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S u m m a r y  

A solution of lift interference in oscillatory incompressible flow is described. Both steady and unsteady 
interference parameters are determined from a complete solution of the complex velocity potential, which 
is achieved by treating the real and imaginary parts separately throughout the tunnel, except at the tunnel 
walls where the two parts are linked through the boundary conditions. Both parts satisfy the Laplace 
equation which is solved using dynamic relaxation. 

Results over a range of frequency are given for a square and a rectangular tunnel with different boundary 
conditions; the most involved being the porous-slotted boundary. 
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1. Introduction 

This report presents a general solution of the lift interference in oscillatory incompressible flow in 
slotted and perforated windtunnels. The differential equations governing the flow are written in finite- 
difference form and then solved numerically. Finite-difference studies of steady windtunnel interference 
have already been carried out using both an electrical analogue 1, 2 and the iterative method of dynamic 
relaxation ;a which is now extended to general frequencies. 

The major advance described in this report is achieved by considering the real and imaginary parts of 
the complex velocity potential separately, since both independently satisfy the Laplace equation in 
incompressible flow. However, both the real and imaginary parts of the function are involved in the 
application of boundary conditions on the walls of the tunnel ; this presents complications, particularly 
in the case of the porous-slotted boundary. 

Since this is a three-dimensional problem with complex boundary conditions requiring that the real 
and imaginary parts are solved simultaneously, there are difficulties in obtaining accurate solutions by 
dynamic relaxation on a digital computer. The finite-difference mesh cannot be as detailed as is desirable 
due to limitations in storage, and care has to be taken to obtain rapid convergence of the iterations so 
that the running time on the computer is not excessive. The lack of detail in the mesh leads to certain 
errors in the calculated parameters, but these are consistent errors whose magnitude can be estimated. 

Results are presented for the interference in a square tunnel with many different conditions on the roof 
and floor over a range of frequency. Interference parameters are also given for a rectangular tunnel with 
breadth to height ratio 2.6 corresponding to a small half-model in the National Physical Laboratory 
24 cm. x 24 cm. (9} in. x 9½ in.) tunnel with wide slots and variable porosity. Six interference parameters 
are quoted for each tunnel studied and the definitions of these parameters are considered in the next 
section. 

2. Interference Parameters 
2.1 Definitions 

The complex interference upwash on the axis of a windtunnel, at a distance x downstream of the wing, 
in incompressible oscillatory flow is defined as : 
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where h is the height of the tunnel, b its breadth and aJ, the angular frequency of oscillation. The definitions 
of U, S and CL are in the notation. 

Interference parameters at x=O are given by the real and imaginary parts of equation (1), 
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Therefore, all the six interference parameters can be determined from a solution of the real and 
imaginary parts of the interference upwash and its derivatives at the origin. 

2.2 Previous Solutions for Interference Parameters 

The steady lift interference parameter, 30, has been calculated for many different windtunnels with 
various boundaries. An investigation into interference in ideal slotted tunnels was made by Davis and 
Moore 4. This work was extended to a study of porous-slotted tunnels by Holder 5, who derived an 
equation for calculating 60 in rectangular tunnels for any value of slot parameter and porosity parameter. 
An extensive description of the determination of windtunnel interference correction is given in Ref. 6, 
where many equations are quoted for the steady parameter 6 o and also for 61 whenever there is a complete 
image system. These special cases include rectangular tunnels with closed sides and open or closed roof 
and floor, representing the extreme limits of the present investigation. 

Garner et al 7 have developed a method for calculating the unsteady parameter, 6'O, of equation (1) 
from a knowledge of the steady interference upwash along the axis of the tunnel. The relation between 
steady acceleration potential and unsteady velocity potential is used. This was shown by Goodman s to be 

x 
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where q~o is the velocity potential of a steady vortex doublet. It is shown in Ref. 7 that the relationship 
given in equation (4) can be used to derive an expression, to the first order in frequency, for the complex 
interference upwash, which in incompressible flow is: 

where 

Oz ]., = bh - h 2h2] +0 h ' 

0 
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(6) 

depends on the steady distribution of interference upwash ahead of the origin of lift. 
However, the relation given in equation (4) only holds when the boundary conditions for the steady 

and unsteady problems are the same. Therefore 6'O cannot strictly be calculated from equation (6) for the 
case of perforated or porous-slotted tunnels, but it is of interest to determine how inaccurate the results 
from equation (6) would be. A comparison of equations (1) and (5) shows the further identities 

62=0, 6 ' ~ = - 6 o  and 6~=-½61, (7) 

which only apply to tunnels with closed, open or ideal-slotted boundaries and for small frequency. 
A recent extension of the method of images has been used by Streather 9 to determine values of 60, 

6~ and 6'O in ideal slotted tunnels. However, the method has not yet been adapted to study any type of 

porous boundary. 

2.2.1. Direct solution of  Laplace equation. An alternative approach for the study of unsteady wind- 
tunnel interference involves a direct solution of the Laplace equation for the complex velocity potential. 
The interference potential over the whole field is obtained; from this interference parameters can be 
calculated. For example Lo 1°' ~ ~ has used the Point Matching method of solving the Laplace equation to 
determine 6o in slotted windtunnels. 
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A solution of the Laplace equation is also possible on a resistance network 1, 2 since the finite difference 
form of the equation is analogous to Kirchhoff's current equation. A three-dimensional electrical analogue 
has been used to determine t5 o and 61 in windtunnels with many different boundaries including perforated 
and porous-slotted walls. 

The finite-difference form of the Laplace equation can also be solved on a digital computer by dynamic 
relaxation 3 and the dynamic-relaxation method is used in the present study in preference to the electrical 
analogue method due to the ease with which boundary conditions can be enforced. 

3. Method of Solution 
3,1 Governing Differential Equation 

The basic equation for incompressible oscillatory flow is 

ax ~ ~- 0 -7+~-~2  = u "  

This is the Laplace equation for the complex velocity potential, 

¢=¢R+i~. 

The real and imaginary parts satisfy the Laplace equation independently, hence, 

and 
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Therefore the flow field for oscillatory incompressible flow can be studied from two separate solutions 
of the Laplace equation. 

3.2 Small Wing 

The velocity potential due to a small oscillating wing in unconstrained flow is 

with real and imaginary parts ; 
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Thus equations (8) and (9) represent the distribution from an oscillating wing at large distances relative 
to the size of the wing. 



3.3 Boundary Conditions 

A variety of conditions can apply on the walls of a tunnel. The most complicated boundary, the porous- 
slotted wall, will be considered first. 

The porous-slotted boundary in oscillatory flow is represented by the homogeneous condition 
suggested in equation (6) of Ref. 7 ; thus 

~+U ~+KN)+ffN =° (lo) 

where K is the slot parameter and the porosity is represented by a real parameter P. The real and imaginary 
parts of equation (10) are :-- 

and 

l t~R (11) 
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It should be noted that each equation contains both ~R and qS~. 
Certain simpler boundary conditions can apply ; for a perforated wall where the slot parameter K = 0, 

similar equations are obtained but without the terms in brackets. The real and imaginary parts are still 
connected. However, for an ideal slotted wall where 

1/P =0, the equations reduce to 

and 

~R + K~n~-~R = 0 (13) 

~ , + K  ~n~ = 0 .  (14) 

In this instance the real and imaginary parts are independent. 
Far upstream the condition is that 

c3x = ax = 0 .  (15) 

This condition is simple to apply. Downstream, however, the velocity potential is oscillating and a 
boundary condition is introduced by extending the tunnel to the positions where ~,~g and ~,~i are zero 
on the axis and setting ~a or t~ r zero across the whole transverse planes. These planes are at a different 
distance from the origin for the real and imaginary parts. 

4. Numerical Solution 

This section outlines the computational procedure and explains certain points which are important 
to the numerical solution. 

4.1 Evaluation of ~,~ 

Before an analysis of interference potential can begin, values of the unconstrained velocity potential 
~m must be calculated on the boundary and near to the origin. This requires the evaluation of infinite 



integrals, equations (8) and (9). These integrals are evaluated using the trapezoidal rule with a step 
interval of 

0.00001 h for 0<x<0-2h 

0"0001h for 0"2h<x< 1-2h 

0.001 h for 1.2h<x< ll.2h and finally 

0.01 h for 11"2h<x<211.2h. 

The evaluation of both (OmR and ~,,, at 15 nodes on a single plane takes approximately 15 minutes on a 
KDF 9 computer. 

4.2 Zero Frequency 

Since interference parameters are usually quoted for a frequency tending to zero, numerical results for 
low frequency were first considered. It has been shown in Ref. 12 that the results for coh/U=O.O1 are 
very close to those in the limit as coh/U tends to zero, the difference in 6o being not more than 0"00006 
and the difference in 6~ not more than 0.0003. 

4.3 Finite-difference Solution 

The differential equations are solved by the finite-difference method. The technique of writing the 
three-dimensional Laplace equation in finite-difference form for graded networks is described in detail 
in Ref. 2. In the study of oscillatory flow the velocity potential is divided into its real and imaginary parts, 
so that two three-dimensional networks are required. 

Solution of the finite-difference equations is achieved by dynamic relaxation, which in essence is an 
iterative method in which arbitrary acceleration and damping terms are added to the finite-difference 
form of the governing equations. These equations are solved on a digital computer using an explicit 
method; and provided that optimum values of the time increment and damping coefficient are used, 
rapid convergence to the correct solution of the finite-difference equations occurs. This method has been 
used to solve steady-flow problems 3 for which only the real part of the function occurs, but its extension 
to the simultaneous solution of the real and imaginary parts of the Laplace equation is straightforward. 

Since the dynamic relaxation method has been described in detail in Ref. 3 for the study of steady flow, 
only the features which are different in the case of oscillatory flow will be discussed. These are illustrated 
in the flow chart, Fig. 1. Note should be taken of the fact that the real and imaginary parts can be treated 
separately except in the calculation of the fictitious boundary points. Thus the two parts have to be held 
in the computer simultaneously to permit the calculation of the fictitious boundary values at each 
iteration. 

As the real and imaginary functions are calculated simultaneously, the size of the working store of the 
computer becomes a limitation. If there are N nodal points for the real function, then effectively 5N 
storage locations are required for the calculation of the real part and a similar number for the imaginary 
part. Since the available store of variables in the KDF 9 is roughly 20000 locations, the number of nodes, 
N cannot exceed 2000. 

A further restriction results from the amount of computer time used in the calculation. If a network of 
2000 nodes is used, the total solution takes almost 1 hour on the KDF 9. Therefore the calculation is 
stopped at step (d) to check the convergence of the velocity potential; then if the residuals are sufficiently 
small the calculation of the interference potential is carried out. 

4.4 Boundary Conditions 

The porous-slotted boundary condition of equation (10) is written in finite-difference form in the 
following manner. The real part of the boundary condition is rearranged to give, 

& v . 
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This equation is then written in finite-difference form to give the value of ~n at the fictitious node 1 

(see Fig. 2): 

~ R1 = ~ R 6  - -  2P Az [(qSR4 - ~R2)/2AX -t- K(3~OR,~ -- 4~R7 -I- ~R 10 -- 3~R2 d- 

+ 4~RS -- ~t~s)/(4AxAy)-- (~o/U) ( ~ 3  + K ( 3 ~  3 - 4 ~  6 + ~9)/2Az)] .  (16) 

A similar equation can be obtained from equation (12) for ~L-  
This equation is also used for the application of the perforated boundary condition by setting K = 0. 

However with ideal slotted boundaries, for which l / P =  0, the conditions given by equations (13) and (14) 
for [he real and imaginary parts are independent and the boundary can be represented in the standard 

manner (see Ref. 3). 

4.5 Convergence 

The dynamic relaxation method is an iterative method which requires the correct choice of certain 
parameters to achieve a rapid convergence to the correct solution of the finite-difference equations. 
For steady flow, Ref. 3, a technique was developed in which the convergence parameters were determined 
automatically, but as this requires additional computing time it was not used for the oscillatory flow 

problems. 
In most cases there was little difficulty in determining time increment and damping factors to give a 

good solution to the finite-difference equations. It was found to be advantageous to set the parameter 
~h/U equal to zero for the first third of the total number of iterations. Then the required value of ~oh/U 
was introduced and a rapid convergence was achieved. 

For the closed rectangular tunnel, b/h = 2.6, the opt imum convergence parameters were : 

and 

Time increment = 0-04, 

Damping factor = 3.0 

Number  of iterations = 200. 

The problem for which convergence presented serious difficulty was the rectangular tunnel having closed 
side walls and porous-slotted roof and floor with F =0.233 and l / P =  1.0. 

In this case the convergence factors were : 

and 

Time increment = 0.03, 

Damping factor = 4.8 

Number  of iterations = 260. 

This solution was particularly sensitive to the damping factor. For values of 1/P less than 0.7 a convergent 
solution could not be obtained; a similar effect was noted with the earlier work on steady flow, Ref. 2. 

With each computer output the residuals are calculated to check whether a satisfactory solution to the 
finite-difference equations has been obtained. If the residuals are sufficiently small (Ref. 3) then a satis- 
factory solution of the finite-difference equations has been obtained. However, errors due to the finite 

difference approximations can still occur. 

4.6 Calculation of the Interference Parameters 

The interference parameters are calculated by writing equations (2) and (3) in finite-difference form. 
By fitting a third order polynomial and recognizing that there is anti-symmetry about the plane z =0 ,  an 



equation for 04,/Oz at x = 0, y = 0, z = 0 is derived as : 

-~z o = (8q51 - q52- 7q5°) ' (17) 

where d is the mesh interval, 

4)1 is 4) at x = 0 ,  y=0 ,  z=d, 

4,2 is 4, at x = 0 ,  y = 0 ,  z=2d, 

and 4,o is0. 

Equations for 31 and fi' 1 also involve the derivative of interference potential in the streamwise direction. 
When a polynomial is fitted, 

1 04, 04, 

where 1 and - 1  signify points on the x axis at distance d and - d  from the origin, and 2 and - 2  are at 
distance 2d and - 2d from the origin. 

The parameters 3 z and 3~ are calculated from the equations 

Or4 ~ 1 5 ['049"~ 2 [-['04,~ 1 04, + 04, ( & I ) -  .9, 

4.7 Finite Difference Error 

The size of the computer store limits the number of mesh nodes to 7 × 7 × 21 for the square tunnel. 
(Note that when the fictitious nodes are included there are nearly 2000 points). With only six mesh 
intervals representing the tunnel half-height, a significant finite difference error is certain to occur as 
demonstrated in Table 1. This Table refers to the square closed tunnel in steady flow and lists the values 
of 3o for a number of different mesh configurations. 

Particular note should be taken of the lengths of the intervals adjacent to the tunnel axis and roof 
respectively. The first line of the Table refers to the mesh used in the present investigation, the other 
results are taken from Ref. 2. 

From this Table it is clear that the limitation of using only six mesh intervals causes significant errors 
in the interference parameters. However, ifa faster computer with a larger store was available, an increase 
in the number of mesh intervals would be obtained with a resultant decrease in the finite-difference errors. 

4.8 Estimated Accuracy 

Two particular sources of error need to be considered : 
(1) Errors due to an inadequate finite-difference mesh, 
(2) Errors due to numerical differentiation whilst obtaining the interference parameters. 
Significant errors do arise because it is not possible to use sufficient mesh intervals. Section 4.7 showed 

the effect for the square closed tunnel and similar discrepancies occur with other boundary conditions. 
For example, the results for 60 in a rectangular tunnel with porous-slotted walls obtained from a solution 
with the tunnel half-height represented by 6 mesh intervals, are compared in Fig. 3 with theoretical 
values of 305 . 



It is important to note that the greatest errors occur for a tunnel with closed roof and floor. The reason 
is that the widely spaced mesh intervals adjacent to the roof and floor give a poor representation of the 

boundary condition, Oqb/t?z= O. 
Errors can also arise during numerical differentiation. However by using the five point formulae, 

equations (18) and (19), this effect can be minimised and the errors due to this cause are certainly far 
smaller than those arising from insufficient mesh intervals. 
The maximum errors from both sources are estimated to be: 

Square tunnel, 
6 x 6 mesh intervals, maximum error in all parameters, 0.008, 

Rectangular tunnel, 
6 x 7 mesh intervals, maximum error in all parameters, 0.020. 

In most instances the finite-difference results for go, 61 and -6'1 are likely to be too high. These errors 
are consistent errors (not random errors, see Fig. 3) and are most serious with closed boundaries. For 
many other boundary conditions the errors are roughly half the values quoted above. 

5. Results for Low Frequency 

The results for low frequency are recorded in Tables 2 and 3. A value of frequency parameter, o)h/U = 
0.01 is used, this gives results very close to those for a frequency parameter of zero. 

Results are presented for a square tunnel (b/h = 1-0) and for a rectangular tunnel (b/h = 2-6), representing 
the N.P.L. 9½ in x 9½ in (24 cm x 24 cm) tunnel with a half model. The non-dimensional slot parameter, 
F= 2K/h = 0.233 is that corresponding to the experiments reported in Ref. 13. 

For the rectangular tunnel (b/h = 2.6) with a porous-slotted roof and floor, analytical values of 6o have 
been calculated from the equation given in Ref. 5. These values are plotted against those given by dynamic 

relaxation in Fig. 3. 
It will be seen that the numerical errors decrease rapidly as 1/P decreases. The greatest errors occur 

for the closed tunnel, while at the other extreme with open roof and floor, ~ i=  - ~ , ,  is prescribed on 
that boundary and in consequence the finite-difference error is minimized. 

5.1 The Integral for g3 
One important aspect of these results is that they demonstrate that serious errors arise if the integral of 

equation (6) is used to evaluate g~) for porous tunnels. In Fig. 4 the true values of g~) calculated from 
8~xl/~z according to equation (3) are plotted as full lines and are compared with the broken lines obtained 
by equation (6). A similar difference occurs between the true and integrated values for g~ for both the 
square and rectangular tunnels with F = 0 and F = 0.233. 

Except for the end points where the boundary conditions are closed, open or ideal slotted, the results 
from the integral are seriously inconsistent. The true behaviour of g~) against (1 + 1/P)-t is in marked 
contrast to the more linear behaviour of go. The variation of 6~ with slot parameter (1 + F)-~ for a fixed 
value l / P = 3  in the square tunnel is plotted in Fig. 5. Unlike the integral in equation (6), the true g~) 

shows little dependence on slot parameter. 
These results dispel any hope that for porous-slotted tunnels and low frequency the wall interference 

can be estimated from the distribution of interference upwash in steady flow. There is apparently no short 

cut to the present results. 

5.2 Other Interference Parameters 

Sufficient values are presented in Tables 2 and 3 to show how most of the interference parameters vary 
with the porosity parameter and the slot parameter; so only brief comment will be made on some of the 

results. 
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For the cases where the porosity parameter 1/P is zero or infinity, the identities of equation (7) should 
hold. It will be noted from the results that for closed, open and ideal slotted tunnels 

6'1"-'-60, 

3 2 - 0 ,  

and 5~--- -½~5 t . 

For 1/P not equal to zero, 62 becomes large and positive. 
Though these Tables only give the interference upwash and its derivatives at the origin of the tunnel, 

the dynamic relaxation solutions provide information about the interference at any point in the tunnel. 
For example, Figs. 6 and 7 show the variation in fi and 6' along the tunnel axis for the square tunnel 
with closed side walls and ideal slotted roof and floor. Fig. 8 shows a plot of fi for the same tunnel with 
F = 0  and lIP taking various values. The curvature of 6 (x) at x=0  is responsible for the large values of 6z 
where 1/P is non-zero and finite. 

6. Finite Frequency 

Results have also been obtained to show how the interference changes with frequency. Only square 
tunnels are considered with closed side walls and either slotted or perforated roof and floor. 

No special techniques are required to obtain computer solutions, though for a frequency parameter 
~oh/U > 1"0 the downstream boundaries are taken as the second planes at which ~,~n and ~,~i are zero. 

The results for the interference parameters are presented in Tables 4 and 5 and the variations of go and 
6~ with frequency for the slotted tunnel are plotted in Fig. 9. It can be seen from the Tables that the 
identities in equation (7) do not hold for a high frequency even when 1/1' is zero or infinity. 

Fig. 9 shows how both parameters are tending towards zero as frequency parameter increases. Where 
60 and ~ are large for low o~h/U, they decrease by a factor of order 4 for o~h/U=4. 

7. Conclusions 

This report has demonstrated that unsteady incompressible lift interference in rectangular tunnels 
can be analysed using the dynamic relaxation method. Numerous boundary conditions including the 
porous-slotted boundary have been included and a range of typical results are tabulated. Due to limita- 
tions in computer storage, finite difference errors have occurred, these could be reduced if a larger 
computer were available. 

The results have verified that a method of calculating one of the unsteady interference parameters, 
6~, from the steady interference upwash, does not give true answers for the case of perforated or porous- 
slotted tunnels though it does give correct results for low frequency, ideal-slotted tunnels. 

The technique is being developed to study the effect of oscillatory compressible flow in rectangular 
wind tunnels with the same range of boundary conditions and various frequency parameters. 
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TABLE 1 

No. of Mesh Sub-divisions 
in half-height 

Mesh interval adjacent 
to origin 

Mesh interval adjacent 
to roof 6o 

6 0.0417 h 0'125 h 0'145 
7 0"04 h 0"1 h 0"138 
8 0.03125 h 0"125 h 0"134 

44 0.0114 h 0"0114 h 0-137 
- -  0.1368 Analytical 

TABLE 2 

InterferenceParametersSquareTunnelLow Frequency. 

R O O F  & F L O O R  
coh 1 
- -  F - -  

U P 

0-01 ~ 
0.01 0 9.0 
0'01 0 3"0 
0"01 0 1-0 
0-01 0 0"7 
0.01 0 0 
0.01 0'233 7-0 
0-01 0'233 3.0 
0.01 0'233 1.0 
0-01 0"233 0 
0-01 0"1 3"0 
0"01 1-0 3-0 

Square b/h = 1.0 closed side walls 
0.145 -0"036 0.274 -0-145 0"000 -0 .129  
0.127 -0"035 0.273 -0-146 0"026 -0 .130  
0"089 -0-029 0"258 -0 .144  0-085 -0"137 
0'009 0.004 0.172 -0 .104  0-177 -0.151 

-0"020 0.020 0-118 -0 .069  0-189 -0 '141  
-0 .124  0-077 -0 .179  0-124 0.000 0-087 

0"120 -0 .034  0.270 -0"146 0.040 -0"131 
0.090 -0"027 0.252 -0"142 0"084 -0-139 
0.024 0"003 0-154 -0"094 0"137 -0"138 

- 0.067 0"058 - 0-060 0.067 0"000 0"031 
0"090 -0"028 0.255 -0"143 0"085 -0 .138  
0"096 -0"025 0'240 -0"137 0.074 -0"135 
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TABLE 3 

InterferenceParametersRectangularTunnelLow Frequency. 

R O O F  & F L O O R  
ogh 1 
--U- F 

0-01 
0.01 0 
0.01 0 
0.01 0 
0"01 0 
0.01 0.233 
0"01 0-233 
0.01 0-233 
0.01 0.233 
0.01 0.233 

Rectangular b/h = 2-6 closed side walls 
0.191 -0 .005 0.444 -0.191 

7.0 0-148 - 0"003 0.440 - 0" 194 
3"0 0-091 0"006 0.416 -0 .189 
1.0 -0 .060 0.061 0"255 -0 .125 

0 - 0.342 0"205 - 0.507 0-342 
7-0 0.148 -0 .003 0"437 -0 .194  
3.0 0-093 0.009 0.404 - 0.188 
1.5 0.018 0.037 0.317 -0 .152 
1.0 -0 .033 0-062 0.232 - 0-103 

0 -0 .215 0.165 -0.233 0"215 

0.000 
0"078 
0.175 
0.378 
0.000 
0"083 
0"176 
0-268 
0.293 
0.000 

- 0.205 
-0 .210 
- 0"221 
-0-255 

0.247 
-0"211 
- 0.224 
- 0.240 
- 0.228 

0.118 
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TABLE 4 

Inte~renceParameters~rldealSlottedSquare Tunnel, VariableFrequency. 

R O O F  & F L O O R  
o~h 1 

F 
U P 

6o 6~ 61 6] ~2 6~ 

0.01 ~ 0 
0.01 3"0 0 
0-01 1 '0 0 
0-01 0'3 0 
0.01 0 0 
0"1 ~ 0 
0'1 3'0 0 
0"1 1'0 0 

0:1 0'3 0 

0'1 0 0 

0"5 ~ 0 
0.5 3.0 0 

0"5 1.0 0 
0-5 0.3 0 
0.5 0 0 
1.0 ~ 0 
1.0 3.0 0 
1-0 1.0 0 
1.0 0.3 0 
1.0 0 0 
2.0 ~ 0 
2.0 3-0 0 
2.0 1.0 0 
2-0 0.3 0 
2.0 0 0 
4.0 ~ 0 
4.O 3.0 0 
4.0 1-0 0 
4.0 0.3 0 
4-0 0 0 

Square tunnel closed side walls 
0.144 - 0 . 0 3 6  0.274 - 0 . 1 4 5  0-000 - 0 . 1 2 9  
0.084 - 0-005 0.188 - 0-086 - 0-004 - 0.090 " 
0.019 0.024 0.090 -0 -018  - 0 . 0 0 3  - 0 . 0 3 9  

- 0-055 0.053 - 0.036 0.054 - 0.001 0.020 
- 0 . 1 2 4  0.076 - 0 . 1 7 5  0-124 0.000 0.086 

0.145 - 0 . 0 3 8  0.274 - 0 . 1 4 5  -0-001  - 0 . 1 2 8  
0.084 - 0-008 0' 187 - 0.083 0-003 - 0.084 
0-020 0"021 0.090 - 0-019 - 0.002 - 0.043 

- 0 . 0 5 4  0.050 -0 -035  0.054 0.000 0"017 

- 0 . 1 2 3  0'073 -0 -175  0.122 0"003 0.086 

0.145 - 0 . 0 4 6  0.262 - 0 . 1 4 5  - 0 . 1 1 8  - 0 . 1 2 3  
0.083 - 0 . 0 1 7  0.212 - 0 . 0 8 7  - 0 . 1 0 9  - 0 . 0 8 4  
0.021 0.011 0.121 - 0 . 0 2 6  -0-101 - 0 . 0 4 2  

- 0.050 0.039 0-003 0.045 - 0.090 0.014 
- 0 . 1 1 7  0.062 -0-131 0.111 - 0 . 0 7 9  0.078 

0.136 -0 -048  0.222 - 0 . 1 3 3  - 0 . 0 6 7  - 0 . 1 0 2  
0.087 -0 -022  0.162 - 0 - 0 8 4  - 0 - 0 4 6  - 0 . 0 7 4  
0-032 0.003 0-091 - 0 . 0 3 0  - 0 . 0 1 8  - 0 . 0 4 0  

- 0.033 0-029 - 0-008 0.033 0.016 0-006 
- 0.095 0-050 - 0-125 0.095 0.049 0-062 

0.099 - 0 . 0 3 9  0-107 - 0 . 0 9 5  - 0 . 1 8 7  -0 -045  
0.069 - 0 - 0 2 2  0.091 - 0 . 0 6 4  - 0 - 1 3 0  - 0 . 0 3 8  
0.034 - 0-004 0.065 - 0-031 - 0.064 - 0.028 

- 0 - 0 1 2  0.015 0.020 0.012 0.023 - 0 . 0 0 8  
- 0.060 0.032 - 0-050 0.059 0.118 0.023 

0.031 - 0 . 0 2 0  - 0 - 0 4 4  - 0 . 0 3 4  - 0 . 2 3 5  0-013 
0.024 -0 -013  - 0 . 0 2 6  - 0 . 0 2 7  -0 -188  0.006 
0.016 -0 -006  - 0 . 0 0 6  - 0 . 0 1 7  - 0 . 1 2 3  - 0 - 0 0 2  
0-002 0.004 0.016 -0 -003  - 0 . 0 1 8  - 0 . 0 1 0  

- 0 . 0 1 8  0.013 0.028 0.017 0.135 - 0 . 0 1 4  
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TABLE 5 

InterferenceParameters~rPerforatedTunnel, ~riable Frequent. 

R O O F  & F L O O R  
mh 1 
- -  F - 
U P 

~o ~ ~i 6~ 6z 6~ 

0"01 0 co 
0.01 0 9-0 
0.01 0 3.0 
0.01 0 1 '0 
0.01 0 0 
0.1 0 co 
0.I 0 9.0 
0.1 0 3.0 
0.1 0 1.0 
0-1 0 0 
0.5 0 co 
0.5 0 9"0 
0.5 0 3.0 
0.5 0 1-0 
0.5 0 0 
1.0 0 co 
1.0 0 9.0 
1-0 0 3 .0  
1 "0 0 1 '0 

1"0 0 0 

Square tunnel closed side walls 
0.144 -0 .036  0-274 -0 .145  0.000 -0 .129  
0.127 -0 .035  0"273 -0 .146  0.026 -0 .130  
0.089 -0 .029  0.258 -0-144 -0"085 -0 .137  
0.009 0.004 0"172 -0 .104  0.177 -0-151 

-0 .124  0.077 -0"179 0"124 0"000 0.087 
0'145 -0 .038  0.274 -0"145 -0-001 -0 .128  
0.126 -0 .037 0.272 -0"146 0'029 -0 .129  
(7-090 -0 .031 0"257 -0 .144  0.085 -0 .136  
0"010 0.001 0.172 -0 .104  0-176 -0.151 

-0 ' 123  0"073 -0 .175  0.122 0-003 0.086 
0.145 -0-046 0.262 -0 .145  -0 ' 118  -0"123 
0"126 -0"045 0"260 -0 .146  0.012 -0"135 
0"090 -0 .039  0-245 -0 .145 0.067 -0.131 
0"013 -0 .007  0.163 -0"109 0-158 -0 ' 146  

-0 .117  0-062 -0.131 0.111 -0 .079  0.078 
0.136 -0 .048  0.222 -0 .133  -0 .067  -0-102 
0"117 -0"047 0"220 -0 .134  -0-037 -0 ' 103  
0.082 -0.041 0-206 -0 .133  0"018 - 0 ' 1 1 0  
0-012 -0 .012 0-267 -0 .098  0.108 -0 .127  

- 0.095 0.050 - 0.125 0.095 0,049 0.062 
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(a) Start or  calculatlon 

(b) Use dynamic relaxation t o  calculate 

f~nctlons wlthln tunnel and on 

bounda~leSo 

"~ Calculate fictitious values from 

boundary conditions, in general 

dependent on both ¢R and ¢I" 

(d) Cheek for convergence. 

~e) Ipterferenee potential. 

Calculate boundary values of: 

¢iR = CR " CmR and 

¢ii : ~I l ~mI. 

~f) Use dynamic relaxation to calculate 

¢iR and ¢iI within field 

~) Frlnt values of interference 

potential and calculate 

interference parameters. 

" INPUT 
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coefflclentjno.of iterations,values J 
Of 'mR and 'mI on boundaries and arc | 

of ax is  J 

IMAGINARY 
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I 

' I 

Repeat untll conver~ed 

FIG. 1. Flowchart.  
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Part II Oscillatory Lift Interference in Subsonic 
Compressible Flow 

Summary 
This report describes a method of calculating the oscillatory lift-interference parameters in subsonic 

compressible flow for ventilated wind tunnels. Results are obtained by solving the finite-difference form 
of the governing equations using the dynamic-relaxation method. 

Detailed results are obtained at M = 0-7 for square tunnels with closed side walls and with a variety of 
conditions on the roof and floor. As the frequency of the oscillations is increased different trends are 
noted between the present compressible flow parameters and earlier incompressible results. 

1. Introduction 

2. Mathematical Formulation 
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1. Introduction 

In a series of papers, theoretical solutions have been obtained for the lift interference in ventilated wind 
tunnels. Initially the velocity potential in the distant wake of an oscillating wing was considered; this 
required the solution of a Poisson equation in two dimensions 1. Next the three-dimensional problem of 
the steady lift interference in both slotted and perforated tunnels was examined 2. In Part I of this Report 
this treatment was extended to include oscillatory incompressible flow, and Part II develops the technique 
further to include compressible oscillatory flow. 

The solutions are obtained by writing the governing differential equations with the associated boundary 
conditions in finite-difference form and the resulting equations are solved by using either a resistance- 
network analogue or a digital computer. When many results are required it is convenient to use the digital 
method: much of the development work, however, was carried out on the resistance analogue. Several 
digital-computer methods are available for solving finite-difference equations, but when complicated 
boundary conditions apply, the dynamic-relaxation technique has proved to be most suitable. 

Since the object of these studies is to determine interference parameters, a solution is obtained initially 
in terms of the perturbation velocity potential; this is followed by a second solution in terms of the 
interference velocity potential. The boundary values of the interference potential are calculated from the 
difference between the perturbation velocity potentials of the model in constrained and unconstrained 
flow. Each of these three velocity potentials satisfies the same differential equation. 

The report first shows how the previous work is extended to include compressible flow, and the validity 
of the method is checked by correlating the low-frequency results in compressible and incompressible 
flow. Then a description is given of detailed investigations into the effect of frequency on the interference 
parameters for square tunnels, with a range of different conditions on the roof and floor. 

2. Mathematical Formulation 

As in previous studies of lift interference in rectangular ventilated tunnels, the formulation of the 
problem involves the specification of the governing equation, boundary condition and disturbance due 
to a wing positioned at the centre of the tunnel. Once a solution to the problem has been obtained, the 
results are expressed as interference upwash parameters. The relevant equations for compressible 
oscillatory flow are given below. The coordinate system is illustrated in Fig. 1. 

2.1 Governing Equations 

The linearized equation for the complex velocity potential, qS, in subsonic compressible flow is : 

2 - -  2 m flza d? ~ d? ~2~ 2ioJM2O~ c~2MZ~ 
~JxZ +~y z-~ ~z 2 U Ox ~ U ~ = 0 "  

This equation can be simplified in terms of the modified potential 

giving 

ie)M2x, 
= ~ exp ~ -], (1) 

flz02~ c~2ff c32ff ~02M2~ 
= 0 .  (2) 

Each of the three velocity potentials, ~b, ft., and ~i must satisfy this differential equation. 
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2.2 Boundary Conditions 

The general boundary condition at a porous slotted wall from equation (6) of Ref. 4 

~)+~=0, 

when expressed in terms of the modified potential 

7p = OR + i0x, 

gives two real conditions 

and . (3) 

aOs oOR . (aaOx ~ oaR'\ 1 O0~ 
ax + t a. =o 

For closed and open walls these become 

and 

m m ~  - -  0 

an an 

~R = 0i=Orespectively • 

2.3 Small Wing 

In this report the lift interference under consideration is that due to a small wing. The simplest expression 
for the undisturbed velocity potential due to a small wing with oscillatory lift at arbitrary subsonic Mach 
number is 

~m-- USCL8~ OzO rlexp t - ~ ( x - M a x + M r  dx' 
0 

where 
r 2 = (x  - -  x ' )  2 + f12(y2 + z Z ) .  

Substitution of equation (1) into the above equation gives 

oo 

7 
0 

2.4 Interference Upwash 

Finally the interference upwash is expressed in terms of the modified interference potential, so that 

0 ,=  Off'= exp { !°°M2x~ OCp, (5) 
t, n---~--o-) Oz OZ 
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2.5 Non-dimensional Form 

Equations (2) to (5) can be written in non-dimensional form after the following substitutions : 

x=½flhX, y=½hY, z=½kZ, n=½hN, K=½hF, ~k=(USCL/2b)~P, ¢o=2Uv/h and ~,=(USCL/bh)6. 

The non-dimensional equations are; 

02~_IJ ~2~ ~2~II v2M2~r~ 
ox  ~ + ~ +  0~-~ /~ =o, (2a) 

vV, r{ 2% v 0% B J 
c>e , ce  R _far'e, v ~ % "x ~ o % 

(3a) 

oo 

= bZ f / ivMR\ / - i v  , )) dX' 
m 2nhJ  ~ l + - ~ ) e x p ~ - ( X  +MR R3 

o 

where R = [ ( X -  X') 2 + y2 + Z2]~ and 

2X) c3~ i 
b = e x p \  fl } c3Z" 

(4a) 

(5a) 

2.6 Interference Upwash Parameters 

The interference upwash parameter, 6, in compressible flow is defined as 

- } +~-/i°gh "6 ot"M') + 6~ ' (M)h+ 

Hence 

60(M)=(6g)x= 0, 

6~(M)=h (~3~g 1 
\SX/x=O' 

62(M)=T \ Ox 2] x=O' 

6o' (M) = U ( @ ~  = o 

,h' IM) =-u (~'~ 
\&/x=o 

(a2a[] 
6; (M) = ~-~- \~-ZL = o 

(6) 

(7) 
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The six interference parameters can therefore be determined from the real and imaginary parts of 6 
given by equation (5a), namely 

and 

atr~iRcos (VM2X'~ atIJi, 
k_T_j__i f_s i  n 

6_OWig  [vM2X'~ cOq*i, c fvM2X'~ 
,----ff~ sin k ~ - - )  +-O-~- os~,~fl----) 

(Sb) 

3. Numerical Solution 
3.1 Differential Equation 

The differential equation for compressible flow 

~2~ O2Fy~ O2~rlj v2M2~/ij 
OX z +b--y-f+~-~ --~ f12 - 0 ,  (2a) 

can be solved by a dynamic-relaxation method similar to that for incompressible flow described in 
Ref. 3. For incompressible flow the Laplace equation in three dimensions applies, but with compressible 
flow there is the additional term vZMZ~/fl z. 

A solution to this complex equation can be obtained by dividing it into real and imaginary parts 

and 

a2~r~ R t~2~IJ R t~2vr/zl R y2 M21$zl R 
aX z ~- ~ + ~ - ~ -  q f12 - 0  (2b) 

02 LIj I ~2 ~fll a2 tr~l vZ M2trttl 
a x  2 +-ff~T + - ~ - T  -~ f12 - 0 .  (2c) 

Each equation can be written in finite-difference form and solved separately, but simultaneously. 
For each part, auxiliary variables u, v and w are introduced in the three following equations" 

and 

0u aWR 
-~+ Du = OX ' 

~t + Dv = 
au/ R 

aY  

aw 
at q- Dw = a T ;  , 

(8) 

which when substituted into 

all al) aw i)2M2~tt R 0~I-tR 
3X F~--~+~-~q Dfl ---------5~- d~- (9) 

leads to equation (2b), with an acceleration and a velocity term added. 
Using the same type of graded net as in Fig. 1 of Ref. 3, the equations can be written in an explicit finite- 

difference form and solved by a substitution routine on a digital computer. 
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3.2 Boundary Conditions 

The boundary conditions in equation (3a) are included in the finite-difference solution through 
fictitious nodes positioned at one mesh interval outside the boundaries. Values at these fictitious nodes 
can be calculated if the normal slope of the function is known. Thus the first condition is written with 
the normal slope on the left hand side; 

-\e/ L- X-+7-F 7/  /3 (10) 

The finite-difference form of this equation is similar to equation (16) of Part I of this report. The right 
hand side of this equation specifies the value of the normal slope and depends on both the real and 
imaginary parts of the velocity potential. It is for this reason that the equations for the real and imaginary 
parts must be solved simultaneously. 

If a boundary is closed, fl/P equals infinity and equation (10) simplifies to O~R/?N =0. Alternatively, 
if a boundary is open, then the boundary conditions as stated in Section 2.2 are enforced directly as 
~R = 0 and °d x = 0 on the boundary. 

3.3 Infinite Integral for Small Wing 

One method of calculating the infinite integral for the velocity potential due to a small wing in in- 
compressible flow was described in Section 4.1 of Part I. This method involves a separate evaluation of 
the infinite integral by the trapezoidal rule with small step lengths for each node around the wing and on 
the roof and walls. Since this takes considerable time on the digital computer, equation (4a) was re- 
arranged as follows: 

¢o 

~F = bZ (_iv__~)f-- ivMRo- ( 7  )) dX° 
m 2nh exp tl + ~ )  exp (Xo+MRo No 3 

- X  

(11) 

w h e r e  R o  2 = X o  2 -~- y 2  + Z 2 . 

The advantage of writing the equation in this form is apparent by considering the evaluation of Wm 
on a line of nodes with constant Y and Z but with variable X. If the plane furthest upstream is taken 
as a datum and denoted by X, the value of W,, at all other planes with the same Y and Z can be calculated 
from 

oo 

Wm=~h~hex p - - I f ( l + ~ ) e x p ( ~ - ( X o + M R o O d . X ~ ° 3 + R o  
- 2 -  

ivMR o /'--iv S +MRoO dX°l. 
+ ~ (1 + ~ - - )  exp ~ , ~ - (  o R03j 

- X  

(12) 

Thus the value of ~, ,  at each value of X can be calculated from a single infinite integral plus an integral 
between finite limits. This leads to a considerable saving in computer time. 

3.4 Solution for Interference Potential 

After obtaining a solution in terms of the velocity potential ~d, a second solution is required in terms of 
the interference potential ~P~. Since ~i also satisfies the governing equation (2a), the same finite-difference 
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programme can be used. The boundary conditions are that in the plane of the wing Z =0, q~R = Wil =0, 
on the plane Y =0  symmetry occurs with Oq~R/OY =0, du/u/OY=O, whilst on the roof and walls 

k~iR = ~ R  -- I{amR I 
[ m 

qJ. = ~Vl - ~Fml J 

(13) 

The interference upwash is calculated from the interference potentials using equations (5b). By fitting 
a third-order polynomial the terms OtPm/aZ and OtPu/~Z can be calculated from values on the finite- 
difference mesh. Section 4.6 of Part I contains further details and also explains the method of determining 
the derivatives 06/dx and 026/0x z that are required to calculate interference parameters from equations 
(7). 

3.5 Solution on Digital Computer 

If a sufficiently fine mesh is used, then the finite-difference solution approaches the true solution to 
the differential equation. However, there is a practical restriction on the number of mesh intervals that 
can be used. This is primarily due to the limited size of the fast store of digital computers. With the KDF 9 
used in the present investigation the total size of the fast store is 32K, restricting the number of nodal 
points to 24, 9 and 9 in the X, Y and Z directions respectively, which include the fictitious nodes surround- 
ing the boundaries. Since the equations for both the real and imaginary parts have to be solved simul- 
taneously, this mesh spacing is equivalent to about 4000 unknowns in the dynamic-relaxation calculation. 
This restriction on the number of nodes does lead to some errors which can only be overcome by means 
of a larger computer. 

Since dynamic relaxation is an iterative method, efficient solutions can only be obtained with optimum 
values of the damping factor D in equations (8) and (9) and time interval At of Ref. 3. For the open, 
closed and slotted boundaries, the convergence parameters are similar to those listed for a closed tunnel 
in Section 4.5 of Part I, but for the porous slotted boundaries several trial values are required before 
suitable convergence parameters are obtained. It is important to calculate the residuals in order to check 
that each result is an adequate solution to the finite-difference equations. 

4. Comparison with Low-Frequency Results 

The reliability of this present method of analysing compressible flow can be investigated by making a 
comparison with results obtained from an alternative approach. Such a comparison is possible for low 
frequency. 

For low-frequency compressible flow, the interference upwash can be deduced from equation (12) of 
Ref. 4 to be 

= I1 ie)M2x -] x x 2 

+ icoh @o, (0)+ ha, (0) x , x 2 (14) 

where 6o(0), 31(0) etc. are the interference parameters at low frequency and zero Mach number. Values of 
these parameters have already been obtained from analytical and finite-difference solutions and are 
reported in Part I. 

The compressible equations can also be used to obtain values of the interference parameters for low 
frequency. A value of o~h/U =0.01 is used, as this has been found to give effectively the same result as in 
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the limit 0)40. When equations (14) and (6) are identified, the following relationships ar.e obtained. 

6o(M)=6o(0), 

/~l(m) = f l -  16t(0), 

O 2 ( M  ) = f l -  262 (0 ) ,  

6 o' ( m ) = f l -  lt~ O' (0), (15) 

61 ' ( m )  = fl - 2 [61 , (0) + m 2 c~ 0 (0)] 

and b 2' (M)=fl-  ~,[62 ' (0)+ M261(0)3 

Comparisons are made for M =0.7 for a square tunnel with five different boundary conditions on the 
roof and floor, and the results are recorded in Table 1. The results in columns A are taken from Table 2 
of Part I, whilst the compressible flow solutions in columns B are obtained by the method described in 
Section 3. The agreement is good for all but 62 and 62'. Such inaccuracies can be anticipated since 6 2 and 
3 2' a r e  calculated from a third differential of the interference upwash. 

5. Investigation of a Square Tunnel 
5.1 Details of Solutions 

A systematic investigation has been carried out for a square tunnel having closed side walls and with 
five different conditions on the roof and floor. These are, 

Case 1. 

Case 2. 

Case 3. 

Case 4. 

Case 5. 

Closed roof and floor (1 + F )  -~ =any,  (l +fl/P)-~ = 0 ;  alternatively this can be written as 
(1 + F) - I  =0.811, ( l + f i / P ) - l = 0 .  

Porous slotted roof and floor (1 + F)-  1 = 0.811, ( 1 + fl/P)- 1 = 0.25. 

Porous slotted roof and floor (1 + F)-  1 =0.811, (1 +fl/P)- 1 =0-5. 

Ideal slotted roof and floor (1 + F) 1 = 0.811, ( 1 + fl/P)- a = 1-0. 

Open roof and floor (1 + F)-  1 = 1.0, (1 + fliP)- 1 = 1.0. 

One particular value of the Mach number is taken, M =0.7, with the frequency parameter varying from 
0.01 to 3.0. 

The solutions were obtained on a graded finite-difference mesh having between 19 and 22 mesh nodes 
representing the length of the tunnel and seven mesh nodes representing the half height and half breadth 
of the tunnel. The smallest mesh interval of 0-05 of the height of the tunnel is at the origin of the tunnel 
where the model is situated. 

The dynamic-relaxation procedure required at least 300 iterations in calculating values of "['l~ and q~ 
throughout the field, and 250 iterations for q'iR and ~il. However, with the closed and the porous slotted 
tunnels slightly more iterations were necessary. An increase in iterations was also required as the frequency 
increased, probably due to the more rapid changes in the magnitude of the functions occurring at higher 
frequencies. It was not possible to obtain any converged results for values of the porosity parameter 
0.5 < ( 1 + fl/P)- 1 < 1 : similar difficulties were encountered with steady incompressible flow 2. 

Table 2 lists the interference parameters for each of the five cases. Because a finite-difference approxima- 
tion is used certain errors will occur but, following Part I, it is estimated that no result is in error by 
more than 0.01. Note that these are not random errors due to an inaccurate numerical solution, but they 
are consistent errors arising from the finite-difference approximation to the differential equation. These 
errors are largest with the closed boundaries and become less as the boundary tends to the open condition. 
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5.2 Discussion of Results 

The consistency of the results is checked by plotting each of the interference parameters against 
frequency. Graphs of 60, 60', 61, 61' for each of the five cases are included as Fig. 2 and 3. 

One important fact is that 30, and 6o' tend to high values as o~h/U increases. This is in marked contrast 
to the incompressible case where both go and 30' tend to zero as the frequency increases. This difference 
is illustrated in Fig. 4 where certain results for compressible flow (full curves numbered 1C, 4C, 5C) are 
compared with incompressible results for the same boundary conditions taken from Part I (broken 
curves numbered 1I, 4I, 51). 

Tunnel resonance is the probable cause of the increasing values of interference parameters with 
increasing frequency. From Ref. 5 calculations can be made of the resonant frequency: for a three- 
dimensional tunnel with closed boundaries and M=0.7  the resonance occurs when ~oh/U= 3.205. As 
this frequency is approached, the interference parameters become large. A dynamic-relaxation result 
has been obtained for a closed tunnel with wh/U= 3.0. The parameters 30=0.33 and go'= -0-46 are 
large, indicating that tunnel resonance is being approached. These results are not included in Table 2 
since they are not of the same accuracy as other results. For the fully open tunnel the critical frequency is 
~oh/U = 6.41, and therefore with cases 4 and 5, which tend towards the fully open condition, there is no 
difficulty in obtaining dynamic-relaxation results for e~h/U = 3.0. 

A further comparison is given in Fig. 5 by plotting the variation of go and 60' at M =0-7 for porous 
slotted tunnels against the porosity parameter (1 + ~/P)-~ with the slot parameter (1 + F)-~ remaining 
constant at 0.811. Although results have not been obtained in the range 0.5 < (1 + fi/P)-1 < 1.0, it seems 
reasonable to anticipate smooth curves through this region. Fig. 5 also contains results for incompressible 
flow at vanishing frequency. For g0 the incompressible curve lies directly on top of the compressible 
result with ~h/U=O, but for 60' the compressible and incompressible curves differ by the factor/~ in 
accord with equations (15). These curves indicate that, as the frequency increases to a value of ~oh/U = 2.0 
or greater, then the interference parameters are significantly different from those for low frequency. 

Finally Fig. 6 shows the variation of the interference parameters, 6~ and 61', with Mach number for a 
square porous slotted tunnel with (1 +F)-1=0.811 and ( l+f l /P)-~=0.5.  From the relationships of 
Section 4 it is possible to calculate the values of the parameters at zero frequency for any Mach number. 
These results are shown as smooth curves. Fig. 6 also includes values of 61 and 6~' for non-zero frequencies 
when M= O and 0.7. 
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TABLE 1 

Comparison of Results for InteJference Upwash for M = 0-7 at Zero Frequency. 

Open Closed Porous slotted Ideal slotted Porous 

(1 + F)-  1 1-0 any 0.811 0-811 1.0 
(1 + fl/P)- 1 1.0 0 0.25 1.0 0.25 

~D A B A B A B A B A B 
6 o (M) -0 .136  -0 .138 0.145 0-145 0.090 0.090 -0-067 -0 .067 0.089 0.089 
61 (M) -0-284 -0-289 0.384 0-392 0-353 0.361 -0 .084  -0 .079  0.361 0.369 
6 2 (M) 0.000 0.010 - 0.001 +0.010 0.166 0.174 - 0-001 + 0.010 0.t67 0.175 
6 o' (M) 0.114 0-114 -0 .050 -0-049 -0.038 -0-037 0.081 0-081 -0 .040  -0.039 
61'(M) 0.137 0.136 -0-145 -0.141 -0-191 -0 .189 0-067 0.067 -0-197 -0.195 
62' (M) 0.006 - 0-002 0.014 0-029 - 0.042 - 0-027 0.005 0.008 - 0-029 - 0.014 

Columns headed A refer to values calculated from equations (15) using incompressible flow results, whilst columns headed B contain results 
obtained directly from compressible solutions. 



TABLE 2 

Interference Parameters for M =0.7. 
Square Tunnel, Closed Side Walls with Various Conditions on Roof and Floor. 

R O O F  & FLOOR 

(I+F) -1 (1+~) 
~h 

60 00' 51 61 ' 32 52 t 
U 

CASE 1 (Closed) 
any 0 0.01 0.145 -0-049 0.390 -0.141 0.010 0-028 

0.5 0.151 -0.063 0.378 -0 .144 -0.018 0.024 
1-0 0.176 -0-084 0-405 -0-134 -0.069 0.084 
2.0 0.211 -0-104 0.510 -0.105 -0 .287 0.232 

CASE 2 (Porous slotted) 
0.811 0.25 0.01 

0-5 
1.0 
2.0 

CASE 3 (Porous slotted) 
0.811 0.5 0.01 

0.5 
1.0 
2-0 

CASE 4 (Ideal slotted) 
0.811 1-0 0.01 

0.5 
1.0 
2.0 
3.0 

CASE 5 (Open) 
1.0 1.0 

0-090 -0 .037 0.359 -0.189 0.174 -0-028 
0.094 -0.051 0.344 -0.193 0.152 -0 .036 
0.103 -0 .069 0.351 -0-201 0.162 0.001 
0.109 -0.091 0.369 -0 .194 0-134 0.106 

0.023 0-007 0.234 -0 .156 0.276 -0 .144 
0.024 0.004 0.207 -0 .136 0.225 -0 .112 
0.027 0.004 0.168 -0 .109 0.210 -0.108 
0.057 -0.028 0.114 -0.127 0.085 -0-092 

- 0.067 0.081 - 0.079 0.067 0-010 0.009 
- 0.055 0.067 - 0.077 0-060 0-007 - 0.005 
-0 .032 0.055 -0.061 0.051 0.013 -0-022 

0.036 0.032 -0.031 0.046 -0 .069 -0.057 
0.142 -0.007 0.122 0.088 -0 .642 0-032 

0 .01  -0 .124 0.107 -0 .245 0-123 0.011 0-001 
0-5 -0 .112 0.094 -0 .239 0.116 0.014 -0-012 
1.0 -0-088 0.082 -0 .224 0.104 0.036 -0-045 
2.0 -0.021 0.065 -0.215 0.096 0.007 -0-131 
3-0 0.088 0.050 -0.218 0.133 -0 .386 -0-213 
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