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Summary.

The vortex-sheet model of leading-edge separation previously applied to flat-plate delta wings has
been applied to thick delta wings in the form of rhombic cones. The simplifications introduced by the
use of slender-body theory and an asymptotic treatment for the core of the vortex have been retained.
The results show that the vortex sheet leaves the wing tangentially to the lower surface. The calculations
reproduce the observed trends with increasing thickness: the vortex core moves upwards and outwards
and the circulation and both the linear and non-linear parts of the lift fall off. The quantitative agreement
between theory and experiment worsens somewhat as the thickness increases, probably indicating an

increase in the influence of the secondary separation.

*Replaces RAE Technical Report 71057—A.R.C.33 024,
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1. Introduction.

The phenomena of leading-edge separation from wings of low aspect ratio have frequently been
described. A number of theoretical models have been developed to treat the flows which result. The
phenomena and the earlier methods have been reviewed by the author!. Subsequently, Polhamus? has
published a successful heuristic correlation between the non-linear lift produced and the leading-edge
suction predicted by the theory of attached flow. Ermolenko? has calculated the flow past a rectangular
wing of low aspect ratio, assuming a form for the vortex sheets from the side edges, and Belotserkovskii*
has further advanced the treatment of side edge separations. Nangia and Hancock® have applied the
single-vortex model, as used by Brown and Michael®, to delta wings in subsonic flow. Of these con-
tributions to the problem of leading-edge separation, Refs. 2 and 5 both allow, explicitly or implicitly, for
the upstream influence of the trailing edge and are therefore applicable to the calculation of overall
forces in subsonic flow, unlike slender-body theory methods such as that of Ref. 1, which are only valid
well upstream of subsonic trailing edges. However, as with the methods of Gersten’ and Garner and
Lehrian® the flow model has to be simplified to permit this.

Other recent work, by Sacks, Lundberg and Hanson® and by Levinski et al.'®'!, retains the slender-
body approximation, at least for the non-linear lift. Ref. 9 deals with non-conical thin wings, mounted
symmetrically on bodies of revolution, by tracing the paths of discrete vortices shed from points along
the leading edge. The consequent rolling-up process is naturally irregular, but the overall force and
moment are not very sensitive to this if enough vortices are introduced. The shedding rate at the leading
edge can be determined either by applying the Kutta-Joukowski condition there or else on an empirical
basis. Levinski and Wei'® extend the author’s method® to deal with combinations of thin delta wings and
conical bodies of circular or elliptic cross-section. Levinski, Wei and Maki!® treat non-conical combina-
tions of thin wings and bodies with circular or elliptic sections, using the vortex-sheet model of Ref. 1
and the body representation of Ref. 10. They write the boundary conditions as ordinary differential
equations with the streamwise distance as the independent variable, as in Ref. 12. Finally, there have
been two further applications of the single-vortex model: Jobe!? has treated cambered wings and Portnoy
and Russell’* have treated conical wings with small, but non-zero, thickness.

So far no calculations have appeared involving the formation of a vortex sheet from an edge at which
the upper and lower surfaces meet at a non-zero angle. Maskell’s similarity theory!>:'® draws attention
to the importance of edge angle in determining the development of the vortex, edge angle being one of
the parameters of the similarity relations. Rott!” has conjectured that difficulties would arise in calculating
a vortex-sheet model for separation from a wedge of non-zero angle. Delta wings in the form of cones
with rhombic cross-sections have been studied in a wide range of experiments. At low wind speeds,
Kirkpatrick has measured the normal force'® on the forward part of models, where the flow is almost
conical, the position of the core of the vortex'® and the circulation about the vortex?°. Russell'* has
measured surface pressure distributions and surveyed flow fields, also at low speeds. Pressure distributions
have been measured by Britton?* at supersonic speeds and by Smith and Kurn?? at subsonic and transonic
speeds. Wyatt and East®® have measured skin friction and pressure distributions at low speeds.

The present paper presents calculations made by the method of Ref. 1 for the flow past wings in the
form of rhombic cones with flow separation from the leading edge. The method involves the representation
of the circulation in the vortices in the real viscous flow by spiral vortex sheets arising from the leading
edges in an inviscid, potential-flow model. The position and strength of these sheets are determined by
the conditions that they form stream surfaces with no jump in pressure across them. The inner parts of
the spiral sheets are replaced by isolated vortices, on the basis of asymptotic solutions. This model is then
treated by slender-body theory.

The numerical treatment uses the simplest finite difference representations and finds vortex-sheet
shapes and strengths, and isolated vortex positions and strengths, which satisfy the boundary conditions,
by using three iterative procedures. One of these, that which determines the vortex position, was a source
of difficulty in the solutions for a flat wing, so a modified procedure has been devised. Levinski and Wei'®
use a third, apparently very satisfactory, procedure. The only other change from Ref. 1 arises from the
change m wing shape. The use of slender-body theory reduces the problem to the solution of Laplace’s



equation in the cross-flow plane and the first step is the conformal transformation of the cross-section
of the wing. Since this is now a rhombus, a Schwarz-Christoffel transformation is needed instead of the
simple Joukowski transformation used previously. The boundary condition on the wing is satisfied by a
distribution of sources on the transformed contour.

Starting approximations for the iterations are readily available from the previous solutions for flat
plates. Solutions have been found for wings of gradually increasing thickness at constant incidence and
then further solutions found for wings of typical, fixed thickness through ranges of incidence. In this way,
the same combination of incidence and thickness is arrived at along different paths in the incidence-
thickness plane. When this happens, the solutions are found to be very close. For the flat plate, the tangent
to the vortex sheet at the leading edge lies in the wing plane and is therefore symmetrically placed with
respect to the upper and lower surfaces. As the thickness increases, the solutions which emerge from the
iterative procedure show that the sheet remains tangential to the lower surface of the wing. No difficulty
was encountered in calculating the solution near the leading edge.

The calculated solutions show variations of normal force, vortex position and circulation with thickness
and incidence which are very similar to those observed. However, the small discrepancies between
calculation and experiment observed in Ref. 1 for flat plates become larger as the thickness increases. It
is likely that this can be attributed to a growing influence of the secondary separation as the thickness
increases and the primary vortex weakens. Such an increase in the role of the secondary separation was
predicted by Rott'” in an analogous problem. For the thinner wings, which are of greater practical
importance, the agreement between theory and experiment is satisfactory. In particular, the theory
confirms the existence of appreciable reductions in lift from the flat-plate values at small edge angles, a
point which complicates comparisons between calculations for wings of vanishing thickness and measure-
ments for thin plates with chamfered edges.

The material of this Report was given a brief interim presentation at the eighth Biennia! Symposium on
Fluid Mechanics at Tarda, Poland in September 1967.

2. Formulation of the Problem.

The mathematical model of the flow is the same as that used in Ref. 1 and the treatment of it is similar.
An abbreviated presentation is therefore sufficient, keeping the same basic notation.

Fig. | shows the wing, the coordinate system and the vortex models. The origin O of a rectangular
cartesian system is taken at the apex of the wing with Ox along the axis of the wing, Oy to starboard
and Oz upwards. The undisturbed stream of speed U makes an angle « with Ox. The section of the wing by a
plane x=constant is a rhombus, of semi-span s=Kx, with an interior angle ¢ at the leading edge. It is
convenient to introduce & = (n — 8)/27, so that ex is the angle shown in Fig. 1. Then § =0, ¢ = 0-5 corresponds
to the flat plate, 6 =n/2, e=0-25 corresponds to a wing of square cross-section, and when d—x, é—0 the
wing disappears into the vertical plane of symmetry.

On the port half-wing is sketched the rolled-up spiral vortex sheet of indefinite extent which is taken
in the first place to represent the circulation distribution of the leading-edge vortex. On the starboard
half-wing is shown the approximation used for calculation purposes. All the circulation on the sheet
from a line OF onwards is concentrated into a line vortex along OV, This leaves behind a cut, across
which the velocity potential jumps by an amount equal to the circulation of the line vortex. This is the
configuration to which we are to apply slender-body theory.

Ward’s** development of slender-body theory uses axes related to the undisturbed stream, but the
transition to the present system presents no difficulty for small angles of incidence. He finds that the
velocity potential can be expressed as the sum of a function of x, which depends on the Mach number and
takes different forms for subsonic, transonic and supersonic speeds, and a harmonic function of y and z.
It is convenient to write the slender-body approximation to the complete potential as

Ulx+bo(x))+ D,

where
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with B2=M?— 1, for supersonic speeds, where S(x) is the cross-sectional area of the body. Then

®,,+®,,=0 (1)
and
(1) S'(x
-U~a2+7‘n—’ Inr. @)

where r2= 2+ 2%, at large distances from the wing, and Ux+® satisfies the boundary conditions on
the wing and vortex sheets. For present purposes there is no need to consider by(x) further.
The first boundary condition on the vortex sheet is that it is a stream surface, which means that

Ur

K
O, = — sin g, 3)

as in Ref. 1, where n is the inward normal and ¢ the angle between the tangent and radius vector as
shown in Fig. 1. The second boundary condition on the vortex sheet is that there is no pressure difference
across it, which means that

S
AD = AD ( -, |, 4
s\ 7COsQ—T T am> @
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again as in Ref. 1, where A is the difference operator across the sheet, o is the arc length round the cross-
section of the sheet and the suffix'm denotes the mean value across the sheet. The boundary condition
on the wing follows from (3), noting that r sin ¢ =s cos ez on the wing:

®,=—KUcosen. (5)

The Kutta-Joukowski condition of finite velocity at the leading edge, appropriate to separation there,
must also be satisfied.

When the circulation from the sheet beyond E is concentrated into the line vortex at 1, we may suppose
that the cut which remains is of a form which satisfies (3). However, since A®,=0 and A®#0 on it,
equation (4) cannot be satisfied. The best that can be done, following Brown and Michael®, is to arrange
that the total force on the vortex and cut is zero. The force on the cut arises from a constant pressure
difference across it, since A® is proportional to x, and so depends only on the end points E and V. The
force on the vortex depends on the velocity normal to it induced by the rest of the field, in the usual
way. Introducing a complex variable Z=y+iz and a complex potential W, such that ®=2Z{W}, we can
express the condition of zero total force as

lim (d”f_i_‘__f:KU 2Zy-Zy
iZ mz-z, .

Z-Z, — ©)



as in Ref. 1, where T is the circulation of the starboard isolated vortex.

Provided W is an analytic function of Z, equation (1) will be satisfied automatically. To construct
such a complex potential it is convenient to introduce a conformal transformation of the region of the
Z-plane to the right of the wing and the imaginary axis into the half-plane R{L} >0, see Fig. 2a. Consider

the Schwarz-Christoffel transformation
4
IZ €

0

in which the points 4 and C on the centre line of the wing transform into points { = tid. The point B
at the leading edge of the wing clearly transforms into the origin { =0. We have

dz_( j
T lal

To complete the definition of the transformation, we write { —id=re®, {=r,e!2 {+id=r,¢'", as in
Fig. 2a, and specify

az_
.

dz
dg

ig(202— 81— 03)

Then, as {— o0, 0;-0,—0; and dZ/d{—1, so the neighbourhood of the point at infinity is preserved.
Also we have:

Z
on AD, 01-—-02:03:; and argd—=0,

d¢
on AB, 6, = —g, 92:63-:; and arg Z—?=na,
on BC,0,=0,= —g, 63=g-and arg cf{—?: —7e,
onCD,0,=0,=0;= —g and arg [—[%:0.

The transformation therefore correctly distorts the boundary of the region and is obviously analytic
within it. It is therefore the transformation required. The lengths d and s are related by considering the
point 4 or C:

id

iscotem=s-+ f eten

Q

This can be written as



=sinen e+ HI(1 —¢)/nt =L sinen Ble+3,1—¢), (8)

using the same notation as Gradshteyn and Ryzhik?3 for the gamma and beta functions. The variation
of s/d with ¢ is shown in Fig. 2b.

The boundary condition (5) of constant normal velocity on the wing can be satisfied by a distribution
of sources on the image of the wing in the {-plane. The normal velocity needed in the {-plane is

KU cosen

%? ‘ , directed outwards from the slit ABC.
This distribution of normal velocity is produced by a distribution of sources of strength

z
2KU cos e %l per unit length on ABC.
4

The total source strength is then

s

—ine

wt__-jik

A
2KUcoss7rJ l Z—?. |d{|=4KU cosen
¢

iz,
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= —die” KU cos en(Z 4, — Zp)=4sKU cot en=US'(x) .

Hence the sources produce the logarithmic behaviour of @ at large distances which is specified by (2).
The remaining term in (2) is produced, without disturbing the wing boundary condition, by a uniform
stream parallel to the imaginary axis in the {-plane. The complex conjugate of the cross-flow velocity
for the attached flow in the {-plane can therefore be written as

IZ [
<t2 +dz>

To complete the velocity field, the same representation of the leading-edge vortices in the {-plane
is used as in Ref. 1, i.e. an isolated vortex of strength I' at {, a sheet extending along {={(3) from =0 to
9 =9,.... and the images of these in the imaginary axis, as sketched in Fig. 3. Taken with (9), these produce
a complex conjugate velocity

id

1
—igU+— (‘ZKU COS &TT
27

.
—id

1
{—ti’
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d_W_ U KUcossn:f ( £2 )‘ dt
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The complex potential W defined by (10) represents a flow field with the correct behaviour on the wing
and at infinity, containing a representation of the leading-edge vortices. The numbers I" and {, and the
functions dA®/dS and {(9) are to be determined so as to satisfy the Kutta-Joukowski condition at the



/ : ¢
leading edge, the conditions (3) and (4) on the finite part of the sheet, 0<3<9,,,. and condition (6).
As in Ref. 1, the Kutta-Joukowski condition is used for I, equation (6) for {,, equation (4) for dAD/dY
and equation (3) for {{9). The details are given in the next section and the results are discussed in Section 4.

3. Numerical Treatment.

The numerical treatment follows the same lines as that of Ref. 1. The extra complication arises from
the more awkward conformal transformation (7) and the more involved expression for the attached
flow (9). A more efficient method is used to determine the position of the isolated vortex from the condition
of zero overall force (6).

In the numerical work, the distance d has been used as the unit of length ; so, in this section, appropriate
factors d must be re-introduced if proper dimensional equations are required.

3.1. Finite Difference Representation.

The shape of the outer part of the starboard sheet is specified in the transformed ({) plane by the values
of the polar distance, r,

dyda,. ... dy,

of a set of n pivotal points on the sheet measured from the position of the starboard isolated vortex, {y,
as shown in Fig. 3. The points are located at fixed, arbitrarily chosen, values of the polar angle, 3, measured
about {;, from the line joining it to the origin. These values of 3 are denoted by

hihy ... h,.

The boundary conditions on this part of the sheet are applied at n points intermediate between the
pivotal points, at polar angles

shi, Sha+hy), S(ha+hy), . ... 3+ R, y)
and at polar distances
di=3do+dy), dy=3dy+d,),....dy- 1 =Hdyn_, +dy) s

where d,=|{,| is the distance of the vortex from the origin.
The strength of the sheet is specified by the values of the derivative of the circulation with respect to
the polar angle, dA®/d 9, at the pivotal points:

1 dAD

e i=12,...n. 11
=TRUS o, ! " (v

The strength of the starboard vortex is represented by

r
- (12)
I=ku
and its position is at
Cy=V+iZ=dye®. 13y

The coordinates (¥,,Z,;) of the pivotal, and (¥2j-1,Z2;- 1) of the intermediate, points now follow:



}72j+i22j =§+i2—d2jei‘b+hf)
and j=12,...n. (14)
yzj—1+i22j-—1=y+i2“d2j—1el(h+lhj ik

This completes the specification of the configuration in the {-plane. Related quantities are now needed
in the Z-plane.

The semi-span, s, is given by equation (8). If ¢ is small, the integrand has a weak zero at ¢=0, and
if e=0-5 it has a square-root singularity at t=1. The transformation

=1—5E%+4£, dt=-2083(1-¢), 0<é<1

takes care of both difficulties. Equation (8) becomes

1

2 £
§=20 sinanJ(TZ—) (1—&)E3de (15)
0

2

so that the integrand, as a function of £, has at least a linear zero at t =0, =1 and at least a linear zero at
t=1, {=0. Equation (15) was evaluated numerically by dividing the &-interval (0, 1) into tenths and
using the Gaussian five-point formula in each.

The set of pivotal and intermediate points on the sheet is extended by adding the origin at one end and
the position of the isolated vortex at the other, to give a sequence of points

1:0‘—“0; CJ=)7]+iZJ, j=1,2,...2n; {2“_1:_}—)-}-17.

Equation (7) defines a sequence of corresponding points Z; in the Z-plane. It is convenient to refer these
to the semi-span, s, so that we write

Zo=s; Zij=s(y;+izp), j=12,...2n; Z,, ., =s(y+iz). (16)
The points are then calculated in turn, writing (7) as

Li+1
IZ € i
Zj+1=Zj+J(m>dt, j=0,1,...2n

&

2 &
=Z a1 —L) l (tiﬁ) dé, (17)

where ¢ ={;+¢({;., —{;). The integration with respect to ¢ was performed using the Gaussian five-point
formula, on the basis that the points are closely spaced.

Since the boundary conditions (3) and (4) involve the quantities » and ¢, we need the moduli and
arguments of the points on the sheet in the Z-plane:

Vi+iz;=bets j=12,...2n. (18)



Derivatives along the sheet are approximated in the simplest way, giving, at the jth intermediate point:

1dr sz bZJ

Edlg =f2j-15 (19)
d9 ch_CZj—Z _
B =he 0)
dF dy;—d,.i_
J
and
dé
“—~(d2; 1+e2) )2 =&y (22)

for j=1.2,...n, with by=1, ¢, =0, and h,=0. Here & is the arc length along the sheet in the transformed
plane.

We now need finite difference forms for the integrals in equation (10). Consider first the contribution
of the source distribution on the transform of the wing. Setting d=1 and reducing the interval of integra-
tion by changing the sign of ¢ in the negative half, we have

id i.
tl € dt 12 13
f (z2+d2> C_—Zzz(:f (z2+1>
—id (4]
1 (sin g>28 (cosn—é>1_zed6
. 2 2
=7l s-

LT
b Cz+s1n27€

dt
Cz_tz

2

where t =1 sin 5 Since we do not need to evaluate this on the wing surface, the integrand is non-singular.

It has weak zeros at the ends of the interval, but no special consideration was given to them. The interval
(0, 1) in ¢ was divided into tenths and the Gaussian five-point formula applied in each to evaluate the

integral. If o, ... o5 are the points and f,, ... 5 are the weights, such that
1 5
f t)dt ~> BiF(o;)
emd
0 1

the values &, =(i+2,)/10, k=5i+/,i=0,1,...9,j=1.2,...5 are chosen. Then, if

_ gy né\' T . n&i\*
Y= (smT) <0057> and 6, = sin —~

we have

5
dl 7UC y51+}
— = SILAIA 23
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ji=

IZ \&
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Now consider the contribution from the vortex sheet and its image. At a general point {, we simply
apply the trapezium rule, as in Ref. 1:

Smax

dAD 1 1
j(‘ 49 )(c—aw“uam)ds

]

—KU —ngZj'(fl{# 1 _hi'—1) _ (24)
. (C—P2;—12,)) (C+ Y2~ i2;))

j:

where, conventionally, ho=0 and h,,,=h,. This representation assumes that the integrand vanishes
at =0, which it does for {#0. In order to apply the Kutta-Joukowski condition at the leading edge,
we also need a representation valid for {=0.

The integrand on the left of (24) may well be infinite at 9=0 if {=0. Consider the first factor:

dAD dAD_dADdo _ dACI) @I (e A(D 4o
49 " dé  do da )

Now, if the Kutta-Joukowski condition is satisfied, dA®/do must be finite at the leading edge, since it
represents the difference in tangential velocity across the sheet. Further, if the condition of continuity of
pressure, equation (4), is satisfied at the leading edge, dA®/do is non-zero there. Hence

daD o,
a5 Y

The second factor is straightforward :

L, L g L
IONONE

Hence the integrand tends to infinity like $%¢7 . If the integrand is written in the form

f=k1192£_1+k2

we find

hy

ff (9)d3 =

0

hZe

1 th L
it (1 )

where f,= f(h,) and f,= f(h,). We now apply this rule over the first interval and the trapezium rule
over the remainder to obtain:

_L _d_l_ﬁ_qz L L (hy+h3)g. ¥,
KU !( P )(«9)*5(9))‘” Bz T
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with k., =h,.

3.2. Expression of the Boundary Conditions.

Since the flow separates at the leading edge, the Kutta-Joukowski condition must be applied there.
This implies a finite velocity in the cross-flow plane and therefore a stagnation point at the origin of the
transformed plane. Putting dW/d{ =0 for {=0 in (10), and using (23) and (25), we find

29y VA4
2na=— gy_ﬁv 9yt (26)
y 4z L_Jyzj+zzj

where we have divided through by KUi/2x, set o/K =a, used (12) and (13) for I and {v, and introduced

(1=2e)h2 (1—2¢)h2
L A —hy—h
eh3~ ' —hiety 72 hs 1+8(h§“1-—hf“1)’

A1:h1+h2—
Aj=hj, —h;_, for3<j<n.

The condition of zero total force on the vortex and cut is given by equation (6). We multiply through
by dZ/d{ at V and obtain:

i (dW rdz 1 )_ v 2Zv=ZsdZ

At 2qi di = 27
(=, \dl 2midl Z-2Z, s dl (27)

Now the only term in (10) which is singular as {—{, is I'/2mi({ — {,), so we need to consider
1 dz 1 08)

(~¢ dLZ-2Z,

for { near ;. The Taylor series gives

d*z
=({- CV) C +3{—{p)? ra V+---
dZ dz
Ty +((— CV) dcz +"-
therefore
(~Cy dZ L1 Al
Z—ZVE +2(0—Cv) =57 izt |,
Hence the limit of (28) as {—{, is
1d*Z/ac? 3
- =— , by (7).
2z |, sy Y0




Introducing FKU for the difference between the right and left-hand sides of (27), we can use this limit
with equations (10), (23) and (24) to write

CAy—iz)—(yau—izas) [ (F+i2) )8 .
F= s (1+(y+i2)2 -

5 9
ig _1+ 2e _(§+iz)cosen p 5‘ Vst j N
An \y  (3+iz) (1 +(F+iz)) 10 TG+ + 854
Jj=1 k=0

i gjfz;’(hﬁ 1 “hj— 1)
27'C. 1()7-1—12—)72]—122])(J7+IZ+PZJ—122J)
=

(29)

Then the required condition is that the real and imaginary parts of F should be zero.

To express the conditions that the sheet is a stream surface (3), with no jump in pressure across it (4),
we need expressions for the components of the cross-flow velocity normal and tangential to the sheet at
the intermediate points. It is the mean velocity across the sheet which is required and this is what is
given by the formulation (10) applied at a point of the sheet. Although it is velocities in the Z-plane
which appear in equations (3) and (4), it is more convenient to work in the {-plane. Let v, and v, be
the mean tangential and normal components of velocity, so that

" aw dw d¢
v, —iv,= —m=—— —

o dg Al dE (30)
The first factor on the right is given by (10), in conjunction with (23) and (24). On the sheet

L=y —Fell+®

and so

& =t (dF
25—7‘(@’?‘17)

dr/d% and d&/d9 at the intermediate points are given by (21) and (22), so that, at the jth intermediate point:

dl_dl [do _ (5yj-1+iZ2j-1 =Y =i2) (€3 s +idyy ) 31
o ds/ a9 dy;- 102, |

From (10), (23} and (24), at the jth intermediate point:

5 9

1 dw o cosen \ 5‘ Vsrs1
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Equations (30), (31) and (32) express the required velocity components.
The condition of zero pressure jump (4) can be written, at the jth intermediate point, as

AD 1 dAD
Pj=<—K‘U*CE~>Pj8j, (33)

KU

where

d9( v, 46 ré’i>atPj

500\ KUde " do

| (v i [a [
dz | \KU " sds| as)|ag* "

_5 | 1+ G 1+ 2y )2 ZE(U,M —_bzf—ls.f.—”_l> (34)
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where v, /KU at P; follows from (30}-+(32). The n equations of the form of (33), together with the Kutta-
Joukowski condition (26), are used to determine the n+1 quantities g and g9, j=12,...n, for fixed
geometrical quantities. The procedure used is an iterative one in which values of g and g; derived at the
previous step are used to find v, /KU at the intermediate points, and hence the values of ¢;1n (33). The
set of equations (33) are written as linear equations in the values of dA®/d9 at the intermediate points
and solved explicitly as follows. Let

1 dA®
ISTRU 48 |, ()
Now
AD " 1 dAD
bl —— “\ig.
KU |, 7" ( KU ds)‘g 6
i 1+hy)

This integral is then approximated by the trapezium rule over the intervals between the intermediate
points and by assuming the integrand is constant over the interval between the nth intermediate point
and the end of the sheet. Hence (35) and (36) enable us to write A® at P; as a linear combination of g
and 4;, and the set of equations (33) can be written as

n

.
4g+(hjo 1 —h;- )+ (hivy+hi—hi o —h;_,)=4Ag;, (37)

i=7F1

for j=1,2,...n, where hy=0 as before, but now #,, , =2h,—h,_,.
The set of n equations (37) can be solved for 4; in terms of g. Starting with the last, the solution is
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jqx = 4g/ Ha s

A= 1+ Vje DA 1/ j=n—1n=2,...1
where

Hj=4£j_hj+1+hj—1 j=1,2,...n (38)
and

Vj=hj+1+hj—hj_1—hj._2 j=2,3,...n.

Linear interpolation and extrapolation now give the g; in terms of the ; thus:

0= [(hy—hy- Ags 1+ s =)A=y ) j=12...n—1
and (39)
gn= [(hn+ 1 _hn—Z))”n—(hn_hn— I)An— 1]/(hn_hn—2)

where h,, , =2h,—h,_ ;. Equations (38) and (39) together express the quantities g; in the form
g;=Bg, (40)

where the B; can readily be written down (see equation (A.7)). Introducing these into (26) we obtain an
equation for g:

(ET’ f&lifyjz\,:
VP LT

j=

2na, (41)

where the 4; are defined after equation (26). Equation (41) yields a value of g and then (40) gives values
for g; These values are then used to recalculate the ¢; and the iteration is repeated. When the values
of g and g, found are little altered from the previous cycle, the Kutta-J oukowski condition and the con-
dition of continuity of pressure are regarded as being satisfied.

The final condition to be expressed in a form suitable for computation is the condition (3) that the
vortex sheet is a stream surface. We first replace (3) by the equivalent condition in the transformed ({)

plane:
Up dZ'r. B r)de dé
K—U__'ZIZ ss““’)“"s(g ds/ds’ “2

using the standard expression sin ¢ =rdf/do. Equations (30)~(32) provide the values of v,/KU at the
intermediate points and the values of the right-hand side at the same points follow from (15), (18), (20)
and (22). What is needed is a method for using the discrepancy that will exist between the two sides of
(42) at any stage of the calculation to modify the shape of the sheet. If the tangent to the sheet at the
jth intermediate point were rotated anti-clockwise through an angle y;, the mean velocity along the new
normal would be

D, COS ¥;—U,, Sin ¥;.

If this new direction is such that (42) is satisfied,

cos y,——x
p, CHTRU

U,

: 2

sin y;= —sh3;_ 1 f2,/es;.
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Since we can only think in terms of small changes to the shape of the sheet, we can regard ¥ ;as small and
solve this equation for it, giving

/
+Sb%j~1f2j>/_lir1

v
TOAKU |, e KU (43)

N

P;

The final step is to convert this rotation of the tangent at the intermediate points to changes in the polar
distances from the vortex to the pivotal points. Suppese each distance, d,j, is increased by an amount & B
as in Fig. 4, with the pivotal points Q ; moving to Q). The tangent at the jth intermediate point is taken
to be parallel to Q;_;Q; so that the angle between Q j-1Q; and Q';_Q; is the y; of equation (43), as
shown in Fig. 4. The elementary geometry needed is most conveniently expressed in vector notation.
Denote VQ; | by a, Q; , Q). , by ia, VQ, by b and Q;Q’; by ub. Then Qi1 Q;isb—aand Q. Q|
is (1+ub—(1+4)a. If k is a unit vector out of the plane of the figure:

(b—a) » (14 pb—(1+A)a)=[b—a| |(1+ b —(1+ Aa|k sin x;, (44)
a n b=|a||bjk sin (h;—h;_,), (45)
Ib—al>*=(b—a) (b—a)=bb-+aa—2ab (46)
and
ab=|a[b| cos (h;~h;_,). (47)

The right-hand side of (44) is already a small quantity of order X so the difference between the first two
factors, which is also of order y » can be ignored. Equations (46) and (47) then allow us to reduce the
right-hand side of (44) to
([b]*+]a|>~2|a]||b] cos (h;—h;— Ok +0(c3) .
Expanding the vector product on the left-hand side of (44) and using (45), we reduce it to
(A—wlallb] sin(h;—h;_,).

Equating these two expressions and reverting to the scalar notation we find

éj_= d;-1 _d%j+d§j_2—2d2jd2j_2 cos (hj_hj—l))('
dy; daj > dajdzj-, sin (hj—h;-) a

(48)

Since the beginning of the sheet is fixed at the origin of the {-plane, 5,=0. Equation (48), with ¥ ; given
by (43), enables us to calculate 8, 8,, ... 8, in turn. The way in which this and the other relations obtained
in this sub-section are used is explained in the following sub-section.

3.3, [lteration Scheme.

The problem is to determine the flow ficld of a given wing at given incidence. The wing and incidence
are specified by values of ¢ and a. The flow field is determined by the position and strength of the vortex,
ie. J, Z and g, and by the shape and strength of the sheet, i.e. sets of d,; and g; appropriate to a set of
angles h; (j=1,2, ...n). The method consists of three nested iteration procedures.

The innermost iteration leaves the position of the vortex and the shape of the sheet unchanged and
determines values of g and g; which satisfy the Kutta-Joukowski condition at the leading edge exactly
and satisfy the condition of continuity of pressure along the sheet to within a prescribed tolerance.
The second iteration leaves the shape of the vortex sheet unchanged and adjusts the position of the
isolated vortex until the condition of zero overall force on the vortex and cut is satisfied, again within a
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certain tolerance. Throughout this process the innermost iteration is used to change g and g; in step with
the changes in 7 and z. The outermost iteration modifies the shape of the sheet to make it conform more
closely to a stream surface of the threedimensional flow. These three iterative procedures will now be
described in more detail.

An initial approximate solution can be taken either from Ref. 1 if the wing is very thin or from a solution
already obtained for some slightly different value of a or &. If solutions are being generated from a sequence
of values a or &, a good initial approximation is obtained by extrapolating linearly from the two previous
solutions in the sequence. Most of the results described in this Report were obtained sequentially in
this way.

All the geometrical quantities needed are derived from the equations of Sub-Section 3.1. The innermost
iteration then starts. In principle, the mean tangential velocity at the intermediate points is calculated
(equations (30), (31) and (32)) and used to form {¢;} (34). These values are used to give {y;} and {v;} and
hence {B;} (38)-(40). Equation (41) determines g and (40) determines {g;}. The value of g is compared
with the initial approximation and, unless the change is less than a tolerance ¢’, the cycle of operations
is repeated. In practice, the method uses a number of other intermediate quantities to speed up the
procedure as explained in Appendix L.

The next step is to adjust the position of the vortex (3, Z) until the modulus of the complex function
F(7, 7), proportional to the force on the vortex and the cut, is less than a prescribed tolerance, or until
the vortex is sufficiently close to a minimum of |F|. F is given by equation (29) in which the quantities
g and {g;} depend on (7, z) through the iteration process just described. The method chosen exploits the
fact that, near the vortex location sought, the surface |F(¥,Z)| resembles a closed valley with its long
axis roughly in the direction of the axis of z. This emerged from the calculations of Ref. 1. We seek the
bottom of the valley, assuming that F will be zero there. Fig. 5 illustrates the procedure. First, we march
across the valley, ie. parallel to the axis of J, calculating F at each step and stopping when |F|, after
initially decreasing, begins to increase. The conditional minimum along this line Z= constant is located
by interpolation and stored. We then march across the valley along another line of constant z, and again
store the conditional minimum. We then march along the line joining the two conditional minima until
a third (conditional) minimum is reached. We assume that this point is within a few steps of the actual
minimum sought. If the initial steps have to be rather large, because the location of the valley floor is
uncertain, the set of three marches can be repeated, starting from the approximate minimum found,
with a reduced length of step. In this way we can expect to get as near to the minimum of |F(7, Z)| as we
please. If at any point the modulus of F falls below a tolerance f*, we seek no further. A minor complication
arises in that, when the vortex is moved, the part of the sheet closest to it has to be moved with it, whereas
the further end of the sheet must remain attached to the leading edge. The first k of the distances {d,;} are
adjusted each time the vortex is moved, as described in Ref. 1.

The scheme requires something akin to the continuity of F(§,z). Since F depends on the iteration
which determines g and {g,}, it is certainly not continuous in the classical sense. Nonetheless, provided
the tolerance ¢’ is small enough in relation to the step size, F behaves sufficiently like a continuous function
for the scheme to work successfully. A feature of its occasional failure to work is the occurrence of three
consecutive values of |[F| with the middle one higher than the other two. If this happens a diagnostic
message ‘local maximum’ is printed and the computer program jumps to the next part of the calculation.

Apart from such hazards, the calculation has now positioned the isolated vortex close to the point at
which the condition of zero total force is satisfied, with a circulation distribution satisfying the Kutta
condition and the condition of continuity of pressure across the sheet. The next step is to change the
form of the sheet so that the condition on the normal velocity is more closely satisfied. Equation (48) in
the previous section gives the changes {6;} that would be needed in the {d,;} to satisfy the condition,
if these really were small. There are three possibilities:

(a) the largest of the proportionate changes called for in the polar distances may be so small (less
than a parameter g') that we can regard the solution as having been obtained,

(b) it may be larger than this but still small enough (less than a parameter /') for the whole of the
change to be applied without seriously violating the assumption on which it was calculated, or

(c) it may be larger still.



In case (a) the calculation for the current values of g and ¢ is complete. In case (b) the changes called
for are applied to the polar distances and the entire calculation is repeated. In case (c) the changes called
for are scaled down so that the largest of them is equal to 4’ and these scaled changes are applied before
returning to the beginning of the calculation. The size of &' is regulated by the need to suppress a tendency
for the sheet to oscillate in and out. If the change called for in the last polar distance, d,,, is in the opposite
sense to that called for on the last passage through this iteration, the maximum permitted proportional
change, #’, is halved before proceeding.

A somewhat simplified flow diagram of the computer program which performs this calculation is
given in Fig. 6, with the intention of making clearer the description of the course of the calculation. The
subroutine R referred to in Fig. 6 is laid out in Fig. 7. Note that R has a normal exit and an exit to the
fixed point A at the top right of Fig. 6. The conventions of Ref. 26 have been followed in that the flow is
from top to bottom and from left to right unless arrows indicate the contrary, and that flows merge at
T-junctions but do not interact at intersections.

3.4. Choice of Parameters.

It is clear from the description of the numerical treatment given above that the solutions obtained
from the iteration scheme will depend, not only on the real parameters ¢ and a (representing the thickness
and incidence of the wing), but also on the tolerances used in the iterations, on the extent of the finite
part of the vortex sheet and on the number of points used to define this part of the vortex sheet. The
choice of these incidental parameters will be described here.

In the carlier work on the flat plate it was concluded that an angular extent of the finite part of the
vortex sheet of 157 degrees was adequate, where this was measured about the isolated vortex in the
transformed plane. This conclusion was based on the very small changes in vortex position, in lift and in
overall circulation, and the very local changes in pressure on the wing, that were produced when one or
two further complete turns of the sheet were added. It was also found that doubling the number of points
used to define the sheet produced small changes in its shape, when the sheet extended for one and a half
turns about the vortex and the number of pivotal points rose from 21 to 42. Consequently a similar
distribution of pivotal points was used, requiring 11 to define the present sheet extending for 157 degrees
instead of 21 to define the sheet of extent 517 degrees in Ref. 1. The values of the angular coordinates h;
are given in Table 1. The parameter k was taken equal to n=11.

TABLE 1

Values of angular coordinates of pivotal points.

J 1 2 3 4 5 6 7 8 9 10 11

y 012 025 039 054 070 087 1-05 127 157 204 275

The tolerances that must be considered are:

e, the tolerance on the change in the strength g of the isolated vortex ;
1, the tolerance on the quantity |F| proportional to the force on the isolated vortex and the cut;
g, the tolerance on the largest proportional change called for in the {d, it
and
a, the size of the step by which the isolated vortex is moved in the search for a minimum of |F|.

Unless the first of these, ¢/, is small enough, the search procedure for the minimum of |F ] will fail, as
discussed in Sub-Section 3.3. Hence, so long as the search proceeds satisfactorily we can assume ¢’ is
small enough. A value of 10~ ® was used for the bulk of the cases computed and found satisfactory. In
Ref. 1, it was the largest of the changes in the {g;} that was inspected, with a tolerance of 1 or 2x 1074,
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Since the largest of the {g;} is between 5 and 10 times smaller than g, the levels of accuracy are comparable.

The second tolerance, f”, can be set to zero, and in some cases it was. The search for the minimum of
|F| then proceeds through all the stages set out in Sub-Section 3.3. However, this is wasteful if all the
values of | F| being found are small, so it is more economical to use a non-zero value of f”. In the bulk of
the cases calculated f” was taken as 1073, In Ref. 1, the corresponding tolerance was 10~° on a quantity
equivalent to |F|? so the present calculations are at least as accurate as the earlier ones in this respect.

With f'=10"2 the search procedure usually terminated when |F| fell below f'. However, in some
cases the approximate minimum of |F| was located and found to be larger than f'. In such cases it is
the length of the step, @/, that governs the accuracy. For the present calculations a’ was chosen to be 107 5
and we should expect that errors in vortex position arising from failure to satisfy exactly the condition
of zero overall force would be of the same order.

The remaining tolerance, g', was taken to be 2x 10~ 3 This is the lower of the two values used in Ref. 1
for the same quantity. As a check on the adequacy of this level, the value of

n

c=z x5, (49)

Jj=1

where y; is defined in equation (43), is printed. This gives a direct measure of the error made in satisfying
the normal velocity condition approximately. In the solutions calculated ¢ did not exceed 6 x 10~ 5
which, with n=11, corresponds to a mean error |y;| in the direction of the tangent to the sheet of 2:3 x 1073
or 0-13 degrees.

4. Results.

Eight sequences of solutions were obtained, in each of which either the thickness, ¢, or the incidence, g,
was held constant while the other was changed in steps of uniform size. The first sequence was for e=0-5,
corresponding to §=0, and served to check that the present calculation was consistent with that of
Ref. 1 for flat plates.

The next three sequences were for fixed values of a=0'5, 10 and 1'5, with ¢ decreasing from 0-5 in
steps of 0-01. At each value of a it became difficult to obtain solutions at the smaller values of ¢ and each
sequence terminates with ¢ just above (-1, i.e. § just less than 144 degrees.

The final four sequences were for fixed values of ¢=0416, 0:3, 025 and 0-16, corresponding to § =30,
60, 90 and 120 degrees. For each value of ¢ a starting solution was obtained by interpolating in the sequence
mentioned above with a=1 and ¢ varying. Then a was varied upwards and downwards from 1 in steps
of 0-02. No difficulty was found in proceeding to larger incidences, the sequences usually terminating
at a stage when the computer time requested was exhausted. Convergence difficulties were found at
small values of a, as in Ref. 1. In fact, for £=0-5 the sequence terminated at almost the same value of
a as in Ref 1. The lowest value of g that could be reached is different for different values of ¢, but too
much emphasis should not be placed on the apparently irregular variation with ¢, as no very strenuous
efforts were made to obtain convergence at lower values of a.

The principal parameters of the solution in the eight sequences of results are listed in Tables 2-9.
In each table the first two parameters shown against the current value of a (or ¢) are the coordinates
(v, 2) of the isolated vortex in the physical, cross-flow, plane, referred to the semi-span, s, as unit of length.
The second two parameters are the circulation of the isolated vortex, I, and of the finite part of the sheet,
I',; in each case referred to KUs, where K is the tangent of half the apex angle of the wing. The final
parameter is the coefficient of normal force, Cy, divided by K*. The factors K are those needed to produce
quantities which depend on a (=«/K) and ¢ only. By equation (12) with an appropriate factor d introduced,
we have

= (50)



where s (or s/d) is given by (15). Using equation (11) and integrating by the trapezium rule we have
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The normal force is given by (B.7).

The procedure described above for obtaining the solutions sequentially suggests that the solutions
for £=0-416, 0-3, 0-25 and 0-16 for a=0-5 and 15 were each obtained along two independent paths in
the (¢, a) plane. In fact only for & =0-25 was the value of ¢ exactly the same, so there are just two comparisons
that can be made without interpolation. They are given in Table 10.

TABLE 10

Comparison of Solutions Reached along Independent Paths.

Proceeding along At the point y z g Cn/K?
a=1-5 e=025 0-9117 0-3443 2-5343 12776
e=025 a=15 09118 0-3443 2-5343 12776
a=05 e=025 0-9707 0-1137 0-4956 2-8796
e=025 a=05 09717 0-1116 0-4926 2-8723

In view of the differences between the entries for a=0-5, those for a = 1-5 must be regarded as coincidentally
close. The difference in vortex position for a=0-5 is consistent with that expected in Sub-Section 3.4.
The values of g and Cy/K? are fairly closely linked to those of y and z, so their agreement for a=1-5 is not
surprising. The values for a=05 indicate how errors in y and z affect the remaining quantities.

4.1. Sheet Shape and Vortex Position.

The effect of the thickness of the wing on the shape of the vortex sheet and the position of the isolated
vortex is illustrated in Fig. 8. The three parts of the figure are for different fixed values of the incidence
parameter, a, and each part of the figure shows the effect of varying the edge angle, 8, of the wing from
zero to 120 degrees.

As the thickness increases, the size of the leading-edge vortex is reduced. This is associated with a
reduction in the circulation about the vortex (Tables 7-9 or Fig. 13); and corresponds to a reduction in
the strength of the singularity found at the leading edge in the attached flow (v. Appendix III). The
shrinking of the sheet towards the leading edge implies a marked outboard movement of the isolated
vortex as the thickness increases. Associated with the outboard movement of the isolated vortex is a
vertical movement which is upward for the thinner wings and downward for the thicker wings. This can
be regarded as the resultant of an upward trend from the displacement effect of the thickness and a
downward trend from the shrinkage of the sheet towards the leading edge. It is only at the largest of the

20



three incidences shown that increasing thickness appears to increase the vertical extent of the sheet.
The outward movement of the isolated vortex as the thickness increases is associated with an increased
lateral projection of the vortex sheet beyond the leading edge, in spite of the general shrinkage.

This goes with a marked change in the shape of the sheet near the leading edge, seen most clearly in
Fig. 8¢, for the largest incidence. As the thickness increases, the curvature of the sheet near the leading
edge falls, changing sign for the thickest wing, as seen more clearly in Fig. 9b. This appears to arise
because the vortex sheet must leave the leading edge in a direction tangential to the lower surface. The
necessity for this initial direction follows from an argument like that of Ref. 27. In the present calculations
no restriction was placed on the initial direction of the vortex sheet and there is no feature of the trans-
formed plane which could attract the sheet to this direction (Fig. 2a). The calculated shapes arose
unambiguously from the calculation procedure described. For a smooth sheet to leave the lower surface
of a thick wing tangentially and subsequently project well beyond the leading edge, its curvature near
the edge must be small, or negative. The present calculations do not tell us whether the curvature at the
leading edge itself is finite or, as appears likely for the flat plate, infinite.

In Fig. 9, the effect of varying incidence on the vortex formed on two thick wings is shown. For zero
thickness the development is familiar!. The scale of Fig. 9 is large enough for the actual pivotal points
to be indicated on the sheet and these are shown for two values of a in Fig. 9a and three in Fig. 9b.
They demonstrate how close to the leading edge the calculations extend and how closely the calculation
reproduces the tangency to the lower surface of the wing. It is curious that the vortex positions for
5=90 degrees (Fig. 9a) lie very close to a straight line through the leading edge, for all but the smallest
of the values of a for which solutions were found. This contrasts with the apparently tangential approach
of the isolated vortex to the leading edge for zero thickness, shown in Ref. 1 and Fig. 10a. The departure
from the straight line for small @ might have been attributed to a numerical error, were it not reproduced
for rather larger values of a for =120 degrees in Fig. 9b. This suggests that the vortex sheet, at least
on the thicker wings, may collapse into a part of the wing upper surface as the incidence falls to zero,
rather than shrink into the leading edge in a uniform manner. The negative curvature of the sheet near
the leading edge for a=06 in Fig. 9b has already been mentioned. At lower values of a the curvature
near the edge is positive, as on thinner wings, but for =02 two points of inflexion appear further along
the sheet. To pursue these mathematically interesting trends to lower values of ¢ would require a different
approach to the definition of the sheet shape. as the calculated shape in the transformed plane is becoming
parallel to the radius vectors from the position of the isolated vortex, i.e. d¥/d9 in Fig. 3 is becoming large.

The positions calculated for the isolated vortex are summarized in Fig. 10a. The full lines represent
the sequences of calculated solutions, the broken lines are interpolations between them. The figure puts
into perspective the points of detail discussed above and emphasizes the magnitude of the changes intro-
duced by thickness. These are much larger at the larger incidences, on a scale apparently related to the
size of the vortex itself, Further minor oddities of the solution appear for very thick wings. Fig. 10b is
taken from Ref. 19 with a trivial change in the abscissa. It shows the measured variation in the position
of the vortex centre, interpreted as the point of minimum total head, in a plane 45 per cent of the length
of the wing from the apex, in a low-speed wind tunnel in conditions where the secondary separation was
laminar. The variations with thickness and incidence shown in Figs. 10a and b are clearly of the same
type: inboard and upward as the incidence increases, outboard and upward as the thickness increases
for thin wings and outboard and downward as the thickness increases for thick wings.

The actual differences between measurement and calculation are shown in Figs. 11a for the lateral
position and 11b for the height. Experimental points from Ref. 14 for a wing with apex angle 20 degrees
and leading-edge angle, 8, of 30 degrees have now been added. Russell determined the vortex core position
in two ways, as the minimum of total head, and as the point where the local velocity vector was directed
through the apex of the wing. The difference between the determinations was generally small and the
mean of the two has been plotted. There appears to be a small discrepancy between the measurements of
Refs. 14 and 19, tentatively attributed by Russell to a slight yaw of the model to the flow, but it is not
enough to affect the present discussion. For the wings with 6 =30 degrees, the difference in lateral position
between calculation and experiment is about the same as that found in Ref. 1 between the calculations
for a flat plate and the measurements on thin wings with laminar secondary separation. The error remains
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about the same for d =60 and 90 degrees, but seems a little larger for =120 degrees, though the measure-
ments on this wing were made at larger values of a. For the height, the error at =30 degrees is small,
about the same as that attributed to different definitions of the vortex centre in Ref. 1. As the thickness
increases the discrepancy grows, until at § =120 degrees it is as large as the discrepancy in lateral position.

It seems almost certain that these discrepancies are to be attributed to the presence of the secondary
separation between the peak suction on the wing and the leading edge. On the positive side, it is known
that a change in the state of the secondary boundary layer produces a measurable shift in the position
of the vortex. On the negative side, three alternative explanations can be rejected. First, the effect of
different identifications of the vortex centre was shown to be small in Ref. 1. Second, the wing thickness
is properly represented in these calculations. Third, the effect of the assumption of slenderness can be
dismissed; since this assumption should become more valid as the Mach number increases towards one,
whereas the pressure measurements of Ref. 22 point to a slight inboard movement of the vortex, so
increasing the observed discrepancy, as the Mach number increases subsonically.

4.2. Circulation.

In Tables 2-9 the circulation, T, about the isolated vortex and the circulation, T, about the finite
part of the vortex sheet represented in the calculations, are tabulated in nondimensional form. Since
the choice of the extent of the finite part of the sheet is essentially arbitrary, the overall circulation about
the leading-edge vortex, '+ T, is a more significant quantity.

Fig. 12 shows how the overall circulation varies with incidence for two thick wings and the flat plate.
It is clear that the growth of circulation with incidence becomes increasingly non-linear as the thickness
increases; so that, although at a=0-2 an increase of edge angle from 0 to 60 degrees more than halves
the circulation, at a=2-0 the corresponding reduction is less than 15 per cent. The calculations terminate
tantalizingly short of the origin, but it seems likely that the initial rate of growth of circulation at zero
incidence is zero for the thick wings and non-zero for the flat plate.

Some measurements of circulation made by Kirkpatrick?® on two rhombic cones with edge angles
of 60 degrees are shown for comparison. The measurements were made by traversing a five-tube yaw-
meter, aligned with the local flow, round a contour ‘enclosing’ the vortex, in a plane 45 per cent of the
length of the wing from the apex, in a low-speed wind tunnel. The tangential component of the velocity
so found was integrated round the contour. Practical difficulties prevented a very close approach to the
wing, so that part of the shear layer from the leading edge was left outside the contour. F urther, part
of the secondary vortex, whose circulation is of the opposite sense, may have lain within the contour.
The measurements must therefore under-estimate the circulation of the primary vortex and Kirkpatrick2°
is inclined to identify the result with the total circulation of the primary and secondary vortices, rather
than with that of the primary vortex represented in the calculations. In these circumstances the relation
between the results of the calculation and the experiment shown in Fig. 12 is very satisfactory.

Further experimental points, obtained in the same way at various lengthwise stations over the forward
half of rhombic cones at two values of a, are compared with the present calculations in Fig. 13. The
vertical extent of the symbols indicates the spread of the measurements for different traversing contours.
Again the measurements fall below the calculation in a manner consistent with the nature of the compari-
son.

Figs. 12 and 13, showing how the circulation about the vortex falls as the thickness increases, suggest
that the circulation may be correlated with the size of the vortex. There is no obvious measure of the latter,
but a typical length is the distance of the isolated vortex (or the core of the real vortex) from the leading
edge. In Fig. 14, the overall circulation is plotted against this distance, ((1 —y)?+2%)%, for five values of a
spanning the present calculations, with § running from 0 to 120 degrees along each curve. In spite of the
irregularities in the shapes of the individual curves, a roughly consistent variation of circulation with
scale emerges. The experimental points, based on results of Refs. 19 and 20 for 6=30, 60 and 90 degrees,
show that the corresponding correlation in the real flow (if it exists) is different.

The density of the circulation along the finite part of the vortex sheet (or the ‘strength’ of the sheet)
is shown in Fig. 15 for a=1 and five values of 8. For the flat plate, the form of the variation is familiar from
Ref. 1, though the finite part of the sheet is not long enough in the present calculations for the characteristic
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waviness to appear. As the thickness increases, the strength of the sheet is reduced, in parallel with the
reduction in overall circulation. The sheet also shrinks in length with the reduction in size of the vortex.
Thus T, the circulation on the sheet falls more rapidly than the overall circulation, as can be seen in
Table 8. The shape of the curves near ¢=0 in Fig. 15 is not definitely established by the present calcula-
tions. For 8= 30 and 120 degrees the calculated points are shown, and they are sufficient to indicate that
the initial rapid decrease in strength found for the flat plate is much reduced for the thicker wings.

4.3. Nowmal Force.

In Tables 2-9, the normal force coefficient, Cy, divided by K? to produce a quantity depending on &
and a only, is listed. Since this quantity increases more than proportionately with @, a more revealing
display is obtained by dividing it by a, to give Cy/axK. The latter is plotted in Fig. 16 against a for five
values of 5. Experimental measurements are shown for comparison. Those of Fink and Taylor?® are
obtained by integrating the pressures measured at a forward station on a delta wing of apex angle
20 degrees formed from a thin plate with chamfered leading edges. Those of Kirkpatrick'® are obtained
from strain-gauge measurements of the normal force on the forward halves of split models in the form of
rhombic cones of aspect ratio 0-8 (8 = 30, 60 and 90 degrees) and 0-462 (6 =120 degrees). The experimental
results therefore correspond closely to conical flow conditions, as postulated in the theory.

The calculated curves for a>0 have been joined to the values of Cy/aK given by slender body theory
for attached flow at a=0, i.e. by the first term of (B.7):

2
%: 4 (_*n:;i —cot sn) , (52)

where s/d is given by (8). Some smoothing of the experimental results at low values of a has been taken
over from Ref. 18.

Any lifting surface theory for thin wings in attached flow would provide only a single value for the
function plotted in Fig. 16, slender thin-wing theory for instance yielding 27, the limit of (52) as e—0-5.
The reduction in lift due to the thickness of these slender wings in attached flow is shown by the intercepts
of the calculated curves at a=0. The effect of leading-edge separation is shown by the rise of the curves
away from these intercepts as a increases. It is clear that thickness affects the non-linear element in the
lift much more than the linear part. For instance, for a wing of aspect ratio 1 at 15 degrees incidence,
the calculated non-linear lift is 42 per cent of the total for a flat plate, but only 21 per cent of the total
for a wing with 6=90 degrees, i.. its thickness equal to its span.

The experimental measurements lie somewhat below the calculated results, throughout. For the
rhombic cones, the discrepancy increases as the thickness increases. On the ‘flat-plate’ wing, the cham-
fered surfaces cover most of the wing ahead of the measuring station, so the measurements are likely to
correspond to the calculated solution for a value of 4 equal to the angle between the chamfered surfaces,
viz. 8-75 degrees, rather than to §=0. On this basis, they, too, are consistent with a discrepancy which
increases as the thickness increases, as shown in Fig. 17. On the thicker wings, the discrepancy also
increases with incidence, but for the flat plate and §=30 degrees it is little affected by incidence. In all
cases there appears to be a residual disagreement in the slope of the normal force, dCy/de, at zero incidence,
found by Kirkpatrick!® to be around 5 per cent. The present model of the separated flow cannot hope to
be more accurate tiian the basic representation of the attached flow and Fig. 16 indicates that it is not
very much worse.

The larger discrepancies found for the thicker wings can be associated with the corresponding dis-
crepancies in vortex position, attributed in 4.1 to the influence of the secondary separation. This agrees
with Rott’s observation!” of the importance of secondary separation on thick wedges in unsteady flow.

5. Conclusions.

It has been shown that the method of Ref. 1 for calculating the effects of leading-edge separation on
slender wings in conical flow can be extended without difficulty to deal with thick wings. Comparison
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with experiment shows a small reduction in the accuracy to which vortex position and normal force
can be predicted as the thickness increases. These results tend to confirm that it is the omission of
secondary separation from the model that causes the discrepancy between calculation and measurements
made in nearly conical subsonic flow.

The calculations confirm the observed trends:

(a) for the non-linear lift to he more reduced by thickness than is the linear component of the lift;

(b} for increasing thickness to move the centre of the leading-edge vortex outboard in an arc, first
upwards and then, for the thicker wings, downwards; and

(c) for increasing thickness to reduce the circulation and size of the vortex.

They also show further details of the shape and strength of the vortex sheet, in particular that :

(d) the vortex sheet springs from the leading edge in a direction tangential to the lower surface of
the wing, and

{e) the strength of the sheet is reduced by increasing thickness in a similar way to the overall circulation.
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LIST OF SYMBOLS

=a/K, incidence parameter

Size of step in search procedure

See equation (26)

Angle in {-plane (Fig. 3)

Value of r/s at point of vortex sheet

Spatial influence function of slender-body theory
Sae-equation (40)

Residual error in normal velocity condition
Value of 6 at point of vortex sheet

Coefficient of normal force

Semi-span of transform of wing in {-plane

Value of 7#/(d) at point of vortex sheet

Value of (d5/d9)/(d) at intermediate point

Value of (d7/d9)/(d) at intermediate point
Tolerance on change in g

Value of d0/d3 at intermediate point

Value of (dr/d®)/s at intermediate point
Tolerance on |F|

Complex number proportional to force on vortex and cut
Hypergeometric function

=T/KU(d)

Value of (dA®/d9)/KU(d) at pivotal point
Tolerance on {4;}

Value of 9 at pivotal point on sheet!
Discriminator on {8;}

Number of pivotal points adjusted when vortex is moved
Cotangent of angle of sweep of wing leading edge
Mach number

Inward normal to sheet, also number of pivotal points
Polar coordinate of sheet in cross-flow plane
Polar coordinate of sheet in {-plane

Real part

Local semi-span of wing



B(x, y)

Local cross-sectional area of slender body
Speed of undisturbed stream
Normal component of velocity on sheet in {-plane

Mean tangential component of velocity on sheet in {-plane

Complex potential
Complex potential of the attached flow

Rectangular cartesian coordinates in the wing
Coordinates of vortex in cross-flow plane, referred to s
Coordinates of point on sheet in cross-flow plane, referred to s
Coordinates of vortex in {-plane, referred to d
Coordinates of point on sheet in {-plane, referred to d
Complex variable in cross-flow plane

Incidence of wing

=(1—-M?*?

=(M?~ 1)}

Beta function

See above equation (23)

Circulation of starboard isolated vortex

Gamma function

Circulation about finite part of sheet

Angle included between wing surfaces

Increment in d,,, see Fig. 4. Also used in equation (23)
Difference operator across sheet

=H(1-9/2m)

See equation (34)

Complex variable in transformed plane

yitiz;

Polar coordinate of sheet in cross-flow plane

Angles in {-plane, see Fig. 2a

Polar coordinate of sheet in {-plane

Value of (dA®/d$)/K U(d) at intermediate point
See equation (38)

Arc length along sheet in cross-flow plane

Arc length along sheet in {-plane

Angle between tangent and radius vector (Fig. 1)

Lifting part of disturbance potential
Angle of rotation of tangent in {-plane
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APPENDIX 1

Equations for Innermost Iteration.

Since the only quantities which alter in the course of this iteration are g and {g,}, it is advantageous
to work with the unchanging coefficients of these quantities. This Appendix gives these coefficients.
At the jth intermediate point let

d
é =a;+if;, (A1)

. 1 dw
where a; and f3; follow from equation (31). Also let the term inIaT a as given by (32), which is independ-

ent of g and {g;} be expressed as v;— iw;. Then, by (30), we can write

Yin__ 5 \'s 8 (A2)
KU~ j.0d+ kit O+t .

k=1
at the jth intermediate point, where

V203012 )+ B =P —(Fry - — 7))
m((Pa;-4 —j})2+(22j~ 1 —2)%) ((B2j-1 ‘|’J_’)2+(§2j~ = 2%y

50

5, Talhis =)

2n
B o S o o, (A.3)
200925 ((Zoxg—Z25- )+ Bi(73-1 = Yo —(Z2;-1—Z21)°)
((y2j-4 —Ja) +(z2j-1 —Z)%) ((¥2j-1 +P2k)2+(22j— 1 —25)%)
and
6j,n+ 1 =ijvj+ﬁjwj
Hence, by (34) and (38), we can write
L3
p=0"; og + Z(s,j,kgk+élj,n+ 1 (A4)
=1
where
5_},0=Tj5j,0 5
Ok =T (A.5)
and b .
B i 1Sfi
int1=T1; (5j,n+1 "Zi‘l“"‘il)_hﬁ 1 +hi-,
ezj
where
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4s
ezj

1+(J72j—1+172j—1)2 2
@2,‘—14‘172;—1)2

(A.6)

U]

Note that h,, ,=2h,—h,_, in these relations. The development along these lines cannot be carried
further, since the B; in equation (40) are no longer linear functions of g and {g ;}- From (38) and (39) we
can write

3:4( hj—h;_, + hijv1—h; .uj+1+Vj+1>(ﬂn+"n)01n—1+vn—1)---(ﬂj+z+vj+z) )
I h

jer—hio1 B —hioy K Holp—1 - Kj+1

for j=1,2,...n—1and > (A7)

__4_ hn+1_hn~2_hn~‘hn—1 HUntVy
"_/'ln hn—hn—z hn_hn—2 Byt .

J

The procedure is to compute and store the n(n+2) numbers 6, j=1,2,...n,k=0,1,...(n+1);then—1
numbers v; given by (38); and n+ 1 numbers

2y AYa;
Dy==—"—and D;=—""%. j=12,...n,
0y 47t TPt

before entering the innermost iteration. Then, for an approximate set of g and {g;}, the y; follow from
(A.4), the B; follow from (A.7) and the next approximation to g follows from equation (41), written as

n

—
g (D0+ Z Dij)=2na . (Ag)

=1

The corresponding approximation to the g; follows from equation (40).
In this way the innermost iteration can be performed very quickly, in spite of the complication of the
expressions involved.
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APPENDIX 11
Calculation of the Lift or Normal Force.

The lift acting on a slender body is given by Ward in equation 9.7.11 of Ref. 25. He uses axes aligned
with the free stream, Ox'y'z’, related to the present system by

X'=xcose+zsino,

y=y
and

z'=-—xsino+zcoso.

Then, if Z'=y’ +iz, and Z.(x") is the value of Z’ at the centre of area of the cross-section of the body
by the plane x’=const., the complex lateral force is given by

d

F=pU? [an o (Z_,’,(x’)S(x’))] , (B.1)

where b is the coefficient of Z'~! in the expansion of W'/U for large Z' and S(x’) is the area of the cross-
section of the body by the plane x'=const.
For the small incidences of the present approximation,

Z=y+iz=y+i(—xu+z)=27Z—iux,

and, since Z,=0, Z = —iax. Again for small incidence and thickness, S(x')=S(x)=2K?x2 cot ¢n, and
differentiation with respect to x and x’ are equivalent, so that

d
——(Z(x)S(x"))=—(—2iK?ux> cot en) = — bins? cot e . (B.2)

dx dx
To evaluate b it is convenient to deal separately with the contribution b, from the complex potential
W, of the attached flow, and with the remainder, b,, from the representation of the leading-edge vortices.

We can find b, exactly. We first need the expansion of { in terms of Z’ for large Z'. From equation (7)

d_Z_ CZ 8_1 8d2+
ac \g*+d42) " 27
therefore

2

ed
Z=C+const+—é—+... .

The real part of the constant of integration must vanish because { large and imaginary corresponds to Z
imaginary, and its imaginary part must vanish because Z({)= Z({). Hence

42 &2
CzZ—%—I—...:Z’-}-iocx—SZ—,—I—... . (B.3)

Now, from equation (10)

id
dw, iaU+KUCOS£n 2 | dt
¢ in t*+d*
~id

{—t
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and so

W, ) K cosen 2§ .
= —ial + - J <d2—t2> In ({ —it)dt+const

-d

d
2 € : 2 £
(dzt-—ﬁ) dz—lK (:CS mj(ﬁiﬁ) tdt +const +0({2).
d

K cosen Int

= —iaf +

(——.h.

=,

Now the first of these integrals is 2s cosec er, by equation (8), and the second vanishes, so that

Wi

2Kscoten
+ P —
i

= —iof In ¢ +const +0(( %)

) ( o adz) 2Kscoten
=—ia| Z' +iox—— | +——

R (1 n Z’+%§>+const+0(2"2).

i

Therefore

(B.4)

2
b1=ioc<sd2+25 cotan>'

T

We now find b, in terms of the numerical approximation to the vortices. From (10} it is clear that the
leading term in the expansion of W for large { is 0((~ 1), so only this term need be considered. To this
order ¢, Z and Z' are equal. The appropriate expression can therefore be written down by inspection of
equations (10) and (24):

n

(¢, +0y) Kd? 5
by= _——ZLRE—ITY——-EE giyafhie1—hi—y)

Jj=1

n

iKgyd* iKd? B
= t+ giyafhje—hi—y) (B.5)

T 2
=

with hy=0 and h, ., =h, by convention. Suitable factors d? have been reintroduced where necessary to
restore proper dimensionality.
The lift is the imaginary part of the complex force F and follows from (B.1), (B.2), (B.4) and (B.5):

L=pU? [2naed2—2a32 cot en+2Kgyd® + Kd* 2 giP2ihjer—hy- 1)] ) (B.6)

j=1
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Since the wing area is xs or s%/K, and lift and normal force are the same in this approximation, we have

n

C ned? dgyd* 2d* .
‘—N=4a<‘ST"‘COt€7C>+ gs); +*S§‘zgjyzj(hj+1—hj_l). (B7)

j=1

When £=1, d=s, and this agrees with equation (63) of Ref. 1. The first term represents the linear lift
arising in attached flow.
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APPENDIX II
The Velocity Near the Leading Edge in Attached Flow.

Although the formulation (9) of the velocity in the attached flow past the rhombic cone is suitable
for numerical evaluation at points away from the wing surface, numerical difficulties would arise from
the treatment of the Cauchy principal-value integral which occurs on the surface itself. Moreover, the
formulation reveals nothing of the analytic behaviour of the velocity field near the leading edge, where
¢=0. In this Appendix alternative expressions are derived from (9) to complement it in these respects.
Equation (C.9) was used as a check that the numerical treatment of (9), embodied in equation (23), was
in fact adequate for the present calculations.

Using W, for“the complex potential of the attached flow, we can write equation (9) as

t2 €
<t2+d2)
2

. cosen [ |tan®* 8] cosfdO
=—la+ -
T {;—isin @

id

1 dw, . cosan dt

=

XU & Yt

ol

(where ¢ =id sin § and {={,d)

=—ia+ICOS£n, (C.1)
7
where
% 2,
tan?¢ 0 cos 6 dO
=2 — .
0
By differentiation we find
; 3
I I 2 sin B cos 6
242 | tan®0sin @ ——5—=5d0.
d¢, {4 ,[ ({3 +sin? B)?
0
Integration by parts gives
7_;_
dar _ 1 N 2 tan?t 0 cos 0 (2e+ cos® 6)do
e, (o G+ {2 4-sin? 6 ’
0
and this can be rearranged as
dl 2¢ 2
_— I=— J, C3
&, @D G+ )
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i1

3
where J = j tan2* O cos B d0=LB(i +¢, 1 —¢),
4]

by setting x=tan? 6 and using 3.194.3 of Ref. 25. The solution of the differential equation (C.3) can be

written at once as
2 1 3
(C‘—J;—) [=2J
{1

Again using section 3.194 of Ref. 25 we can express the integral in terms of the beta function and the
hypergeometric function:

dt

;‘W_—e, SinCﬁI-’OﬂSCl—)w .

8

P

1

2 £ 1-2¢ 3
1:&%) Bs+e, 1—8){%3(%—8»%)*-i"~—2—8 oF, (1 —eI-is g —Cf)} : (C4
2 -

The product of the beta functions simplifies, using the definition in terms of the gamma function and
equation 8.334.2 of Ref. 25:

Bt +¢&,1—8)B(t—¢,4)=2n/cos ne . (C.5)

To display the analytic behaviour of the velocity near the leading edge we need the expansion of the
hypergeometric function:

DB+ 1
(o Bi s z)=1+%§z+3%(—*;£%%)z2+... . (C6)

dZ_ CZ e_ C% £
4 (<2+d2) B <C%+ 1) 7

we have, by (C.1), (C4), (C.5), (C.6) and (C.7)

Then, remembering

1AW,
KU dz —

2 1 & 1-—2¢ )
i) S e gt (- (1—200(22).
{1 7 1-2¢

The first term on the right is the incidence-dependent velocity. If {; is real, corresponding to Z in the
plane of the wing and ahead of the leading edge, this is an upwash which tends to infinity at the leading
edge like {7, i.e. like (Z —s)” 2% * 29 _1f {, is imaginary, corresponding to Z on the wing surface, the
incidence term is tangential to the wing surface, according to the interpretation of the conformal trans-
formation i Section 2. The remaining terms on the right give the velocity at zero incidence and this is
clearly non-singular. Provided £ <%, i.e. the wing has thickness, the lateral velocity increases towards KU
as the leading edge is approached from upstream ({, real and small). In the limit £—1, the velocity field
at zero incidence vanishes.




d

_ _U+KUcose7t 2\ dt
- n a2—2) i’

—-a L

and so

|54 } Kcosen
*Ij‘ = —-IOCC+

t2 ¢ '
(dz — tz) In ({ —it)dt + const

:tt__}a.

-~

d d
.. Kcosen 6 . 2 . iKcosen 2\ _
= —iol + - in ¢ j(dz_tz)dt—— o J(dz_ﬁ)tdt—i—const-l—O(C 3.

Now the first of these integrals is 2s cosec sx, by equation (8), and the second vanishes, so that

Ks cot
Wi i ZRSCONET L constH0(C=2)
U T
A 4>\ 2Kscot i
= —io Z’+iocx—8—7 +——S—M an’+lﬁ3,C—— +const+0(Z'~2).
zZ bid VA
Therefore
. 252 cot
b, :,a(adz+_~*_<:gf_ff>_ B4

7Z

We now find b, in terms of the numerical approximation to the vortices. From (10) it is clear that the
leading term in the expansion of W for large { is 0({ ™ '), so only this term need be considered. To this
order {, Z and Z’ are equal. The appropriate expression can therefore be written down by inspection of
equations (10) and (24):

n

I +l) Ka& .
bzz_#_% gFafhjer—h;y)

i=1

n

iKgyd® iKd* _
= +27z giyafhje—hi-y) (B.5)
=

with hy=0 and h, ., =h, by convention. Suitable factors d* have been reintroduced where necessary to
restore proper dimensionality.
The lift is the imaginary part of the complex force F and follows from (B.1), (B.2), (B.4) and (B.5):

n

L=pU? [27zocad2—2as2 cot em+ 2Kgyd* + Kd? Z g¥2ihje—hy- 1)] .

=1

(B.6)
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Since the wing area is xs or s?/K, and lift and normal force are the same in this approximation, we have

C ned? dgyd® 2d* O _
_1!=4a< 32 —cotan)—l— gs); +S—22gjy2,-(h,~+1—hj_l). (B.7)

j=1

When ¢=1, d=s, and this agrees with equation (63) of Ref. 1. The first term represents the linear lift
arising in attached flow.
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APPENDIX III
The Velocity Near the Leading Edge in Attached Flow.

Although the formulation (9) of the velocity in the attached flow past the rhombic cone is suitable
for numerical evaluation at points away from the wing surface, numerical difficulties would arise from
the treatment of the Cauchy principal-value integral which occurs on the surface itself. Moreover, the
formulation reveals nothing of the analytic behaviour of the velocity field near the leading edge, where
{=0. In this Appendix alternative expressions are derived from (9) to complement it in these respects.
Equation {C.9) was used as a check that the numerical treatment of (9), embodied in equation (23), was
in fact adequate for the present calculations.

Using W, forthe complex potential of the attached flow, we can write equation (9) as

id
1 dWl———i L cosen AN
KU &t = T4 24 d?
—id

%
. cosen | |tan® 6] cos 6 df
—ia+ s
s {,—isind

dt

{—1t

ol

(where ¢ =id sin 0 and {={,d)

=—ia+ICOS£n, (C.1)

where

tan® 0 cos 6 46

OL___.} [V

I=2b | = e €2
By differentiation we find
z
j—cll= —ZII+2 j tan® 6 sin 0———————(2&81_25;336;,; :
]
Integration by parts gives
z
dar_ __I_+ 2 Jtanza 0 cos 9(2?8+cosz 0)do
a, ¢ +1 J {3 +sin? 9 ’
and this can be rearranged as
dI 2
Ec‘{“cl(c%il) T %ilj’ )
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T

2
where J = J tan2 @ cos 0 dO=1B(i+e,1—¢),
0

by setting x=tan? 0 and using 3.194.3 of Ref. 25. The solution of the differential equation (C.3) can be
written at once as

(+1Y dt ,
(JC_%_ 1=2J e since I-»0as{, 0.
&

Again using section 3.194 of Ref. 25 we can express the integral in terms of the beta function and the
hypergeometric function:

§

£ 1 3
I=<C§—1> B3 +¢, 1—8){53(%—8,%)— :1:5 2F (1 —&3—85-8 —Cf)} : (C4)

The product of the beta functions simplifies, using the definition in terms of the gamma function and
equation 8.334.2 of Ref. 25:

B +e,1—¢e)Bt—¢,3)=2n/cos me . (C.5)

To display the analytic behaviour of the velocity near the leading edge we need the expansion of the
hypergeometric function :

of | ot DA )

. — o 2
2Fl(cc,ﬁ,y,z)»l—!—ylz ot 1.12 Pl SR (C.6)
Then, remembering
iz_( 0 Y_( 8
oa— = -7
(- (s
we have, by (C.1), (C4), (C.5), (C.6) and (C.7)
1 dw, ISERAS cosEm _ 1-2¢
b S Y (.2 L ibtdindy T8 — 1—(1— 2y
KU dZ la< 7 tl-— B(z+e,1 8)1—23( (1—26)0((7))

The first term on the right is the incidence-dependent velocity. If {; is real, corresponding to Z in the
plane of the wing and ahead of the leading edge, this is an upwash which tends to infinity at the leading
edge like 72, i like (Z—s)™ 2/ * 29I {; is imaginary, corresponding to Z on the wing surface, the
incidence term is tangential to the wing surface, according to the interpretation of the conformal trans-
formation in Section 2. The remaining terms on the right give the velocity at zero incidence and this is
clearly non-singular. Provided & <1 ie. the wing has thickness, the lateral velocity increases towards KU
as the leading edge is approached from upstream ({, real and small). In the limit e—1, the velocity field
at zero incidence vanishes.



For numerical calculation it is convenient to write

1

3 _ @1y dt
ZFI(I_g,%—-g,a—*E, _C%)_B(%, 1—8) J\L“i’(l——t)a(l'f‘c%t);

0

by 9.131.1 and 9.111 of Ref. 25. Then, by (C.1), (C.4), (C.5) and (C.8)

_72£
1 4w, . 2\ 24, [ cos'™?0d6
XU 7 = "etm ) | Toraag
KU d¢ {i+1 7 ) 1+{{sin* 6
]

(C.8)

(C9

where ¢=sin’ § has been introduced into (C.8). This form is suitable for numerical evaluation for small

values of {; and for points on the wing surface if these are required.
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TABLE 2

Solutions for =05, 5=0.

r r, Cy
. y z KUs KUs K2
02 0910 0047 0676 | 0080 1-573
03 0874 0071 1025 | 0160 2511
04 0841 0096 1378 | 0263 3.542
05 0815 0121 1730 | 0376 4645
06 0788 0147 2089 | 0508 5832
07 0764 0172 2457 | 0649 7090
038 0743 0198 2835 | 0795 8414
09 0725 0222 3227 | 0941 9-800
10 0709 0247 3633 | 1096 | 1125
11 0696 0270 4059 | 1246 | 1276
12 0686 0291 4501 1394 | 1431
13 0676 0312 4960 | 1542 | 1592
14 0669 0332 5440 | 1690 | 17-59
15 0663 0350 5936 | 1835 1930
16 0658 0368 6450 | 1974 | 2106
17 0654 0385 6981 | 2110 | 2286
18 0652 0400 7527 | 2239 | 2470
19 0649 0415 8091 | 2374 | 2660
20 0648 0429 8662 | 2499 | 2851
21 0-647 0443 9252 | 2622 | 3048
22 0646 0456 9856 | 2744 | 3248
23 0646 0469 | 1048 2865 | 3453
24 0646 0-481 1106 2981 | 3660
25 0646 0492 | 1174 3092 | 3871
26 0647 0503 12:39 3207 | 4087
27 0648 0514 | 1305 3311 43-04
28 0648 0524 | 1372 3419 | 4525
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TABLE 3

5
Solutions for = o (0-4167), 6=30°

r T, Cn
a Y z KUs KUs K2
01 0977 0022 0184 | 0010 0618
02 0949 0050 0463 | 0046 1341
03 0926 0077 0764 | 0099 2152
04 0904 | 0104 1087 | 0172 3055
05 0-882 0131 1424 | 0260 4043
06 0861 0159 1772 | 0364 5117
07 0840 0187 2132 | 0485 6273
08 0821 0215 2499 | 0613 7-503
09 0-802 0244 2876 | 0755 8813
10 0784 0273 3265 | 0906 | 1020
11 0769 0300 3666 | 1050 | 1164
12 0754 0328 4080 | 1222 | 1316
13 0740 0-354 4510 | 1385 | 1473
1-4 0728 0-380 4952 | 1553 | 1636
15 0718 0404 5415 | 1717 | 1805
146 0709 0-426 5800 | 1877 | 1977
17 0701 0-448 6386 | 2041 | 21-56
18 0695 0-468 6901 | 2199 | 2339
19 0690 0486 7431 | 2353 | 2526
20 0686 0-504 7969 | 2503 | 2716
21 0682 0521 8533 | 2657 | 2914
22 0680 | 0537 9110 | 2797 | 3113
23 0677 0552 9695 | 2946 | 3317
24 0676 0566 | 1030 3082 | 3524
25 0-675 0579 | 1091 3215 | 3735
26 0674 0592 | 1155 3354 | 3952
27 0674 0604 | 1219 3479 | 4168
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TABLE 4

4
Solutions for & =5 (0-3333), 6=60°

r r, Cy
a4 Y z KUs KUs K2
01 0-989 0020 0107 0006 0-544
02 0974 | 0048 0314 | 0028 1-160
03 0960 0074 | 0556 0064 1-847
04 0:947 0-099 0-827 0112 2605
05 0934 0-126 11123 0172 3-439
06 0922 0152 1440 | 0244 4347
07 0909 0179 1775 0327 5333
038 0896 0-206 2125 0422 6394
09 0-883 0233 2-489 0528 7.535
10 0870 0261 2866 | 0645 8753
11 0-858 0289 3254 | 0772 | 1004
12 0845 0318 3654 | 0910 | 1142
13 0833 0-347 4063 1057 | 1286
14 0820 0-376 4484 1214 | 1438
15 0809 | 0404 4918 1373 | 1596
16 0797 0433 5360 1545 | 1762
17 0787 0-461 5818 1715 | 1933
18 0776 0-489 6283 1896 | 2111
19 0767 0-515 6768 2077 | 2294
20 0758 0-540 7:266 2257 | 2482
21 0751 0-565 7777 2437 | 2676
22 0744 | 0588 8306 2615 | 2873

40




TABLE 5

Solutions for e= —13 (0-25), 6=90°

r I, Cy
¢ y z KUs KUs K2
01 0990 0028 0082 | 0008 0491
02 0990 0043 0202 | 0018 1013
03 0984 0066 0381 0:040 1-586
04 0:978 0089 0-588 0070 2:203
05 0972 0112 0822 0108 2872
06 0966 0134 1081 0-153 3-593
07 0960 0157 1361 0204 4370
038 0954 0180 1-661 0264 5205
09 0948 0203 1982 0331 6102
10 0942 0226 2318 0404 7053
11 0936 0250 2672 0484 8072
12 0:930 0273 3040 0570 9148
13 0924 0296 3422 0664 | 1029
14 0018 0320 3.820 0766 | 11-50
15 0912 0344 4231 0874 | 1278
16 0906 0369 4654 0990 | 1412
17 0899 0393 5088 1111 1553
18 0893 0418 5536 1243 | 1702
19 0886 0444 5993 1385 | 1858
2:0 0880 0469 6463 1525 | 2019
21 0873 0496 6943 1681 | 2189
22 0866 0522 7-431 1844 | 2366
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TABLE 6

Solutions for ¢ =T2§ (0-1667), 6=120°

r r, Cy
4 y z KUs KUs K?
02 0983 0068 0139 0026 0-899
03 0993 0071 0250 0034 1379
0-4 0996 0077 0375 0043 1-869
05 0998 0-089 0529 0059 2387
06 0996 0110 0722 0088 2:951
07 0995 0127 0922 0115 3529
08 0994 0143 1134 0144 4130
09 0993 0160 1367 0179 4765
10 0991 0178 1619 0217 5437
11 0-990 0194 1-885 0258 6138
12 0989 0211 2166 0301 6874
13 0988 0228 2-466 0349 7653
1-4 0987 0245 27780 0-400 8468
15 0986 0261 3107 0454 9329
16 0985 0278 3-450 0510 | 1021
17 0984 0294 3-806 0570 | 1115
18 0983 0311 4179 0634 | 1213
19 0982 0327 4561 0699 | 1314
2:0 0981 0344 4957 0768 | 1420
21 0980 0362 5374 0845 | 1533
22 0978 0379 5798 0924 | 1650




TABLE 7

Solutions for a=0'5

r T, Cy
¢ y z KUs KUs K2
012 1000 | o121 0440 | 0080 2227
014 0-999 0098 0470 | 0063 2282
016 0-998 0-088 0508 0057 2354
018 0-993 0099 0590 | 0073 2476
020 0-988 0101 0651 0080 | 2576
022 0-981 0107 0722 | 0092 2695
024 0975 0109 0786 | 0102 | 2809
026 0967 0116 0863 0118 2945
028 0960 | 0117 0929 | 0128 3066
0-30 0:950 0122 1005 0-146 3210
032 0941 0124 1075 0160 | 3345
034 0931 0127 1148 0179 3-489
036 0920 0128 1218 0196 3628
0-38 0906 0-131 1293 0220 | 3779
0-40 0894 0131 1363 0240 3921
042 0-880 0131 1435 0264 | 4068
0-44 0-865 0130 1:507 0289 4212
046 0-848 0128 1581 0-318 4359
048 0831 0125 1654 | 0347 4504
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TABLE 8

Solutions for a=1-0

r T, Cy

£ y z KUs KUs K2
012 1010 | 0138 1195 0128 4687
014 1-003 0158 1380 0-166 4996
016 0994 0173 1558 0203 5319
018 0985 0-186 1736 | 0243 5674
020 0974 0199 1911 0-285 6050
022 0962 0212 2:083 0333 6451
024 0949 0221 2240 | 0378 6848
026 0935 0231 2393 0-429 7259
028 0919 0-240 2534 | 0482 7668
030 0902 | 0249 2:668 0542 8084
032 0883 0257 2790 | 04605 8491
034 0864 0-263 2:903 0-664 8-876
036 0-843 0-269 3-005 0732 9-256
038 0823 0271 3-103 0791 9603
0-40 0802 0273 3191 0856 9-939
0-42 0781 0273 3278 0915 | 1025
0-44 0761 0-269 3366 0967 | 10-53
0-46 0742 0264 3-451 1017 | 1079
048 0725 0256 3-540 1060 | 11-03
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TABLE 9

Solutions for a=1-5

r r, Cy
& y z KUs KUs K2
012 1012 0202 2:308 0261 7636
014 1002 | 0228 2660 0339 8311
016 0990 0253 2999 0424 9-058
018 0976 0277 3322 0516 9-861
020 0960 0297 3611 0608 | 1067
022 0942 0317 3-880 0711 | 11-52
024 0923 0335 4119 0816 | 1235
026 0901 0-353 4334 0931 1319
028 0877 0369 4522 1049 | 1400

0-30 0-852 0-385 4-686 1-174 14-78
0-32 0-826 0-398 4-831 1-299 15-52
0-34 0-800 0-407 4-958 1-413 16-17
036 0776 0-412 5-080 1-512 1676
0-38 0754 0-412 5-200 1-595 17:26
0-40 0-733 0-409 5316 1-668 1772
0-42 0-715 0-403 5435 1-725 1811
0-44 0-699 0-393 5552 1770 18-45
0-46 0-685 0-380 5678 1-800 18-77
0-48 0-674 0-366 5-807 1-816 19-04
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Fi1G. 1.

Wing and coordinate system.
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FIG. 2b.  Variation of transformation parameter with thickness of wing.
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F1G. 3. Configuration in transformed plane.
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F16. 4. Application of normal velocity condition.
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x Points in marching sequences

© Points found by interpolation

2" line

of search

15t line

of search

F1G. 5. Search procedure for minimum of |F(3, 2)|
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(START)

I
LPrz!irnincry geometrical calculations

1
Set initial fength of step for
vortex displacement, setq=1

1
Set direction of morch//Oy,

set s=1
|

I u.=}F|, shift vortex on j

[ u, =|F|, shift vortex on —l

Unterpolute for minimum value of |F} l @

store interpolated
vortex position
i?\ (YS’ 23)
s=2
shift vortex // oz

Store interpolated vortex
position in (y,, Z5)
$=3
set direction of march along
Join of (va,23) & (v4,24)
shift vortex to lower of
two conditional minima

J

IShift vortex to minimum of |F| ]

No

o] [ ]
——

Calculate changes
required in {dzj }

Move set of trial points
back (g =uy, u,:uoetc)

@ Yes
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Move set of trial points
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Print
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F1G. 6. Flow diagram of computer program.

Print details
of solution

message
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initial estimate for

solution for next
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( ENTER )

Adjust values of do, dp------- dy
Calculate all geometrical quantities.
Calculate velocity of attached
flow at intermediate points.
Calculate “constants” for
evaluation of g and {‘h‘}

Calculate new values of g und{gj}

Calculate value of |F (T, 'z')l

¥1G6. 7. Flow diagram of subroutine R.
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F1G. 8a & b. Variation of sheet shape and vortex position with thickness for a=0-5 and 1-0.
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Fic. 8¢c. Variation of sheet shape and vortex position with thickness for a=1-5.
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FI1G. 9a. Variation of sheet shape and vortex position with a for & =90°.
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FiG. 9b. Variation of sheet shape and vortex position with a for § =120°.
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FIG. 10a. Calculated variation of isolated vortex position with thickness and incidence.
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FIG. 10b. Measured variation of vortex centre with thickness and incidence (after Kirkpatrick & Field'®).
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FiG. 11a.

Lateral position of vortex: calculation and measurement.
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FiG. 11b. Height of vortex: calculation and measurement.




o A=0-8 } Measurements,

@ A=0-577 | 8=60° Ref20

Calculation

03 0-6 0-9 I-2 a I'5 I-8

FiG. 12. Variation of total circulation with incidence.
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[, + Measurements of Kirkpatrick?
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Fi1G. 13. Variation of total circulation with thickness.
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Calculations for vaolues /
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Estimated boundaries /
for 0-2<a <20 /
0<6§<I120° /

Experiment, Ref 19 & 20

§ i
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FiG. 14. Relation between scale and circulation of vortex.



FiG. 15. Variation of sheet strength with thickness for a=1.
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———— Measurements on cones (Kirkputrickm) 1

(0]

Present caleulation

Measurements on flat plate’ (Fink and Taylor*)

0-5 1-0 a 15

Fi1G. 16. Normal force in conical flow.
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4 —— Present calculation i
—_3— Measurement on cones '®

——o—— Measurement on flat plate *

30° 60° 6 90°

FiG. 17. Normal force in conical flow.

Printed in Wales for Her Majesty’s Stationery Office by Allens Printers (Wales) Limited
Dd. 502110 K.5 2/72.



© Crown copyright 1972

Published by
HER MAJESTY’S STATIONERY OFFICE

To be purchased from
49 High Holborn, London WC1V 6HB
13a Castle Street, Edinburgh EH2 3AR
109 St. Mary Street, Cardiff CF1 1JW
Brazennose Street, Manchester M60 8AS
50 Fairfax Street, Bristol BS1 3DE
258 Broad Street, Birmingham Bl 2HE
80 Chichester Street, Belfast BT1 4JY
or through booksellers

R. & M. No. 3694

R. & M. No. 3694
SBN 11 470494 5



