C.P. No. 284 (18,022) A.R.C. Technical Report C.P. No. 284 18,022 A.R C Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Towing Tank Tests to Determine the Water Drag of the Hull of a Jet Propelled Flying Boat Fighter (Spec. E.6/44) and Comparison with Full Scale Measurements

Bу

R V Gigg, A G Kurn, Grad R AeS and J K Friswell, B Sc

LIBRARY ROYAL AIRCRAFT ESTABLISHMENT BEDFORD.

LONDON HER MAJESTY'S STATIONERY OFFICE

1956

EIGHT SHILLINGS NET

C.P. No. 284

Corrigenda to M.A.E.E. Report No. F/Res/263

March. 1956

MARINE AIRCRAFT ESPERIMENTAL ESTABLISHMENT, FELIXSTOWE, SUFFOLK

TOTING TANK TESTS TO DETERMINE THE WATER DRAG OF THE HULL OF A <u>JET-PROPELLED FLYING BOAT FIGHTER (SPEC.E.6/44) AND</u> <u>COMPARISON WITH</u> FULL SCALE MEASUREMENTS

ЪУ

R.V. GIGG A.G. KURN, Grad.R.Ac.S. J.K. FRISWELL, B.Sc.

Corrigenda

- p.6 lines 28-29 For 'With the nomenclature formula," substitute
 'With the nomenclature of Figure 8 and the assumptions
 above this leads to the formula (cf. References 1 and 2),"
- p.7 lines 18-20 For "A number of screened runs Figure 13"
 substitute "A number of test results for the low draught
 planing region, where conditions made possible the calculation of water skin friction coefficients, were analysed
 to determine these coefficients for comparison with the
 skin friction curve of Reference 2. This standard
 curve and the test points for the present investigation
 are plotted together in Figure 13".
- p-11 line 17 Delete existing definition of S and substitute "Total wetted area".

C.P. No. 284

Report NO. F/Res/263

<u>Hay 1955</u>

MARINE AIRCRAFT EXPERIMENTAL ESTABLISHIENT. FELIXSTONE. SUFFOLK.

TOWING TANK TESTS TO DETERMINE THE VITERDR.G OF THE HULL OF A JET PROPELLED FLYING BOAT FIGHTER (SPLC, 1.6/44) AND COMPARISON WITH FULL SCILE MEASUREMENTS

Ъy

R.V. GIGG A.G. KUFN, Grad.R.Ae.S. J.K. 1715 ALL, B.Sc.

<u>SUMMARY</u>

The water drag, draught, weticd areas and mean wetted lengths of a 1/9th scale **E.6/44** flying boat model hull have been measured far all anticipated take-off loads and attitudes over the take-off run.

A method of scaling up model drag, to make allowances for the differences in skin friction, model and full scale, has been used and the results compared with actual full scale tests.

There is not satisfactory agreement between estimated and measured full-scale results, and the tests do not provide sufficient evidence to determine whether the accurate estimation of full-scale water resistance by the methods used is possible.

/LIST OF CONTENTS

-2-

LIST OF CONTINTS

- 1. Introduction.
- 2. Description of model.
- 3. Experimental methods and analysis of results.
 - 3.1. Drag measurements.
 - 3.1.1. Low and hump speed ranges. 3.1.2. Planing speed. range.
 - 3.2. Draught measurements.
 - 3.3. Wetted area and mean wetted length determinations.
 - 3.3.1. Method of determining mean wetted lengths.3.3.2. Calculation of wetted areas and mean wetted lengths in the low draught planing region.
- 4. Estimation of full scale water drag.
- 5. Full scale tests.
- 6. Comparison of estimated and measured full scale water drags.
- 7. Conclusions.
- List of Symbols.
- List of References.

LIST OF T.BLES

Table No.

Ι

Leading particulars of E.6/44 Flying Boat.

LIST OF ... PPENDICES

...ppendix No.

Ι

Ground effect on lift for $E_{.6}/4$.

/LIST OF FIGURES

-3-

LIST OF FIGURES

Figure No. 1 Hull lines of $E_{6/44}$. 2 Model scale water drag - low speed range. Model scale water drag - hump speed range. 3 Model scale water drag - planing speed range. 4 Model scale draught measurements - low speed range. 5 6 Nodel scale draught measurements . hump speed range. Model scale draught measurements - planing speed range. 7 Diagrammatic view of model hull bottom, showing 8 wetted areas, flow pattern, and method of combining areas to determine mean wetted lengths. 9 Model scale vetted area coefficients - low and. hump speed range. Model scale mean wetted lengths - low and hump speed range. 10 Model scale wetted area coefficients - planing speed range. 111 & 11B 12A & 12B Model scale mean wetted lengths - planing speed range. 13 Variation of mean model CF With mean Reynolds Number. Schoenherr smooth turbulent curve extended to full 14 scale Reynolds Numbers. 15 Full scale air lift related to keel attitude. 16 Full scale air drag related to keel attitude. 17 Full scale lift/drag characteristics. Full scale air lift related to wing incidence. 18 19 Full scale air drag related to wing incidence. **20** (a-h) Full scale water drag. **21** (a-d) Comparison of estimated and full scale water drags.

/1. INTRODUCTION

1. INTRODUCTION

Full scale measurements of hydrodynamic resistance were made on the E.6/44 jet propelled flying boat fighter (Saunders-Roe A.1) by Messrs. Saunders-Roe, in collaboration with M.A.E.E. As this was the first jet propelled seaplane in existence, it offered an opportunity for more accurate measurements of a flying boat hull water drag than had been possible hitherto, and for a reliable comparison with model-scale data.

Provious tank measurements of model water drag have shown discrepancies when compared with full scale results. While some of the differences involved could be attributed to changes in the skin friction coefficients, from model to full scale, the size of this effect could not be determined owing to lack of knowledge of the boundary layor conditions on the model hull bottom.

Accordingly, a new to chalque of model testing was evolved at the R.A.E. Seaplane Tank which involved applying a constant degree of surface finish to hull bottoms and determining the skin friction coefficient values over the Reynolds Number range experienced in the tank, to facilitate the accurate scaling up of model drags. This method is described in Reference 1, and Reference 2 describes in more detail the practical aspects of the method, with some adaptations, as it was applied to model tests to measure the water drag of the Princess flying beat. In the tests of the present report substantially the same procedure as for the Princess tests was employed, with the following objects in view:-

- (i) to provide a comparison with the full scale values, and
- (11) depending on the degree of agreement found in (1), assessing the validity of using the results obtained in Reference 2 to estimate the take-off performance of the full scale Princess and of using the new experimental technique in future investigations.

2. <u>DESCRIPTION OF MODEL</u>

The model, the lines of which are given in Figure 1, was made of mahogany to 1/9th scale. This scale gave the largest model which could be accommodated in the tank to give a reasonable range of speed and load, so keeping scale effects to a minimum. Balsa fairings were fitted over the Jet entry and exit duct positions to simulate the full scale airflow as closely as possible, without the complication of providing airflow through the ducts. The planing surface was brought to the standard degree of smoothness by the application of a hard black phenolglaze, suitable for the determination of wetted areas by the white chemical Indicator method.

3. EXPERIMENTAL METHODS AND ANALYSIS OF RESULTS

As already stated, the methods used were basically those employed for the Princess model ¹,², and only outlines of the methods are therefore given below. The only change made was in the method of calculating the mean netted length when the afterbody was wetted. The new method is described in section 3.3.1, and caters more satisfactorily from a logical point of view for the afterbody flow conditions experienced than does the original method; the numerical change involved is however small and does not affect any assessments of the Princess test methods made later in this report.

It was felt by the authors of the present report that other changes could advantageously be made in the analytical methods of References 1 and 2 to improve their logical basis. As these are of a more controversial nature than the change mentioned above and at the same time would seem from preliminary calculations to have only a small effect on the results, it was decided not to incorporate the changes but to pursue the matter in a later report.

/3.1.

3.1. Drag measurements

3.1.1. Low and hump speed ranges

In the low and hump speed ranges, the model was tested at Varicus speeds and, at each speed tested, a selection of three fixed attitudes combined with four, five, or six loads was used, the drag being measured for each combination. The choice of attitude was made by reference to full scale tests, and approximate free to trum attitudes to the nearest whole degree were selected in conjunction with values differing by $\pm 2^{\circ}$ from these attitudes. The combination of loads and attitudes gave a coverage of all reasonable C.G. positions, power and loads, full scale, and gave results, presented on a generalised base in Figures 2 and 3, from which interpolation in the main can be carried out with a fair degree of accuracy. (The generalised base has been used solely as a matter of convenience in scaling up results, and not because a collapse was expected).

3.1.2. Planing speed range

In the planing speed range, in accordance with the standard technique, the model was tested at a single carriage speed of 25 ft. per sec. ($C_V = 5.25$: full scale speed 44 knots) at keel attitudes of 4° , 6° , 8° and 10° . Generalised tost methods were employed and runs were made at values of C_{Δ}^{\odot}/O_V from 0.05 to 0.25, corresponding to values of Δ , the load on water, from 1.5 to 38 lb; the results are given in Figure 4. All the main tests were made with airflow present and in addition a number of runs over a limited range were made screened from airflow to check agreement with the skin friction line of Reference 2 for a 25° Vee wedge (see Section 4.1).

3.2. Draught measurements

Draught readings were taken in conjunction with drag measurements and are plotted in Figures 5, 6 and 7 for the same ranges of the variables.

The low and hump speed plots of Figures 5 and 6 are not needed for estimation of full scale drag, but are included for the sake of completeness, as the planing speed graph, Figure 7, is essential (see Section 3.3.2).

3.3. Wetted area and mean wetted length determinations

The same method of measuring wetted areas was used as on the Princessmodel.* It is a laborious and time consuming process, and only the minimum number of runs necessary to cover the range adequately without excessive error was made.

3.3.1. Method of determining mean wotted lengths

Mean wetted lengths were determined from the wetted areas, Figure 8 illustrating how this was dons.

It was assumed,

(i) that the flow over the main wetted area of the forebody was parallel to the keel, and that the afterbody, when wetted, was wetted by part of the flow from the forebody;

/(ii)

Reference 1 states that the model must not be allowed to touch the water when it is being mounted on the balance after spraying, or removed after a run has been completed. It was found, however, that if the model was placed in the water gently, and no violent disturbance given to the water or the model, satisfactory results were obtained. A static water level line Was justdiscernible, where the water had dissolved the indicator, but this was casely distinguishable from the flow pattern lines.

- (i1) that the flow over the spray wetted area of the forebody was parallel to the spray leading edge;
- (iii) that if the flow over the main step was turbulent, then it would be turbulent over the whole of the wetted afterbody;
- (iv) that there was negligible spray area on the afterbody.

Observations confirmed the last two assumptions, except where wetting on the afterbody occurred very near the rear step. The exceptional cases showed only very small laminar and spray areas on the afterbody, the ignoring of which made little difference to the results.

In conformity with these assumptions a single mean wetted length was determined for the forebody and afterbody combined when the afterbody was wetted (the mean wetted length in the cases when only the forebody was wetted being determined in accordance with normal practice). This single mean wetted. length was determined as follows.

In view of the fact that the curvature of the afterbody chine was slight, it was possible in most cases to regard the afterbody wetted area as a triangle. The simple shape of the main step rade possible the construction of a. triangle with the same area as the afterbody wetted area and with equal base length, placed in line with the keel, one end coincident with the step and keel intersection point, and one side along the main step line (Figure 8). It was assumed that the flow over this new single area would be the same as that over the two individual areas in the actual experimental case, as far as lengths and directions of streamlines and the nature of the boundary layer were concerned, and the mean wetted length of this new complete shape Was defined as:

$$\overline{z} = \frac{\Sigma^{\ell} \delta S}{\Sigma \delta S}$$

where ℓ was the length of a flow line and δS the area of the elementary strip defined by the line. With the nomenclature of Figure 8 this leads to the formula,

$$= \frac{S_{1B} i_{1B} + S_4 i_4 + S_3 i_3 \cos \phi'}{S_1 + S_2 + S_3 \cos \phi'}$$

The values of the wetted area coefficient, Cs, and of 7/b are given in Figures 9 and 10 for the low and hump speed ranges, and Figures 11 and 12 for the planing region.^K It may be mentioned that when the sides of the model were wetted, as happened occasionally at low speeds, the wetted side areas were included when calculating the wotted ares. coefficient but ignored in the determination of the mean wetted length. This is actually the same procedure as was followed in the tests on the Princess model, although no mention is made of it in Reference 2, and it is unlikely to affect the accuracy of the Reynolds Number determination materially; flow and boundary layer conditions in a side wotted area are in any event so confused that it would be extremely difficult to make allowance for it.

3.3.2. Calculation of areas and mean wetted lengths in the low draught planing region

In the low draught planing region, where there was no wetting of the afterbody and the wetted forebody was wholely contained within the limit of constant cross-section, wetted areas and lengths were in general calculated instead of measured, though a few check measurements were made. The

/values

In calculating C_{S} and 7, the term $\cos \alpha_{KK}$ which occurs in the corresponding formulae in References 1 and 2 has been omitted es for practical purposes its value is unity.

values of ϕ , ϕ ' and $\frac{\ell}{k/d}$ for the calculated. areas obtained in this region compared favourably with unpublished results from tests on a 25° wedge. Mean values were taken from the wedge results and used to calculate the low draught region curves of Figures 11A and 12A. The mean values were:

a _k (degrees)	ø (degrees)	∲ (degrees)	k/d
4	15	23	14.7
6	23	39	9.7
8	30	54.5	7.6
10	36	69	6.3

It can be seen that in the low draught region, the points obtained from areas measured on the model show excellent agreement with the calculated curves.

Figures 11B and 12B were dcrived from Figures 11A and 12A crossplotted against Figure 7. They give the results in a form more convenient for scaling-up calculations.

4. ESTIMATION OF FULL SCALE WATER DRAG

A number of screened runs were **made** in the **low** draught planing region where conditions made possible the calculation of **water** skin **friction** coefficients, shown plotted **with** the standard curve in **Figure 13**. Although there is a fair amount of scatter, there is no **evidence** to show that the standard curve, obtained from tests on a 25[°] deadrise phenolglazed wedge, is in error. Model skin friction coefficient values wcre accordingly taken **from this** line, Reynolds Numbers being calculated from model speeds and mean wetted lengths.

Full scale skin friction **coefficients** were **estimated** as follows. To obtain the appropriate full scale Reynolds Numbers, the model Reynolds Numbers were scaled up simply by multiplying them by $n^{1} \cdot p^{1}$, in this case 27, changes in kinematic viscosity **from** model to full scale, due to the change from fresh to salt water, being considered too small to take into account.

In the full scale case, the hull bottom surface was sufficiently smooth to ensure that there would be smooth turbulent flow. It was therefore assumed that the skin friction coefficient line would approximate to the Schoenherr smooth turbulent Ourve, and this curve was therefore used in the calculations, in conjunction with the scaled-up Reynolds Numbers. (This of course assumes that the curve for a wedge shape will be the same as that for a flat plate, which seems to be approximately true from what little evidence id available). Figure 14 gives the Schoenherr curve covering the fill scale range, together with the model skin friction coefficient curve.

Raving determined the values of **the model and** full scale skin friction coefficients as already indicated, an **estimate** of the full-scale resistance was obtained by using the relation²

$$\frac{\mathbf{R}'}{\Delta \mathbf{T}} = \frac{\mathbf{R}}{\mathbf{a}} \begin{bmatrix} 1 + (\frac{\mathbf{C'}_{\mathbf{F}}}{\mathbf{C}_{\mathbf{F}}}, \frac{\mathbf{C}_{\mathbf{F}}}{\mathbf{R}}) \end{bmatrix} \frac{\mathbf{R}_{\mathbf{F}}}{\mathbf{R}} \begin{bmatrix} 1 \end{bmatrix}$$

where

$$\frac{R_{F}}{R} = C_{F} C_{S} \frac{C_{V}^{2}}{C_{\Delta}} \cos \alpha_{k} / \frac{R}{A}$$

-7-

and

The estimated full-scale values are plotted in Figure 21 (a-a) over ranges of C_{Λ^2}/C_V corresponding to those in the fullscale tests at the attitudes concerned.

5. FULL SCALE TESTS

The programme of tests on the aircraft was planned by M.A.E.E., and agreed and executed by Messrs Saunders-Roe Ltd., the instrumentation being carried out by M.A.E.E. Such analysis of the test results as was required for the drag comparison was performed by M.A.E.E. from test records supplied by the manufacturers.

The tests designed for the measurement of total resistance included take-offs, landings and loop runs, all made without the use of flaps (a loop run being defined as a run in which the aircraft is accelerated up to a speed near the take-off speed, the engines then being throttled and the aircraft decelerated to rest). Aerodynamic tests were also performed which, in conjunction with a bench test engine calibration (carried out by Messrs Metropolitan Vickers, Ltd., makers of the Beryl engine), enabled. the air lift and drag to be calculated.

During all the tests, an automatic observer, mounted on the aircraft gun platform, was operated and records taken of longitudinal acceleration, aircraft attitude, air speed, elevator angle, engine speed and jet pipe pitot pressure. An anschutz gyroscope was used to measure the attitude and a desynn accelerometer the acceleration.

The acceleration records were used in conjunction with the thrust calculated from the engine bench calibration to derive the total resistance of the aircraft when on the water.

The air lift and air drag were calculated by standard methods, the results of these calculations being plotted against keel attitude in Figures 15 and 16 respectively. It will be observed that there is considerable scatter on these plots; it is thought that this is due to errors in the attitude readings, particularly as there is so little scatter on the C_D/C_L^2 curve (Figure 17). The results have been replotted in Figures 18 and 19 against wing incidence instead of keel attitude, omitting points for which the measured attitudes are thought to be in error. Also shown in Figure 18 is the lift curve corrected for ground effect by the method of Reference 3 (see Appendix I). Figure 19 and the corrected curve in Figure 18 have been used to derive the water drag of the aircraft from the total resistance measurements. These final values of water drag are plotted in Figure 20 (a-h) over a range of water speeds from 20 to 90 knots, and cross-plots from the mean curves through each set of points on to a C $_{\Delta}$ //C base are nude in Figure 21 (a-d) for comparison with the full-scale resistance estimated from the model results.

Some remarks on the full-scale tests are appropriate here. An overall limitation is that due to unavoidable circumstances it was not possible to finish the originally agreed programme, so that a complete picture of the full-scale resistance characteristics was not obtained. In addition, various inadequacies in the test procedure gave rise to possible errors, as detailed below.

Only measurements of mean windspeed and direction were made, and hence the water speed could not be determined with an accuracy greater than ± 2 to 3 knots. The tests were confined however to times when the mean windspeed was less than 5 knots, and in calculating the water speed a constant windspeed of 3 knots was assumed. The fact that the aircraft was a single scater led to insufficient attention being paid to the operation of the Anschutz Gyroscope. It is thought that some resistance runs were made with the gyroscope not fully erected, causing considerable error in the attitude measurements, and it is considered that this is the main cause of the scatter in the CL and CD plots of Figures 13 and 14.

Because of practical difficulties, in only a few of the resistance runs were automatic observer records taken over the hump. This means a sparsity of results over the range of greatest importance for correlation purposes.

These points all detract from the value of the full-scale results and make the comparison of **model and** full-scale **data** less accurate **than was** originally hoped.

6. COMPARISON OF ESTIMATED AND MEASURED FULL-SCALE WATER DRAGS.

An examination of Figure 21 (a-d), in which the estimated end measured full-scale resistances are plotted together for comparison, shows that there is far from being satisfactory agreement. While for each of the attitudes concerned there are some values of $C \int \frac{2}{C_v}$ for which there is little or no difference between estimated and measured resistances, there are other values at which the estimate exceeds the measured resistance by 60% or is short by 30%. In general the estimate is too high at low attitudes and too low at high attitudes, though the irregular nature of the curves confuses this trend somewhat.

There is no obvious reason why this should be the case. The method used for scaling up the model skin friction results and the assumptions on which they are based, while not perfect, are not so far removed from reality that the refinements involved in making them logically more rigorous would produce a change of anything like the desired magnitude. Alternative methods of scaling up are of course available and might possibly give better agreement between estimated and actual fill-scale results, but they lie outside the scope of the present report in view of the purpose of the tests, which was merely to prove or disprove the existing system of analysis.

Similarly, despite the inadequacies of the full-scale tests and the scope for error in calculation of full-scale water resistance, there 18 no single cause which would be likely to give rise to the systematic differences experienced. As has already been mentioned, the attitude readings were suspect in a number of the full-scale experiments, and errors here may lie at the root of the discrepancies, but the cause may well be, for instance, an error 1n the allowance for ground effect or a difference between the actual thrust and that calculated from engine bench tests. It is, however, fairly certain that any experimental error there may be is in the determination of the full-scale resistance, and it is unfortunate that the full-scale test results are not more reliable so that it can be firmly establishedwhether or not the methods of analysis used (both for model and fill-scale results) give values which agree with one another.

7. <u>CONCLUSIONS</u>

It may be **concluded** that there is not satisfactory agreement between estimated and measured **full-scale** results, and **that** if the disagreement is **due** to experimental **error** then the error lies in the full-scale measurements. There seems no reason to suspect the model teat results or the method of scaling up the skin **friction resistance** (though alternative methods **are** available which **might** give closer agreement) **and while** minor improvements **can** be **made** to the latter they will not have any **significant effect** on the results.

The tests **do** not provide sufficient evidence to determine whether **or** not the accurate estimation of full-scale water resistance by the methods of References 1 and 2 is possible. It would be of interest to examine the extent of agreement using alternative **methods** of **analysis**; this might **provide evidence** as to whether a more **fundamental** scrutiny of **resistance** analysis techniques is required.

ADVANCE DISTRIBUTION LIST

LIST OF REFERENCES

No.	nuthor	Title
1	T.B. Owen G. Kurn	Model testing technique employed in the R.A.I. Scaplane Tank. P.n.E. Report No. Lero.2505. R. & M. 2976. September, 1953.
2	T.B. Oven A.G. Kurn	Towing tank tests to determine the water drag and pitching moments on the final hull form of a large flying boat scaplane (Princess, Spec. 10/46). 2
. 3	J.L. Hutchinson	The theory of ground interference on the lift of an aeroplane. ME.E. Report No. F/Res/73. A.R.C. 1,398.

/LIST OF SYLLOLS

LIST OF SYNBOLS

b	Hull maximum beam, ft. (0.7 ft. model scale).
0 _F	Skin friction coefficient, model scale.
O ŗ ŧ	Skin friction coefficient, full scale.
CS	Wetted area coefficient = $S/2b^2$.
C^{Λ}	Water speed coefficient = V/\sqrt{gb} .
сγ	Load coefficient = Δ / wb^3 .
đ	Draught, ft.
₫∕Ъ	Draught coefficient.
ī	Mean wetted length, ft.
C K	Vetted keel length, model scale - forebody only.
n	Scale = <u>Full scale hull length</u> <u>Model</u> hull length.
R	Water drag, model scale, lb.
R '	Water drag, full scale, lb.
R _e	Mean Reynolds Number = $\frac{V}{2} \times 10^5$ 1.2285
RF	Skin friction drag, model scale.
S	= $S_1 + S_2 + S_3 \cos \phi' (S_1, S_2 \text{ and } S_3 \text{ as in Fig.8}).$
ν	Water speed, ft./sec.
w	Nater density (62.37 lb./cu.ft.).
a _k	Hull attitude (measured between forebody keel at step and the undisturbed water surface).
A	Load on water, model scale, lb.
A'	Load on water, full scale, lb.
ø	<pre>nngle between forebody stagnation line and keel line.</pre>
¢	ngle between forward edge of spray wetted area and keel line.
ν	Kinematic viscosity of freoh water = 1.2285 x 10⁻⁵ ft. ² /sec.

/ TABLE I

I.GLE I

LE.DIG P. TICULES OF E6/44 PLYING BOLT (FULL SCIE)

<u>Full</u>

Cross area	928 sq.ft.
Lotted area	913 sq.ft.
Gross volume	1,300 cu.ft.
Niximum beim	a.55 ft.
Niximum depth	22.75 ft.
Lorebody length	la.83 ft.
Iorebody length	8.42 ft.
Infter-keel angle	a" 28'
Heel to heel angle	10° 40'
Forebody deadrise angle at step	25° 0'
Porebody overall deadrise angle	21" 30'
Afterbody deadrise angle	30" 0'
Step depth unfaired	5.00 in.
Stop depth unfaired	5.00 in.
Cove depth	1.30 in.
Fairing ratio	3:1

Float

0/ leagth	e 75 °+
ON TENBOU	0.73 ± 0,
Beam	2.55 ft.
Depth	2.15 ft.
Jubyandy	865 lb.(3rd a/c.)
ingle to subjerge	5.780 (3rd a/c.)
Float arm	15'7 "

ling

Spin Gross aren Noot chord Tiper ratio Isper ratio Soll.O. Sweepback Section T/C ratio Dihedral (at 0.35c) Top surface Setting (to null datum) Flap setting take-off Flap setting landing Flap area Flap span % wing span

Tailrlane

46.0 ft. 415.0 sq.ft. 140.0 in. 65.0 in. 0.47 5.1 108.36 in. 3.0° Goldstein Modified 14 - 12% 0° 4.5° 33° 75° 24.4 sq.ft. 30.5

81.25 sq.ft. 26.37 sq.ft. 16.25 ft. 86.0 in. 13.5 in. 3.2 2.5°

-13-

TABLE I (Contd.)

Fin **and** Rudder

Fin area Span Mean chord Geometric Λ.R. Rcct chord Tip chord Rudder area Span Mean chord 60.6 sq.ft. 8.81 ft. 6.80 ft. 1.28 9.37 ft. 4.95 ft. 18.60 sq.ft. 8.60 ft. 2.16 ft.

Power Plant

۰,

<u>1st Aircraft</u> -	'Two Metropolitan-Vickers F 2/4A axial flow jet engines Nos. 50 and 51.
Static power,	at 7,400 r.p.m. for take-off, 5 minutes limitation, 3,230 lb. per engine
	at 7,300 r.p.m. for climb, 30 minutes limitation, 3,080 lb. per engine
	at 7,050 r.p.m. for continuous cruising 2,790 lb. per engine
<u> 3rd Aircraft</u> -	Two Metropolitan-Vickers Beryl axial flow jet engines Nos. 56 and 48.
Static power,	at 7,750 r.p.m. for take-off, 5 minutes limitation , 3,850 lb.
	at 7,600 r.p.m. for climb, 30 minutes limitation, 3,670 lb.
	at 7,400 r.p.m. for continuous cruising 3,400 lb. per engine
C.G. range	over which tests have been made 28% to 31.88% S.M.C.

/APPENDIX I

-14-

APPENDIX I

GROUND IFFECT ON LIFT FOR E.6/44. ISTIMUTED BY THE TETHOD OF RIFLELICE 3

(1) Lifect of Longitudinal Induced Velocity

$$\delta O_{\rm L} = -\frac{\theta}{2} C_{\rm L}^2$$
where $\theta = \frac{1}{\pi \Lambda} \left\{ \sqrt{1 + \frac{4\pi^2}{2}} - 1 \right\}$

Hean of statuc water line and keel line to rean height of

Wing = **C.9'** =
$$\frac{\pi}{2}$$

A = Aspect Ratio = **5.1**
3 = Semi - Span = 23.0'
 $\therefore = \theta = -0.1546$
 $\therefore = \delta C_{L} = -0.0773 C_{L}^{-2}$
(a) Effect due to Reduction in Description
 $\delta \alpha_{1} = -\mu \cdot \frac{C_{L}}{2}$
where $\mu = \frac{2}{\pi A} \sigma$
 σ depends upon $\frac{\pi}{2\sigma}$, = 0.3, for which $\sigma = 0.37$
 $\therefore = \mu = 0.0374$
 $\therefore = \frac{\delta \alpha_{1}}{2\sigma} = -0.0374 - \frac{C_{L}}{2}$
(ai) Effect due to distortion of curvature of flat
 $\delta \alpha_{2} = -\beta \frac{C_{L}}{2}$
 β depends upon $\frac{\pi}{\sigma}$, = 1.56, for which $\beta = 0.0265$
 $\therefore -\frac{\delta \alpha_{2}}{2} = -0.0265 - \frac{C_{L}}{2}$
Effect due to (ai) and (air) :- $\delta \alpha = -(\mu + \beta) - \frac{C_{L}}{2}$
 $\delta \alpha_{2} = -\frac{0.0374 + 0.0265}{2} C_{L} - \frac{\delta \alpha_{2} = -3.032}{2} C_{L}$

FIG. I.

FIGS. 2 & 3.

MODEL SCALE WATER DRAG . PLANING SPEED RANGE.

FIG. 4.

MODEL SCALE DRAUGHT MEASUREMENTS - LOW SPEED RANGE

FIG. 5.

MODEL SCALE DRAUGHT MEASUREMENTS, HUMP SPEED RANGE.

∜

FIG. 7.

MODEL SCALE DRAUGHT MEASUREMENTS - PLANING SPEED RANGE.

DIAGRAMMATIC VIEW OF MODEL HULL BOTTOM SHOWING WETTED AREAS, FLOW PATTERN, AND METHOD OF COMBINING AREAS TO DETERMINE MEAN WETTED LENGTHS. FIG. 8

FIG. 9.

MODEL SCALE WETTED AREA COEFFICIENTS, LOW AND HUMP SPEED RANGE.

FIG. 10.

MODEL SCALE MEAN WETTED LENGTHS, LOW AND HUMP SPEED RANGE.

FIG. II A.

FIG.II A. MODEL SCALE WETTED AREA COEFFICIENTS, PLANING SPEED RANGE.

FULL SCALE AIR LIFT RELATED TO WING INCIDENCE.

FIG 18

FIG. 12 A.

MODEL SCALE MEAN WETTED LENGTHS - PLANING SPEED RANGE.

MODEL SCALE MEAN WETTED LENGTHS-PLANING SPEED RANGE.

VARIATION OF MEAN MOCEL C_F WITH MEAN REYNOLDS NUMBER

FIG. 3.

SCHOENHERR SMOOTH TURBULENT CURVE EXTENDED TO FULL SCALE REYNOLDS NUMBERS

FIG. 14

FULL SCALE AIR LIFT RELATED TO KEEL ATTITUDE.

.

FIG. 15.

FULL SCALE AIR DRAG RELATED TO KEEL ATTITUDE.

FIG. 16.

FULL SCALE LIFT - DRAG CHARACTERISTICS.

FIG. 17.

FULL SCALE AIR LIFT RELATED TO WING INCIDENCE.

FIG 18

FIG. 19.

FULL SCALE AIR DRAG RELATED TO WING INCIDENCE.

FIG. 20 a,b,c,d.

FIGS. 20 e,f.

FULL SCALE WATER DRAG

FIG. 20 **g**, h.

COMPARISON OF ESTIMATED AND MEASURED FULL SCALE WATER DRAG.

COMPARISON OF ESTIMATED AND MEASURED FULL SCALE WATER DRAG.

FIG. 21 C.

COMPARISON OF ESTIMATED AND MEASURED FULL SCALE WATER DRAG.

March 1956

MARINE AIRCRAFT EXPERIMENTAL ESTABLIS DENT, FELIXSTOWE, SUFFOLK.

TEST DATA FOR TOWING TANK AND FULL SCATE TESTS TO DETERMINE THE WATER DRAG OF THE HULL OF A JET-PROPELLED FLYING BOX 'FIGHTER (SPEC. E.6/44)

by

R.V. Gigg B.C. Kurn, Grad. R.Ac.S. J.K. Friswell, B.Sc.

SUMMARY

This report lists the test data relevant to the towing tank and full scale tests to determine the water drag of the hull of a jet-propelled flying boat fighter, the results of which are compared in M.A.E.E. Report F/Res/263.

LIST OF CONTENTS

LIST a CONTENTS

-2-

- 1. Introduction
- 2. Test Data
 - 2.1. Model Scale Drag and Draught Measurements

2.1.1. Low and Hump Speed Ranges

2.1.2. Planing Speed Range

- 2.2. Model Scale Wetted Area Measurements
- 2.3. Model Scale Skin Fraction Coefficients
- 2.4. Estimates of Full Scale Resistance
- 2.5. Full Scale Aerodynamic Characteristic8 2.5.1. Aerodynamic Lift and Drag 2.5.2. c_D/c_L^2 Characteristics
- 2.6. Full Scale Water Drag Measurements
- 2.7.Mean Full Scale Water Drag for Comparison with Estimates

List of Symbols

LIST OF FIGURES

Figure No.

1

Notation Used in Wetted Area Investigation

1. INTRODUCTION

This report lists the test data relevant to the towing tank and full scale tests to determine the water drag of the hull of a jetpropelled flying boat fighter, the results of which are compared in M.A.E.E. Report F/Res/263. The data are divided into groups corresponding approximately to the various illustrations in that report.

/2. TEST DATA

2. <u>TEST DATA</u>

2.1. Model Scale Drag and Draught Measurements

V ft./sec	ak degi	∆ 1136₀.	đ in.	R lb.	a b	R A	с ^д	G ^V	C∆ ² ∕Ov	C _V ∕CΔ ^{¹/2}
00000000000000000000000000000000000000	ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ਲ਼ੵਲ਼ੵਗ਼ੵਗ਼ੵਗ਼ੵੑਗ਼ੵੑਗ਼ੵੑਗ਼ੵੑਗ਼ੵੑਗ਼ੵਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3334334 3344334 4344334 443443 4443 44	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	0.414 0.437 0.457 0.457 0.457 0.457 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.513 0.447 0.515 0.493 0.447 0.515 0.493 0.447 0.515 0.493 0.447 0.515 0.493 0.548 0.555 0.477 0.529 0.487 0.529 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.555 0.487 0.555 0.487 0.555 0.555 0.477 0.555 0.555 0.477 0.555 0.487 0.555 0.555 0.477 0.555 0.555 0.477 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.555 0.477 0.555 0.477 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.487 0.555 0.555 0.477 0.555 0.555 0.477 0.5555 0.555 0.555 0.555 0.555 0.5555 0.555 0.555 0.555 0.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.799 1.005 1.107 0.799 1.005 1.107 0.799 0.905 1.107 0.799 0.005 1.107 0.799 0.005 1.107 0.799 0.005 1.107 0.799 0.005 1.107 0.005 1.107 0.005 1.107 0.005 1.107 0.005 1.107 0.005 1.107 0.005 1.107 0.005 1.107 0.005 1.107 0.005 1.107 0.005 1.107 0.005 1.107 0.	0 C C C O O O O O O O O O O O O O O O O	$\begin{array}{c} \textbf{0.851} \\ 0.905 \\ \textbf{0.955} \\ \textbf{0.791} \\ \textbf{0.877} \\ \textbf{0.808} \\ \textbf{0.751} \\ \textbf{0.877} \\ \textbf{0.805} \\ \textbf{0.877} \\ \textbf{0.805} \\ \textbf{0.877} \\ \textbf{0.552} \\ \textbf{0.649} \\ \textbf{0.559} \\ \textbf{0.649} \\ \textbf{0.5545} \\ \textbf{0.649} \\ \textbf{0.649} \\ \textbf{0.5545} \\ \textbf{0.649} \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

2.1.1. Low and Hump Speed Ranges

ft./sec.	a k degs	A lb.	d 1n.	R lb.	d d	$\frac{R}{\Delta}$	с ^Д	С _V	c_{Δ}^{\pm}/c_{V}	Cv∕c
10.2	3	15.0	3.46	3.69	0. 412	0. 21+6	0.701	2.15	0.389	2.5
10.2	3	17.1	5.79	1.22	0. 451	0,2½7	0.799	2.15	0,416	2.4
10.1	3	19.3	3.99	6.54	0.275	(.339	0,002	2,13	0.44r6	2,2
10.1	5	21.5	A. 26	6.37	0.510	0,326	1,005	ر 2,1	0,463	2.12
10.1	3	23. 7	4.17	7.14	0.532	0. 301	I. 107	2.13	0.494	2. 02
10.2	4	15.0	3.43	3. 31	0,108	0.226	0,701	2.15		2.57
10.2	4.	17.1	3. 73	3.56	0,444	0.232	0.799	2,15		2.41
10.2	4	19.3	4. 02	4. 72	0.479	0,245	0.902	2.15		2.20
10.2	4	21.5	4.33	7.01	0.515	0,320	1.005	2,15		2.14
10.2	14. E	23.7	4.47	7.29	0.532	C,)UO	1.107	2.15	0 707	2.02
10.1	2 r	15.0	3.40	3.01	0.110	0.201	0.701	2.13	0.292	2.54
10.1	2		3.77	3.59	0.444.5	0.210	0.002	2.17	0.116	2.30
10.1) E	1Y. 3	Lt. 04	4.24	0.481	0.220	1 005	2.17	0.466	2.4
10.1	25	21.7	LU. 29	6 21	U. 311 0 520	0.263	1 107	9 19	0.400	2.1
10.1	7	20.7 15 0	4.33	270	0.339	0 180	0 701	2 13	0.494	2.51
10.1	ſ	10.0	3.33	3 5	0.399	0.100	0 799	2 13	0.393	2 3
10.1	3	10 2	3.09	2 21	0.435	0.100	0 902	2.13	0.446	2.21
10.1	7	21 5	4 03	J. JI Ik 94	0.480	0.202	1.005	2.13	0 466	2.12
10.1	7	93 7	4 39	L. 84	0. 523	0.204	1. 107	2.13	0 494	2.02
9.5	9	15.0	3.28	2.61	0.390	0.174	0. 701	0. 20	0. Ll. 19	2.3
9.5	9	17.1	3.56	3.09	0.L24	0. 181	0. 799	0.20	0.147	2,2
9.6	9	19.3	5.80	3.43	0.452	0. 181	0. 902	0. 20	0.470	2.13
9.7	9	21.5	4.03	3.92	0.480	0.182	1.005	0. 20	0.491	2.04
9.7	9	23. 7	4.22	4.37	0,502	0.184	1.107	0,20	0.516	1.9
12.2	6	15.0	3.16	3.47	0.376	0. 231	0.701	2.57	0.326	3.07
12.2	6	17.1	3,41	4.27	0.406	0.250	0. 799	2.57	0.348	2,88
12.0	6	19. 3	3.70	4.97	0.440	0.258	0.902	2.53	0.375	2.66
12.0	6	21.5	3.89	5.86	0.463	0.273	1.005	2.53	0.396	2.52
12.0	6	23. 7	4.13	6.79	0.492	0.286	1.107	2.53	0.416	2.40
12.3	8	15.0	2.91	2.95	0,240	0. 197	0.701	2.59	0.223	3.05
12.3	a	17.1	3.15	2.80	0.375	U. ZZZ		2.55	0.345	2.90
12.3	8	19.3	3.31	4.50	0.394	0.237	1 005	2. 59 9 59	0.36/	2.73
12.0	8	21.5	3.73	6 07	0.489	C. 25 6	4 407	2.JJ 0 50	0.390	2.52
12.0	10	23.7	J. 00 9 70	2 93	0.402	0 195	0 701	2.JJ 9.57	0 326	2.40
12.2	10	13.0	2.7U 9.00	2 52	0.356	0 206	0 799	2.J/ 9.57	0 3/8	2.88
12.2	10	10.2	2.35 3.20	4 1 3	0 381	0.21/	0.902	2.57	0 370	2.00
12.2	10	91 5	3 1 1	1.39	0.406	0.227	1,005	2.57	0.370	2.71
12.2	10	23.7	3.71	5,65	0.422	0.238	-1.107	2.57	0.409	2.11
11.8	12	15.0	2.52	3.30	0.300	0. 220	0. 701	2.48	0.100	2,96
11.8	12	17.1	2.76	3.76	0.329	0. 220	0,799	2.48		2.77
11.9	12	19.3	3. 01	4.15	0.358	0.215	0.702	2.51		2,62
12.0	12	21.5	3.24	4.79	0.386	0. 223	1.005	2.53		2.52
11.9	12	23.7	3. 51	5.18	0,418	0. 219	1.107	2. 51		2.39
13. 1	9	15.0	2.58	2.78	0.307	0.185	0. 701	2.76		3.30
13.2	9	17.1	2.84	3.36	0,338	0.196	0. 795	2.78		3.11
13. 2	9	19.3	3.18	4.22	0. 379	0. 219	0. 902	2.78		2.93
13. 2	9	21.5	3.45	5.10	0.411	0.237	1.005	2.78		2.77
13. 7	9	23. 7	3.63	6.06	0,432	0.256	1.107	2.88		2.74
14. 3	11	12.9	1.89	2.74	0.225	0. 212	0.603	5.01 0.01	0.258	3.88
14.3	11	15.0	2.09	3.18	0.249	0.212	0.701	3.01	0.2/8	3.60
14.3	11	1/.1	2.33	2.0/	0.277	U. 215	0,799	3. UI 2 01	0.297	3.37
14.3	11	19.3	2.57	4,12	0,506		U. 902 1 007	3. UI	0.310	2.17
14.3		21.5	2.79	4.67	0,779	0.200	1.000	3. UI 2 01	0.333	3.00
14.3	11 1 7	23.7	→ ⁰ 7	3.43	0.006	0.014	1. 1V/ 0. 602	J. UI 3 A1	0.350 0 250	2.00
14. 3	17	16.7	1.12	9.07	0,_00 0,998	0.241 0.22.5	0.003	3. UI 3. O4	0.400	3.00
14.3	10		1,7U 9 11	3.67	V. & & U 0 951	0.01.ス	0.701		0.2/8 0.207	5.00
14.3	נו א ג ו		Z. 11	4.10	U. 201	0.242	U. 799 A AA9	2 11	0.491	5.3/
14.3	1) 19	19.3	2. 29 9 50	4.00	U. 4/3 0 905	0.241	1 005	3.01	0 222	3.00
14.3 11 9	13 19	ル1.3 92 7	2. JU 9 75	J. 37 5 70	0.300	0.241	1. 107	3. 01	0.333	2.86
14.5	15	12 0	1.56	3.45	0. 186	0. 267	0. 603	3.03	0 256	3,90
14.4	15	15.0	1.73	4,00	0.206	0. 267	0. 701	3. 03	0.276	3.62
	<u>۲</u>	1 · • • • •		_,						

-]+-

-5-

	-									
v	ak	А	a	R	đ	R	с.	Олт	CL 2/Or	₩/C .
ft./sec	deg:	lb.	in.	lb.	ð	Δ	Δ	- V	Δ ′ V	·' Δ
					No		-		╞╴╶	
14.4	15	17.1	1,90	4.67	0. 226	0. 273	0.799	3. 01)	0. 295	3, 39
14 • 4	15	19. 3	2 .06	5.19	0,245	0,269	0.502	03.03	0.313	3.19
14.4	15	21.5	2. 26	5.84	0.269	0.272	1.005	3.03	0.331	3.02
14.2	15	23. 7	2.56	6,60	0.305	0.278	I. 107	2,99	0.352	2.84
16.7	12	12.9	1.56	3.02	0.186	0. 234 ·	0.603	3.52	0. 221	4. 53
16.7	12	15.0	1.66	3.45	0.198	0.230	0. 701	3.52	0.238	4. 20
16 7	12	17.1	1 96	3.95	0,204	0.231	0.799	3.5:	0.254	3.94
16 7	12	19.5	2 1)	5 06	U. 233 0 955	0.235	1 005	1 3. 50	0.285	3.71
16.7	12	23.7	2.29	5,50	0. 273	0.232	1.107	3,52	0 299	3.35
16.7	14	12.9	1 48	3.42	0.176	0.265	0.603	3.52	0. 221	4, 53
16.7	14	15.0	1.59	3.95	0.189	0,263	0.701	3.52	0. 238	4. 20
16.8	14	17.1	1.69	4.15	0. 201	0.260	0.799	3. %	0. 253	3.96
	14	19.3	1.83	5.08	0.218	0. 26:	0.902	3. 54	0.268	3.73
10,0 10,0	14	21.5	2,03	5.60	0.52	0,260	1.005	3.54	0. 283	3.53
10.8	14	23.7		5.18	0. 251	0.261	1.107	3.54	3. 297	3.36
16.8	16	12.9	1 50	2. (2		0. 203		2 54	3. 219 2 927	4. 30
16.8	16	17 1	1 61	4.51	0.179	0. 287	0.799	3. 54	3. 237	4. ~3 3. QG
16.8	16	19.3	1.72	5.48	0.705	0.284	0. 902	3.54	0.268	3 73
16.6	16	21.5	1.87	6,32	0. 223	0,294	1, 005	3.49	0.287	3.48
16.6	16	23.7	2.01	6.94	0. 239	0. 293	1.107	3.49	0.301	3.32
19. 0	12	12,9	1.44	3.05	0.171	0.236	0. 603	4.00	0.194	5.15
19.0	12	15.0	1.53	3.45	0.182	0. 230	0. 701	4.00	(I. 209	4. 78
19.0	12	17.1	1.63	5.99	0.194	0.233	0.799	4.00	(I. 223	4.47
19.0	12	19.3	$1 \cdot 10$	4.41	0.202	U. 228 0.926	U. 902	4.00	J. 421	4,21
19.0	14.	21. J 19 Q	1 38	5.07 3.50	0. 212 0. 161	0.271	0 603	4.00	0 1 9k	5 15
19.0	14	15.0	1.48	3.97	0.176	0. 265	0. 701	4.00	(I. 209	4 79
18.9	14	17.1	1 56	4.50	0.186	0. 263	0.799	3.98	(1. 225	4.45
18,9	14	19. 3	1.64	4.97	0. 195	0. 258	0.902	3.98	(I. 739	4.19
18.9	14	21.5	1.75	5.70	0. 208	0. 265	1.005	3.98	(I. 252	3.97
18,9	16	12.9	1.34	3,80	0,160	0.295	0.603	3.98 (3. 195	5.13
18.9	16	15.0	1.42	1.38	0.169	0.292	0.701	3.98	(3. 210	4.75
19.0	16	17.1	1.51	5.08	0.130	U. 297 0 909	0.799	4.000	3. 223	4.47
19.0	10	19.3	1.57	5,00 610	0,107	U. 293 0 298	0.902 1 005		3.237	4. 21
21.4	11	10.7	1.21	2.30	0.135	0.215	0.500	h 51	0.157	3. 33
21.4	11	12.9	1.31	2.75	0.156	0. 213	0.603	4.51	3.172	
20.9	II	15.0	1.41	3,15	0. 168	0.210	0. 701	4.40	,3. 190	
20.9	11	17.1	1.48	3.59	0.176	0.210	0.799	4.40	3. 203	
21.2	11	19.3	1.55	4.09	0,135	0. 212	0.902	4.46	<i>'</i> 3. 213	
21. Z	11	21.5	1.65	6.57	3.194		1.005	4.46,	3.225	
21.4 91.4	12	10.7	1,10	2.71	0.140	U. 203	U. 5UU 0 602	4.51	13 179	
21.4 21.4	13	12.9	1.35	3.23 3.78	2 161	0. 252	0. 701	4.51	(3. 186	
21.4	13	17.1	1.43	4.21	2.170	0,246	0.799	4.51	0.198	
21.4	13	19.3	1.50	4.82	3.179	0,250	0.902	4.51	3. 211	
21.4	13	21.5	1.57	5.34	0.187	0.248	1.005	4.51	3. 222	
21.5	15	10.7	1,12	3.07	3. 133	0.287	0.500	4.53	0,156	
21.5	15	12.9	1.22	5,66	3.145	0.284	0.603	4.55		
ZI.5	15	17.1		+,20		U. 280 0.281	0.701	4.00	U 102	
21.5 91 5	15	10.2		0.80 5 50	5. 104 T 179	0.995	U. 799 0. QN9	4.57	0.210	
21.5	15	a. 5	1.50	6. 02).17 9	0. 280	1.005	4.53	(3. 221	
23.5	-ĕ	10.7	1,21	1.81	2.144	0.169	0. 500	4.95	I. 143	
23.5	8	12.9	1.29	2.12	3.154	0,164	0,603	4.95	D ₊157	
23.6	8	15.0	1.37	2,50	D . 163	0.167	0. 701	4.97	0.168	
23.6	8	17.1	1.44	2.80	0.171	0.164	0.799	4.97	0,180	
23.8	8	19.3	1.47	3.15	0.175	0.163	0.902	5.01	3. 190	
23.8	8 T0	27.5	1.60	2.65	0.190			5.UI	3. ZUU 2 1 4 1	
Z3. 8	10	10, 7	1.12	4.15	0.157	0. 199	0. 300	5. UI	5. 141	
								19	3.8	-
								14	· • • • •	

ft./sec.	ak degs	∆ lb.	d in.	R lb.	ďþ	<u>R</u> ∆	cλ	ΟV	c _{Δ¹/C_V}	'ν/ ^C Δ ^{1/2}
23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8	10 10 10 10 12 12 12 12 12 12 12 12	12.9 15.0 17.1 19.3 21.5 10.7 12.9 15.0 17.1 19.3 21.5	1. 22 1. 35 1. 38 1. 41 1. 49 1. 08 1. 18 1. 28 1. 34 1. 38 1. 45	2.56 3.01 3.32 3.77 4.17 2.49 3.03 3.57 3.97 4.45 4.93	0.145 0.161 0.164 0.168 0.177 0.129 0.140 0.152 0.160 0.164 0.173	0.198 0.201 0.194 0.195 0.194 0.233 0.235 0.238 0.232 0.231 0.229	0.603 0.701 0.799 0.902 1.005 0.500 0.603 0.701 0.799 0.902 1.005	5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01	0.155 0.167 0.178 0.190 0.200 0.141 0.155 0.167 0.178 0.190 0.200	,

/2.1.2. Planing Speed Range

2.1.2. Planing SpeedRange

V `t./sec.	a k degs	∆ lb.	d in.	R lb.	a <u>l</u> b	<u>R</u> ∆	CΔ	СV	Ca ¹ /CV
25.1	4 4	1.55	0.67	0,34	0. 083	0. 219	0.072	5.28	0. 051
25.1	4	1,85	0,71	0. 40	0.085	0. 216	0.086	5.28	0.056
25.2	4	2.25	0.74	0.49	0, 088	0.21%	0.105	5. 31	0, 061
24.8		3.00	0.83	0.64	0.099	0.213	0,140	5.22	0.072
25.1	4	3.90	0.94	0.88	0.112	0.226	0,182	5.2%	0.081
25.1	4	6. IU	1.1%	1.26		0,207	0.285	5.28	0.101
23.1	4.	7.55	1,24		U. 10U 0 101	0.130	0 6L F	5.28 5.90	0.120
25.1	4. A	21, 60	1. 3% 9 91	2.30 5.06	U. 181 0. 963	0,170	1 150	J. 2%	U. 15% 0 203
25.1	4	38.40	3 26	15 56	0 388	0105	1 704	5.2%	0.203
25.1	-	1.55	0.57	0.29	0.068	0.187	0.072	5 28	0.051
	6	10.2	••)1					7120	0.056
25.1	6	2,25	0,64	0.40	0,760	0,178	0. 96 6	5,2%	0,061
25.1	6	3.90	0.78	0.4%	0. 086	0,160	0,140	5,28	0.071
25.1		6.10		0. 65	0.093	0.167	0.182	5.2%	0. 081
25.1	6	U U	0.99	0.97	0.118	0, 159	0.285	5.28	0,101
24.6	6	9,55	1.18	1.40	0.140	0.147	0.446	5.18	0.129
25.0	6	13.80	1.39	2.00	0,165	0,145	0.645	5.26	0.155
25.1	6	$2l_{+},60$	1.80	3.82	0.214	0.155	1.150	2,28	0.203
25. I	6	38.40	2.73	8. U9		0. 211	1.794),20 E 90	0.254
25.0	0	1,40	018	U. 28 0 90	U. USU 0. 057	0,200	U. UUJ A A79	J. 20 5 96	U.U4% 0.051
25.0	O F	1 85	0 55	0.29	0.065	0.107	0.072 0.086	J. 20 5.96	0.056
25.1	8	2.25	0.59	0.43	0.070	0. 191	0,105	5.2%	0.061
25.1	8	3.00	0.65	0.52	0.077	0.173	0. 140	5.2%	0.071
25.2	8	6. 90	0.89		0. 186	0.175	0,285	5.31	0.080
					_				0_101
25.2		9. 55	1.09	1.68	0. 130	0. 176	0.446	5. 31	0.126
25.1	8	9.55	1.09	1.66	0,130	0.174	0 _• 446	5.28	0, 126
24.9	8	13.80	1,29	2.33	0.154	0.169	0.645	5,24	0.153
25.0	8	24.60	1.63	4.13	0.194	0,168	1,150	5.26	0. 204
25.0	8	38.40	2.21	6.70	0,263	0.174	1.794	5.26	0.255
25.1	10	1.55 1 85	0.47	0.45	0.056	U. 29U 0. 954		5.28 5.28	U. U51 0. 056
20,1 95 A	10	1+U) 9 95	0.50	U.4/ 051	0.054	U. 204 A 997	U. UOU A 1A5	5 261	0.000
25 A	10	3.00	0.59	0.6	0.070	0. 213	0. 140	5.26	0,071
25.2	TO	3, 90	0.64	0.81	0.076	0. 208	0. 182	5.31	0.080
25.2	10	6.10	0. 81	1.27	0,096	0. 208	0. 285	5.31	0. 101
25. 2	10	9. 55	0.99	1.95	0.118	0. 204	0,446	5.31	0. 126
25.3	10	13.80	1.09	2.79	0.130	0. 202	0.645	5.33	0. 151
25. 3	10	24.60	1.49	4.85	0.177	0,197	1.150	5.33	0. 201
25. 3	10	38.40	1.94	7.71	0. 231	0. 201	1.794	5. 33	0,251

Cv/c∮	6.999.5.999.5.999.5.999.5.999.5.999.5.999.999.999.999.999.999.999.999.999.999.999.999.999.999.999.999.999.999.99 899.599.999.599.595.599.599.599.599.599.
c∆²/cv	
د∆	2.56 22222222222222222222222222222222222
C∇	• • • • • • • • • • • • • • • • • • •
۹/۶	20280255888888905258978888888888888888888888888888888888
s S	522 522 522 522 522 522 522 522
d/b	0.445 0.555 0.575
₽S. In.	226.8 2011.3 2011.3 2011.3 2011.3 2011.3 2011.3 2011.3 2011.3 2011.3 2011.3 2011.3 2011.3 2013.5 2015.5 2015.5 2015.5 2015.5 2015.5 2015.5 2015.5 2015.5 2015.5 20.
đ. in	
en te	
$\phi_{\mathcal{J}}$ deg.	+• ^[] + + + + + + + 1 1 2 4 + + ^[] + + + + + + + + + + + + + + + + + + +
φ deg.	88 555558555886588885588888888888888888
deg.	2. Ct - Ct Ct - Ct - Ct - Ct - Ct - Ct -
ξS7 sq.1n.	
₽S6 sq.in.	488 22222388888628624286026426 0-4 3-5000005044-20000-54400 0 4 4
±S5 sq.1n	
±S3 sq.in.	៷៷៰៓៳៓៹៹៹៹៳៹៹៹៷៷៰៓ <i>៴</i> ៹៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷ ៰៓៹៓៓៓៙៷៹៹៷៰៷៹៹៷៷៰៓៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷៷
[‡] S2 sq.in.	3255 $45454400000040000000000000000000000000$
±S₁ sq.1n	¹⁵ 855555555555555555555555555555555555
ωц	
~ :	
10. 11. 12.	
,5 In.	%
1 ¹ 1.	+++ ++++++++++++++++++++++++++++++++++
ر in.	<u>84 2887582844824538284556645556645556655666666666666666666</u>
2 In.	+++ +++++11111111111111111111111111111
۲. In.	<pre>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</pre>
p.	waa waawaawaawaawaawaawaawaawaawaawaawaa
∆ Ib.	<u> </u>
deg.	こここ れももちらしこことももももちちちちちちちててのののででのののいいになってい
V ft/scc	พพพ พพพพพพนนนนนนนนนนนองออิชอชองอิงออิอิมีมีที่มีที่ที่ที่ที่ที่ที่ที่ที่ที่ที่ที่ที่ที่

÷

2.2

÷

2.2 EL SC LT WETTED ARDA LEASURDIENTS

2.2 10DCL SCALE WEITLD AREA MEASUREMENTS (CONTD .)

. . . .

Ŀ,

V ft/sec	L deg.	∆ lþ.	d in.	1 in.	(₂ in.	ڑ ع in.	ε ₄ in.	ί ₅ in,	е ₆ іп.	۶ Iin.	8 in,	<u></u> 45, s4.in,	¹ 2S2 sq. ir	<mark>⊉S3</mark> sq.1∩ .	^{±S5} sq.1n.	½S6 sq.in.	257 sq.1n.	ø deg.	¢¹ deg.	\$3 deg.	∲ <u>L</u> dei	h in.	1 ວ sq. 1n.	d/b	C _s	Г,	сĄ	Cv	C∆ ¹ /Cy	cv/c⊽;
15.1 15.4 15.3 15.1 15.0 15.2 15.4 15.3 15.4 19.8 a.1 19.8 20.0 19.5 20.2 19.9 20.0 25.1 25.0 25.0 24.6 24.9 25.0 25.1 25.0 25.1 25.0 25.0 25.1 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	$\begin{array}{c} \textbf{11}\\ \textbf{11}\\ \textbf{13}\\ \textbf{13}\\ \textbf{15}\\ \textbf{15}\\ \textbf{15}\\ \textbf{15}\\ \textbf{16}\\ \textbf{4}\\ \textbf{4}\\ \textbf{4}\\ \textbf{4}\\ \textbf{4}\\ \textbf{6}\\ \textbf{6}\\ \textbf{6}\\ \textbf{8}\\ \textbf{88880}\\ \textbf{10}\\ \textbf{10}\\ \textbf{10}\\ \textbf{10} \end{array}$	$\begin{array}{c} 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\$	$\begin{array}{c} 1 & 67 \\ 2 & 17 \\ 2 & 83 \\ 2 & 63 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \\ 2 &$	9,55 12.8 3,15 10,45 8,56 5,55 7,85 7,85 7,85 7,85 7,65 8,75 6,75 9,25 7,65 8,75 17,7,7 21,5 15,65 21,1 1,5 5,65 21,1 1,5 5,65 21,1 1,5 5,65 21,1 1,5 5,65 2,45 9,25 5,65 2,45 9,25 5,65 2,45 9,25 5,65 2,45 9,25 5,65 2,45 9,25 5,65 2,45 9,25 5,65 2,45 9,25 5,65 2,45 9,25 5,65 2,45 9,25 5,65 2,75 1,75 5,65 2,75 1,75 5,65 2,75 1,75 2,75 2,75 2,75 2,75 2,75 2,75 2,75 2	++5389.0 559.0 11.3 559.0 91.4 559.9 11.3 99.75 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	1.7 4.9 8.6 1.3 5.6 2.35 4.9 0.3 1.25 0.5 1.25 0.7 1.15 8.15 0.7 1.15 8.15 0.3 1.15 6.3	+ + + 0 9 0 11 5 9 0 6 4 1 7 7 2 10 7 7 7 2 10 7 7 7 2 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.05 0.2 6.3 81.45 7.0 4.5 7.0 4.5 7.0 4.5 7.0 4.5 7.0 4.5 7.0 4.5 7.0 4.5 7.0 4.5 7.0 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.1 5.2 8.2 5.2 8.2 5.2 8.2 5.2 8.2 5.2 8.2 5.2 8.2 5.2 8.2 5.2 8.2 5.2 8.2 5.2 8.2 7.5 5.2 8.2 5.2 8.2 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 5.2 8.2 5.5 7.5 7.5 5.2 8.2 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.68.4	4.55 4.25 4.25 4.9 2.2 2.5 4.65 1.9 4.0 1.8 3.65 1	55	$\begin{array}{c} 27.53 \\ 59.78 \\ 62.0 \\ 45.5 \\ 13.45 \\ 45.5 \\ 13.6 \\ 44.5 \\ 44.7 \\ 49.5 \\ 40.7 \\ 22 \\ 43.5 \\ 44.1 \\ 23.5 \\ 44.1 \\ 23.5 \\ 44.1 \\ 23.5 \\ 44.1 \\ 23.5 \\ 44.1 \\ 23.5 \\ 44.1 \\ 23.5 \\ 24.5 \\ 44.1 \\ 23.5 \\ 24.5 \\ 44.1 \\ 23.5 \\ 24.5 \\ 14.1 \\ 28.5 \\ 24.5 \\ 14.1 \\ 28.5 \\ 24.5 \\ 14.1 \\ 28.5 \\ 24.5 \\ 14.1 \\ 28.5 \\ 24.5 \\ 14.1 \\ 28.5 \\ 24.5 \\ 14.1 \\ 28.5 \\ 24.5 \\ 14.1 \\ 28.5 \\ 24.5 \\ 14.1 \\ 28.5 \\ 24.5 \\ 14.1 \\ 28.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 24.5 \\ 2$	0.8 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 9.9 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 2.7 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5 1. 5.5	12.8 12.8 13.1 12.0 11.5 12.5 11.6 12.9 12.7 11.4 13:0 13.95 11.7 13.95 11.7 13.95 13.55 12.6 18.55 12.6 18.55 8.6 5.10.8 12.6 12.7 2.65 9.1 12.2 13.32 9.1 11.0 11.9	2.0 1.5 1.4 1.3 1.1			38.5 40.5 42.0 46.5 51.5 55.5 42.0 47.0 47.0 55.5 47.0 47.0 47.0 55.5 47.0 47.0 55.5 47.0 52.0 14.5 51.5 52.0 14.5 52.0 14.5 52.0 14.5 51.5 52.0 14.5 52.0 14.5 52.0 51.0 52.0 14.5 52.0 14.5 52.0 51.5 52.0 14.5 52.0 14.5 52.0 51.5 53.0 52.0 14.5 53.0 52.0 14.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 52.0 51.5 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53	84.0 87.5 91.5 96.5 94.5 98.0 91.5 98.0 91.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100	+ 24.5 26.5 28.0 21.5 314.5 17.5 220.0 20.0 20.0		0.41 3.51 0.42 3.51 1.33 1.34 2.61 2.01 .77 .91 .61 .41 .42 .43 .44	31.2 45.4 62.6 27.2 37.8 51.7 24.9 32.9 43.0 14.5 20.0 27.1 11.8 18.4 21.5 13.3 54.7 17.9 21.5 13.3 54.5 14.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 114.1 33.9 83.8 57.9 83.8 114.1 33.9 83.8 57.9 83.8 114.1 33.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.8 57.9 83.9 85.9 85.9 85.9 85.9 85.9 85.9 85.9 85	$\begin{array}{c} 0.199\\ 0.258\\ 0.337\\ 0.194\\ 0.258\\ 0.346\\ 0.174\\ 0.219\\ 0.219\\ 0.219\\ 0.174\\ 0.219\\ 0.174\\ 0.219\\ 0.174\\ 0.219\\ 0.174\\ 0.219\\ 0.174\\ 0.210\\ 0.174\\ 0.210\\ 0.174\\ 0.210\\ 0.174\\ 0.210\\ 0.174\\ 0.210\\ 0.174\\ 0.210\\ 0.174\\ 0.210\\ 0.174\\ 0.210\\ 0.175\\ 0.165\\ 0.051\\ 0.118\\ 0.235\\ 0.118\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.235\\ 0.$	0.442 0.644 0.887 0.386 0.536 0.536 0.353 0.353 0.366 0.205 0.283 0.364 0.261 0.305 0.261 0.305 0.264 0.305 1.183 0.254 0.305 1.183 0.254 0.305 1.183 0.264 0.183 0.441 0.6815 0.041 0.485 0.041 0.183 0.400	0.82 1.05 1.62 1.06 1.27 1.55 1.27 1.36 0.51 0.61 0.71 0.68 0.76 0.76 1.31 1.13 1.12 0.67 1.31 1.13 1.12 0.67 1.31 1.13 1.12 0.65 1.31 1.13 0.65 1.31 1.13 0.67 1.31 1.13 0.65 1.31 1.13 0.67 1.31 1.13 0.67 1.31 1.13 0.67 1.31 1.12 0.65 1.31 1.13 0.67 1.31 1.13 0.67 1.31 1.13 0.65 1.31 1.13 0.67 1.31 1.13 0.67 1.31 1.13 0.65 1.31 1.13 0.67 1.31 1.13 0.65 1.31 1.13 0.67 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.65 1.31 1.13 0.25 0.65 1.31 1.13 0.25 0.65 1.31 1.13 0.25 0.65 1.31 1.13 0.25 0.65 1.31 1.13 0.25 0.65 1.31 1.13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.561 0.841 1.121 0.841 1.121 0.841 1.121 0.841 1.121 0.841 1.121 0.467 0.748 1.028 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.421 0.981 1.776 0.981 1.776 0.981 1.776 0.921 1.776 0.421 1.776 0.921 1.776 0.421 1.776 0.921 1.776 0.421 1.776 0.761 1.776 0.761 1.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.7776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776	3.18 3.22 3.18 3.22 3.18 3.22 3.120 3.120 3.120 3.120 3.120 3.120 3.120 3.120 4.171 4.121 4.4219 4.4219 4.4219 4.4219 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268 5.5268	$\begin{array}{c} 0.236\\ 0.283\\ 0.283\\ 0.236\\ 0.235\\ 0.235\\ 0.235\\ 0.231\\ 0.235\\ 0.231\\ 0.285\\ 0.231\\ 0.241\\ 0.245\\ 0.245\\ 0.245\\ 0.245\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.255\\ 0.$	$\begin{array}{c} 4.25\\ 3.53\\ 3.04\\ 4.25\\ 3.425\\ 3.425\\ 3.425\\ 3.51\\ 3.06\\ 4.33\\ 3.51\\ 3.06\\ 4.87\\ 4.15\\ 4.13\\ 4.15\\ 19.96\\ 111\\ 5.29\\ 8.11\\ 5.393\\ 19.88\\ 7.87\\ 5.35\\ 9.88\\ 11\\ 5.395\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 11\\ 5.355\\ 19.88\\ 12\\ 3.95\\ 19.88\\ 12\\ 3.95\\ 19.88\\ 12\\ 3.95\\ 19.88\\ 12\\ 3.95\\ 19.88\\ 12\\ 3.95\\ 10\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$

-9-

a _k degs	∆ lb.	R lb.	R _F lb.	¢ _S	с, х 10 ³	C∆ ^½ /CV	ē/b	^R N x 10 -6
4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6	$\begin{array}{c} 1 & 55 \\ 1 & 85 \\ 2 & 55 \\ 3 & 90 \\ 6 & 10 \\ 9 & 55 \\ 13 & 80 \\ 24 & 1 & 55 \\ 2 & 25 \\ 3 & 90 \\ 6 & 10 \\ 9 & 55 \\ 13 & 80 \\ 24 & 1 & 55 \\ 2 & 25 \\ 3 & 90 \\ 1 & 24 \\ 38 & 1 & 1 \\ 2 & 3 \\ 3 & 90 \\ 9 & 55 \\ 13 & 80 \\ 24 & 38 \\ 1 & 55 \\ 1 & 25 \\ 3 & 90 \\ 9 & 55 \\ 13 & 80 \\ 24 & 38 \\ 1 & 25 \\ 3 & 90 \\ 9 & 55 \\ 13 & 80 \\ 24 & 38 \\ 1 & 25 \\ 3 & 60 \\ 9 & 55 \\ 13 & 80 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	0.34 0.40 0.49 0.64 0.88 1.26 1.77 2.35 5.29 0.48 0.62 0.48 0.65 0.32 0.48 0.65 0.32 0.48 0.65 0.32 0.48 0.69 0.28 0.29 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.40 0.64 0.64 0.62 0.32 0.48 0.62 0.32 0.48 0.62 0.52 0.40 0.64 0.64 0.62 0.52 0.40 0.64 0.64 0.64 0.64 0.64 0.64 0.64	0. 23 0. 27 0. 33 0. 23 0. 25 0. 605 0. 83 1. 10 1. 38 4. 125 0. 13 0. 165 0. 24 0. 33 0. 165 0. 24 0. 33 0. 55 1. 23 4. 055 1. 23 0. 11 0. 12 0. 11 0. 14 0. 315 0. 315 0. 67 1. 275 0. 17 0. 14 0. 11 0. 12 0. 26 0. 35 0. 255 0. 275 0. 11 0. 12 0. 11 0. 12 0. 11 0. 275 0. 17 0. 14 0. 11 0. 26 0. 350 0. 255 0. 275 0. 17 0. 14 0. 12 0. 26 0. 350 0. 292	0. 20 0. 22 0. 26 0. 35 0. 46 0. 66 0. 82 0. 92 1. 26 0. 11 0. 11 0. 145 0. 17 0. 20 0. 315 0. 45 0. 32 0. 45 0. 82 1. 20 0. 06 0. 08 0. 10 0. 12 0. 18 0. 27 0. 27 0. 27 0. 38 0. 65 0. 04 0. 05 0. 04 0. 05 0. 04 0. 05 0. 04 0. 05 0. 04 0. 05 0. 05 0. 22 0. 20 0.	1. 93 2. 04 2. 16 2. 07 2. 20 2. 10 2. 23 2. 50 5. 46 1. 90 1. 62 1. 99 1. 62 1. 99 1. 62 1. 99 1. 62 1. 99 1. 51 1. 62 1. 99 1. 55 2. 14 1. 88 2. 55 2. 14 1. 88 2. 55 2. 14 1. 92 2. 03 2. 60 2. 35 2. 10 2. 23 2. 50 5. 46 1. 90 1. 62 1. 99 2. 55 2. 14 1. 92 2. 03 2. 60 2. 35 2. 14 1. 75 2. 03 2. 56 2. 14 1. 92 2. 03 2. 56 2. 14 1. 75 2. 03 2. 56 2. 16 2. 25 2. 14 1. 92 2. 03 2. 56 2. 14 1. 92 2. 03 2. 56 2. 14 1. 92 2. 03 2. 56 2. 14 1. 75 2. 03 2. 56 2. 17 2. 73	0. 051 0. 056 0. 061 0. 072 0. 081 0. 101 0. 126 0. 152 0. 051 0. 056 0. 061 0. 071 0. 081 0. 101 0. 129 0. 153 0. 203 0. 254 0. 048 0. 051 0. 056 0. 061 0. 071 0. 080 0. 101 0. 126 0. 126 0. 126 0. 126 0. 126 0. 126 0. 153 0. 204 0. 255 0. 051 0. 056 0. 061 0. 071 0. 056 0. 061 0. 056 0. 061 0. 056 0. 061 0. 056 0. 061 0. 056 0. 051 0. 126 0. 126 0. 126 0. 126 0. 153 0. 203 0. 254 0. 056 0. 051 0. 056 0. 051 0. 056 0. 051 0. 056 0. 051 0. 056 0. 051 0. 126 0. 126 0. 126 0. 126 0. 126 0. 126 0. 126 0. 126 0. 126 0. 153 0. 204 0. 255 0. 051 0. 056 0. 051 0. 056 0. 051 0. 255 0. 051 0. 056 0. 051 0. 201 0. 251 0. 251	3. 68 3. 725 3. 75 0.85 0.975 1. 16 1. 38 1. 55 2.075 0.475 3. 475 0.515 3. 56 0. 62 0. 75 0. 86 1. 00 1. 28 2.05 0. 33 0. 375 0. 385 c. 415 0. 62 0. 725 0. 44 0. 52 0. 615 0. 62 0. 725 0. 425 0. 62 0. 725 0. 33 0. 375 0. 225 0. 24 0. 25 0. 22 0. 24 0. 25 0. 22 0. 24 0. 25 0. 22 0. 24 0. 25 0. 62 0. 33 0. 375 0. 62 0. 33 0. 375 0. 62 0. 62 0. 33 0. 375 0. 62 0. 33 0. 375 0. 44 0. 52 0. 62 0. 725 0. 62 0. 725 0. 62 0. 33 0. 33 0. 375 0. 62 0. 75 0. 33 0. 375 0. 62 0. 75 0. 33 0. 375 0. 62 0. 725 0. 24 0. 25 0. 24 0. 25 0. 24 0. 375 0. 225 0. 31 0. 375 0. 44 0. 375 0. 225 0. 24 0. 31 0. 375 0. 44 0. 375 0. 225 0. 31 0. 375 0. 44 0. 375 0. 225 0. 31 0. 375 0. 34 0. 375 0. 31 0. 375 0. 31 0. 30 0. 30 0. 31 0. 30 0. 31 0. 30 0. 31 0. 30 0. 31 0. 30 0. 30 0. 31 0. 30 0. 31 0. 30 0. 31 0. 30 0. 31 0.	0. 98 1. 04 1. 07 1. 215 1. 395 1. 66 1. 97 2. 22 2. 965 0. 68 0. 68 0. 74 0. 80 0. 885 1. 07 1. 23 1. 43 1. 03 2. 93 0. 47 0. 535 0. 595 0. 63 0. 74 0. 889 1. 04 1. 34 1. 96 0. 32 0. 34 0. 36 0. 54 0. 64 1. 005 1. 43

2.3. Model Scale Skin Friction Coefficients

(V 🎦 25.1 ft./sec.

/2.4.

-10-

a _k degs	V ft./sec.	C ¹ 2/CV	ī/b	 R _M τ 10 ⁶	R/,	С _F х 110 ³	R _N (10	°¦ ∶ 10 ³	C _S	^{R'} / _{\(\)} '
degs 44444666668888888888888888888888888888	ft./sec. 25.1 25.2 25.1 25.1 25.1 25.1 25.1 25.1 25.1 24.6 25.0 25.1 25.1 25.1 25.1 25.2 25.1 25.2 23.5 24.9 23.8 25.0 25.1	0. 051 0. 061 0. 081 0. 126 0. 152 0. 071 0. 161 0. 129 0. 153 0. 203 0. 053 0. 048 0. 071 0. 100 0. 143 0. 153 0. 190 0. 204 0. 204 0. 051	0. 73 0. 80 1. 00 1. 37 1. 55 0. 51 0. 57 0. 70 0. 81 0. 95 1. 27 0. 31 0. 51 0. 51 0. 52 0. 37 0. 51 0. 66 0. 72 0. 85 0. 92 0. 21	$f_{N} = 6$ $f_{0} = 10^{-6}$ $f_{1} = 03$ $f_{1} = 14$ $f_{2} = 15$ $f_{2} = 15$ $f_{2} = 15$ $f_{2} = 15$ $f_{3} = 15$ $f_{2} = 15$ $f_{3} = 15$	R/ 0. 219 0. 218 0. 226 0. 185 0. 170 0. 160 0. 167 0. 159 0. 147 0. 155 0. 223 0. 200 0. 173 0. 175 0. 169 0. 169 0. 163 0. 168 0. 290	x 1.86 1.90 2.07 2.31 2.37 1.91 1.86 1.85 1.89 2.03 2.27 3.48 2.40 1.91 1.84 1.85 1.91 1.85 3.48 2.00 3.90	FN - 2.79 3.08 3.84 5.24 5.81 1.35 2.18 2.68 3.62 3.62 4.86 1.19 1.03 1.42 1.96 2.73 3.08 3.51 0.90	2.50 2.46 2.37 2.27 2.23 2.63 2.59 2.50 2.46 2.30 2.87 2.92 2.63 2.56 2.50 2.63 2.50 2.46 2.92 2.50 2.46 2.92 2.92 2.50 2.46 2.92 2.92 2.92 2.92 2.92 2.99	CS 0. 19 0. 24 0. 48 0. 83 0. 94 0. 16 0. 21 0. 33 0. 44 0. 56 0. 79 0. 075 0. 06 0. 11 0. 20 0. 32 0. 39 0. 50 0. 55 0. 04	0. 267 0. 255 0. 248 0. 183 0. 164 0. 183 0. 162 0. 154 0. 156 0. 219 0. 180 0. 180 0. 180 0. 180 0. 180 0. 180 0. 180 0. 180 0. 180 0. 170 0. 173 0. 275
10 10 10 10 10 10 10	25.0 25.2 25.3 23.8 25.3 12.2 12.2	0.062 0.101 0.151 0.200 0.251 0.328 0.392	0.25 0.40 0.52 0.69 0.98 1.70 2.80	0.33 0.35 0.57 0.74 0.925 1.40 1.17 1.93	0. 227 0. 208 0. 202 0. 194 0. 201 0. 199 0. 227	3. 73 2. 20 1.90 1.84 2.06 1.91 2.30	0.95 1.54 2.03 2.50 3.78 3.16 5.21	2. 33 2. 96 2. 74 2. 62 2. 52 2. 39 2. 44 2. 27	0.05 0.13 0.23 0.36 0.56 1.00 1.45	0. 227 0. 215 0. 209 0. 204 0. 204 0. 204 0. 204

2.4. Estimates of Full Scale Resistance

-11-

2.5. Full Scale Aerodynamic Characteristics

2.5.1. Aerodynamic Lift and Drag	(with around effect corrections
----------------------------------	---------------------------------

Flight No.	Speed Knots	α _k degs.	^a w deg s .	C_ uncor- rected	-6a ₩ degs.	a' W degs.	°L ²	-6 C _L	CI cor rected	CD
17	1 24.0 125.0 135.5 135.5 153.5 154.5	- 2. 7 1.4. 5.0 2. 7 - 1. 4	1.6 10.7 5.9 9.5 7.2 3.1	0.700 0.663 0.593 0.566 0.468 0.470						0.0737 0.0720 0.0637 0.0636 0.0545 0.0536
18	117.0 136.0 158.0 158.0 178.0	3.3 -0.1 -0.1 2.7 - 0.4	7.8 4.4 4.4	0.742 0.560 0.440						0.0730 0.0620 0.0546 0.0542 0.0496 0.0496
5& 36	114,5 116,0- 122,0 125,5 132.0 133.5 140,0 152.5 160.0 167.0	7.0 7.0 5.4 4.4 4.7 3.8 2.7 2.1 1.8	11 9.99 8.2 2 6 3 7.6 4 7.6 3 7.6 4 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	0.857 0.877 0.742 0.704 0.631 0.622 0.466 0.424 0.387 0.175	30 . 321	3. 68	0.031	0.0024	0. 173	0.0910 0.0875 0.0770 0.0730 0.0670 0.0670 0.0670 0.0660 0.0497 0.0520 0.0490
			8 10 12 14 16 18 20	0.54.0 0.725 0.910 1.090 1.275 1.460 1.645	0. 669 0. 990 1. 330 1. 670 1. 998 2. 335 2. 675 3. 015	5.33 7.01 8.67 10.33 12.00 13.66 15.32 16.98	0. 1999 0. 291 0. 525 0. 827 1. 186 1. 622 2. 135 2.700	0. 0103 0. 0225 0. 0406 0. 0639 0. 0916 0. 1253 0. 1642 0. 2090	0.355 0.517 0.684 0.846 0.998 1.150 1.296 1.436	

2.5.2. $C_{\rm T}/O_{\rm L}^2$ Characteristics

-

Flight Nc.	Speed Knots	ാ⊔	CI_2
17	124.0	0.074	0,4,90
	125.0	0.072	0,44,0
	135.5	0.064	0,352
	135.5	0.064	0,320
	153.5	0.054	0,219
	154.5	0.054	0,221
18	117.0	0.073	0.550
	121.0	0.077	0.550
	134.0	0.065	0.396
	136.0	0.062	0.314
	15a.c	0.054	0.194
	158.0	0.055	0.165
	168.0	0.050	0.127
	171.0	0.050	0.134
21	83.0	0.2%	3.92
	83.0	0.21,3	3.24
	88.5	0.249	2.82
	93.0	0.183	2.09
	93.0	0.184	2.04
	104.5	0.1405	1.18
35 & 36	114.5	0.091	0.735
	116.0	0.0875	0.770
	122.0	0.077	0.550
	125.5	0.073	0.295
	1 j2.C	0.067	0.398
	133.5	0.066	0.387
	140.0	0.050	0.310
	152.5	0.050	0.212
	160.0	0.052	0.180
	167.0	0.049	0.150

سر م

2.6. Full Scale Water Drag Measurements (Corrected for ground eff

light No.	^a k degs.	a W degs,	V w knots	V knot	C ^I	L lb.	∆ lb.	R W lb.	R _₩ /Δ
$\begin{array}{c} 24/1 \\ 24/2 \\ 24/3 \\ 24/3 \\ 24/3 \\ 24/3 \\ 24/3 \\ 24/3 \\ 24/3 \\ 24/3 \\ 24/3 \\ 24/3 \\ 24/3 \\ 24/2 \\ 24/2 \\ 24/2 \\ 24/3 \\ 24$	9.6 13.0 13.4 14.3 2.4 6 2.5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	+67833012334445599999900111111122223377799990001223336677778880 +6783378751555999990054559999900111111122223357799990001223336677778880	222333444444444444444444444444444444444	222335344444444444444445555555555555555	1. 185 1. 390 1. 475 1. 535 1. 570 1. 575 0. 920 1. 070 1. 150 1. 150 1. 150 1. 175 1. 180 1. 075 1. 075 0. 920 0. 925 0. 925 0. 955 0. 955 0. 955 0. 955 0. 955 0. 957 0. 957 0. 957 0. 957 0. 957 0. 957 0. 957 0. 957 0. 955 0. 957 0. 957	890 1,240 2,370 2,370 2,370 2,370 2,370 2,370 2,370 2,370 2,370 2,370 2,370 2,370 3,000 3,000 3,303 3,000 3,300 3,300 3,180 3,255 3,000 3,255 3,000 3,255 3,000 3,255 3,000 3,255 3,780 3,780 3,3780 3,780 3,3765 3,3780 3,3765 3,3780 3,3780 3,3765 3,3780 3,3765 3,3780 3,3760 3,3765 3,3780 3,3765 3,3780 3,3780 3,3765 3,3780 3,3765 3,3780 3,310 4,320 4,320 4,320 6,370 3,390 3,535 5,350 6,370 3,930 3,535 3,670 3,670 3,670 3,670 3,890 3,535 3,670 3,70 3,670 3,70	15, 297 $11, 391$ $14, 045$ $13, 817$ $12, 630$ $10, 011$ $12, 845$ $11, 190$ $13, 782$ $12, 783$ $12, 161$ $13, 187$ $11, 980$ $12, 847$ $11, 980$ $12, 847$ $11, 980$ $12, 847$ $11, 980$ $12, 847$ $11, 980$ $12, 839$ $9, 021$ $12, 517$ $11, 415$ $8, 666$ $11, 381$ $11, 793$ $12, 192$ $11, 036$ $11, 585$ $11, 940$ $12, 877$ $10, 745$ $9, 220$ $8, 931$ $11, 554$ $12, 592$ $7, 791$ $11, 032$ $10, 067$ $9, 110$ $9, 920$ $9, 724$ $11, 455$ $7, 401$ $8, 190$ $9, 324$	$\begin{array}{c} \textbf{2,550} \\ \textbf{2,100} \\ \textbf{3,480} \\ \textbf{3,480} \\ \textbf{2,800} \\ \textbf{1,530} \\ \textbf{2,800} \\ \textbf{1,530} \\ \textbf{2,300} \\ \textbf{2,140} \\ \textbf{2,180} \\ \textbf{1,5300} \\ \textbf{2,180} \\ \textbf{1,5300} \\ \textbf{1,5500} \\ \textbf{1,5500}$	0. 167 0. 1845 0. 2215 0. 252 0. 289 0. 285 0. 1365 0. 1365 0. 1365 0. 1365 0. 1545 0. 137 0. 233 0. 232 0. 221 0. 216 0. 233 0. 232 0. 232 0. 216 0. 292 0. 1445 0. 129 0. 1465 0. 175 0. 188 0. 175 0. 184 0. 197 0. 1465 0. 177 0. 1945 0. 195 0. 1945 0. 1945 0. 1945 0. 195 0. 195 0. 195 0. 196 0. 195 0. 196 0. 195 0. 160 0. 195 0. 1

2.6	F <u>ull</u>	Scale	Wafer	Drag	Measurements_	(Corrected	for
	grou	nd eii	ect) (Contd	•)		

Flight No.	ak degs.	a w dogs.	V _w knots	V a knoti	с ^г	L lb.	∆ lb.	R _w 1b.	R _{w∕∆}
$\begin{array}{c} 18\\ 22\\ 17\\ 26/1\\ 24/1\\ 24/1\\ 24/2\\ 24/2\\ 24/2\\ 24/2\\ 18\\ 26/1\\ 17\\ 26/1\\ 26/1\\ 26/1\\ 24/2\\ 24/2\\ 18\\ 22\\ 24/2\\ 18\\ 22\\ 24/2\\ 18\\ 22\end{array}$	6.65 7.55 8.0 8.3 10.0 1.45 1.95 2.05 2.55 3.05 3.45 5.05 6.65 9.0 10.85 11.8 2.05 2.3 3.1 5.0	11.15 12.05 12.5 12.8 14.5 6.455 6.55 7.05 7.55 7.55 7.55 11.5 13.5 14.5 15.35 16.3 6.8 7.6 9 .5	70 70 70 70 70 70 80 80 80 80 80 80 80 80 80 80 80 80 80	73 73 73 73 83 83 83 83 83 83 83 83 83 83 83 83 83	0.920 I.005 I.050 1.075 1.220 0.420 0.420 0.470 0.475 0.525 0.575 0.575 0.585 0.610 0.770 0.920 1.130 1.220 1.300 1.375 0.475 0.575 0.575 0.760	6,940 7,570 7,910 8,080 9,190 4,090 4,090 4,575 4,850 5,110 5,590 5,980 5,940 7,490 8,960 1,900 2,660 3,400 5,800 6,100 7,020 9,280	9, 222 8, 107 8, 320 7,080 6,904 12,097 92, 612 10, 495 7,321 6,841 9, 465 10, 222 6,050 6,717 5,094 4,330 3,434 1,760 6,331 9, 142 6,397	1,700 2,250 2,450 2,350 1,610 2,350 1,610 2,350 1,500 1,320 1,320 1,350 1,905 1,905 1,905 1,905 1,905 1,905 1,905 1,905 1,260 1,320 1,200 1,340 900 1,550	0.184 0.2775 0.2945 0.332 0.171 0.1705 0.220 0.205 0.205 0.205 0.205 0.193 0.1745 0.132 0.150 0.2835 0.247 0.3045 0.312 0.243 0.245 0.242

۰,

5

a _k degrees	$c_{\rm L}$	va knots	V _v knot:	ր	∆ [₩] lb.	C _{Δ¹/C_V}	R _W /
4	0,670	53 63 73 83 93	50 60 70 P0 90	2,655 3,760 5,050 6,520 8,190	12,345 11, 240 9,950 8,480 6,810	0.1475 0.106 0.0945 0.0765 C.061	0.140 0.132 0.149 0.153 0.224
6	0.860	43 53 63 73 a3	40 50 60 70 80	2,245 3,415 4,830 6,470 8,370	12,755 11,585 10,170 8,550 6,630	0.1875 0.1425 3.111 0.088 0.068	0. 142 0.147 0.165 0. 173 0.172
8	1.050	43 53 63 73 83	40 50 60 70 80	2,740 4,170 5,890 7,910 0,250	12,260 10,830 9,110 7,090 4,750	0.1945 0.138 3.1055 0.080 0.057	0.173 0.200 0.250 0.235 0.215
10	1. 220	23 43 53 83	20 40 50 80	910 3,185 4,840 1,890	14,000 11,815 10,160 3,110	0.774 0.182 0.1335 0.046	0. 165 0. 222 0. 252 0. 202

2.7 Mean Full Scale Water Irog For Comparison With Estimates

¹⁶ based on an all-up weight of 15,000 lb.

/LIST OF SYLBOLS

LIST OF SYLBOLS

All symbols used have the same meanings as in N.A.E.E. Report F/Res/263 (defined on p.11 and in Figure 8 of that report) though it should be noted that the units are different in some cases. The following additional symbols have been used in the present report, and additional geometric parameters are illustrated in Figure 1.

4	Air drag coefficient, full scale						
c_{L}	Air lift coefficient, full scale						
L	Air lift, full scale						
$\mathbf{P}^{\mathbf{N}}$	Reynolds Number, model scale						
\mathbf{R}^{N}	Reynolds Number, full scale						
\mathbf{R}_{w}	Water drag, full scale						
va	Air speed, full scale						
Vw	Water speed, full scale						
a.w	Wing incidence, actual						
aw	Wing incidence, corrected.						
δa.w	Wing incidence correction { cf. Appendix I						
° cL	Air lift coefficient correction)						

NOTATION USED IN WETTED AREA INVESTIGATION

(SEE ALSO FIG. 8, F/RES /263)

٠

C.P. No. 284 18.0221 A R C Technical Report

Crown copyright reserved
Printed and published by
HER MAJESTY'S STATIONERY OFFICE
Forbe purchased from
York House, Kingsway, London w (2)
423 Oxford Street, London w 1
P O. Box 569, London s E 1
133 Castle Street, Edinburgh 2
109 St. Marx Street, Cardiff
30 King Street, Manchester 2
Fower Lane, Bristol 1
2 Edmund Street, Birmingham 3
So Chichester Street, Belfast or through any bookseller

Printed in Great Britain

S O Code No 23-9009-84

C.P. No. 284