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Summary. 
A technique is described for using a digital computer for the extraction of aerodynamic force and 

moment derivatives from measurement of the motion of aircraft or aircraft models, following a disturbance 
from the trimmed state. The analysis method is based on model matching by least squares using an 
automatic iterative method and has been found capable of handling coupled three-dimensional motions 
of much greater complexity than it has been possible to analyse previously. The particular problem of 
solution divergence which limits the usefulness of iterative methods has been overcome, giving a virtually 
fully-automatic system for response analysis that can be applied to a wide range of aircraft-like problems. 
A full description is given of the use of the techniques for the analysis of dynamic response data from 
free flight models. However, few modifications would be necessary to the computer programs for applica- 
tion to full-scale aircraft tests and even dynamic stability tests in windtunnels. 

* Replaces R.A.E. Technical Report 70228-A.R.C. 32 949. 
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1. Introduction 

Methods of measuring aerodynamic force and moment derivatives by the study of the dynamic stability 
of aircraft and aircraft models have evolved over a number of years. The experimental technique depends 
on disturbing the model from the trimmed state in flight by the control surfaces or small pulse rockets 
and analysing the resulting response 1. Until recently, when new analysis methods rendered it unnecessary, 
care had to be taken to excite only either the short period pitching oscillation or the lateral Dutch roll 
oscillation. Analysis of the dynamic response to each disturbance was carried OUt almost entirely by hand 
using graphical methods z even though, at least for free flight, modern computer methods had made the 
actual data handling entirely automatic. On analysis the longitudinal derivatives, zw, mw and m o were 
obtained by measurement of the frequency, damping and phase relationships of the pitch oscillation; 
and the Dutch roll was analysed by the time-vector method of Doetsch 3'4, which involved extracting 
phase and amplitude relationships to yield roll and yaw derivatives. Such analysis presupposed that the 
motion was linear; it was complicated and time consuming and therefore liable to error. However, its 
chief weakness was that only pure pitching or pure Dutch roll responses could be analysed. These 
responses were difficult to obtain experimentally and, when there was appreciable cross coupling, 
much of the data had to be discarded and with it much potentially valuable information. It was this 
problem of wishing to make full use of cross coupled responses and to a lesser extent handle non-linear 
motion which stimulated a search for a better and preferably automatic digital method of analysis. 

The time-vector method, as well as limiting the type of motion that may be analysed, is not readily 
adapted for computer use and so a number of different approaches to the problem were considered. 
These fall into two broad categories: (1) methods which use the equations of motion in an unsolved 
form and thus make no use of the known relationships between different variables and the properties 
of the solution to the equations; (2) methods which use analytical or numerical solutions to the equations 
of motion to match characteristics of the measurements made of the motion. On a computer 
both approaches usually employ least squares fitting techniques either directly or implicitly. A useful 
comparison between various methods of both types is given in Ref. 5. 

There are a number of methods of Type 1 designed for computer use. These include the derivative 
method (called least squares method in Ref. 5), the Laplace transform method, and the Fourier transform 
method. Shinbrot 6 has shown that all these methods are equivalent and developed a generalised trans- 
form method which avoids some of the problems of the others. All these methods deal with equations of 
motion individually, not as a set, and require the measurement of most motion variables and their time 
derivatives. Thus the derivative method, which is the simplest and most commonly used, would take the 
normal force equation 

Z(u ,  v, w,  p, q, r) = m(v~ - uq  + pv - g(0, ~b)) 

and measure all variables u, v, w, k etc. at n discrete times, so that n simultaneous equations in terms 
of the Z aerodynamic derivatives are obtained and solved redundantly by least squares. The procedure 
is repeated for each of the six equations in turn. This fairly obvious approach poses several problems 
in practice, some of which are avoided by the transform methods. In these the equation is multiplied 
through by a 'method function' and integrated over the duration of the record ; the effect of this is to 
remove the need to know both w and k, for example. In spite of the theoretical superiority of the transform 
methods, particularly Shinbrot's, their complexity has meant they have been used very little. Shinbrot's 
method has been used for the response analysis of full-scale aircraft 7 but the straightforward derivative 
method is much more popular, particularly in Europe 8'9. 

The great disadvantage of the equation of motion methods is that they demand the near-perfect 
measurement of most variables. Serious problems are caused by zero errors and noise in the data, and 
by the great difficulty of making pure measurement of some variables, e.g. ~ and k. Also because no 
advantage is taken of the known relationship between the variables, or the characteristics of aircraft 
motion, there is no easy way of checking for consistency in the data. It is particularly difficult to apply 
equation of motion methods for free flight response analysis because it is not normally possible to carry 



sufficient instrumentation in a small model for the measurement of all variables. For these reasons no 
attempt has been made at RAE to use either Shinbrot's or any other equation-of-motion method for 
automatic aircraft response analysis. 

The method finally adopted for analysing aircraft response comes into the second category mentioned 
earlier, in which the basic idea is to match the characteristics of a solution of the equations of motion 
to the characteristics of the actual measurements made. The measurements, therefore, are only used as 
a reference in a curve fitting process, and not used directly in calculations as in Type 1 methods. The 
practical advantages of the second type of method are that: (l) analysis is not necessarily crippled by 
noisy data; (2) instrument zero errors are easily included in the mathematical model; (3) measurement 
of all variables is unnecessary because theoretical relationships are imposed by the mathematical model. 
Moreover when several variables can be measured it is possible to gain the advantages of redundancy ; 
(4) it is much easier to predict the readings of an instrument in terms of the variables than it is to un- 
scramble the variables from instrument readings, as required by Type 1 methods. 

The disadvantages of Type 2 methods lies in the problem of fitting complicated non-linear functions 
to data. This has to be accomplished by iterative techniques while Type 1 methods involve only the 
solution of simultaneous linear equations by well established methods. An obvious way of fitting the 
data to a mathematical model is by eye, with the assistance of an analogue computer to generate the 
functions and display on an oscilloscope. Judson has used such a method for analysing longitudinal 
short period response data 1° but clearly an automatic method is much to be preferred. Automatic 
iterative curve fitting methods are usually based on a variant of the least squares technique known as 
the method of differential corrections. This is similar to manual analogue matching in that guesses must 
be made initially at the values of the parameters in the mathematical model such as initial conditions 
and aerodynamic derivatives. These initial guesses are then improved iteratively by the computer program 
to values that give a best fit to the data. The superiority of this method over all other methods of Types 
1 and 2 is demonstrated in Ref. 5 where it is termed the Newton Raphson method. 

A computer program based on the method of differential corrections was developed by the author 
in 1963 for the analysis of the angular motion of axially symmetric re-entry bodies 11 and many workers 
have since described similar schemes for a variety of applications 12,13,14.l 5,16. This original program 
has been adapted for the analysis of the much more complex motion of aircraft and of aircraft models. 
The technique is therefore not particularly new but, hitherto, it does not appear to have been applied 
successfully to problems of the complexity of the coupled motion of aircraft. This may be due to the lack 
of computers of sufficient size and speed but more likely it is due to that plague of iterative methods 
solution divergence. The straight application of the method of differential corrections to mathematical 
models with more than about twelve unknown parameters is very prone to solution divergence problems. 
Now the model for the coupled non-linear motion of aircraft contains at least twenty parameters so the 
problem becomes very serious, and at one time it was feared that it would be unsurmountable. For- 
tunately, after several attempts, a computing procedure has been devised which makes the latest version 
of the program able to accept such large errors in initial guesses without risk of divergence that it is 
virtually a fully automatic system. In achieving this end, it is perhaps only fair to warn the reader, that 
it was found expedient to graft in a feature of Type 1 methods and make direct use of measured roll rate. 
Suffice it to say here that this particular sacrifice of a statistical ideal resulted in no disadvantages but 
rather conferred very considerable advantages over a pure curve fitting method. 

The response analysis program described in this Report is tailored to the specific needs of free flight 
experiments using a particular instrumentation system. However, only trivial modifications involving 
perhaps a dozen program cards, would be needed to apply the program to analysis of the motion of full- 
scale aircraft, or of glide models; it could even be applied to dynamic stability testing in windtunnels. 
Therefore to help the reader with interest different from free flight, most of the main text of this Report is 
confined to describing the response analysis technique in general terms. Only in Section 5 is the technique 
set in a free flight context, while the Appendices contain material concerned with the general theory of 
the method of differential corrections, with the data handling problems of free flight experiments and 
with the smoothing of free flight trajectories. 



2. Model Matching by the Method of Differential Corrections 

The method of analysis, of matching a mathematical model to observations, is essentially a curve 
fitting technique akin to regression analysis, of which the simplest and best known form is fitting a curve 
to a set of measurements y~ made at different values of an independent variable x i. If the curve has the 
form y(x) = a + bx, values of the parameters a and b can be found which minimise the sum of the squares 
of the errors Z(y~ - y(x))2 ; these being the values of a and b for which 3Z/Oa = c~Z/Ob = 0. The procedure 
leads to two equations, termed the N O R M A L  EQUATIONS,  which may be solved explicitly for a and b. 
High order polynomials and complicated functions can be handled in an analogous way provided the 
functions are linear in the parameters to be measuredl e.g. y = ax + bx 2 + c sin(x) is linear in the con- 
stants a, b and c, and leads to three linear simultaneous equations that may be solved for a, b and c. 
Regression analysis can be applied to multidimensional observations with no difficulty in principle, 
e.g. finding a and b so as to minimise Y~[(Yi - Y(X)) 2 --I- ( z  i - z(x) )  2] where y(x) = a + bx  and z(x) = 
ax + bx2/2 and y~ and zi are observations. 

Unfortunately there are many problems, such as that of response analysis, where the function to be 
fitted is not linear in the parameters to be deduced from the data, and an explicit solution for the para- 
meters is not generally possible, e.g. y(x)  = a sin(bx) on partial differentials does not lead to equations 
that may be solved explicitly for a and b. The technique for non-linear problems is best described as 
linearisation; the fundamental idea is, that we start by guessing the value of the parameters so that we 
can obtain a function that is linear in terms of the error in the parameters by means of a Taylor series 
expansion. Thus for the example cited: y ( x ) =  y(x)o + 3a s in(bx)+ 6ba cos(bx), or more generally: 
y(x) = Y(X)o + 6a ay/Oa + fib c~y/Ob + second order terms, where 0y/~?a and c~y/Ob are the partial deriva- 
tives of y(x)o with respect to a and b. This function is now linear in terms of the errors in the parameters 
6a and 6b provided these are small enough for second order terms to be neglected ; if this is not so a 
and b can be corrected by 6a and 6b and the process repeated iteratively. The method therefore consists of 
starting with a approximate fit to the observations and then repeatedly correcting the parameters until 
a best fit is achieved, hence the name- - the  method of differential corrections. 

The formal proof  of the method for multiple dimensions and parameters is best put in terms of matrix 
algebra; this is given in Appendix I but it will be helpful to illustrate the main features of the technique 
with a simple smoothing problem. 

2.1. Application to Simple Problems 

Let us suppose we have made a series of measurements o fy  and z in two dimensions at n discrete times 
t and that we believe y and z can be calculated from the functions y(t) = Y(U,  A, t) and z(t) = Z ( U ,  A, t). 
We wish to find the values of Uo and the constant A so as to minimise the function Z[wl(y ~ - y(t)) 2 + 
w2(z ~ - z(t))z], where wl and w2 are the 'weights' of the observations or scaling factors chosen so that the 
accuracies of y and z are made numerically equal. The functions Y and Z are non-linear in U and A and 
may be assumed to include numerical solutions to differential equations. 

The first step is to guess the values of Uo and A to be approximately Ub and A' and then 
to use Y(U'o, A, t) and Z(U'o, A, t) to calculate y'(t) and z'(t) at every observation time tl. At the same time 
we calculate the residuals (Yi - y'(t)) and (z~ - z'(t)) and compute the partial derivatives: f l  = c~y'/OUo, 
f2 = Oz'/3Uo, f~ = Oy'/OA and f4 = Oz'/c?A (see Section 2.2). The normal equations, expressed by equa- 
tion (1.5) may then be calculated as follows : 

g)UoZ(w, f~  + w z f ~ )  + 6 A E ( w x f l f 3  + w2 f z f 4 )  = Z(wlf l (y i - y') + wz f z ( z  i - z')) 

and 

6 U o Z ( W x f l f a  + w2f2f4) + 6 A Z ( w , f  2 - w 2 f l )  = Z(wl f3 (y i  - y') + wzf4(zi  - z')). 



These are then solved to give the corrections 6 U o and &A to be made in the guessed values of U~ and 
A' to obtain Uo and A. As explained in Appendix I, estimates of probable errors in U 0 and A and the 
goodness of fit can also be made. Usually the above procedure would be repeated at least once to ensure 
that the best values had been obtained. 

2.2. The Problems of Obtaining the Partial Derivatives 

A major problem of the method of differential correction is meeting the need for accurate partial 
derivatives which represent the sensitivity of the model to changes in parameter values. The necessary 
calculations can absorb over 90 per cent of the computing time and inaccuracy here is a major cause of 
solution divergence and the consequent wastage of computer time. The earlier versions of the response 
analysis program used the simple perturbation technique for finding partial derivatives, favoured by 
many workers ~1-15. The success of the later programs, however, must in part be ascribed to the decision 
to use the parametric differentiation technique used by Chapman and Kirk 16, which is so much more 
accurate and considerably faster than the perturbation method. 

The perturbation l~ethod would find 0yJc?U0 in the above example by calculating Y((Uo + ~), A, ti) 
in addition to Y(U o, A, tl) so that OyJaUo = [Y((Uo + e), A, ti) - Y(Uo, A, %)]/~. The merit of this 
technique is that it permits the writing of a general purpose program that requires only a different routine 
for different mathematical models. Unfortunately it is difficult to choose a perturbation ~ which gives 
sufficient accuracy at the end as well as at the beginning of a response. Successful analysis, therefore, is 
likely to depend very much on the experience of the program user which is hardly desirable in a fully 
automatic system. Generally speaking, although programs using the perturbation technique are easy to 
write, they can be very difficult to use and are liable to be very wasteful of computer time. 

The parametric differentiation technique, as the name implies, involves differentiating the mathe- 
matical model partially with respect to the parameters. There is nothing new about the method in 
principle and it has always been preferred to the perturbation method for simple curve fitting problems 
because it is so much quicker and more accurate to obtain the derivative of, say, x 2 from 2x 
than E(x + ~)2 _ xZl/e. The only objection in principle to parametric differentiation arises when the 
function includes integrals with respect to time such as occur in the mathematical model of aircraft 
response, because then it is necessary to assume that the order of differentiation can be reversed. Thus, 
for example, if the function involves the integration of dy/dt and the partial derivative ~y/OA is required, 
we assume that d/dt(Oy/OA) = J/~A(dy/dt) in order that the partial derivative can be obtained by an 
integration with respect to time. Fortunately, this assumption is justified in almost all the functions 
which arise in response analysis, since a measured response is inevitably continuous. 

Parametric differentiation is not as difficult to program as might be imagined since partial differentia- 
tion often yields quite simple expressions from the most complex of functions. The extra accuracy and 
higher speed of the method are well worth the extra programming effort. Certainly the programs using 
the technique have been difficult to write but they are very easy to use and save considerable proportions 
of computing time. 

2. The Application of Model Matching to the Analysis of the Short Period Motion in Aircraft 

The application of the method of differential corrections to the analysis of measurements of any 
dynamical system depends on making a sufficiently accurate mathematical model. The number of 
parameters to be determined by the analysis must be as few as possible because of the problems of solu- 
tion divergence common to many iterative methods. Our difficulty is that a general mathematical model 
for the motion of an aircraft is exceedingly complex, largely because most aerodynamic forces and 
moments are non-linear functions of several variables and have to be represented by polynomials or 
similar functions. In order to allow simplification it is necessary to impose restrictions and confine 
analysis to particular problems. It will be assumed therefore, that the analysis of the short period motion 
of an aircraft involves (a) measurements covering only a few seconds of flight and (b) small angular 
perturbations from some datum, so that the aerodynamic forces and moments can be reasonably described 
in terms of aerodynamic derivatives. The responses to be analysed could either be damped oscillations 
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following an initial disturbance such as is often used in free flight experiment or be forced oscillations as 
often used in wind-tunnel experiments and sometimes in full-scale aircraft tests. 

In the following sub-sections we shall first consider the basis of the mathematical model--the equa- 
tions of motion of a rigid body under aerodynamic and gravitational forces, with approximations validated 
by the restrictions imposed. We then discuss the measurements required to define the motion, taking 
into consideration what is practicable. The mathematical model of the actual measurement made can 
then be written down in terms of the variables calculated from the equation of motion. Finally, some 
consideration is given to the formidable problem of calculating the partial derivatives expressing the 
sensitivity of model predictions to parameter changes. 

3.1. Equations of Motion 

Following Hopkin 17 the general equations of motion of a rigid object in still air in terms of body axes 
O x y z  with origin at the CG, are expressed as follows : 

and 

m(fi + q w  - rv) = X + mgx,] 

/ 
m(b + ru - pw)  Y + mgy 

I 
m ( ~  + pv  - qu) Z + m g  z; j 

(1) 

also 

and 

I~p - l~(i* + pq)  - (It - I~)qr = ~LP, 

Irdl - l zx(r  2 - p2) _ ( I  z _ i x ) r  p = ~Pl 

Izi" - Izx([7 - qr) - ( I  x - Iy)pq = JV'. 

(2) 

The products of inertia Ixy and Iy z have been omitted from the above equations because 0x is usually 
defined as forward and 0y through the wing of an aircraft whether model or full-scale, so that all but 
Izx is usually negligible. In general, when calculating the forces, moments and gravity terms, it will be 
necessary to also know the position and orientation of the body relative to the earth, and this is con- 
sidered later. Since we intend only to analyse small perturbations relative to data levels, ue, v~, w e, Pc, q~ and 
r e, it is convenient to replace u by (u' + Ue), V by (v' + v~), etc. in the equations. In doing this we shall 
drop the prime as all subsequent development will be in terms of perturbation quantities. Assuming that 
oscillations of u are of negligible importance compared with steady changes, the equations of motion 
become: 

fi = X e / m  + gx, (3) 

+ l'(U "~ tle) "1- Ul~ e -- pe W --  Wep --  p w  = Y / m  + gy + (Ye/m - Uer e + peWe), 

¢V + pe p q- Vep q- pv  --  q(u q- Ue) --  qe u = Z / m  + g~ + ( Z e / m  - PeVe + qeue), 

(4) 

(5) 

and 

I~p --  I~x(i" + pq  + p~q + q~p) - -  (ly -- I z ) (qr  + qe r + req ) = ~P + (0), 

ly(1 _ i ~ ( r  2 _ p2 + 2rer _ 2pep ) _ (I~ --  I~) ( rp  + rep + pe r) = J/g + (0) 

I j "  --  I~x(p -- qr  --  q~r --  req ) --  (I x -- Iy ) (pq  + Peq + qeP) = J f f  + (0). 

(6) 

(7) 

(8) 

The constant terms involving products of datum values have been placed on the right hand side and 
equated to zero in the case of the moment equations with trim moments. In the case of the force equations, 



it is usual to equate constant terms, gravity and trim forces to zero, but this is not convenient in the 
general response analysis problem. It would be satisfactory for full-scale aircraft with a pilot in control 
or in windtunnel dynamic stability tests but in free flight tests with models with fixed controls, a steady 
roll rate is necessary to ensure a ballistic flight path is followed, which means the gravity terms oscillate. 
The variation in datum caused by the gravity terms is much smaller than the usual magnitude of perturba- 
tions so there is little loss in generality if the gravity terms are not included in the definition of trim. 
The response analysis programs therefore impose the conditions 

Ye/m - uere + pewe = 0 (9) 

and 

Z J m  = p¢v¢ + q¢u¢ = O. (lo) 

The perturbation forces and moment functions may now be expanded in terms of aerodynamic deriva- 
tives as follows : 

Y = [y~v + yvPs + y,rs + . . . ]pVS,  

Z = [zww + ZqqC + znt] q- . . . ]pVS,  

&f = [l~v + l ~ v w / V  + Ipps + 1,rs + l y ] p V S s ,  

and 

J / =  [mw TM + (mq q- m,)qg + rant 1 + mtV + . . . ]pVSg 

.A/" = [nvv + (n,. - ni,)rs + npps + ntV + . . . ]pVSs.  

Only the aerodynamic derivatives that have been found to be significant in recent free flight analysis 
have been included but others could easily be added. The terms I t, m,, n t are small trim adjustments, 
needed because of the inadequacies of equations (9) and (10). The elevator force and moment coefficients 
z, and m,~ have been included to cover the case of forced oscillations ; they are not included in the analysis 
program for free flight analysis. It has been assumed that q and k, and r and b are too close in phase 
for mq and r%, and n r and n~ to be separated. This is certainly true of free oscillation experiments but may 
not be true for forced oscillations. Similarly Ip and It, and np and nr are difficult to separate, so that l, 
and np are treated as constant in the present analysis programs. 

We must now consider the subsidiary problem of calculating the gravity terms. The direction of the 
gravity vector in body axes can be defined by two angles, 0 the inclination of the 0x axis to the local 
horizontal and qb the bank angle of the 0y axis. Therefore we have : 

g x =  - g s i n 0 ,  g y = g c o s O s i n ~  and g ~ = g c o s 0 c o s q b .  (11) 

The effect of these terms on short period responses is often small; even the changes of datum caused 
by gravity are barely significant so that oscillations in 0 during a pitching response are certainly negligible. 
If y, the elevation of the velocity vector is known, then 0 is approximately (7 + We sin D/V), but assuming 
that 0 = y is usually quite adequate. 

For windtunnel and full-scale aircraft experiment it is usual for these gravity terms to have constant 
average values and for the velocity V and air density p to be sensibly constant. In free flight experiments, 
such steady conditions can be achieved only rarely and although small, the changes are worth taking 
into consideration. The information is derived by measuring the trajectory of the model with ground 
based instrumentation. It is then smoothed by a computer program making use of additional informa- 



tion such as on-board acceleration a x and roll angle q~, as described in Appendix IV. This trajectory 
analysis program provides not only smoothed values of velocity V, climb angle y and altitude Z, but 
estimates of the mean drag coefficient CD, lift coefficient C L and trimmed incidence during a response. 
The response analysis program then uses the initial conditions Vo, 70, ho, q% at the start of a response 
to calculate the values of u, V, 0, Z and • during a response by assuming u e = V o and 0 = y and using 
the following equations : 

and 

fi = 12 = - ½ p V 2 S C o / m  _ g sin 0, (12) 

VO = ( Z e / m )  cos q) - g cos 0, (13) 

= Vsin 0 (14) 

= pc. (15) 

Where Z J m  is the trimmed normal acceleration (aze) and air density p is obtained from a table of p as a 
function of Z, as measured on the day of the free flight trial. 

3.2. Measurement of Response Parameters 

A basic instrumentation system might be designed to measure the six perturbation quantities u, v, w, 
p, q, r. Aerodynamic derivatives would then be extracted by fitting these measurements to values obtained 
by integration of the equations of motion. In practice, even if it were possible to measure these quantities 
directly, it would mean that estimates of force and moment derivatives such as z w would depend on the 
phase relationship between linear and angular velocities. Better accuracy would be obtained by measuring 
the components, ay and az, of the translational accelerations (at the CG) so that force derivative estimates 
would depend on both amplitude and phase relationships. A more practical minimal system would 
therefore have to provide u, v, w, p, q, r, ay, a z. In addition it would have to provide measures of the 
datum levels but generally no extra instruments would be needed. Obviously, eight instruments measur- 
ing combinations of variables could be used provided it is possible in principle to extract all eight quantities 
from the data. 

In practice the angular velocity resolutes p, q, r pose the problem that the rate gyros required are not 
easily accommodated in the average free flight or windtunnel model. It is much easier to measure angular 
accelerations p, O and ~ by angular accelerometers or by pairs of separated linear accelerometers and 
although the datum levels of pc, qe and r e then cannot be measured directly, they are available from the 
assumed relationship between the datum levels, equations (9) and (10). In the same way u is obtained by 
integration of fi measured as a x. Therefore the analysis program in use for free flight analyses uses the 
basic measurements ax, v, w, p, q, r, ar and a z. 

A particular virtue of the method of analysis is that because the mathematical model imposes certain 
relationships between the eight variables, the measurements of v and w are redundant. This is because 
frequency, damping, and amplitude and phase relationships are implicit in the data so that the amplitude 
of v and w is implicit in 0 and ~, while ay and a z determine the phase. Thus v and w need not be measured 
except to find the trim values ve and we, and these are sometimes available from other sources, e.g. it is 
always obvious from measures of acceleration at the CG when trim is zero. Of course u and ue can nearly 
always be measured by external means, as well as by instruments on board. So that very often analysis 
can be based on measurements of p, 0, ~, ay, a~ only. 

The general scheme for instrumentation of free flight models uses the following eight instruments : 

2 differential pressure probes measuring CPv and CPw for v and w, 
2 linear accelerometers measuring ay and a~ near the CG, 
2 linear accelerometers near the model tail for ~) and ~, 
1 linear accelerometer near the CG for ax and thus fi and 
1 angular accelerometer for measuring p. 



In addition a magnetometer with the sensitive axis parallel to 0z is used to measure roll angle ¢I) and 
thus trim roll rate Pe- 

A similar scheme could probably be developed for windtunnel dynamic stability testing. For full-scale 
aircraft it would almost certainly be advantageous to include rate gyros for the direct measurement of p, 
q, r. This would introduce even more redundancy which is no bad thing but it would perhaps be best to 
measure 4 and ?, if required, by angular accelerometers rather than spaced linear accelerometers. 

3.3. Mathematical Model for on-board Measurement 

The analysis program uses a mathematical model to predict the actual readings of each instrument 
rather than attempting the bad statistical practice of unscrambling v, w, p, q, r, etc. from the measure- 
ments. Instrument response characteristics are not included in the mathematical model because of the 
computational problems this would introduce. Instead corrections for instrument response character- 
istics are made when the basic data is processed in preparation for analysis as described in Appendix III. 

Measurements from longitudinal acceleration a x and the magnetometer  are not given directly to the 
response analysis program, only implicitly in the form of equations (12)-(16). The seven remaining 
instruments are given names in capital letters for the purpose of the computer program, viz : 

N C  for acceleration a z measured near the CG at coordinates x 1, Yl, zl ,  
N A  for acceleration az measured near the tail at coordinates x2, YE, z2, 
LC for acceleration ay measured near the CG at coordinates x3, Y3, z3, 
LA for acceleration ay measured near the tail at coordinates x 4, Y4, z4, 
P for p and C P V a n d  C P W f o r  probe differential pressures CPv and CPw. 

It should be noted that N C  and N A ,  in spite of the name, have the opposite sign to the normal accelera- 
tion because 0z and therefore a z is positive downwards. The mathematical model in terms of u, v, w, 
p, q, r, p, c~, ?, derived from the equations of motion is as follows : 

N C  = a~o + Z / m  + [(p + p~)(r + re) - [t]x1 Jf [(q + qe)(r + re) + [73y, 

_[(p + p~)a + (q + q~)2]z ' + E N C ,  (16) 

N A  = a~o + Z / m  + [(p + p~)(r + r~) - O]x2 + [(q + q~)(r + re) -1- PlY2 

--[(p + pe) 2 + (q + qe)2]Z2 + E N A ,  (17) 

L C  = aro + Y / m  + [(p + p~)(q + q~) + ~]x3 - [(p + Pe) 2 q- (r + re)2]y3 

+[(q + qe)(r + re) -- p]z 3 + E L C ,  (18) 

L A  = ay~ + Y / m  + [(p + pe)(q + q~) + i*]x4 - [(p + p~)2 + (r + r~)2]y4 

+[(q + q~)(r + re) -- p]z 4 + E L A ,  (19) 

p _- p, (20) 

and 

C P W  = K K ~ p V ( w  - qxp) + E C P W  (21) 

C P V  = K K v p V ( v  - rx  v) + E C P V .  (22) 

The prefix E is used to denote zero errors in all instruments, e.g. E N C .  If possible such errors are 
removed before analysis but some are liable to drift and may have to be estimated during analysis. The 
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factor K is a correction factor for probe sensitivity, xp is the distance of the probe from the CG. The 
trim accelerations ayo = Ye/m and a~e = Z J m  are also known as LC (trim) and NC (trim) in the computer 

program. 
These equations illustrate the chief problem of using linear accelerometers, viz. that because they 

respond to linear, angular and gyroscopic accelerations, their positions relative to the CG must be 
accurately known and the computing problem is very complex. The great advantage of rate gyros and 
angular accelerometers is that position does not matter, only alignment, so that generally better accuracy 
can be expected, as was found in re-entry dynamics work 1~ . 

3.4. The calculation of the Partial Derivatives 

The partial derivatives representing the sensitivity of the mathematical model to changes in para- 
meters are found by the method of parametric differentiation which simply means that each measurement 
prediction is differentiated analytically with respect to each parameter. For response analysis with 
twenty or more parameters this presents a formidable computing problem and has strongly influenced 
the design of the computer program. For example, consider the problem of finding the partial derivatives 
aNC/~x of N C  with respect to every parameter x. Differentiating equation (16) gives 

[ (0) ] 
+X 1 (r q- re) 1 -+- (p + pe)Or/Ox -- Ogt/aX 

Pe 

[ (o) l(o) 
+ (q + qe)Oq/Ox + +y~[(r + r~)Oq/Ox + (q + q~)Or/ax] + 2z x (p + p~) 1 p~ 1 Euc 

(0) 
where terms of the form have a zero value except when x = a when the value of 1 is taken ; the 

0) will below. Although some of the terms of this equation and in those reason Op/Ox = 1 po beiexplained 

of the other instruments are trivial, the general complexity provides a powerful motivation towards 
either simplification of the mathematical model or at least to modifications which simplify the com- 
puting problem. This is particularly complicated because the partial derivatives of the state variables 
Ov/ax, Oq/Ox etc. can only be obtained by integration of sets cff equations derived by partial differentiation 
of the equations of motion, Figs. 4-8. This means that five equations have to be integrated for every 
parameter except those like ENC. 

To make any more simplification in the mathematical model would mean loss of accuracy which is 
unacceptable. We must consider, therefore, whether there is any modification to the curve fitting process 
that would greatly simplify the computing problem. In particular a modification is needed which reduces 
the number of partial derivatives whose derivation depends on the integration of differential equations. 
Unfortunately the only useful idea involves sacrificing the statistical ideal, discussed in the introduction, 
that 'measured data should not be used directly in calculations but only as references in a curve fitting 
process'. The objection to using measurements directly is that serious problems arise when there are 
zero errors and high noise levels in the data, but it would be foolish to fail to make direct use of some 
quantities that can be measured accurately. Now it is not fortuitous that the only quantity, in the in- 
strumentation system discussed above, that is measured accurately and directly is p, the roll angular 
acceleration, because it is p and p which occur most frequently in the mathematical model and contribute 
most to cross coupling effects. Integrating the measured p to yield a p, which is then used instead of 
values of p computed from the mathematical model, has the following considerable advantages : 
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(a) All the partial derivatives of p are zero with respect to all parameters except the initial level Po, 

i.e. c3p/~x = (~) . Consequently integration of equations of the form d(@/~x)/dt is rendered unnecessary 
Po 

so that only four differential equations must be integrated for every aerodynamic derivative treated as a 
parameter except the roll derivatives. In practice this means a reduction of 40 per cent in the number of 
differential equations requiring numerical integration. 

(b) Because most of the partial derivatives of p are zero, many terms of the other functions are 
eliminated on partial differentiation. So that not only are the equations to be integrated much fewer, 
they are also much simpler. 

(c) Several terms in p are linearised in the mathematical model in the same way that terms are linearised 
in Shinbrot's or other equations-of-motion methods. Consequently more rapid convergence of the 
iterative analysis procedure might be expected. 

All these advantages of using p directly taken together, have resulted in practice in a 50 per cent saving 
in computing time per iteration and a 30 per cent reduction in the number of iterations required for a 
solution. Also, there is no significant loss in accuracy provided one of the modern high performance 
angular accelerometers is used for the measurement of p. The problem of calculating the partial deriva- 
tives, therefore, has encouraged us to produce a hybrid of the Type 1 and Type 2 methods, discussed in 
the introduction, but we have gained the best features of the Type 1 without many of the disadvantages 
of using measurements directly. It should be made clear that we still do a least squares fit to measured p ; 
all that is not done is the time-wise integration of the computed t5. If at the end the measured p is not 
fitted accurately by the computed p, then the mathematical model is inadequate and the direct integration 
ofp for p will not have been justified but it was still the best that could be done. If roll rate p was measured 
directly this could no doubt be used directly for the same purpose and further simplification of the com- 
puting problem could be effected by using direct measurement of 0 and k (or q and r) but caution would 
no doubt be necessary. 

For the present response analysis scheme the four differential equations required for partial derivatives 
have the following form: 

[(t (t 0 
= + y~c~v/Ox + sp + syp p VS/m 

1 y~ 1 y ,  ~ l /po_]  

+(Pe+p)Ow/~3x--(u+ue)Or/Ox+ w(~)p o' 

[4) (o) ] = + z,~Ow/~x + gq + CZq63q/Ox pVS/m 
1~ w 1 ~  

l fl(Oq/Ox)/dt = 

--(Pe+P)~3V/OX+(U+Ue)Oq/Ox- V (0l)po, 

EV(0) (0/ (~) ] 
+ qg + c(mq + m~,)c3q/~x + w + mwC?W/~?x p VSO 

l ~,  1 ,~ ..... 

[ +(I ._ -  I~) (Pe+P)~?r/~x+re po + I~x 2 ( r + r e ) ~ r / O x - 2 ( p + p e )  1 po 

and 

[() (o) 4) ] 
= + + _ (° / + 

1 .~ \ 1 1 . .  1 . .  k l / p o  1 .~ [ (0)] 
- - I~[(q + %)Or/Ox + re~q/Ox 3. + (Ix ly) (Pe + p)~3q/Ox + qe 1 po 
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0) have the value of zero except when x = a, unity Here again terms of the form 1 , when the value of 

is taken. It will be noted that eighteen out of the thirty four terms are of this type so that the equations 
are much simpler than they appear. 

The sets of differential equations are integrated numerically in parallel with the equations of motion. 
The initial conditions are trivial at t = to, all are zero except for Ov/avo, aw/Owo, Oq/Oqo, and c?r/c~r o 
which are unity. The minimum number of aerodynamic derivatives an analysis program must try to 
extract is twelve, viz. lv, lvw, lp, I t, mw, mq, ms, nv, nr, nt, Zw, Yv, but, of these, the four roll derivatives do 
not need the integration of equations which means only eight sets of equations are required. The five 
initial conditions Po, qo, to, v0, Wo each need a set of equations bringing the total number of sets to 
thirteen, i.e. fifty two differential equations. There are also nine equations of motion including the 
trajectory, so that sixty one equations must be integrated in the simplest analysis scheme. This compares 
with ninety four rather more complex equations if the p simplification is not used and ninety four very 
complicated equations if the inaccurate perturbation method was used. An extra four equations are 
needed for every extra aerodynamic derivative (other than rolling moment derivatives) treated as an 
unknown parameter. 

4. The Response Analysis Computer Program 

4.1. Early Versions and Development 

As mentioned in the Introduction, the first programs for the analysis of response data were adaptations 
of those used for the analysis of re-entry vehicle motion 11,18. Separate programs were written for the 
analysis of longitudinal motion (based on the J and 0 equations of motion) and for lateral motion (based 
on the b, f and p equations of motion) but some approximate allowance for cross coupling effects was 
included by either using some measurements directly, or by using results from the analysis of one made 
in the analysis of the other. In its final form the two part analysis scheme could give satisfactory results 19 
but only after many computer runs of which 50 per cent could be abortive due to solution divergence. 
So much time had to be spent on initial graphical analysis that the method could hardly be described 
as automatic. It was more of an aid for the analysis of response data by the expert than a method in 
its own right. 

Divergence is a common problem with this type of iterative analysis scheme. It is caused in part by 
ill conditioned normal equations and partly by large second order terms ignored in the Taylor series 
expansion. The risk of divergence increases with the number of parameters and at one time it seemed 
hardly possible that a single program using all five equations of motion and analysing data from seven 
instruments simultaneously could ever be made to work with the necessary twenty or more variable 
parameters. It was feared that parameters would have to be estimated by graphical methods so accurately 
that the computer method would be virtually useless. Various methods of reducing the risk of divergence 
were considered such as steepest descent techniques with limited step size but all bought stability at 
the price of greatly increased computing time and program complexity. A simpler idea was to do a pre- 
liminary analysis with a program that determined only the most important parameters and it was found 
experimentally that if the force and rate damping derivatives such as z~. and mq w e r e  treated as constants 
in the mathematical model, it was almost impossible to persuade the preliminary fitting process to 
diverge. This preliminary, followed by full analysis idea is perhaps the most important feature of the 
present highly stable analysis programs, but parameter differentiations to obtain partial derivatives, 
the integration of measured p to obtain p and the redundancy inherent in the simultaneous analysis of 
seven instruments, are all later developments which have improved stability and reduced computing 
time. 

4.2. Finalised Versions 

The latest program uses the mathematical model specified by equations (3)-(15) for the analysis of 
data from up to seven instruments, to extract up to twenty three model parameters including eleven 
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aerodynamic derivatives. The specification of this program A51B is given in full in Appendix V. The 
program can be instructed to extract only the more important parameters and subsequently to extract 
the full twenty three, only if analysis proceeds satisfactorily. To facilitate this feature the variable para- 
meters are listed in order of importance as follows : E N A ,  E L A ,  l t, I o, low, I o, Po, Wo, qo,  Vo, ro, mr, nt, mw, 
no, (mq -Jr- m;~), (n, - n~), z~,, Yo, (zq + z;~), yp, E L C  and K. If for example the number of parameters is 
specified as fifteen, the parameters in the list from mq onwards would be treated as constants. All other 
parameters are permanently treated as model constants including trim levels and the aerodynamic 
derivatives I o and n 0. The standard version of the program can also be instructed to omit data from one 
or both probe measurements. If less than five data channels are to be used for analysis or different variable 
parameters are to be extracted, non-standard versions of the program would be necessary. In use the 
program iteratively improves the value of each variable parameter until each parameter is changing by 
less than a specified A. Thus the accuracy to which the program will attempt to work is governed by the 
constants A1-A23 chosen by the user. When data is being analysed for the first time the number of 
parameters is usually set initially to fifteen or less and the program automatically uses only half the 
available data. If parameters have not converged to within their value of A after a given number of itera- 
tions (usually five), the computation stops automatically and the cause of non convergence is investigated 
off the machine. If the case is convergent, the number of parameters is then automatically increased to 
the final value, the total amount of data is used, and analysis proceeds until the specified A limits for all 
parameters is achieved or the maximum number of iterations allowed has been exceeded. By this tech- 
nique the maximum amount of progress is made on one computer run and the analysis usually completed. 
If divergence does occur sufficient information is printed out for the analysis to be completed at the 
second attempt. Very large errors can be tolerated in the initial estimates of parameters, so that the 
analysis can fairly be described as fully automatic. Failure to converge is usually the result of card punch- 
ing errors such as giving I o, m w or n o the wrong sign. 

4.3. Accuracy of the Analysis Programs 

One advantage of this type of analysis method over analysis by graphical methods is that errors are 
treated in a consistent and proper statistical manner. As discussed under Section 2.1 and Appendix I 
the so called random errors can be estimated by the computer programs. Unfortunately, because these 
error estimates are printed out by the computer, there is a temptation to believe they constitute the whole 
of probable errors in parameters. It should not be forgotten that instrument errors, approximation in 
the mathematical model and errors in meterological measurements can greatly exceed the random error 
computed by the program. 

The trajectory analysis scheme is usually able to fit the trajectory data to within 5 metres and velocity 
to better than 0.4 m/sec, these errors arising mainly from the mathematical model. However, actual 
velocity may be in error by as much as 2 m/sec because of wind variations. The probable zero error in 
the longitudinal accelerometer is removed on analysis so that total drag is probably measured to better 
that 1 per cent. However, the estimated CD and Mach number depend on meteorological soundings which 
at Aberporth are made every three hours so that errors of 2 per cent or more are possible. 

The errors in response analysis are contributed by many sources including trajectory errors, instrument 
position and calibration errors, and by approximations in the mathematical model being used for analysis. 
Most of these can be assessed only by referring to results from particular experiments but some considera- 
tion of errors inherent in the mathematical model will be appropriate in this Report. 

It will be recalled that approximations were made in the mathematical model described in Section 3 
largely for the sake of keeping the computing problem to manageable proportions. The more important 
approximations are that u is assumed equal to the average value of V obtained by trajectory analysis, 
that 0 = T obtained by trajectory analysis, and that the oscillatory component in 0 and • arising from 
q and r oscillations can be ignored. To check that these assumptions are reasonable the equations of 
motion were programmed in full with no such approximations and used to predict the standard seven 
instrument readings. The simulated data thus produced was then analysed with the standard response 
analysis program in order to determine how far the approximations affect results. As far as possible the 
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simulated responses were made to be typical of those from free flight data being analysed both from 
lifting and non-lifting aircraft models. It was shown that the approximations have an effect on the extracted 
stability derivatives that can usually be ignored. 

The simulated data was also used to check the importance of scaling factors, the effect of small errors 
in accelerometer positions, the effect of errors in trim terms, and errors in mass and moments of inertia 
on the stability derivative values. Most of these had effects that were of course, predictable and it became 
evident that approximations in the mathematical model used to analyse the data, had effects that were 
insignificant compared with likely instrumentation errors. As a result of this exercise with simulated 
data it was concluded that the analysis scheme now in use is more than adequate for handling the data 
from instruments that are likely to be available in the foreseeable future. Time has not permitted a more 
comprehensive study of the effects of noise in the data and the influence of telemetry multiplexing and 
smoothing on the noise. However, the very extensive study of errors by Hill et al. 2° for a similar type of 
analysis scheme for aircraft response data gave encouraging results as well as vividly illustrating how the 
effects of less important derivatives can often be obscured by noise. 

5. Analysis of Free Flight Data in Practice 

The flow diagram in Fig. 2 summarises the procedure followed from construction of a model to extrac- 
tion of the aerodynamic characteristics. The first steps involve careful calibration of the instruments 
including response characteristics, the positions of instruments within the model and the measurement 
of the mass, centre of gravity and moment of inertia of the model. The firing of the model and some data 
processing, takes place at the range (usually Aberporth) as indicated by the dashed line box in Fig. 2. 

The telemetry signal is recorded in analogue form on magnetic tape and is also used directly to produce 
a paper trace record of each instrument reading. The latter is used for a quick assessment of the trial and 
later for estimating some of the parameters prior to response analysis on the computer. A replay in the 
Aberporth BRAMBLE equipment of the analogue tape is used to convert the data to digital form which 
is then recorded on magnetic tape in the form specified in Appendix II. The radiosonde measurements 
of the atmosphere made at the Range at three hourly intervals are used for the estimation of air density 
and sonic speed, and for making wind speed corrections to the trajectory observations. 

The trajectory data is gathered from kinetheodolites, radar and the radio Doppler trebler system, 
although not all these systems are necessarily used in every case. The processing at the range includes 
some smoothing, and correction is also made for the effect of the mean steady winds by a polynomial 
fitting method. No elaborate analysis of the type described in Appendix IV is attempted at this stage. 

On receiving data from the range the first tasks are to apply calibrations to the digital telemetry read- 
ings, to make the corrections for instrument response characteristics and multiplexing effects, and to 
produce the calibrated data in a form suitable for use by the analysis programs. This is achieved with a 
Fortran program A51A written specifically for reading the Bramble-produced magnetic tape on the 
ICT 1907 computer. A full description is given in Appendix III. All data channels are reproduced on a 
line printer but only eight channels on punched cards. Usually two computer runs are necessary, the 
first to check readings of the instrument and the calibrations just before launch, the second to produce 
punched cards suitable for stability analysis and other relevant data on the line printer, such as magneto- 
meter readings. The standard data on a card is as follows, 

T(sec) A X  NC N A  C P W  LC LA P CPV. 

The data is punched in free format with two spaces between each number, the time is given to three 
decimal places, the data to two places. These channels are line printed in the same order, usually folloffed 
by the magnetometer reading and then standard calibration channels. There is no easy way to turn 
single axis magnetometer readings into roll angle on the computer; the output is approximately sinusoidal 
with maxima at zero roll angle but the amplitude is dependent on climb angle and direction of flight. 
The present method is to find the times of maxima by inspection and to plot against peak number, thus 
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obtaining the roll angle at intermediate times by interpolation. When magnetometer data are not available, 
roll angle can also be deduced approximately by measuring the direction of the plane of polarisation of 
the telemetry signal. 

The telemetry data are produced at 10 msec intervals, and this is unnecessarily frequent for trajectory 
analysis, for which a 1 sec interval is often adequate; cards direct from Program A51A are therefore not 
used. The specification for the trajectory analysis program A51T is given in Appendix IV; of the two 
versions in use Version 2 is preferred, Version 3 is used only when an incidence probe is not fitted and 
incidence has to be calculated using an assumed value of CN~. The trajectory information to be analysed 
is listed as Table IV3 in Appendix IV. The average or trim values of AX, NC, CPW and q~ at each time 
should be used if the time interval is 0-1 sec or more. The parameters determined by the least squares 
fitting process are the initial conditions Vo, 5'o, Xo, Xo, Yo, Z0, and the zero error A(Ax) in the longitudinal 
acceleration. Zero shifts often arise as a result of the high overload caused by the rocket boost and must 
be removed or large position errors would accumulate on integration. Having obtained a best fit, the 
smoothed trajectory is printed out along with Mach number, incidence c~, Q(½pV 2) and C o and CL. 
An example is reproduced in Fig. 3, it will be noted that most of the input information is also printed out. 
Further details are given in Appendix IV. 

Having obtained a smoothed trajectory, the analysis of the response to each disturbance may proceed 
with Program A51B, and the specification for the input data required is listed in Appendix V. The initial 
time of the response T 0 must be later than the all-burnt time of the pulse rocket, and preferably near the 
peak of at least NC and NA so that q0 and perhaps r o can be taken as zero. The values of the trajectory 
parameters Vo, 7o, H0 and ~0 are all taken from the smoothed trajectory along with the average value of 
Co during the response. Only C o is needed because the lift component  is obtained from the value of the 
trimmed normal force NC(trim). The values of NC(trim) and LC(trim) are average values of NC and LC 
before and after the response less any zero errors believed to be present. The value of w(trim) is taken 
directly from V:~ deduced by trajectory analysis, a value of v(trim) can also be calculated although it is 
often easier and reasonable to assume LC(trim) and v(trim) are zero. The average value of roll rate p(trim) 
is deduced from the magnetometer data. Of the variable parameters ENA, ELA, It, lvw, m,, n~, zq, yp 
and ELC can be taken initially as zero, K is given the nominal value of 1, theoretical or windtunnel 
values are assigned to Ip, m~, nr, zw and y~ while m~ and n~ are calculated from the observed frequencies, 
e.g.: 

m w = l y c o 2 / p V 2 X g ,  

where (, is the frequency in pitch. The amplitude of ~ and ? may be estimated from NA and LA, and 
hence the amplitude of w, v, q and r using m w and n~, and thus to estimates of w0, %, qo and r o. From 
the amplitude of/5 and v, the value of l~, can be estimated. Very little time or effort is used in making these 
estimates since the analysis program can tolerate very large errors. 

When a batch of data is to be put on the computer for the first time, the number of parameters allowed 
to vary initially, Po, is set to 15, the final number is set to 23 for a straightforward-problem. This means 
the computer  handles only half the data for the first few iterations and as a general rule this data must 
include at least two cycles of the response oscillation, so at least four cycles must be covered by all the 
data. The initial value of the iteration counter is set to 1 unless a print out of the first guess at the response 
is needed when it should be set to 0. A maximum iteration counter setting of 5 is usually satisfactory 
unless unrealistic terminal accuracies have been listed in the A 1 --, A23 table. 

The final problem is estimating the instrument reading scaling factors or weights, whose purpose is 
to ensure that analysis is not dominated by the large numerical value of readings from an instrument 
which may also be making correspondingly large errors. In general these scaling factors should be 
inversely proportional to the full-scale ranges of the instruments if the percentage accuracy of the instru- 
ments can be taken to be the same usually 1 per cent. Less accurate instruments can then be given 
even smaller scaling factors. It is always advisable to do a repeat analysis with different scaling to check 
that results are not unduly sensitive to scaling value. 
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An example of the print out of a typical problem up to the end of the first iteration is shown in Fig. 4. 
It should be noted that the atmosphere table and some of the program control parameters are not listed. 
The DELTA printed under the first parameter estimates are the accuracy demands A 1 ~ A23, the DELTA 
printed subsequently are estimates of the actual accuracy. SIGMA is the rms of the weighted (or scaled) 
residuals. This particular example is varying all twenty three parameters, and is actually a repeat com- 
puter run. The actual fit finally achieved for this case is plotted in Figs. 5 and 6 of which the fit to the 
longitudinal response can scarcely be faulted. The cross coupling to the lateral response is very marked, 
but the fit is very good taking into consideration the low amplitude of only one tenth full-scale of the 
lateral accelerometers. This quality of performance is typical, although for many responses there is 
insufficient amplitude in either the lateral or the longitudinal mode for all deduced derivatives to be 
reliable. Often, too, the data contains too much noise for the estimates of the force derivatives Zq and yp 
to be reliable, so that like np and Ir it is probably best in many cases to hold these derivatives at constant 
values based on theoretical estimates. 

6. Conclusions 

A system has been successfully developed using a digital computer for the extraction of aerodynamic 
derivatives from dynamic response measurements from aircraft and aircraft models. A multidimensional 
curve fitting technique is employed, using an automatic iterative method based on the principle of least 
squares, known as the method of differential corrections. The technique, which demands the use of a 
large high speed computer, has become widely used in recent years for many applications including 
aircraft response anaqysis, but hitherto it does not appear to have been successfully applied to problems 
of the complexity of the coupled motion of aircraft. The reason for this may be the problem of solution 
divergence common to iterative techniques. By overcoming the problem a virtually fully automatic 
analysis scheme has been produced with wide application in the field of aircraft response analysis. 

Compared with other methods in current use, this analysis scheme offers the following advantages: 
(a) A mathematical model of considerable complexity in the form of the basic equations of motion 

may be used, including inertial and aerodynamic cross coupling, and non-linear aerodynamics. 
(b) As a consequence of (a) coupled responses may be analysed that are difficult to avoid particularly 

in free flight so that a much greater proportion of expensive data can be made to yield valuable results. 
(c) Because of the relationships imposed by the mathematical model, incomplete sets of measurements 

can be analysed. As a corollary, when most state variables and their derivatives can be measured, valuable 
cross checks on consistency are afforded by the inherent redundancy. 

(d) It is unnecessary to go through the bad statistical practice of unscrambling the state variables 
from instruments like accelerometers which cannot make pure measurements. This is because the mathe- 
matical model predicts the actual instrument readings. 

(e) As a consequence of (d) errors and noise in data are handled in a consistent statistical manner 
which is invaluable when results from several experiments are being compared. The method is also able 
to extract results in the presence of relatively high noise levels. 

In short, this analysis system is able to make the best possible use of measurements of response. Its 
use has greatly extended the accuracy and usefulness of the free flight technique of measuring aerodynamic 
derivatives by the dynamic method, and it could be equally useful for full-scale aircraft and for dynamic 
windtunnel tests. However, no analysis method can overcome the basic limitations of the experimental 
technique, which is that only aerodynamic parameters which significantly affect response can be extracted. 
Generally, parameters which have negligible effects are of negligible importance but there are some 
examples of parameters which cannot be measured because they have an effect which is indistinguishable 
from that of another, e.g. mo cannot usually be separated into its components of m,  and rnq. This can be 
important in extrapolating results to some different CG position or in control system design. This limita- 
tion can only be overcome by changes in experimental technique such as using forced instead of free 
oscillation methods in flight. The analysis system can be very easily modified to obtain the best results 
from a different experimental technique. 
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a x , Oy, a z 

C 

CPV, CPW 

CD 

CL 

Cy 

CL.  

D 

e 

E 

ENC, ENA, ECPWetc. 

f 
g 

h 

Ix, ly, I~ 

K 

KV, KW 

L 

Lp, L~, Lv 

Lt 

lp 

LC, LA 

M 

Mq, M~, M.  

M~ 

m 

mq 

mt 

mw 

m~, 

LIST OF SYMBOLS 

Components  of acceleration at (x, y, z) in body axes 

Matrix of partial derivatives 

Differential pressures in yaw and pitch from probe 

Drag coefficient 

Lift force coefficient 

Side force coefficient 

8CL/8~ 

Geometric mean chord 

Drag force. Also column vector of residuals 

As subscript to denote trim or datum value 

Column vector of parameter errors or corrections 

Zero errors in NC, NA, etc. 

Partial derivative of instrument reading with respect to a parameter 

Acceleration due to gravity 

Instrument damping factor, or altitude 

Moments of inertia in roll, pitch and yaw 

Probe scale factor 

Probe sensitivities in yaw and pitch 

Lift force or rolling moment  

Rolling moment  derivatives, e.g. Lp = 8L/Sp 

Rolling moment  associated with trim 

Lp/p V S s  2 

Lff p V Ss 2 

Lffp VSs 

Lffp V2Ss 

Lateral acceleration measurements 

Mach number or pitching moment  

Pitching moment  derivatives, e.g. Mq = OM/Oq 

Pitch moment  associated with trim 

Mass of aircraft 

Mq/p VSc 2 

Mffp V 2 cS 

Mw/p VSc 

M ~,/ pSc 2 
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NC, NA 

N o r n  

Np, Nr, N~, N~ 

N~ 

nr 

nt 

nv 

Hb 

p, q, r 

Porp  

P 
R 

R~ 

S 

S 

S 

t 

U 

U 

V 

V~ W 

W 

Xr 

XK 

x, y, z 

X , Y , Z  

Y 

Y~, Yp, Y~ 

Yp 

Y. 

Y~ 

Zq, Zw 

Normal acceleration measurement (but - v e  sign) 

Number of data points 

Yawing moment derivatives, e.g. Np = ON/ap 

Yawing moment associated with trim 

NJp V S s  2 

N,/p VSs 2 

Nt/p V 2 Ss 

Nv/p VSs 

No/pSs 2 

Angular velocity resolutes in roll, pitch and yaw 

Number of parameters 

Roll angular acceleration 

Residual--difference between measured and calculated value 

Reynolds number 

Standard deviation of parameter 

Wing area 

Semi-span 

Time 

Sum of the squares of the weighted residuals 

Velocity along x body axis 

Velocity along flight path 

Lateral and normal perturbation velocity 

Matrix of weights (importance of) of observations 

Matrix of weight of ith observation nl 

The true value of the kth parameter 

Estimate of kth parameter 

Coordinates relative to CG, z vertically down 

Earth fixed coordinates, Z vertical upwards 

Side force 

Side force derivatives 

YdpSVs 

YdpSVs 

Yv/p S V 

Normal force derivatives 
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Zq 

Zw 

O~ 

7 

F 

17 

0 

X 

P 

q~ 

Zq/pSV~ 

Z~/pVS 

Angle of attack 

Side slip 

Flight path elevation 

Instrument reading 

Standard deviation of residuals 

Body attitude in pitch 

Matrix product C* W C  

Body attitude in yaw and flight path bearing 

Observation vector 

Air density 

Body roll angle 

Partial derivative with respect to parameter x k having a value of zero 
except when xk = a 
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APPENDIX I 

Model Matching by the Method of Differential Corrections 

The mathematical model consists in its basic form of the assumed equations of motion of the aircraft. 
Provided certain parameters, including the initial conditions are known, the equations may be integrated 
to predict the state of the aircraft at any time, t. The state variables at this time, t, can then be used to 
predict the readings of instruments, such as accelerometers, carried by the aircraft. If we represent the 
m instrument readings at the ith instant, t i, by an m-dimensional column vector, ~ ,  and if there are p 
undetermined parameters X k  (k = 1, 2 . . . . .  p) in the mathematical model, and there are no errors in the 
observations or the model, then the observations would be related to the parameters by equations of the 

form: 

~i  ---~ ~ ( X l ,  X 2 , - "  ",  X p ,  t i) .  

If there are n observations and m n >  p, the parameters may be obtained by solving the equations re- 
dundantly, using a least squares procedure to determine the best values. 

Let ~c be computed values close to the observed values based on estimates x k of the true parameters 
X k  (capital X denotes true value), such that 

7~ic = 7~(Xl, X2 . . . . .  X v ,  t i )  

and let the residuals be of the form R~i = n~ - n~c. Then the procedure is to determine the values of x k 
so as to minimise the quantity U = ~ '=  x w,~iR2~ , where w~ is an m x m diagonal matrix with the weight 
of the observations along the diagonal. Strictly speaking, since R~ is a vector, this expression should be 

written: 

U = ~ R*iw~iR~i (I.1) 
i = 1  

where the asterisk * denotes the transpose. (In this case column to row.) 
Suppose x~ are approximations to x k so that 

x~, = xk + 6x~ 

and 

, , (I.2) 7tic = ~(xk, t3. 

Linear equations may be obtained by expanding equation (I.2) as a Taylor series : 

P 

7r'i~ = zri~ + ~ fki6Xk + O((6Xk) 2, ti) 
k = l  

where fki are m-dimensional column vectors of partial derivatives at time t~ of the form 8 ~ ( x  k, ti)/t~X k. 
The correction procedure is based on the assumption that (6Xk) 2 is negligible. In practice, this is not 
generally true, and the minimization of U is obtained by repeated application of the procedure. Let 

R t  ! ~i ~ 7~i - -  7~ic 

so that 

P 

R'~i = R~i - ~ ,  fk i  6Xk (I.3) 
k = l  
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and 

= ~ i w ~ d % i .  (I.4) 
i = I  

To minimise U' we must find values of 6x  k for which OU'/O(6x 0 is zero. Taking all n observations 
define D as a column vector of element R=i, E as a column vector of (?x k, W as an mn x mn diagonal 
matrix of the weights w=i and let 

C = 

f ,  1, f21 . . . .  L ,  

. 

L . , k  . . . . .  fp,,i 

Then equation (I.4) may be written as : 

U ' = D ' * W D '  

and from equation (I.3) we have 

D ' = D -  CE. 

Therefore 

U' = (D* - E * C * ) W ( D  - CE) 

and 

OU' 

c~(6xO 
2 C * W D  + 2 C * W C E  = 0 

o r  

C* W C E  = C* W D  (I.5) 

which is the matrix form of what are commonly called the 'normal equations'. Defining W = C * W C  
then '  

W E  = C * W D  

and 

E = W -  1 C * W D ,  (1.6) 

which is the desired solution and gives the increments to be added to the parameters. The procedure is 
repeated using the new parameters as starting values, until E is negligible when (6Xk) 2 must be negligible, 
and the best estimate x~ of the parameters X k obtained. Equation (I.6) represents the most general form 
of the result obtained in Ref. 18 which was concerned with the three-dimensional case (i.e. m = 3). 
Estimates of the accuracy of the observations and the parameters were also derived in'Ref. 18 and will 
be quoted without proof. 
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The best estimate of the accuracy of the observations a z or the minimum value of U' is given by 

E* C* W D  (I.7) 
~r2 = cr°z 3n - p 

where a0 2 is the rms of the residuals of the observations using the uncorrected parameters. 
The covariance matrix of the parameters is given by 

coy(E) = ~ 2 ~ -  1 

If the parameters are uncorrelated all the terms in cov(E) will vanish except for the diagonals. Therefore 
the variance Sk 2 of X a is given by 

S~ = ~2q'k- 1 

where q~k 1 is the kth diagonal element of qJ- 1. At the 95 per cent probability level, the probable error 
in X a is given by 

A X  k = 2S k = 2 aX//-~k-1 (1.8) 

This estimate is only true when (6Xk) 2 and the non-diagonal terms of q~- ~ are all negligible. 
The computer program is designed to print out a, (n - p) and the A X  k after every iteration and the 

numbers provide a useful way of judging the confidence that may be placed in particular results. 

25 



APPENDIX II 

Specification for the Format of Industry Compatible Magnetic Tape from BRAMBLE 
for Use on the ICT 1907 Computer at RAE, Farnborough 

ILl. Introduction 

The BRAMBLE system is used to digitise the 24/48 channel 465 MHz telemetry data from Aberporth 
and Woomera trials. The digitised data is to be recorded on the now standard Industry Compatible 
Magnetic Tape. This specification relates to the format in which the data is to be recorded so that it is 
compatible with the ICT 1907 computer. 

II.2. Number of Tracks 

There will be seven tracks, numbered 1 to 7. Track No. 1 will be used for parity checking. Tracks 1 to 
6 for the numerical information in BINARY code. Parity is odd. And it is emphasised that no alpha 
numeric code is to be used, all characters are pure BINARY numbers. 

II.3. Packing Density 

The recording density shall be a 200 bit/inch. The beginning of tape marker must be at least 14 ft 
from the beginning of the tape and the end of tape marker at least 25 ft from the end. The interblock gap 
shall be the standard 0-75 inch. 

II.4. Tape Marks 

The tape marks shall be special one character blocks of the form XOXI 111, where X may be either 0 
or 1. The 1907 ignores both bit 5 and the parity bit on reading a tape mark. 

II.5. The Format 

The first block on the tape shall be a HEADER followed by a tape mark. This will be followed by 
five groups or runs of blocks each followed by a tape mark. These runs will be (1) BRAMBLE CALS, 
(2) F L I G H T  DATA, (3) BRAMBLE CALS, (4) AERO CALS, (5) ABERPORTH CALS, (or WOOMERA). 
Before going into details it should be noted that the 1907 has been programmed to construct words of 
12 bits out of pairs of tape characters. This applies whether a header or ordinary block is being read, 
so that alpha numeric characters in the header are not acceptable. 

II.5.1. The Header 

The header shall consist of 20 characters and be used to store a serial number, the trial number and the 
firing date. The trials numbers used by Aberporth and Woomera usually contain letters, these will have 
to be omitted or be replaced by numerals for BRAMBLE purposes. All numbers must be translated 
into BINARY form, one decimal digit per character. Characters will be allocated as follows: 

Characters 1 ~ 4 Tape Serial No. 
Characters5 ~ 6 Trial No.* (numeral substitute of letters) 
Characters 7 --* 12 Trial No. 
Characters 13 + 14 Day of firing 
Characters 15 + 16 Month of firing 
Characters 17 --* 20 Year of firing. 

* For  example the letter X could be replaced by 24, XY by 2425, but little importance is attached to 
this matter as long as tapes cannot be confused. 

26 



II.5.2. Cals and Flight Data Blocks 

Each block shall consist of 1004 characters. The first 4 characters of each block shall each contain a 
beginning of block marker (BBM) of decimal values 26, 28, 29, 30 or 31 depending on the type of run, 
as listed in Table II. 1. For example the BBM for flight data will always be 28. The remaining 1000 characters 
will record either 20 cycles of 24 channel telemetry or 10 cycles of 48 channel telemetry. In the first case 
time will be followed by 23 data channels, in the case of 48 channel telemetry, time will be followed by 
46 channels but 4 extra BBM characters will be inserted before the time. 

The time will use 4 characters and each channel 2 characters. So that each cycle of 24 channel telemetry 
will use 50 characters. Each cycle of 48 channel telemetry will use 100 characters (including 2 blank 
characters at the end). 

Where time is not known as in the case of calibrations, a standard time starting at 400 sec will be used 
as listed in Table II. 1. 

11.6. Requests for BRAMBLE Processing 

The only difference between trials will be the type of telemetry sender and the times of the firing data 
required. Dummy times of calibration and the values of the BBM will be standard. This simplifies the 
request form. 

TABLE 11.1 

Run Data 

1 BRAMBLE Cals 
2 Firing Data 
3 BRAMBLE Cals 
4 Aero Cals 
5 Aberporth Cals 

Times (see) 

Start Stop 

400 403 

420 423 
440 443 
460 463 

Beginning 
of block 
marker 

26 
28 
29 
30 
31 
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APPENDIX III 

BRAMBLE Data Processing Program A51A 

The BRAMBLE system at RAE Aberporth is used to provide digitised telemetry data on magnetic 
tape to the specification listed under Appendix II. The purpose of program A51A is to process this raw 
digital data into forms suitable for subsequent analysis. It performs the following basic tasks: 

(1) Sorts any number of channels into any prescribed order and provides output in this order on line 
printer and/or punched cards. 

(2) Corrects for the time delays between channels caused by the sequential multiplexing system of the 
telemetry. This is done by correcting each reading to the value it would have had if sampled at the time of 
the preceding synchronisation pulse. 

(3) Corrects for instrument response characteristics so that all readings take the most probable value 
of the quantity being measured. 

(4) Combines the values of quantities sampled twice during a multiplexing cycle. 
(5) Applies instrument calibrations. 
(6) Corrects for drift in instrument rest levels. 
Operations (2), (3) and (4) are achieved by fitting a quadratic of the form F o = at 2 + bt + c to 5 

sequential samples of a channel, where F 0 is the reading and t is measured relative to the central data 
point. Having found a, b and c the smoothed reading at any time t can be computed. The highest frequency 
component in the data is usually much less than 10 cycles per second so that with a sampling interval 
of only 6 msec the distortion caused by smoothing is negligible. If only very low frequency components 
are known to be present, 11 point smoothing is available in the program for use with very noisy data. 
Instrument response characteristics are corrected by assuming that the true reading F is related to the 
observed reading F o by F = F o + l~o(2h/#) + I'o(l/laz), where h is the damping factor of the instrument 
and p the natural frequency. Since the smoothing process has determined a, b and c then 1~o and Fo are 
given by 1~o = 2at + b and Fo = 2a. The reading corrected for time t and instrument response is then 
given by : 

F = at 2 + (2a(2h/#) + b)t + 2hb/Ia + 2a/~ 2 + c. 

Quadratic representation of the instrument calibrations are also used for operation (5). Calibration 
values are given to the program at 5 equally spaced intervals and converted to quadratic form in the 
computer. The program must not be used if calibrations cannot be accurately represented as quadratics. 

No. of 
cards 

Input Parameter List  Jor Program A51 A - - B R A M B L E  Data Processing 

Fortran 
symbol 

HLD 

BZ 

H 
KA 

NC 

Units 

msec 

msec 

Comments 

This is the value of the beginning of block marker 
for the data to be processed, see Mag Tape 
Specification. 

This is the time of the BRAMBLE zero in range or 
trajectory time, usually ~ - 1000 msec. 

The expected time interval between sync pulses. 
Number of channels (or pairs of channels) to be 

processed up to a maximum of 23. 
Number of cases (max. 25), i.e. number of separate 

periods for which data is to be processed. NC 
would be 1 if data is to be extracted in one con- 
tinuous run. 

NB All numbers on this CARD are INTEGERS 
in FREE FORMAT. 
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No. of 
cards 

NC 

KA 

Fortran 
symbol 

IT 
LT 

C(4) 

C(5) 

C(6) 

C(7) 

Units 

msec 
msec 

See comments  

See comments 

Comments  

Initial time for which data is required. 
Final time for which data is required. 
N O T E  IT and LT are punched as INTEGERS in 

FREE F O R M A T  on one card. There must be 
NC cards, one for each time period defined. 

Channel data of l0 real numbers on one card in 
free format for each of the KA channels. 

Channel No. of telemetry. 
(NB smallest values = 2). 
Pairs indicator. If 1 then program assumes that 

channel C(4) is paired with channel (C(4) + 12), 
if - 1 then no pairs are assumed. 

Zero error correction for calibration curves, i.e. 
this number is added to result after calibration 
has been applied to a data point. 

Instrument damping term = 2000 h/t~ where h is 
the damping factor (usually about 0.5) and # is 
the natural frequency in rad/sec. 

C(8) See comments Instrument natural frequency term = 106/p z. 
X(1) Calibration for 150 BRAMBLE units. 
X(2) Calibration for 250 BRAMBLE units. 
X(3) Calibration for 350 BRAMBLE units. 
X(4) Calibration for 450 BRAMBLE units. 
X(5) Calibration for 550 BRAMBLE units. 

N O T E  The program takes these 5 calibrations 
and fits a quadratic of the form y = ax E + 
bx + c, and stores the values of a, b and c in 
IlI(1), lIl(2) and Ill(3) respectively. 

The data cards (1 + NC + KA in number) are placed at the end of the program deck. On the ICT 1907 
computer  the following operator instructions are given with the program and magnetic tape. 

Output Formats for Program A51A 

Peripheral instructions Console instructions 

Load Program 

Load Private File on MT Deck nn 

FI X FAE 
GO X FAE 21 
GI  A51A V nn V 0 V* 4 
GO A51A 20 

The analysed data is punched on cards and printed on the Line Printer. Supplementary information 
including calibration checks and the magnetic tape header are printed on the Line Printer only. 
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III.1. Line Printer Output 

III.l.1. The magnetic tape header is printed giving the Tape No., the Trial No. and the firing data as 
in the following example : 

T N  0123 TRIAL N O  2425931 DATE 20 6 1969 

A space is often inserted instead of zero, e.g. 02 is printed 2. 
III.1.2. The calibration being used and the channel numbers are printed next. A quadratic is fitted 

to the calibration on the data cards and the calibrated values corresponding to 100, 350 and 600 
BRAMBLE units are calculated from the quadratic and printed. The calibration zero shift 111(6) is not 
added. The format for three channels is as follows : 

Time Channel No. 
5 12 2 

CAL 100 - 5.00 20.00 - 1.00 
CAL 350 0-00 0.50 -0 .50  
CAL 600 5-00 - 19.50 0.00 

Note that the channels are printed in the order of the calibration cards. 
III.1.3. When the program encounters a tape mark it prints TAPEMARK,  there could be several 

of these before data is printed. 
III.1.4. The calibrated and smoothed data is then printed under the same columns as the calibrations 

except that the time is printed in this first column, thus: 

4.620 -7 .10  18-36 0.01 
4.635 -7 .00  15-41 0.01 

There may be up to 23 data channels. 

III.2. Card Punch Output 

The information printed on the cards is identical to that printed by the line printer under the heading 
III.1.4, except that not more than 8 channels can be accommodated on one card. The format of the card 
output is easily changed to suit particular needs, for example to give data suitable for Program A51B 
on one card and A51T on another. The only problem is that cards must then be sorted by hand. It is 
also possible to arrange that only some channels are reproduced on punched cards. 
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A P P E N D I X  IV 

Trajectory Smoothing and Drag Analysis Programs A51T 

These programs are simplified versions of the trajectory analysis programs described in Ref. 18 for 
the analysis of ballistic trajectories in three dimensions. The simplifications are based on the assumption 
that the trajectories cover ranges of a few miles only and are dominated by aerodynamic forces. The 
position of the free flight model is defined relative to earth fixed axes OXYZ,  while forces on the model are 
resolved tangentially and normal to the flight path whose direction is defined by the elevation 7 and 
bearing X with respect to the horizontal X, Y plane as shown in Fig. 1. The lift force L and the side force 
Y roll with the model and their direction, relative to the flight path, is defined by the bank angle *.  The 
equations of motion are 

m12 = - D  - mg sin ~, 

mV~ = L c o s q b -  Y s i n @ - m g c o s y ,  

mV~ cos y = L sin @ + Ycos qb, 

.~ = V cos y sin Z, 

= Vcos y cos Z 

and 

Z' = Vsiny 

where * is assumed to be a known function of time, D = ½pV2SCo, L = ½pV2SCL, Y = ½pV2SCy and 
air density p is given in tabulated form as a function of altitude Z. 

The purpose of the analysis programs is to find the values of the initial conditions, Vo, ~o, Xo, Xo, Yo, 
Z0 at t = to, and in most versions estimates of Co and Cr., such that values of X, Y, Z at n values of t 
obtained by integration of the equations of motion best fit the observed X, Y, Z. In the process smoothed 
values of V, y and X are obtained at each value of t. 

Program A51T Version 1 assumes that L and Y are zero and determines the constant value of Co 
to give a best fit trajectory. Version 2 assumes Y is zero but obtains L and D from on-board acceleration 
measurements ax and a~, plus measurements of c~ from a differential pressure yaw meter. The following 
relationships are assumed: 

- D i m  = a~ + a:~, 

L/m = axCZ - az 

and 

o~ = C P W / ½ p V 2 K W  

where C P W  is the differential pressure and K W  the probe sensitivity. 
Versions 3 and 4 are intended for use when some of the supplementary data is not available. Version 3 

is used when both • and ~ are unknown, and assumes that q~ is changing rapidly enough for the net 
effect of L to be zero and that • can be obtained from a z and an assumed value of CN~. Version 4 obtains 
c~ in the same way but assumes measurement of bank angle • are available. 

Versions 2-4 are all designed to detect and remove a possible zero error in ax, the longitudinal accelera- 
tion. 
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Input Parameter List for Programs A51T Versions 2 to 4 
for Trajectory Smoothing and Drag Analysis 

Entry 
label 

number 
Symbol 

DATA TITLE 
XXXXXXXXX 

S 

Table 1 

Table 2 

Units Comments 

On a line by itself or a card write DATA TITLE. 
Any wording or numbers on following line or 
card will be copied to output document. The 
program will SEARCH for these two cards or 
lines which must be present or no data will be 
input. 

This is the LABEL No. to be entered next, enabling 
parts of the input routine to be by-passed so 
that standard data once in the computer need 
not be entered for subsequent cases. 

m 1 ~ A 7 

To 
Vo 
GAMMA o 
KI o 
A(Ax) 
Xo 
Yo 
Zo 

E m a x  

ACCURACY 

A ft (m) 
P mbs 
T °C 

N' 

M 
K W rad - i 

N' N' is the number of rows in the atmosphere table 
each row being A, P, T: the altitude, pressure 
and temperature. A single card is recommended 
for each row. Maximum number of rows is 26. 

N' is the number of rows of M, K W in the probe 
sensitivity table. 

Mach number. 
Incidence probe sensitivity (AP/½p V 2) per tad. 
Table 2 is omitted in Version 3. 
CONSTANT PARAMETERS 

D' S/m area mass ratio. 
C' CN~ normal force derivative. 

(Versions 3 and 4 only.) 
List of accuracies required for all variable para- 

meters, in the same order as the variable list. 
There must always be 7 numbers in this list. 

PARAMETERS LIST (of 5 numbers) 
sec Initial time. 
ft/sec (m/sec) Initial velocity 
tad Initial~climb angle. 
rad Initial azimuth angle. 
g Zero error in longitudinal acceleration. 
ft (m) } 
ft (m) Initial plan position. 

ft (m) Initial height. 
NOTE All these parameters, except To, are varied 

to obtain a best fit to the observed trajectory. 

PROGRAM C O N T R O L  PARAMETERS 
Initial data rejection level, should be set very large. 
Numbers in the parameter accuracy list are 

multiplied by this factor. 
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Entry 
label 

number 
Symbol 

DELTA T 
N' 
Q' 

Table 3 M 

T 
X 
Y 
Z 

A X  
AZ  or NC 

C P W  

0 

Units 

sec 
ft (m) 
ft (m) 
ft (m) 
g 
g 

psi 

rad 

Comments 

Maximum intregration step length. 
Maximum numb& of iterations. 
Final case indicator, if 2 program halts at end of 

case. 

M is the number of rows in the data table, each row 
being the seven numbers in the list and punched 
on 1 card. 

Height. 
Longitudinal acceleration. 
Acceleration along Z axis of body (=  minus 

normal acceleration). 
Differential pressure of incidence probe. 
(Omit for Versions 3 and 4.) 
Roll angle measured from horizontal. 
(Omit for Version 3.) 
NB There must be at least M data rows. If there 

are more than M rows the remainder are 
rejected When the program searches for the 
DATA TITLE of the next case. 

Output Format of Program A51T 

This will be readily understood from the example in Fig. 3 and it will be noted that the important 
input parameters are printed out as well as the best fit to the data. However Table 1, Q', N' and Table 3 
are not printed. The required accuracies A 1 --> A7 are printed in the row beneath the first guesses of the 
variable parameters. Thereafter DELTA denotes the estimated probable errors of the variable para- 
meters. SIGMA is the predicted rms of the residuals, N - P  the number of degrees of freedom, while 
RX, R Y and R Z  are residuals. 

33 



A P P E N D I X  V 

Response Analysis Program A51B 

Input Parameter List 

Entry 
label 

number 
Symbol 

DATA TITLE 
XXXXXXXXX 

Table 1 N' 
A 
P 
T 

X NC, X NC, 
Y N C ; X  NA, 
Y N A ,  Z NA: 
X LC, Y LC, 
Z LC; X LA, 
YLA,  Z L A ;  
IX,  IY, IZ 
I X Z  
M 
S 
LI 
L2 
A t ~ Az3 

KW,  K V  
X P  
ECP IV, ECP V 

Units 

ft (m) 
mbs 
°C 
ft (m) 

slug ft 2 (kg m 2) 
slug ft 2 (kg m 2) 
slugs (kg) 
ft 2 (m 2) 

ft (m) 
ft (m) 

ft (m) 

Comments  

On a line by itself or a card write DATA TITLE. 
Any wording or numbers on following line or 
card will be copied to output document. The 
program will search for these two cards which 
MUST BE PRESENT or no data will be input. 

This is the LABEL No. to be entered next, enabling 
parts of the input routine to be by-passed so 
that the standard data once in the computer 
need not be entered for subsequent cases. 

N' is the number of rows in the atmosphere table, 
each row being A, P, T; the altitude, pressure 
and temperature. A single card is recommended 
for each row. Maximum number of rows is 26. 

Accelerometer coordinates. The convention is 
that NC and LC are normally at the CG while 
NA and LA are towards the tail of the aircraft. 

Moment  of inertia. 
Cross product of inertia. 
Mass. 
Reference area. 
Reference lengths for longitudinal derivatives. 
Reference length for lateral derivatives. 
List of accuracies required for all variable para- 

meters in the same order as the variable para- 
meter list. There must always be 23 numbers in 
this list. Two or more lines or cards may be 
used. 

N U M B E R  OF INSTRUMENTS.  This would 
normally be 5 for accelerometers only and 7 
when probes are included. 

Probe sensmvlty m pitch and yaw. I O M I T  if I is 
Probe position ahead of CG. 

q 5 or less. 
Probe zero errors. 
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Entry 
label 

number 
Symbol 

To 
Uo 
GAMMAo 
Ho 
PHI 0 
CD 
XE 

LR, NP 
NC (trim)' 
LC (trim) 
W(trim) 
V(trim) 
P (trim) 

Units 

ft/sec (m/see) 
tad 
ft (m) 
rad 

ft (m) 

g 
g 
ft/sec (m/sec) 
ft/sec (m/sec) 
rad/sec 

Comments 

Initial time (sec). 
Initial forward velocity. 
Initial climb angle. All these numbers are 
Initial altitude, treated as constants. 
Initial bank angle. 
Mean drag coefficient. 
Distance of elevator igehind CG (large +ve 

number if no elevator). 
Aerodynamic derivatives treated as constants. 

Approximate datum level of CG accelerators. 

From datum level of differential probe. pressure 

ENA, ELA 
LT 
LV, LVW, LP 
Po rad/sec 

VARIABLE PARAMETER LIST (of 23 numbers 
always). 

Zero errors. 
Roll acceleration trim moment. 
Roll derivatives. 

Wo 
Qo 
Vo 
Ro 
MT, NT  
MW, NV 
MQ, NR 
z w ,  YV 
29_, YP 
ELC 
K 

E max 
Accuracy 

Delta T 
Po 

Pt 

No 

ft/sec (m/see) 
rad/sec 
ft/sec (m/see) 
tad/see 

• Initial conditions at T o. 

Trim moment coefficients. 
Stiffness derivatives. 
Rate damping derivatives. 
Force derivatives. 
Force damping derivatives. 
Zero error. 
Scale factor error in K W and K V. 

PROGRAM CONTROL PARAMETERS 
Initial data rejection level, should be set very large. 
Numbers in the accuracy parameter list are 

multiplied by this factor. 
Maximum integration step length. 
Initial number of parameters to be treated as 

variables. 
Final number of parameters to be treated as 

variables. 
Initial value of iteration counter. (0 if initial guess 

to be printed.) 
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Entry 
label 

number 

N 1 

Q, 

Symbol 

SNC, SNA, SP, 
SLC, SLA, 
SCPW, SCPV 

Table 2 M 
T 
A 

NC 
NA 

CPW 
LC 
LA 

P 
CPV 

Units 

sec 
g 
g 
g 

g 
g 
rad/sec 2 

Comments  

Maximum value of iteration counter. NB Number  
is reset to 1 when changing from P0 to P1. 

Final case indicator, if set to 2 program is halted 
at end ol~case. 

These scaling factors are the weights to be applied 
to each of the 7 instruments, and are inversely 
proportional to the probable errors of the 
instrument. Usually the scale factors are made 
inversely proportional to the full scale sensi- 
tivity of each instrument, which normally have 
the same 1 per cent accuracy. 

LABEL No. to be entered next, as with 2. 

M is the number of rows or cards in the DATA 
table, each row being the 9 numbers in the list. 

N O T E  (1) that the second number A, the longi- 
tudinal acceleration is discarded by the program 
after reading, 

(2) that only M/2 rows are initially used when 
P0 ~ Pt so that M should be at least 80, or 
cover about 1 sec or at least 3 cycles of oscilla- 
tion, 

(3) units for CPW and CPV depend on units 
chosen for K W and K V. 

11 Entry point for re-run with same Table 2 data. 

Output Format of Program A51B 

This is of the same form as that from Program A51T as shown in Fig. 3 but is very much more lengthy, 
so only the first part is reproduced in Fig. 4. All the input parameters (except the control parameters 
Po, P~, No, N~ and Q' and Tables 1 and 2) are printed first. The accuracies A1 - - ,  A23 are printed under 
the first guesses at the variable parameters. After each iteration an estimate of the expected variance 
SIGMA and number of degrees of freedom are printed above the new list of variable parameters. The 
DELTA printed under the VARIABLES are estimates of the probable errors, except when the VARIABLE 
is frozen, in which case the accuracy required continues to be printed. At each data point the values of 
u, v, w and p, q and r are printed in addition to the predicted instrument readings and the residuals. If 
no residuals are printed then either there were no observations at that time or at least one of the residuals 
is greater than E max and the data point has been rejected. Note that the weighted value of the residuals 
are printed (residual) × (scaling factor) and SIGMA is the rms of the weighted residuals. 

Other Versions of Program A51B 

The above description refers to the program as originally written in the EMA language. However, 
the program has since been translated into FORTRAN and several versions have been developed. 
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One version is almost identical to the EMA program, another was specially developed for analysis of 
Dutch Roll Motion of free flight models. Both these versions are described, with full program listing in 
RAE Tech. Memo. Aero 1335. 

Another version, A51C, has been successfully developed in cooperation with BAC for the analysis of 
the Dutch Roll Motion of full scale aircraft. Details may be obtained from Aerodynamics Department 
RAE. 

37 



kZ 

/ 
/ / 

, , , /  
/ /  

/ /  
/ /  

/ .  

y x~f~._ ....... 

\ 
\ 
\ 
\ 

v 
\ 

6 

/ I 
/ 

/ 
I0 

z No~Le • Neqa~.ive 
is shown 

~X 

Origin of 
earth oxes 

honk 

Fi t .  1. Definition of notation and of forces on aircraft in body and earth axes. 

angle 

38 



T r ~ s T s -  - - 
~u thin box 

,take place 
' at ranse 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I [ Analoque 
II Ipoper record 
I 
I 
L_ 

In 

~ Colibrotion o4 ins+.ruments and J 
instal lation in model 

l Neosurement of mass and momen+.s of inertia 
and CG position of model 

- - ~ -  

I Fl'qht °f m°del I 
IF L 

II - 
J Teleme~,ry reception of J 

on- board measuremen+.s I 

T 
lAnalogue maqnetic tape 1 

record of te lemet ry  

LDiqitisation of tape anaJocjue 
by Bramble to ~jive 
dicjital tape record 

Process diqital date with 
praqram 
To smooth and calibrate 
and correct for response 

characteristics 

Line prin~er [J Punched card 
output output 
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FIG. 2. Flow diagram of free flight dynamic stability measurement and analysis procedure. 
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PROGRAV A51T VERSION ZA 3D TRAJ.ANAL. USING AX,A2,~PW &PHt. ~.11.70 

ORION 25 

M,NO. KW 
0,900 3.9~0 
1.000 3.670 
1.100 3.450 
1.200 3.360 
2.500 3,350 

fi/X= 1.360 

E MAX 
10000.000 

ACCURACY 
1.000 

VARI. 
DELTA 

V(FTISEC) 
1295.00 

1,00 

DELTA T 
I~010 

6ANNA(RAD) K] AX ERRO~ XO(FT) 
0.22 0.00 Z.30 -096~00 
0.01 0.01 0,01 ioToo 

VO(P?) ZO(FT} 
31501.00 15760,00 

I 0 . 0 0  I 0 . 0 0  

C. 

$IGHA= 

VARI. 
DELTA 

T 

22.000 

23.000 

24.00O 

24.160 

25.000 

26.~00 

~7.000 

28.000 

29.000 

30.000 

31.000 

31.790 

32.000 

32.500 

3,36246 
V(FT/SEC) 
t294.03 

I.~0 

v 

1294.0 

264.9 

236,2 

231,7 

209.5 

185.6 

163,0 

140,3 

118,9 

1100.3 

1082.7 

1069.2 

1065,9 

I05B,7  

GANMA (RAP) KI AX ERROR XO(FT) 
0T22 -0.02 2.61 -~90". I 0 
OTO0 0.00 0.23 2 ." 2~I 

M.No GAMMA Z(FT~ PHI AtPHA CD 

1.2"~7 19.76 15760 -1399 ,84  1.88 0.0155 

1.191 13.82 16053 -1473.18  2 .01  0.0~37 

1.16$ 13.32 16352 -1544 .24  2.15 0.01~9 

1 .161 IZ.O2 16397 -1559.71 2.17 0.0~141 

1 . l& ' t  9 .69  16600 -1627,89  ~'.28 0.0141 

1.119 6.43 16763 - I 7 0 9 . 2 6  2.39 0.0144 

! . 098  6.74 16892 -1799.79  2.51 0.0147 

1.07i" 7 .03  I7036 -1893.77  2.61 0.0192 

1.05~ 3.1t~ 17141 -1995,19 2.69 0 .0 t54  

~.0~0 (] .34 17167 -2097.75  2.75 0 .0 t~5  

~.024 1.52 17184 -22'11.78 2.82 0.0~52" 

1.011 - 0 . 0 4  17200 -2297.73  :~.87 0.01~1 

1.00~ - I  .01 17198 -2309.76  2.88 0,0169 

1.001 - 3 . 6 4  17176 -2356.18  2.96 O. 01~4" 

YO(FT) 20(F?) 
31509.46 15759,74 

3.67 2 ,27 

el  0 RX RY RZ 

0.0357 1212~7 

0.0379 1147~7 ~7 =3 1 

0.0403 I085~0 I 2 4 

0.0406 I075~5 

0,042? I029~7 1 8 0 

0.0~49 983~8 5 w4 -4  

0.0478 942~5 4 .1  -0  

0.0508 901~7 0 I -1 . . . . . . . . . . . .  

0.0537 865~S -0 2 -3  

0.0565 836~3 0 2 I 

0.0596 809~2 -2  3 0 

0.0620 ?S8~g 

0.0627 784~0 =0 4 "4  

0.0651 774~0 

FIG. 3. Example of line printer output from program A51T. 



PROGRAMME B VERSION 2 19.5.70 AIRCRAFT RESPONSE ANALYSIS. 

ORION 20 OSC.I 

ACCELEROMETER PUSIT%ONS 
X.NC Y.NC Z.NC X.NA Y,NA Z.NA X,LC 
0.003 0,0~7 -0.110 -2,106 -0,058 0.004 0.086 

IX IY Iz IZX M S L1 
1.9Z5 21.100 22.120 -0.120 9.440 ~2.813 3.843 

NUMBER OF INSTRUMENTS = ? 

P~oB~ CHARACTERISTICS 
KW KV Xp ECPW ECPV 
0.011 0.011 3.360 1,060 -0,620 

TO VO THETA 0 HO pHI 0 CD 
5.6~6 1451,000 0.458 13410.000 -2,510 0,013 

NC(TRIH) LC(TRIII) W(TRIH) V(TRIM) p(?RIM) Q(TRIM R(TRIM) 
-1.800 0.005 40.000 -0.500 -0.240 0,040 -0,007 

E MAX ACCURACY bELTA T 
10.00o 3.000 0.015 

SCALING OF 
NC NA P. LC LA CPW CPV 
0.200 0.200 0.050 1.000 1.000 0,200 0.200 

Y.LC Z,LC X.LA Y.LA 
0.017 "0,081 -2.552 0,232 

L2 
1.667 

XE LR NP 
2.500 0.050 -0.002 

ENA ELA LT LV LVW LP PO WO ~0 VO RO 
VARI 0.05? -0.013 O . O Z O  -0.022 "1.000 -0.070 -0.140 -62.000 0.062 -3.100 0.053 
bELTA 0.050 0.050 0.100 0,003 0.200 0.010 0.500 1.000 0,050 1.000 0.010 

MT NT HW NV MQ NR Z~ YV ZQ YP ELC 
VARI 0,072 0.010 -0.205 0,133 -0.330 -0.250 =0,810 -0 .120 0,100 -0 ,077 0,000 
DELTA 0.500 O . S O 0  0.002 0,00 z 0.050 0.050 0.050 0.050 0.050 0,050 0,050 

Z.LA 
0.001 

K 
1.070 
0.050 

SIGMA: U.0t360 N-R = 530 
ENA ELA LT LV LVN LP pO WO O0 vO RO 

VAgl O , O & 3  -0.016 "0,013 -0,024 "0.786 -0.035 -0 ,237 -62.$74 0.039 -4 .186 0,05? 
DELTA 0,009 0.000 0.003 0,000 0.035 O . O O &  0.007 0,136 0,007 0.260 0.000 

HT NT MW NV NQ NR ZW YV ZQ YP ELC 
VARI 0.042 0,122 -0.205 0,135 -0.334 -0.310 -0 .837 -0 ,130 .0.181 .0 .035 °0.025 
DELTA 0.010 0.007 0.000 0,000 0.002 0.010 0.006 0,003 0.071 0.016 0.003 

K 
I o 079 
0,029 

FIG. 4. Example of output of A51B up to the end of the first iteration. 
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