4. 
The values ofg and CN/K 2 are fairly closely linked to those ofy  and z, so their agreement for a = 1"5 is not 
surprising. The values for a =0"5 indicate how errors in y and z affect the remaining quantities. 

4.1. Sheet Shape and Vortex Position. 

The effect of the thickness of the wing on the shape of the vortex sheet and the position of the isolated 
vortex is illustrated in Fig. 8. The three parts of the figure are for different fixed values of the incidence 
parameter, a, and each part of the figure shows the effect of varying the edge angle, 6, of the wing from 
zero to 120 degrees. 

As the thickness increases, the size of the leading-edge vortex is reduced. This is associated with a 
reduction in the circulation about the vortex (Tables 7-9 or Fig. 13); and corresponds to a reduction in 
the strength of the singularity found at the leading edge in the attached flow (v. Appendix IIl). The 
shrinking of the sheet towards the leading edge implies a marked outboard movement of the isolated 
vortex as the thickness increases. Associated with the outboard movement of the isolated vortex is a 
vertical movement which is upward for the thinner wings and downward for the thicker wings. This can 
be regarded as the resultant of an upward trend from the displacement effect of the thickness and a 
downward trend from the shrinkage of the sheet towards the leading edge. It is only at the largest of the 
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three incidences shown that increasing thickness appears to increase the vertical extent of the sheet. 
The outward movement of the isolated vortex as the thickness increases is associated with an increased 
lateral projection of the vortex sheet beyond the leading edge, in spite of the general shrinkage. 

This goes with a marked change in the shape of the sheet near the leading edge, seen most clearly in 
Fig. 8c, for the largest incidence. As the thickness increases, the curvature of the sheet near the leading 
edge falls, changing sign for the thickest wing, as seen more clearly in Fig. 9b. This appears to arise 
because the vortex sheet must leave the leading edge in a direction tangential to the lower surface. The 
necessity for this initial direction follows from an argument like that of Ref. 27. In the present calculations 
no restriction was placed on the initial direction of the vortex sheet and there is no feature of the trans- 
formed plane which could attract the sheet to this direction (Fig. 2a). The calculated shapes arose 
unambiguously from the calculation procedure described. For a smooth sheet to leave the lower surface 
of a thick wing tangentially and subsequently project well beyond the leading edge, its curvature near 
the edge must be small, or negative. The present calculations do not tell us whether the curvature at the 
leading edge itself is finite or, as appears likely for the flat plate, infinite. 

In Fig. 9, the effect of varying incidence on the vortex formed on two thick wings is shown. For zero 
thickness the development is familiar 1. The scale of Fig. 9 is large enough for the actual pivotal points 
to be indicated on the sheet and these are shown for two values of a in Fig. 9a and three in Fig. 9b. 
They demonstrate how close to the leading edge the calculations extend and how closely the calculation 
reproduces the tangency to the lower surface of the wing. It is curious that the vortex positions for 
6 = 90 degrees (Fig. 9a) lie very close to a straight line through the leading edge, for all but the smallest 
of the values of a for which solutions were found. This contrasts with the apparently tangential approach 
of the isolated vortex to the leading edge for zero thickness, shown in Ref. 1 and Fig. 10a. The departure 
from the straight line for small a might have been attributed to a numerical error, were it not reproduced 
for rather larger values of a for 6 = 120 degrees in Fig. 9b. This suggests that the vortex sheet, at least 
on the thicker wings, may collapse into a part of the wing upper surface as the incidence falls to zero, 
rather than shrink into the leading edge in a uniform manner. The negative curvature of the sheet near 
the leading edge for a=0"6 in Fig. 9b has already been mentioned. At lower values of a the curvature 
near the edge is positive, as on thinner wings, but for a = 0.2 two points of inflexion appear further along 
the sheet. To pursue these mathematically interesting trends to lower values of a would require a different 
approach to the definition of the sheet shape, as the calculated shape in the transformed plane is becoming 
parallel to the radius vectors from the position of the isolated vortex, i.e. dr"/dO in Fig. 3 is becoming large. 

The positions calculated for the isolated vortex are summarized in Fig. 10a. The full lines represent 
the sequences of calculated solutions, the broken lines are interpolations between them. The figure puts 
into perspective the points of detail discussed above and emphasizes the magnitude of the changes intro- 
duced by thickness. These are much larger at the larger incidences, on a scale apparently related to the 
size of the vortex itself. Further minor oddities of the solution appear for very thick wings. Fig. 10b is 
taken from Ref. 19 with a trivial change in the abscissa. It shows the measured variation in the position 
of the vortex centre, interpreted as the point of minimum total head, in a plane 45 per cent of the length 
of the wing from the apex, in a low-speed wind tunnel in conditions where the secondary separation was 
laminar. The variations with thickness and incidence shown in Figs. 10a and b are clearly of the same 
type: inboard and upward as the incidence increases, outboard and upward as the thickness increases 
for thin wings and outboard and downward as the thickness increases for thick wings. 

The actual differences between measurement and calculation are shown in Figs. 1 la for the lateral 
position and 1 lb for the height. Experimental points from Ref. 14 for a wing with apex angle 20 degrees 
and leading-edge angle, 6, of 30 degrees have now been added. Russell determined the vortex core position 
in two ways, as the minimum of total head, and as the point where the local velocity vector was directed 
through the apex of the wing. The difference between the determinations was generally small and the 
mean of the two has been plotted. There appears to be a small discrepancy between the measurements of 
Refs. 14 and 19, tentatively attributed by Russell to a slight yaw of the model to the flow, but it is not 
enough to affect the present discussion. For the wings with 6 = 30 degrees, the difference in lateral position 
between calculation and experiment is about the same as that found in Ref. 1 between the calculations 
for a flat plate and the measurements on thin wings with laminar secondary separation. The error remains 
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about the same for 6 = 60 and 90 degrees, but seems a little larger for 5̀ = 120 degrees, though the measure- 
ments on this wing were made at larger values of a. For the height, the error at 5̀ = 30 degrees is small, 
about the same as that attributed to different definitions of the vortex centre in Ref. 1. As the thickness 
increases the discrepancy grows, until at ,5 = 120 degrees it is as large as the discrepancy in lateral position. 

It seems almost certain that these discrepancies are to be attributed to the presence of the secondary 
separation between the peak suction on the wing and the leading edge. On the positive side, it is known 
that a change in the state of the secondary boundary layer produces a measurable shift in the position 
of the vortex. On the negative side, three alternative explanations can be rejected. First, the effect of 
different identifications of the vortex centre was shown to be small in Ref. 1. Second, the wing thickness 
is properly represented in these calculations. Third, the effect of the assumption of slenderness can be 
dismissed ; since this assumption should become more valid as the Mach number increases towards one, 
whereas the pressure measurements of Ref. 22 point to a slight inboard movement of the vortex, so 
increasing the observed discrepancy, as the Mach number increases subsonically. 

4.2. Circulation. 

In Tables 2-9 the circulation, F, about the isolated vortex and the circulation, F~, about the finite 
part of the vortex sheet represented in the calculations, are tabulated in nondimensional form. Since 
the choice of the extent of the finite part of the sheet is essentially arbitrary, the overall circulation about 
the leading-edge vortex, F +  Fs, is a more significant quantity. 

Fig. 12 shows how the overall circulation varies with incidence for two thick wings and the flat plate. 
It is clear that the growth of circulation with incidence becomes increasingly non-linear as the thickness 
increases; so that, although at a=0.2  an increase of edge angle from 0 to 60 degrees more than halves 
the circulation, at a = 2.0 the corresponding reduction is less than 15 per cent. The calculations terminate 
tantalizingly short of the origin, but it seems likely that the initial rate of growth of circulation at zero 
incidence is zero for the thick wings and non-zero for the flat plate. 

Some measurements of circulation made by Kirkpatrick 2° on two rhombic cones with edge angles 
of 60 degrees are shown for comparison. The measurements were made by traversing a five-tube yaw- 
meter, aligned with the local flow, round a contour 'enclosing' the vortex, in a plane 45 per cent of the 
length of the wing from the apex, in a low-speed wind tunnel. The tangential component of the velocity 
so found was integrated round the contour. Practical difficulties prevented a very close approach to the 
wing, so that part of the shear layer from the leading edge was left outside the contour. Further, part 
of the secondary vortex, whose circulation is of the opposite sense, may have lain within the contour. 
The measurements must therefore under-estimate the circulation of the primary vortex and Kirkpatrick 2° 
is inclined to identify the result with the total circulation of the primary and secondary vortices, rather 
than with that of the primary vortex represented in the calculations. In these circumstances the relation 
between the results of the calculation and the experiment shown in Fig. 12 is very satisfactory. 

Further experimental points, obtained in the same way at various lengthwise stations over the forward 
half of rhombic cones at two values of a, are compared with the present calculations in Fig. 13. The 
vertical extent of the symbols indicates the spread of the measurements for different traversing contours. 
Again the measurements fall below the calculation in a manner consistent with the nature of the compari- 
son. 

Figs. 12 and 13, showing how the circulation about the vortex falls as the thickness increases, suggest 
that the circulation may be correlated with the size of the vortex. There is no obvious measure of the latter, 
but a typical length is the distance of the isolated vortex (or the core of the real vortex) from the leading 
edge. In Fig. 14, the overall circulation is plotted against this distance, ((1 -y)2+ z2)½, for five values of a 
spanning the present calculations, with 5̀ running from 0 to 120 degrees along each curve. In spite of the 
irregularities in the shapes of the individual curves, a roughly consistent variation of circulation with 
scale emerges. The experimental points, based on results of Refs. 19 and 20 for 6 = 30, 60 and 90 degrees, 
show that the corresponding correlation in the real flow (if it exists) is different. 

The density of the circulation along the finite part of the vortex sheet (or the 'strength' of the sheet) 
is shown in Fig. 15 for a = 1 and five values of`5. For the flat plate, the form of the variation is familiar from 
Ref. 1, though the finite part of the sheet is not long enough in the present calculations for the characteristic 



waviness to appear. As the thickness increases, the strength of the sheet is reduced, in parallel with the 
reduction in overall circulation. The sheet also shrinks in length with the reduction in size of the vortex. 
Thus F~, the circulation on the sheet falls more rapidly than the overall circulation, as can be seen in 
Table 8. The shape of the curves near a = 0  in Fig. 15 is not definitely established by the present calcula- 
tions. For 8= 30 and 120 degrees the calculated points are shown, and they are sufficient to indicate that 
the initial rapid decrease in strength found for the flat plate is much reduced for the thicker wings. 

4.3. N'ov-mal Force. 
In Tables 2-9, the normal force coefficient, Cu, divided by K 2 to produce a quantity depending on 8 

and a only, is listed. Since this quantity increases more than proportionately with a, a more revealing 
display is obtained by dividing it by a, to give Cn/c~K. The latter is plotted in Fig. 16 against a for five 
values of 3. Experimental measurements are shown for comparison. Those of Fink and Taylor 28 are 
obtained by integrating the pressures measured at a forward station on a delta wing of apex angle 
20 degrees formed from a thin plate with chamfered leading edges. Those of Kirkpatrick TM are obtained 
from strain-gauge measurements of the normal force on the forward halves of split models in the form of 
rhombic cones of aspect ratio 0.8 (8 = 30, 60 and 90 degrees) and 0.462 (8 = 120 degrees). The experimental 
results therefore correspond closely to conical flow conditions, as postulated in the theory. 

The calculated curves for a > 0  have been joined to the values of CN/C~K given by slender body theory 
for attached flow at a=0 ,  i.e. by the first term of (B.7): 

Cn = 4/ned2 "~ 
c~K ~ - ~ - - -  cot en) ,  (52) 

where s/d is given by (8). Some smoothing of the experimental results at low values of a has been taken 
over from Ref. 18. 

Any lifting surface theory for thin wings in attached flow would provide only a single value for the 
function plotted in Fig. 16, slender thin-wing theory for instance yielding 2n, the limit of (52) as ~--.0.5. 
The reduction in lift due to the thickness of these slender wings in attached flow is shown by the intercepts 
of the calculated curves at a = 0. The effect of leading-edge separation is shown by the rise of the curves 
away from these intercepts as a increases. It is clear that thickness affects the non-linear element in the 
lift much more than the linear part. For instance, for a wing of aspect ratio 1 at 15 degrees incidence, 
the calculated non-linear lift is 42 per cent of the total for a flat plate, but only 21 per cent of the total 
for a wing with 6 = 90 degrees, i.e. its thickness equal to its span. 

The experimental measurements lie somewhat below the calculated results, throughout. For the 
rhombic cones, the discrepancy increases as the thickness increases. On the 'flat-plate' wing, the cham- 
fered surfaces cover most of the wing ahead of the measuring station, so the measurements are likely to 
correspond to the calculated solution for a value of 8 equal to the angle between the chamfered surfaces, 
viz. 8.75 degrees, rather than to 6 = 0. On this basis, they, too, are consistent with a discrepancy which 
increases as the thickness increases, as shown in Fig. 17. On the thicker wings, the discrepancy also 
increases with incidence, but for the flat plate and 6 = 30 degrees it is little affected by incidence. In all 
cases there appears to be a residual disagreement in the slope of the normal force, dCN/d~, at zero incidence, 
found by Kirkpatrick 18 to be around 5 per cent. The present model of the separated flow cannot hope to 
be more accurate t,l~kn, the basic representation of the attached flow and Fig. 16 indicates that it is not 
very much worse. 

The larger discrepancies found for the thicker wings can be associated with the corresponding dis- 
crepancies in vortex position, attributed in 4.1 to the influence of the secondary separation. This agrees 
with Rott's observation ~7 of the importance of secondary separation on thick wedges in unsteady flow. 

5. Conclusions. 
It has been shown that the method of Ref. 1 for calculating the effects of leading-edge separation on 

slender wings in conical flow can be extended without difficulty to deal with thick wings. Comparison 
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with experiment shows a small reduction in the accuracy to which vortex position and normal force 
can be predicted as the thickness increases. These results tend to confirm that it is the omission of 
secondary separation from the model that causes the discrepancy between calculation and measurements 
made in nearly conical subsonic flow. 

The calculations confirm the observed trends : 
(a) for the non-linear lift to be more reduced by thickness than is the linear component of the lift ; 
(b) for increasing thickness to move the centre of the leading-edge vortex outboard in an arc, first 

upwards and then, for the thicker wings, downwards; and 
(c) for increasing thickness to reduce the circulation and size of the vortex. 
They also show further details of the shape and strength of the vortex sheet, in particular that : 
(d) the vortex sheet springs from the leading edge in a direction tangential to the lower surface of 

the wing, and 

(e) the strength of the sheet is reduced by increasing thickness in a similar way to the overall circulation. 
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LIST OF SYMBOLS 

a 

a '  

Aj 

b 

bj 

bo(x) 

Bj 

c 

cj 

CN 

d 

dj 

e2j 

e2j-  1; 

e ! 

f 2 j  

f 2 j -  t 

.f' 

F 

2F1 

g 

gj 

g' 

hj- 

h' 

k 

K 

M 

r 

s 

= e/K, incidence parameter 

Size of step in search procedure 

See equation (26) 

Angle in (-plane (Fig. 3) 

Value of r/s at point of vortex sheet 

Spatial influence function of slender-body theory 

S~e equation (40) 

Residual error in normal velocity condition 

Value of 0 at point of vortex sheet 

Coefficient of normal force 

Semi-span of transform of wing in ~-plane 

Value of P/(d) at point of vortex sheet 

Value of (d#/dO)/(d) at intermediate point 

Value of (d?/dO)/(d) at intermediate point 

Tolerance on change in 9 

Value of dO~dO at intermediate point 

Value of (dr/dO)/s at intermediate point 

Tolerance on IFI 

Complex number proportional to force on vortex and cut 

Hypergeometric function 

= F/K U(d) 

Value of (dA~/dO)/KU(d) at pivotal point 

Tolerance on {3j} 

Value of 0 at pivotal point on sheet* 

Discriminator on {@ 

Number of pivotal points adjusted when vortex is moved 

Cotangent of angle of sweep of wing leading edge 

Mach number 

Inward normal to sheet, also number of pivotal points 

Polar coordinate of sheet in cross-flow plane 

Polar coordinate of sheet in ~-plane 

Real part 

Local semi-span of wing 
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S 

U 

~n 

W 

Iv, 
~:. y.  Z 

y,  Z 

yj, 2j 

y j, zj 

Z 

# 

B 

13(x, y) 

7k 

F 

F(z) 

F, 

,5 

6~ 

A 

F, 

ej  

~j 
0 

01 0 2 03 

2j 

Pi. vj 

q~ 

Z~ 

Local cross-sectional area of slender body 

Speed of undisturbed stream 

Normal component of velocity on sheet in l-plane 

Mean tangential component of velocity on sheet in ~-plane 

Complex potential 

Complex potential of the attached flow 

Rectangular cartesian coordinates in the wing 

Coordinates of vortex in cross-flow plane, referred to s 

Coordinates of point on sheet in cross-flow plane, referred to s 

Coordinates of vortex in ~-plane, referred to d 

Coordinates of point on sheet in ~-plane, referred to d 

Complex variable in cross-flow plane 

Incidence of wing 

=(1 -MZ) ~ 
= ( M  2 - -  I )½ 

Beta function 

See above equation (23) 

Circulation of starboard isolated vortex 

Gamma function 

Circulation about finite part of sheet 

Angle included between wing surfaces 

Increment in d2k, see Fig. 4. Also used in equation (23) 

Difference operator across sheet 

=½(1 -- 3/'2rc) 

See equation (34) 

Complex variable in transformed plane 

yj + izj 

Polar coordinate of sheet in cross-flow plane 

Angles in ~-plane, see Fig. 2a 

Polar coordinate of sheet in ~'-plane 

Value of (dA@/dO)/K U(d) at intermediate point 

See equation (38) 

Arc length along sheet in cross-flow plane 

Arc length along sheet in C-plane 

Angle between tangent and radius vector (Fig. 1) 

Lifting part of disturbance potential 

Angle of rotation of tangent in ~-plane 
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A P P E N D I X  I 

Equat ions  f o r  h m e r m o s t  I teration.  

Since the only quantities which alter in the course of this iteration are 9 and {9~}, it is advantageous 
to work with the unchanging coefficients of these quantities. This Appendix gives these coefficients. 

At the j th intermediate point let 

dff 

where a~ and fli follow from equation (31). Also let the term in 1 d W  
K U  d(  

ent o fg  and {gj} be expressed as v j - i w j .  Then, by (30), we can write 

, as given by (32), which is independ- 

Vtm = (~ j O0 -~- ~ d  (~ j , l f lk  -~- (~ j n + 1 
K U  ' 

k=l 

(A.2) 

at the j th intermediate point, where 

- y 2  _ ( ~ 2 s -  - ~ ) 2 )  2~sY 2~- l(~ - z2s- 1) + flj(y22;- 1 - 1 
6s ,0 rr ((.~'2;- 1 --Y)2+(z2j-  i _~)2) ((Yzj-  1 q-Y)2q-(Z2 s -  1 __~)2)' 

Y2k(hk+ 1 - - h k -  1) 
(~ j,k - -  2~ 

20~jf;2j- l ( Z 2 k -  Z2j-  1) "j- -2 -2 - flj(Y2j- 1 -- Y2k- (Z2j- 1 - -Z2k)  2) 

((Y2j- 1 --fY2k) 2 "J - (22 j -  1 --22k) 2) ((Y2j- 1 q-Y2k) 2q- (Z2j- 1 --Z2k) 2) 

(A.3) 

and 

(~j,n+ 1 = ~jl)j-]- f l jWj  . 

Hence, by (34) and (38), we can write 

tt 

t~j = 8 ' j ,og+ 6'j,kg k + 6'j., + t , 

k=l 

(A.4) 

where 

t 

(~j,O = Zj(~j,O , 

and 

where 

( b2j-lsf2j-l) 
6j,n+ 1 = "gj 8j,n+l - h j + l + h j - i  e2j 

(A.5) 
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4s J l +(;2j-lki~2j-t)a [ 2~ 
"fj = . . . . .  

e Z j  (Y2j-  t + i z 2 j -  1) 2 
(A.6) 

Note that h.+ t = 2 h . - h . _ t  in these relations. The development along these lines cannot be carried 
further, since the/3 i in equation (40) are no longer linear functions of 9 and {9i}. From (38) and (39) we 
can write 

B.=4(_hi-hj_k hj+l-h i #i+l+vj+,](#.+v.)(~.-l+v.-O...(_~j+z+Vj+2) 
J \hj+t-hj_ 1 ~hj+,-hj_, -~j J ;,~u~-5 .--~/.Q+, 

for j = 1,2 . . . .  n - 1 and 

#n\ hn-h,-2 h,-h,-2 -~n--t /" i 
, (A.7) 

The procedure is to compute and store the n(n + 2) numbers 6),k,j = 1,2,... n, k = 0,1 . . . .  (n + 1); the n -  1 
numbers vj given by (38); and n + 1 numbers 

2y Di=- ~ 2  J=  1,2, Do= 2+~ 2 and . . .  n,  
Y2j+~2j 

before entering the innermost iteration. Then, for an approximate set of g and {g j}, the k9 follow from 
(A.4), the Bj follow from (A.7) and the next approximation to 9 follows from equation (41), written as 

?I 

j=1 

(A.8) 

The corresponding approximation to the gj follows from equation (40). 
In this way the innermost iteration can be performed very quickly, in spite of the complication of the 

expressions involved. 
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APPENDIX II 

Calculation o f  the Lift or Normal Force. 

The lift acting on a slender body is given by Ward in equation 9.7.11 of Ref. 25. He uses axes aligned 
with the free stream, Ox'y'z', related to the present system by 

x '  = x c o s  e + z s in  e ,  

and 
y ' = y  

z'  - -  - x s i n  cz + z c o s  ~ .  

• t ~ t  • l Then, if Z = )  + tz, and Z'o(x' ) is the value of Z' at the centre of area of the cross-section of the body 
by the plane x '=const . ,  the complex lateral force is given by 

F =  pU 2 [[-2 ~b + d~et (Z,o(x,)S(x,)) 1 (B.1) 

where b is the coefficient of Z ' -  1 in the expansion of W}/U for large Z' and S(x') is the area of the cross- 
section of the body by the plane x '=  const. 

For the small incidences of the present approximation, 

Z' = y' + iz' = y + i( - xc~ + z)= Z - ic~x , 

and, since Zy=O, Z 'o=- i~x .  Again for small incidence and thickness, S(x ' )=S(x)=2KZx z cot ~,Tr, and 
differentiation with respect to x and x' are equivalent, so that 

dx~' (Z'°(x')S(x')) = ( - 2iK2o~x 3 cot err) = - 6ices 2 cot ere. (B.2) 

To evaluate h it is convenient to deal separately with the contribution h I from the complex potential 
W 1 of the attached flow, and with the remainder, b2, from the representation of the leading-edge vortices. 
We can find /h exactly. We first need the expansion of ~ in terms of Z' for large Z'. From equation (7) 

therefore 

dZ ( ~2 ~ 1 'gd2 

d 7  = = . . . .  

gd 2 
Z =  ~+const  + ~ - +  . . . .  

The real part of the constant of integration must vanish because ~ large and imaginary corresponds to Z 

imaginary, and its imaginary part must vanish because Z(~)= Z(0. Hence 

Z gd2 ed2 
(=  - - ~ - q -  . . . .  Z' + i o ~ x - ~ 7 +  . . . .  (B.3) 

Now, from equation (10) 

id 

- i d  
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d 

K U  cos erc f [ t 2 ~t dt 
= - i a U  + rc ~-dTZ--~-t2J ( - - i t '  

- d  

and so 

d 

_Kcos~f ( t ~ )~ WI io~ + - - ~  ~ j  In(~-it)dt+const 

- d  

= - ia~ 4 - -  
K cos/~//; 

d d 
" t2 \ e  (~/ '  t2 "Xe 

J +const 
- d  - d  

Now the first of these integrals is 2s cosec ere, by equation (8), and the second vanishes, so that 

2Ks cot en W1 - ic~(-~ In ( + c o n s t + 0 ( ( - 2 )  
U rc 

f , • ed2"~  2Ks cot s~ ( Z' iax'~ = - , ~ z  + ~ - 7 ) +  ~ ~,, +7)+~o, st+o~z'-~. 

Therefore 

(B.4) 

We now find b2 in terms of the numerical approximation to the vortices. From (10) it is clear that the 
leading term in the expansion of W for large ( is 0((-1), so only this term need be considered. To this 
order ~, Z and Z' are equal. The appropriate expression can therefore be written down by inspection of 

equations (10) and (24): 

b2 = 
r(¢.+(v) 

2rci U 

Kd2 
2~i gjf~2s(h2+ 1 - hi- 1) 

j = l  

/ I  

iKoyd 2 iKd 2 
- - - g - -  + ~ ~ oP2j(hj +1 - hi_,) 

j = l  

(B.5) 

with ho = 0 and h,+ 1----h, by convention. Suitable factors d z have been reintroduced where necessary to 

restore proper dimensionality. 
The lift is the imaginary part of the complex force F and follows from (B.1), (B.2), (B.4) and (B.5): 

j = l  
(B.6) 
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Since the wing area is xs or s2/K, and lift and normal force are the same in this approximation, we have 

CN 4 /ned2 "~ 4gyTd2 2d2Z -~= a~ ~-£---cot~n)+--)5--+-~ gjyzj(hj+l-h~-l). 
j = l  

(B.7) 

When ~=½, d - s ,  and this agrees with equation (63) of Ref. 1. The first term represents the linear lift 
arising in attached flow. 
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APPENDIX III 

The Velocity Near the Leading Edge in Attached Flow. 

Although the formulation (9) of the velocity in the attached flow past the rhombic cone is suitable 
for numerical evaluation at points away from the wing surface, numerical difficulties would arise from 
the treatment of the Cauchy principal-value integral which occurs on the surface itself. Moreover, the 
formulation reveals nothing of the analytic behaviour of the velocity field near the leading edge, where 
( =  0. In this Appendix alternative expressions are derived from (9) to complement it in these respects. 
Equation (C.9) was used as a check that the numerical treatment of (9), embodied in equation (23), was 
in fact adequate for the present calculations. 

Using I4"1 fof"the complex potential of the attached flow, we can write equation (9) as 

id 

/,::--6 d-T = - i a +  ~ ,  ..... bT¢-~] ( - t  
- i d  

(where t=id sin 0 and ~=( ld)  

where 

By differentiation we find 

Integration by parts gives 

7~ 
2 

cos ezr f Itan 2" OI cos 0 dO 
= - ia+ 

rc (1 - i sin 0 
- r r  

2 

C O S  87'17 
= - i a + I - - ,  

7~ 

2 

f tan 2~ 0 cos 0 dO 
I=2(1 j C-~s-~n ~ 0 

0 

dI 
d(i 

2 

I f 2 sin 0 cos 0 
(1 ~-2 tan2"OsinO ((~+sin2 o)2dO. 

0 

dI 

d(t 

2 

I 2 f tan 2" 0 cos 0 (2e + cos 20)dO 
(1 t- (T+-i- ~lz +sin2 0 ' 

0 

(cA) 

(C.2) 

and this can be rearranged as 

dI 2e 2 
dC~ C~(C~+I) I= C~+1 J '  

(C.3) 
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where J = 

2 

f tan 2~0cos0d0 ~ 1 =TB(~+e, 1 - e ) ,  

0 

by setting x =  tan z 0 and using 3.194.3 of Ref. 25. The solution of the differential equation (C.3) can be 
written at once as 

r2 + 1\~ i dt ~zl-L ) l=2J t2~(t2 + 1) t _,,  since I ~ 0  as ~'l---> oo. 

Again using section 3.194 of Ref. 25 we can express the integral in terms of the beta function and the 
hypergeometric function : 

I = [ ~ = I B t ½ + ~ , I - ~ )  ~ B 6 - ~ , , ½ ) - i ~  , 1 - ~ , ~ - ~ ; ~ - ~ , - ¢ ~  . 
\~t  + t /  

(C.4) 

The product of the beta functions simplifies, using the definition in terms of the gamma function and 
equation 8.334.2 of Ref. 25 : 

B(½ + e, 1 - e)B(½- e, ½) = 2re/cos ~ .  (c.5) 

To display the analytic behaviour of the velocity near the leading edge we need the expansion of the 
hypergeometric function : 

~# ~(c~+ 1 )# (#+  1)zz 
2Ft (  ~, fl; 7, z ) =  l q-~-f z q" 7'(7 + 1).1.2 + . . . .  (C.6) 

Then, remembering 

= - (c.7) 

we have, by (C.1), (C.4), (C.5), (C.6) and (C.7) 

1 dw~ 
KU dZ 

(1+ 1"~ cos en B(½+ ~I -z~ 
-ia -~12--  ) + 1 . . . .  n e, 1 - ~) i - ~  ( 1 - ( 1  - 2 e ) O ( ~ ) ) .  

The first term on the right is the incidence-dependent velocity. If ~1 is real, corresponding to Z in the 
plane of the wing and ahead of the leading edge, this is an upwash which tends to infinity at the leading 
edge like ~-2~, i.e. like (Z-s)-z~/~l + 2~). If ~t is imaginary, corresponding to Z on the wing surface, the 
incidence term is tangential to the wing surface, according to the interpretation of the conformal trans- 
formation in Section 2. The remaining terms on the right give the velocity at zero incidence and this is 
clearly non-singular. Provided e <½, i.e. the wing has thickness, the lateral velocity increases towards KU 
as the leading edge is approached from upstream (~l real and small). In the limit ~---,½, the velocity field 
at zero incidence vanishes. 
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and so 

= - -  iaU+ 

wl 
- i~( + - -  U 

= - ic~( -4 

d 

KU cos,~ f ( t ~ "~ dt 

- d  

d 

Kcose~ f  { t: ~ c 
n \ d  2 _ t2 J In ( ( -  it)dr + const 

- d  

K cos 8n 

, ,_  

d d 

f [" t2 "~e iK cos en f [" t2 '~ e 

- d  - d  

Now the first of these integrals is 2s cosec en, by equation (8), and the second vanishes, so that 

wl _ ia(+2Ks coten In (+cons t+0( ( -2 )  
U n 

Therefore 

/ , • e d 2 \  i ~ z x \  , 
- -  ~ 7 )  + const + 0(Z - 2). 

(B .4) 

We now find b 2 in terms of the numerical approximation to the vortices. From (10) it is clear that the 
leading term in the expansion of W for large ( is 0((-1), so only this term need be considered. To this 
order ~, Z and Z' are equal. The appropriate expression can therefore be written down by inspection of 
equations (10) and (24): 

b2 = 
r(¢v+(v) 

2niU 2hi gjf~2j(hj+ 1 -h i -  1) 
j = l  

iKgyd 2 iKd2 2 
4---~-- 9jY2j(h;+ 1 - h i _  1) 

j = !  

(B.5) 

with h 0 =0  and h,+ 1 =h ,  by convention. Suitable factors d 2 have been reintroduced where necessary to 
restore proper dimensionality. 

The lift is the imaginary part of the complex force F and follows from (B.1), (B.2), (B.4) and (B.5): 

L= pU212n~ed2- 2~sZ cot En + 2Kg~d2 + Kd2 2 gj~zj(hj+ ~ - hj_ O] . 
j = l  

(B.6) 
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Since the wing area is xs  o r  sZ/K, and lift and normal force are the same in this approximation, we have 

n 

Cu , / 'ned 2 = ~a t -  ~ - -  cot ~ 49Y~d2 2d 2 ~-a Kz ere) + ~ + ~2- L 9jy2j(h/+ t - h j - , ) -  
j = l  

(B.7) 

When e=-~, d=s ,  and this agrees with equation (63) of Ref. 1. The first term represents the linear lift 

arising in attached flow. 
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APPENDIX III 

The Velocity Near the Leading Edge in Attached Flow. 

Although the formulation (9) of the velocity in the attached flow past the rhombic cone is suitable 
for numerical evaluation at points away from the wing surface, numerical difficulties would arise from 
the treatment of the Cauchy principal-value integral which occurs on the surface itself. Moreover, the 
formulation reveals nothing of the analytic behaviour of the velocity field near the leading edge, where 
(=0.  In this Appendix alternative expressions are derived from (9) to complement it in these respects. 
Equation (C.9) was used as a check that the numerical treatment of (9), embodied in equation (23), was 
in fact adequate for the present calculations. 

Using Wt fm':'~the complex potential of the attached flow, we can write equation (9) as 

1 dW~ 
KU d~ 

= - ia+ 

id  

COS 87Z f t2 ~ e 

~ - t  
-- id  

(where t = id sin 0 and ( =  (ld) 

where 

By differentiation we find 

Integration by parts gives 

7t 
2 

= -ia+C°Senn f Itanz"~1-0[i COSsin 00 dO 

--/r 
2 

COS 8/~ 
= - i a + I - - ,  

7~ 

2 
f tan2~ 0 cos 0d0 

I=2(1 J ~2+sin20 • 
0 

dI 
d~  

n. 
2 

I f 2 sin 0 cos 0 
~1 q- 2 tan z" 0 sin 0 (~2 + sin 2 0)2 dO. 

0 

dI 
2 

I 2 ~ tan 2" 0 cos 0 (2e + cos 20)dO 

J ' 
0 

(c.1) 

(c.2) 

and this can be rearranged as 

dI 2e I - ~  J (C.3) 
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n 
2 

where J = I tan2* 0 cos 0 dO=½B(½+e, 1 -~),  

0 

by setting x=tan2 0 and using 3.194.3 of Ref. 25. The solution of the differential equation (C.3) can be 

written at once as 

~2 } 2J t2,(tZ+l)t_ ~, s i n c e l ~ 0 a s ~ l ~ o e .  

Again using section 3.194 of Ref. 25 we can express the integral in terms of the beta function and the 
hypergeometric function" 

~ B ( x - * : , 2 ) - i z ~ 2 F 1  l - z ,  I= B(½+e,i-e) , 1 , 1 ~t ~ - e ; ~ - e , - ~ 2  (C.4) 
\st / 

The product of the beta functions simplifies, using the definition in terms of the gamma function and 
equation 8.334.2 of Ref. 25: 

B(½+ e, 1 - e)B(½- ~, 3) = 2n/cos he. (C.5) 

To display the analytic behaviour of the velocity near the leading edge we need the expansion of the 

hypergeometric function : 

c~fl 1) z +C~( a+ l)fl(fl+ z2+ . . . .  
2Fl(a, f i ; Y ' z ) = l + ~  7(7+1).1.2 

(C.6) 

Then, remembering 

d Z  = - 
(C.7) 

we have, by (C.1), (C.4), (C.5), (C.6) and (C.7) 

l dW t . //G'~2+1 ~ cos~;Tc 
- , a / Z - ~ - - !  + 1  . . . .  

KU dZ \ {~ / n 

¢ ' 1 - 2 e  

B(½+~, 1-8)  ~ ( 1  - ( 1 -  2e)0((2)). 

The first term on the right is the incidence-dependent velocity. If ~l is real, corresponding to Z in the 
plane of the wing and ahead of the leading edge, this is an upwash which tends to infinity at the leading 
edge like ~72~, i.e. like (Z-s )  -2~'/~+2~). If ~1 is imaginary, corresponding to Z on the wing surface, the 
incidence term is tangential to the wing surface, according to the interpretation of the conformal trans- 
formation in Section 2. The remaining terms on the right give the velocity at zero incidence and this is 
clearly non-singular. Provided ~ <3, i.e. the wing has thickness, the lateral velocity increases towards KU 
as the leading edge is approached from upstream (~ real and small). In the limit ~ ½ ,  the velocity field 

at zero incidence vanishes. 
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For numerical calculation it is convenient to write 

1 ( 2, f 1 3 _(2"~ ( ( 1 + )  dt 
2F1 1 - e , ~ - e ; ~ - e ,  tJ=B(½, 1 - e )  t~(1-t)~(1 + (20  ' 

0 

by 9.131.1 and 9.111 of Ref. 25. Then, by (C.1), (C.4), (C.5) and (C.8) 

(c.8) 

2 

K U  d~ t a +  - - -  1 + ~2 sin 2 0 '  
0 

(C.9) 

where t = sin 2 0 has been introduced into (C.8). This form is suitable for numerical evaluation for small 
values of ~1 and for points on the wing surface if these are required. 

y '  

37 



TABLE 2 

Solutions for  e=0"5, 6 =0.  

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0-9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1-6 
1"7 
1.8 
1.9 
2"0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 

0.910 
0.874 
0.841 
0.815 
0.788 
0.764 
0-743 
0-725 
0.709 
0'696 
0'686 
0.676 
0-669 
0'663 
0.658 
0"654 
0.652 
0-649 
0-648 
0.647 
0.646 
0.646 
0.646 
0.646 
0.647 
0.648 
0.648 

O.047 
0.071 
0.096 
0.121 
0.147 
0.172 
0.198 
0.222 
0.247 
0.270 
0.291 
0-312 
0.332 
0"350 
0.368 
0"385 
0.400 
0.415 
0.429 
0.443 
0.456 
0-469 
0-481 
0-492 
0-503 
0"514 
0"524 

F 

K U s  

O.676 
1.025 
1-378 
1.730 
2.089 
2.457 
2-835 
3.227 
3-633 
4-059 
4.501 
4.960 
5.440 
5"936 
6.450 
6.981 
7.527 
8.091 
8.662 
9.252 
9.856 

10.48 
11.06 
11.74 
12.39 
13.05 
13.72 

K U s  

0"080 
0"160 
0"263 
0'376 
0'508 
0'649 
0"795 
0"941 
1 "096 
1 '246 
1 "394 
1-542 
1"690 
1"835 
1"974 
2"110 
2'239 
2'374 
2'499 
2"622 
2'744 
2"865 
2"981 
3"092 
3-207 
3-311 
3"419 

CN 
K 2 

1"571 
2-51 
3"54: 
4"64: 
5'831 
7'09f 
8"41, 
9'80C 

11'25 
12"76 
14"31 
15"92 
17-59 
19-30 
21"06 
22"86 
24'70 
26'60 
28'51 
30"48 
32'48 
34"53 
36-60 
38"71 
40"87 
43-04 
45.25 
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TABLE 3 

Solut ions for e = 5 (0.4167), ~ = 30 ° 
I Z  

0"1 
0'2 
0"3 
0.4 
0"5 
0'6 
0"7 
0"8 
0"9 
1"0 
1.1 
1-2 
1"3 
1-4 
1-5 
1"6 
1"7 
1"8 
1"9 
2"0 
2"1 
2"2 
2"3 
2.4 
2"5 
2"6 
2"7 

0"977 
0'949 
0.926 
0.904 
0.882 
0.861 
0.840 
0"821 
0"802 
0"784 

0-022 
0"050 
0"077 
0.104 
0.131 
0.159 
0.187 
0.215 
0.244 
0.273 

F 

KUs 

0'184 
0"463 
0.764 
1 '087 
1.424 
1"772 
2"132 
2.499 
2-876 
3"265 

Fs 

KUs 

0-010 
0.046 
0"099 
0"172 
0"260 
0'364 
0"485 
0.613 
0"755 
0"906 

0"769 
0-754 
0"740 
0"728 
0"718 
0"709 
0-701 
0"695 
0"690 
0"686 
0'682 
0"680 
0.677 
0"676 
0"675 
0.674 
0"674 

0.300 
0.328 
0"354 
0"380 
0.404 
0-426 
0"448 
0"468 
0-486 
0"5O4 
0-521 
0.537 
0"552 
0"566 
0"579 
0"592 
0"604 

3-666 
4"080 
4"510 
4"952 
5.415 
5"890 
6"386 
6'901 
7.431 
7"969 
8'533 
9"110 
9.695 

10"30 
10"91 
11.55 
12-19 

1.059 
1.222 
1-385 
1-553 
1-717 
1"877 
2'041 
2"199 
2-353 
2-503 
2"657 
2"797 
2'946 
3"082 
3'215 
3.354 
3.479 

CN 
k2 

0.618 
1.341 
2"152 
3"055 
4.043 
5.117 
6-273 
7"503 
8"813 

10"20 
11-64 
13-16 
14.73 
16"36 
18"05 
19"77 
21 "56 
23"39 
25'26 
27'16 
29.14 
31 '13 
33'17 
35'24 
37'35 
39'52 
41 "68 
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TABLE 4 

Solutions for e = 4  (0.3333), 6 = 60 ° 
IA 

a 

0.1 
0.2 
0.3 
0-4 
0"5 
0"6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1-4 
1-5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 

0.989 
0.974 
0.960 
0-947 
0.934 
0"922 
0"909 
0.896 
0.883 
0.870 
0.858 
0.845 
0.833 
0.820 
0.809 
0.797 
0.787 
0.776 
0.767 
0.758 
0.751 
0.744 

I 

Z 

0.020 
0.048 
0.074 
0"099 
0'126 
0.152 
0.179 
0.206 
0.233 
0.261 
0.289 
0.318 
0.347 
0.376 
13"404 
0"433 
0"461 
0"489 
0"515 
0"540 
0"565 
0"588 

F 

K U s  

0"107 
0.314 
0.556 
0-827 
1-123 
1.440 
1-775 
2.125 
2-489 
2.866 
3.254 
3.654 
4.063 
4.484 
4.918 
5.36O 
5.818 
6.283 
6.768 
7-266 
7.777 
8.306 

Fs  

K U s  

0"006 
0-028 
0"064 
0.112 
0"172 
0.244 
0.327 
0.422 
0.528 
0.645 
0.772 
0.910 
1 '057 
1"214 
1.373 
1.545 
1"715 
1 "896 
2"077 
2'257 
2'437 
2"615 

CN 
K 2 

0-544 
1-160 
1-847 
2.605 
3-439 
4.347 
5.333 
6.394 
7.535 
8.753 

10.04 
11.42 
12.86 
14-38 
15.96 
17.62 
19.33 
21.11 
22.94 
24.82 
26.76 
28.73 
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TAB:DE 5 

Solutions for e=12 (0-25), ,:5 = 90 ° 

0"1 
0.2 
0.3 
0'4 
0"5 
0.6 
0.7 
0.8 
0"9 
1.0 
1.I 
1-2 
1-3 
1-4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2-1 
2-2 

0.990 
0.990 
0.984 
0"978 
0.972 
0.966 
0.960 
0-954 
0.948 
0.942 
0'936 
0'930 
0.924 
0.918 
0.912 
0.906 
0.899 
0.893 
0.886 
0-880 
0.873 
0-866 

0.028 
0.043 
0"066 
0.089 
0.112 
0.134 
0.157 
0-180 
0.203 
0.226 
0.250 
0.273 
0.296 
0.320 
0-344 
0.369 
0.393 
0.418 
0.444 
0.469 
0"496 
0"522 

F 

KUs 

0,082 
0"202 
0.381 
0-588 
0.822 
1.081 
1.361 
1.661 
1.982 
2.318 
2.672 
3.040 
3.422 
3.820 
4.231 
4-654 
5.088 
5.536 
5-993 
6-463 
6.943 
7.431 

I '~$ 

KUs 

0.008 
~0,018 
0.040 
0-070 
0.108 
0.153 
0"204 
0-264 
0-331 
0.404 
0..484 
0.570 
0.664 
0.766 
0-874 
0-990 
1.111 
1.243 
1.385 
1.525 
1.681 
1.844 

,CN 
K 2 

0"491 
1-013 
t-586 
2"203 
2"872 
3"593 
4"370 
5-205 
6"102 
7"053 
8.4)72 
9-148 

10"29 
11"50 
12-78 
14"12 
15"53 
17"02 
18"58 
20'19 
21 "89 
23-66 
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TABLE 6 

Solutions for e = 2  (0.1667), ~ = 120 ° 
I Z  

0"2 
0'3 
0.4 
0-5 
0-6 
0-7 
0"8 
0"9 
1'0 
1'1 
1"2 
1'3 
1'4 
1'5 
1"6 
1"7 
1"8 
1-9 
2-0 
2-1 
2"2 

0"983 
0'993 
0.996 
0.998 
0"996 
0-995 
0-994 
0-993 
0"991 
0-990 
0"989 
0'988 
0"987 
0'986 
0'985 
0"984 
0"983 
0-982 
0-981 
0"980 
0"978 

0"068 
0.071 
0'077 
0.089 
0"110 
0"127 
0'143 
0'160 
0"178 
0"194 
0-211 
0"228 
0"245 
0"261 
0"278 
0"294 
0"311 
0"327 
0.344 
0"362 
0.379 

F 

KUs 

0.139 
0.250 
0.375 
0.529 
0-722 
0.922 
1-134 
1.367 
1.619 
1.885 
2.166 
2.466 
2.780 
3'107 
3.450 
3.806 
4.179 
4.561 
4.957 
5.374 
5-798 

I'~$ 

KUs 

0"026 
0-034 
0"043 
0"059 
0"088 
0"115 
0'144 
0'179 
0"217 
0"258 
0"301 
0'349 
0"400 
0"454 
0"510 
0-570 
0-634 
0"699 
0'768 
0"845 
0'924 

C N 

K 2 

0"899 
1-379 
1"869 
2-387 
2"951 
3"529 
4'130 
4.765 
5"437 
6"138 
6"874 
7'653 
8'468 
9'329 

10"21 
11-15 
12.13 
13-14 
t4"20 
15"33 
16"50 
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TABLE 7 

Solutions for a = 0.5 

0"12 
0"14 
0"16 
0"18 
0"20 
0"22 
0"24 
0"26 
0"28 
0"30 
0"32 
0"34 
0"36 
0"38 
0"40 
0"42 
0"44 
0"46 
0"48 

Y 

1.000 
0"999 
0.998 
0.993 
0-988 
0.981 
0.975 
0.967 
0-960 
0-950 
0-941 
0-931 
0.920 
0.906 
0.894 
0"880 
0.865 
0.848 
0.831 

0.121 
0.098 
0.088 
0.099 
0.101 
0.107 
0.109 
0.116 
0.117 
0.122 
0.124 
0.127 
0.128 
0.131 
0-131 
0-131 
0.130 
0-128 
0.125 

I 

F 

K U s  

0"440 
0"470 
0"508 
0-590 
0"651 
0"722 
0"786 
0"863 
0"929 
1.005 
1.075 
1.148 
1.218 
1"293 
1"363 
1'435 
1.507 
1.581 
1"654 

K U s  

0"080 
0"063 
0"057 
0"073 
0"080 
0-092 
0"102 
0"118 
0"128 
0.146 
0.160 
0"179 
0"196 
0"220 
0-240 
0-264 
0-289 
0"318 
0-347 

CN 
K 2 

2-227 
2.282 
2.354 
2.476 
2.576 
2-695 
2-809 
2-945 
3.066 
3.210 
3.345 
3-489 
3.628 
3.779 
3-921 
4.068 
4.212 
4-359 
4.504 
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TABLE 8 

Solutions for a = 1.0 

0'12 
0.14 
0-16 
0"18 
0"20 
0.22 
0'24 
0"26 
0"28 
0'30 
0"32 
0.34 
0"36 
0-38 
0.40 
0.42 
0.44 
0-46 
0"48 

I'010 
1 "003 
0-994 
0"985 

0.138 
0-158 
0.173 
0"186 

F 

KUs  

1-195 
1.380 
1.558 
1"736 

I~s 
K U s  

0-128 
0"166 
0"203 
0"243 

0'974 
0"962 
0'949 
0"935 
0"919 
0"902 
0'883 
0.864 
0-843 
0.823 
0-802 
0-781 
0.761 
0-742 
0-725 

0'199 
0"212 
0"221 
0'231 
0"240 
0"249 
0.257 
0"263 
0"269 
0.271 
0"273 
0"273 
0.269 
0-264 
0-256 

1-911 
2"083 
2'240 
2"393 
2-534 
2"668 
2'790 
2'903 
3"005 
3"103 
3.191 
3.278 
3"366 
3.451 
3-540 

0'285 
0"333 
0"378 
0"429 
0"482 
0.542 
0-605 
0"664 
0.732 
0.791 
0-856 
0"915 
0"967 
1.017 
1-060 

CN 
K z 

4"687 
4-996 
5"319 
5'674 
6'050 
6-451 
6-848 
7'259 
7'668 
8"084 
8-491 
8"876 
9"256 
9"603 
9-939 

10-25 
10"53 
10'79 
11-03 
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TABLE 9 

Solutions for a = 1"5 

0'12 
0"14 
0"16 
0"18 
0"20 
0"22 
0'24 
0"26 
0"28 
0"30 
0"32 
0"34 
0'36 
0"38 
0"40 
0"42 
0"44 
0'46 
0"48 

1'012 
1 "002 
0-990 
0"976 
0"960 
0'942 
0'923 
0"901 
0"877 
0"852 
0"826 
0"800 
0"776 
0"754 
0"733 
0-715 
0"699 
0"685 
0'674 

0"202 
0"228 
0'253 
0"277 
0"297 
0"317 
0"335 
0"353 
0"369 
0"385 
0"398 
0'407 
0"412 
0-412 
0"409 
0"403 
0"393 
0"380 
0"366 

F 

KUs 

2.308 
2.660 
2.999 
3.322 
3-611 
3.880 
4.119 
4.334 
4.522 
4"686 
4.831 
4-958 
5"080 
5.200 
5.316 
5.435 
5.552 
5"678 
5.807 

KUs 

0"261 
0"339 
0'424 
0"516 
0'608 
0.711 
0-816 
0"931 
1 "049 
1"174 
1'299 
1'413 
1"512 
1"595 
1 "668 
1"725 
1'770 
1.800 
1"816 

c~ 
K z 

7"636 
8"311 
9"058 
9"861 

10'67 
11.52 
12'35 
13"19 
14-00 
14"78 
15"52 
16"17 
16"76 
17"26 
17-72 
18"11 
18"45 
18'77 
19'04 
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