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Summary. 
Mixed-flow rotor cascades present a formidable design problem since rotational effects such as coriolis 

forces exclude the use of stationary cascade experimental data. This report discusses the general influence 
of these effects upon the energy transfer process and the parameters which govern the efficiency of a 
mixed-flow fan. An outline is presented of two cascade theories for predicting aerodynamic rotor cascade 
characteristics in detail. One deals with a restricted family of Joukowski type aerofoils providing a broad 
range of exact solutions by conformal transformation. The second theory involves the extension of 
Martensen's method to include relative eddy effects and also to allow for changes in meridional streamline 
thickness (AVR). This method which is applicable to any profile on any stream-surface of revolution is 
shown to produce accurate predictions compared with the exact solutions. 

LIST OF CONTENTS 

1. Introduction 

2. Assessment of Mixed Flow Fan Rotor Performance 

3. Treatment of Rotating Cascade Potential Flows 

3.1. Exact solutions for Joukowski conical cascades 

3.2. Extended Martensen method for arbitrary mixed-flow rotating cascades 

4. Comparison of Results 

List of Symbols 

References 

Tables 1 and 2 

Illustrations--Figs. 1 to 21 

Detachable Abstract Cards 

* Replaces A.R.C. 33 333. 



1. Introduction. 

The conventional design/analysis approach to axial turbomachines still leans heavily upon the quasi- 
two-dimensional model of superimposed cascade and meridional flows. Happily the straight cascade 
theoretical potential flow model then suits rotor and stator equally well since the governing equations 
for the relative flow are identical. Experimental straight cascade tests also have proved their worth as 
aids to design and performance prediction. 

On the other hand mixed and radial flow machines pose completely different problems, as shown by 
the Euler pump equation for the fan illustrated in Fig. 1; expressed in terms of velocities measured 
relative to the rotor, 

A 0 H  = ~ (r  2 V02 - rl V0a) 

=Ft (r2V~o~-rlV~o,)+Ft2(r~ -r~) 

=VB2{V~°2--(~)V~°~}+VB~{ 1-(rt~2;\r2/ ) (1) 

= Work done due to + Work done due to 
fluid deflection coriolis forces 

Head rise is dependent upon blade speed, V82, and change in peripheral whirl V,o, to V~o2 as for axial 
machines. In addition AgH is dependent upon radial streamline shift (rl/r2). In the form presented above, 
part of the work done is entirely related to V,2 and (rl/r2) without any dependency upon blade profile 
shape. This contribution can be shown to precisely equal the work done by coriolis forces. 

Stationary cascade models, both theoretical and experimental, are thus completely ruled out. Cascade 
potential flow analyses and boundary layer theories must be amended to include the effects of coriolis 
forces which can have a first order effect in both cases. Similar considerations must likewise be applied 
to prediction of turbulence propogation. Active research relevant to viscous effects and turbulence 
propogation is being undertaken by Johnston et alia 1 at ~tanford University, Fowler at N .R .C .C/and  
Professor Gruber and colleagues 3 at the Technical UniverSity of Budapest. 

The present report sketches the outlines of two frictionless cascade analyses completed by the present 
authors. A conformal transformation method which provid~.~ exact solutions for a range of Joukowski 
conical cascades is summarised in Section 3.1. This analysl~ is reported in detail in Refs. 4 and 5. A 
completely general numerical method based upon extensiops to Martensen's theory has also been 
developed and programmed for the calculation of arbitrary {otating compressor or turbine cascades, 
on an arbitrary surface of revolution with arbitrary meridionalt streamline thickness (AVR). A full report 
of this theory is in preparation but a brief outline is given in S~ction 3.2. 

Before proceeding with these analyses some further remark~ will be made in relation to performance 
assessment. ] 

2. Assessment of Mixed Flow Fan Ro/tor Performance. 

It is of interest to note that the total to total efficiency of a fan rotor can be expressed generally as 

~lrT=f c~,~,--, ,¢~ , 
I" 2 

(2) 

which after some analytical reduction from velocity triangle relationships becomes 

r/rr = 1 - (~.fR, (3) 
/ 

where (.~ is the cascade loss coefficient based upon the vector mean relative velocity Wo~ as defined in 

/ 
2 / 

/ 



Fig. 1. The 'weighting coefficient', fR, has the following convenient analytic form 

1 2 r 2 

which reduces to the more familiar form for axial fans (rt =r2) with constant annulus area (A2 =A~), 

fRaxial=~___. ~ q~2+ 1 _ ~  2 " { ( ) }  (4a) 

In moving from axial machines to mixed-flow or centrifugal ones the additional design variables 
(rt/r2) and (A2/At) are introduced, both of which influence the total to total rotor efficiency and therefore 
represent two more degrees of freedom available to the designer. For example, a first inspection of 
equation (4) suggests two new routes towards a low weighting coefficient and thus a high rotor efficiency, 
namely an increase in radial streamline shift r2/r~ and a reduction in annulus area A2/A ~. Both avenues 
may be followed to some extent although increased r2/r 1 involves a decrease in eye area if r2 is held 
constant; likewise acceleration of the meridional flow to achieve reduced A2/A~ may present more 
difficult diffusion problems in the downstream stator. 

Furthermore one must bear in mind that the losses (~o and also the form and stability of the (~b~ 0) 
characteristic will be influenced by adjustments to (r2/rt) and (A2/A ~). Thus the frictional behaviom" will 
be modified by coriolis forces introduced by the meridional streamline shift, (r2/rt), as well as by the 
general meridional velocity level which is controlled by (A2/A O. Indeed the essence of good design should 
surely be to play upon these available variables to obtain the 'optimum' design conditions. 

The problems of design then fall into two categories which represent the chronological sequence of 
design : 

(i) Selection of general machine duty coefficients (q~, 0) and rough annulus shape (rl/r2) and (A2/A O. 

(ii) Selection of detailed blade profile and annulus shapes to match the design duty (~b, 0) with say 
high efficiency and stable performance. 

Under (ii) the design problem breaks down as usual into potential flow analysis, boundary layer and 
loss prediction. Regrettably however the present state of knowledge of boundary layer growth and 
turbulence propagation in mixed-flow cascades leaves the field still wide open for exploration. Since, as 
we have seen, stationary cascade tests are ruled out for both (i) and (ii) the only alternatives are rotating 
cascade rigs or theoretical calculations. To this end the following research strategy is being carried out at 
Newcastle-upon-Tyne University, Department of Mechanical Engineering. 

Design knowled#e required Research programme 

Selection of cascades to match required 
(~b,~k) duty, with (rl/r2) and AlIA 2 as 
design variables 

< 
Potential flow calculations 
for mixed-flow rotating 
cascades 

Derivation of experimental data for 
loss prediction e.g. (~o 

Rotating test rig 
(a) Rotating duct rig for bound- 
ary layer and turbulence studies 

Rotating test rig 
(b) Conical fan cascades 



3. Treatment of Rotating Cascade Potential Flows. 

The basic requirement following the conclusions of the previous section is for a blade to blade analysis 
for flow on an assumed surface of revolution defined by the meridional flow with continuous change in 
meridional streamline thickness within the blade region from leading edge to trailing edge. This can be 
achieved in one of two ways; 

(a) by considering the irrotational absolute flow of the rotating blade system viewed by a stationary 
observer, 

(b) by considering the rotational relative flow as viewed by an observer who rotates with the rotor. 

The series of exact potential flow solutions derived by conformal transformations are based on (a). 
These are referred to in the next section. The general extended Martensen theory on the other hand is 
based upon consideration of (b) the relative flow. This will be explained in more detail in Section 3.2. 

3.1 Exact Solutions for Joukowski Conical Cascades. 

The off-set unit circle in the (-plane, Fig. 2 can be transformed into a Joukowski aerofoil in the z-plane by 

z=d+c((  + l/~), (5) 

and from there into a conical cascade on the z-surface with N blades and semicone angle tp by 

z = Z u . . . . .  v (6) 

The threefold geometrical limitation here is first of available profile, and second of zero stagger and 
third of constant meridional streamline thickness. Nevertheless an infinite range of cambers, profile 
thickness and pitch/chord ratios is still possible. Typical samples of symmetrical and cambered profiles 
are shown in Figs. 3 and 4 which illustrate the effects of the two eccentricities of the unit circles el and 
e2 responsible primarily for thickness and camber respectively. A typical centrifugal rotor is shown in 
Fig. 5 for tP=90 °, q/r2=0.6, el =0.02 and e2---~0"5. 

3.2 Extended Martensen Method for Arbitrary Mixed-Flow Rotating Cascades. 

To provide a completely generalised method for curved meridional flows with variable meridional 
streamline thickness, it was considered more simple to transform the conical cascade in the Z-plane into 
an infinite straight cascade in the (-plane by means of the well known transformation 

dO= dO, 

d~=ds= dr 
r r sin 

(7) 

where (x, r, ®) are cylindrical coordinates and s is distance measured along the meridional streamlines. 
The absolute velocity transformation follows directly 

u~-- iv~ = r(uz-- ivz). (8) 

Although conformal transformations are normally applied to irrotational solenoidal flows, it is 
possible to prove that flow fields containing source and vortex singularities may also be conformally 
transformed provided the singularities are transformed point by point with no change in strength. If the 
field is rotational however, the vorticity (i.e. distributed vortex strength per unit area) is changed in 



strength on transformation. Thus for the relative eddy of a mixed-flow rotor, Fig. 1 

Y(= r2 7z 

---= - - r  2 2f~ sin tt ' .  (9) 

The (-plane thus contains a vorticity distribution given by equation (9) upstream, downstream and in 
the gap between the blades, Fig. 6. By the principle of superposition, this flow can be replaced by vorticity 
distributed throughout the whole of the cascade region which is constant in the pitchwise direction, 
minus a vorticity in the interior blade region. These two vorticities introduce disturbance velocities 
qa~o(~) and qni(~, ~/) respectively. 

The change in meridional streamline thickness may be approximated by a source distribution in the 
flow field outside the blades of constant strength in a pitchwise direction. This effect is illustrated in 
Fig. 7 where the varying throughflow velocity u(~) in a convergent duct is equivalent for all ~ to the flow 
in a parallel duct with mean velocity U~o and a disturbance velocity u,=(~) induced by source distributions. 
The sources may be removed from the blade profiles by superposing an equivalent distribution of sinks 
in these regions and, if the resultant disturbance velocity is q,i(~, 0), the total velocity induced by the 
free stream and the source and vorticity distributions is 

q = (U  co -l- uaoo + u~i -t- uai)-I- 

+ i (V~ + Va~o + vai + v~i). (10) 

Special techniques have been developed for computing the vorticity and source velocities (uni, vni) 
and (u~, v~). The cascade is divided into a number of strips, Fig. 8, and each segment of blade is represented 
by a trapezium of uniform source strength and vorticity. Developments fi'om Ackeret's 6 Fourier series 
have led to solutions for the consequent induced velocities. 

Martensen's method is based upon a Fredholm integral equation which states that the fluid velocity 
inside the aerofoil (replaced by a peripheral vorticity distribution ~,(S)) is zero. Thus for location S,. on 
the aerofoil, Fig. 9 

: .  { (.x) ( . ) }  . .  
2 t-~-~ 7(S.)K(Sm, S . ) a s . = -  Uo~ -~ +V~ ~ , 

I11 r a  

where K(Sra, Sn) is a coupling coefficient which links S,. and S. and for a cascade is given by 

[ 2n 2n 
n y~" sinh t (x,. - x . ) -  x;, sin T- (y" -y" )  

K(S,., S.) = ~ 2n 
cosh - -  (Xm -- X.)-- COS 27r (Ym -- Yn) 

t t 

where 
, [cty'~ , / , i x ' ,  

ym=~ ~-~) m and X m = ~ ) m .  (12) 

The r.h.s, of (11) represents the displacement flow, i.e. uniform stream Wo~ into which the cascade is 
immersed. 

For the cascade under consideration with the additional f~ and a disturbances, the r.h.s, of the equation 
is simply modified to 

dy +. } ,3, 



where u ~  is a function of streamsheet thickness and blade blockage and Vn~ follows directly from 
equation (9) 

V ~ = - 2 ~ r  2 s in~ 

__ d / ) ~  

d~ 

Thus 

- dr "r sin ~ from equation (7). 

vn= = - ~ r 2 + constant.  (14) 

The constant may be evaluated by considering the velocity at the leading edge. If the whirl velocity at 
inlet to the continuous vortex distribution, or 'displacement flow' of Fig. 6, is V01 then 

vn~, = - ~ r 2 + const 

=V01 . 

Thus elsewhere within the blade row 

v ~  = - a ( r ~ - r ~ ) +  vo, (15) 

Thus once again the parameter f~(r 2 -  r~Z), shown in equation (1) to be associated entirely with coriolis 
forces, enters into our analysis as an additional disturbance due to the relative eddy 2f~ sin ~, Fig. I. 
It is extremely interesting to note this direct equivalence of coriolis forces in the rotating system to the 
relative eddy introduced into our stationary theoretical cascade model. 

Sufficient analysis has been provided here to explain the central principles. Solution of the Fredholm 
integral equation proceeds along similar lines to the conventional Martensen analysis. The remainder of 
this report is concerned with the presentation of a number of cases which have been computed. 

4. Comparison of Results. 

Results obtained from the numerical and transformation analyses are compared in Figs. 10 to 14. 
Slip factors for a range of centrifugal rotors are shown in Fig. 10. Blade profiles were calculated by the 

conformal transformation method for fixed values of circle eccentricity, ~1 and ~2, and consequently 
each point on the curves represents a different symmetrical profile. The range of aerofoils obtained for 
8-bladed rotors is shown in Fig. 3 and blade co-ordinates are given in Table 1. Blade thickness varies 
from approximately 18 to 30 per cent of chord but in all cases the slip factors predicted by the two methods 
agree well. Equally striking is the agreement between surface velocity distributions shown in Fig. 11. In 
this case, a conical rotor with eight symmetrical blades, semi-cone angle equal to 60 degrees, and radius 
ratio 0.6 was subjected to 20 degree prewhirl. 

Similar results have been obtained for cambered blades. Solutions have been computed for the eight 
bladed centrifugal rotor shown in Fig. 5 with the selection of cambered blades illustrated in Fig. 4. 
Corresponding blade co-ordinates are listed in Table 2. Velocity distributions and outlet angles are 
given in Figs. 12 to 14 and in all cases close agreement is obtained between the numerical and conformal 
transformation solutions. 

Results obtained from the numerical program for rotors of arbitrary geometry operating at design 
point have been compared with those from a National Engineering Laboratory program, based on the 
work of Railly 7. Velocity distributions obtained for two blade designs on the arbitrary streamsurface 
shown in Fig. 15 are plotted in Figs. 16 and 17. The distribution in Fig. 16 is for a constant streamsheet 



thickness whereas that in Fig. 17 is computed for a thickness ratio of 1:0-84. A similar comparison for 
an eight-bladed centrifugal rotor of radius ratio 1:2, subjected to a more extreme streamsheet thickness 
reduction of 1:0.66, is shown in Fig. 18. In all cases the two methods agree well, but the numerical program 
gives much better definition around the blade leading edge. 

Evidence of the validity of the numerical program for thin blade profiles is presented in Figs. 19 and 20. 
Fig. 19 shows two blade sections Of different thickness which have been used to compute approximations 
to the Weinig cascade 'lattice coefficient' for flat plate cascades. These values are plotted in Fig. 20 against 
the exact values given by Wislicenus s. For the two stagger angles considered, 2=  30 and 60 degrees, it 
is evident that as the blade thickness tends to zero fair agreement is obtained. 

The final set of numerical results is presented in Fig. 21. Velocity distributions and outlet angles are 
given for a seven bladed centrifugal log-spiral machine of spiral angle 50 degrees and radius ratio 1:2. 
The three distributions shown correspond to constant streamsheet thickness, a decrease in thickness of 
1:0"83, and an increase of 1 : 1.25. Although these results are not directly comparable with any other 
known solution, the general trend is consistent with the findings of Pollard and Horlock 9, who reported 
a decrease in deviation when an accelerating flow was introduced into a stationary cascade. It would 
appear that this effect could be used to advantage when designing annuli for mixed-flow pumps and fans. 

All the evidence presented suggests that the surface singularity numerical program developed at 
Newcastle University yields results which are consistent with other known solutions and it would appear 
that the program may now be used for practical design, bearing in mind that it provides only a frictionless 
potential flow solution to the problem of blade to blade flow. 
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TABLE I 

Blade  Prof i le  Co-ord ina tes .  

Co - ord ina t e s  wi th  N = 8, e = O. 1. 

chord 
from I.e. 

Blade half-thickness (~o chord) for R 1 / R  2 = 

0'2 0"4 0"6 0"8 

0 0 0 0 0 
1-25 2.83 4.40 4.72 2.99 
2.5 3.84 6.42 6.58 4.13 
5.0 5.05 8.84 8'82 5.60 
7.5 5.99 10.40 10-26 6.55 

10.0 6.69 11-59 11.21 7.34 
15.0 7.80 13.51 12.16 8.03 
20.0 8.84 14.16 12.35 8.39 
25.0 9.76 14.27 12.08 8-44 
30.0 10-57 13.95 11-52 8.28 
35-0 11-15 13.17 10.79 7.94 
40.0 11.39 12.09 9.93 7-47 
45.0 11.13 10.85 9.01 6.93 
50-0 10.35 9.57 8.05 6.31 
55.0 9.19 8.31 7.12 5.62 
60.0 7-88 7.10 6.14 4.91 
65-0 6.57 5.95 5.20 4"17 
70.0 5.34 4-87 4.25 3.44 
75'0 4.20 3.84 3'34 2'71 
80"0 3.14 2.87 2"48 2"00 
85.0 2.15 1.95 1.68 1.34 
90.0 1.25 1.05 0-95 0.75 
92.5 0.84 0.75 0"62 0.49 
95.0 0.48 0.42 0.35 0-26 
97-5 0.17 0.15 0.11 0.10 
98-75 0.06 0-05 0.05 0.03 

100 0 0 0 0 

Data in the tables have been interpolated graphically and are therefore of limited accuracy. Co- 
ordinates may be calculated to any required accuracy by reference to (4) and (5). 
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TABLE 2 

Co-ordinates with N = 8, e 1 = 0.04, R 1/R2 = 0.6. 

e z = 0"1 e 2 = 0"3 e2 = 0"5 

chord y Y Y Y Y Y 
from I.e. (lower) (upper) (lower) (upper) (lower) (upper) 

0 0 0 0 0 0 0 
1"25 - 2"16 3-04 - 1"61 4'48 - 1"25 6"81 

2"50 - 2-92 4"13 - 2"09 5"91 - 1"50 8"49 
5"00 - 3-67 5"51 - 2"22 7"91 - 0"96 10"96 
7"50 - 3'97 6"41 - 1"86 9"33 0"12 12-80 

10"0 - 4'02 7"03 - 1"29 10"43 1"40 14"26 
15"0 - 3"76 7"77 0"10 12"02 3'98 16"46 
20"0 - 3"25 8" 11 1"53 13"06 6'31 18"02 
25"0 - 2-65 8"21 2"87 13"75 8"31 19-15 
30"0 - 2"02 8"15 4"07 14-19 10"00 19"96 
35"0 - 1"40 7-98 5-13 14"42 11"41 20"50 
40'0 - 0"82 7"74 6"03 14-48 12'56 20"82 
45"0 - 0"28 7-43 6"77 14"40 13"46 20"93 
50-0 0-20 7'07 7"36 14"17 14-13 20-83 
55-0 0"63 6"66 7"78 13-79 14"55 20"52 
60"0 0'99 6"19 8-02 13'26 14"71 19"98 
65"0 1-27 5"67 8"08 12"56 14"59 19" 19 
70-0 1-48 5"09 7"93 11"67 14-16 18"10 
75"0 1"59 4"44 7'53 10"55 13"38 16"66 
80"0 1"59 3'72 6"86 9-17 12-18 14-81 
85"0 1"47 2"91 5-87 7"50 10"47 12-45 
90'0 1"19 2"02 4"48 5"46 8"10 9-40 
92"5 0"99 1-54 3"61 4'28 6"60 7'56 
95-0 0"73 1"04 2"59 2"98 4"82 5"42 
97-5 0-41 0-52 1'40 1'55 2-68 2"93 

98"75 0"22 0"26 0"73 0-79 1-43 1"53 

100.0 0.0 0-0 0"0 0 0 0 
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FIG. 2.1. ;g-plane, development of conical streamsurface. 
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FIG. 2. The transformations. 

15 



~ lnn=, ,  R I/R2= 0"2 

RI/ RZ=0"4 

R I/R2= 0.6 

RI/Rz= 0"8 

FIG. 3. Variation of blade profile with R1/R2, e=0.1, N=8 .  
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C E 2 = 0  

E 2 = 0.1 

E 2 =0"3 

E 2 =0-5 

FIG. 4. T h e  i n f l u e n c e  o f  e2 u p o n  c a m b e r .  N = 8, el = 0.04, R I/R2 = 0.6. 
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FIG. 5. Centrifugal rotor. N=8,  el =0.02, e2=0"5, R1/R2=0"6, W=90 °. 
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7.1 convergent duct 
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FIG. 7. Representation of flow in a convergent duct by source distributions in a parallel duct. 
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FIG. 15. Arbitrary streamsurface (used in Figs. 16 and 17). 

28 



1.0 

Vs/Vrt 

0,5 

0 

~ ' ~ ' r w - r D ' ¢ " ~  ~ r - w ' t - p - w ~  - "~.-. 

Outlet 

Railly 
Numerical 

N.E.L. / Rai l ly 

Numerical 

angles 

46.5 o 
46.20 

0.8 0-85 0.9 0"95 I'0 
P, IR 2 

Fro. 16. Velocity distribution for arbitrary mixed-flow rotor of constant streamsheet thickness. 



I-0 

v= lVr| 

0.5, 

0 

OuUet angles 

l:Lalll y 41. S ° 

Numerical 41- 4 e 

N . E . L . / R a i l i y  

Numerica I 

@ 

0,8 0'85 0-9 0.95 
R / R  z 

I'0 

FIG. 17. Velocity distribution for arbitrary mixed-flow rotor of variable streamsheet thickness. 
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FIG. 19. NACA four-digit profiles. 
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