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Summary 

A calculation method is described for unsteady, subsonic flow through an infinite, two-dimensional 
cascade of flat plate blades at zero mean incidence. The unsteady blade lift and moment, generated 
acoustic waves and shed vortex wakes can be calculated when the blades are subjected to bending or 
torsional vibration, incoming acoustic waves, or convected wake velocity perturbations. The results 
are in good agreement with those obtained by existing methods, and demands upon computer time and 
storage are slight. 

Measurements have been made of the acoustic waves generated by a single compressor rotor excited 
by a convected wake velocity perturbation, with the blades in both an unloaded and a loaded condition. 
Agreement between theory and experiment is good in the unloaded blade case, but the present theory is 
inadequate to deal with the extra sound sources introduced by blade steady loading, and underestimates 
the generated wave amplitude in this case. 
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1. Introduction 

1.1. General 

Throughout the early development of turbomachinery a designer's main preoccupation was the 
achievement of satisfactory aerodynamic performance. The sound generated by such machines represents 
a negligibly small energy loss, and if it was considered at all was regarded as a problem of relatively low 
importance. In more recent times the increasing size and range of application of turbomachines, particu- 
larly in the field of aerospace engineering, has led to a public exposure to noise which at least is unpleasant 
and at worst is actively harmful. Added to this are the dangers of acoustic fatigue of surrounding structures 
and damage to sensitive mechanisms nearby, with the result that noise reduction is now a leading priority 
in the further development of turbomachinery. 

A wide variety of acoustical problems is involved, including the generation of noise by the exhaust jet 
of an aero-engine, the mechanisms of sound production in rotating and stationary blade rows, the trans- 
mission and reflection of sound in ducts containing more blade rows and other obstacles, and the radiation 
of sound into free space from duct openings. The sound generated by blade rows is found generally to 
consist of two components, a white noise background of relatively low amplitude and superimposed upon 
this a number of large amplitude tones at certain discrete frequencies. White noise has its origins in 
random turbulence in the airflow through the turbomachine, non-periodic force fluctuations on solid 
bodies in the flow--which may be caused by vortex shedding, boundary layer pressure fluctuations, blade 
vibration or incoming flow perturbations--and non-periodic interactions in the flow field between 
externally introduced perturbations and those associated with the blade row itself. However, it is now 
known that much of what was once considered to be broad band noise consists of discrete tones closely 
spaced in the frequency spectrum, and this together with the large amplitude of some of the tones means 
that they are the more immediate problem. 

Discrete tones may be generated by one of a number of mechanisms, the nature of the sound source 
formed varying with the mechanism. Periodic displacement of fluid by the passage of blades generates 
sound which is monopole in character; fluctuating forces caused by vibration or regular flow disturbances 
are equivalent to dipole sound sources. Periodic interactions between perturbed quantities in the flow 
field, or between flow perturbations and blade thickness or loading, lead to the formation of a number of 
sources (Ref. (1)); in particular the interaction between fluctuating velocity components gives a quadrupole 
source field distributed throughout the flow (Ref. (2)). The distinction between broad-band noise and 
discrete tones is sometimes blurred, and large scale turbulence may give rise to peaks at discrete frequencies 
under suitable circumstances (Ref. (3)). 

The present study is confined to the generation of discrete frequency sound by fluctuating blade forces, 
and the reflection and transmission of sound waves by blade rows employing a similar mechanism. 
The problems of blade vibration and vortex wake shedding are considered as an adjunct. 

1.2. Previous Work 

Much early work on the generation of noise in turbomachines was based upon attempts to obtain 
empirical relationships between the intensity of the sound produced and design parameters such as blade 
tip speed, and upon qualitative suggestions for noise reduction. Lowson 4 made a large number of such 
suggestions; Nemec 5"6 investigated the effect of blade bevelling; Moravec 7 suggested the introduction 
of secondary air at the blade trailing edges to reduce the wake momentum deficit; Smith and House s 
obtained empirical equations based on measurements made on a complete engine. A series of rather more 
sophisticated prediction methods took the values of fluctuating lift and moment calculated by Kemp 
and Sears 9'1° for potential flow and viscous wake interactions in incompressible flow, and by treating 
the lift force as a single dipole source, calculated the sound produced by such interactions. This approach 
was used by Hetherington, 11 Nemec, Lowson, and Bragg and Bridge, ~2 who also made measurements 
on a single rotor compressor test rig. At about the same time Sharland 13 developed expressions for the 
prediction of broad-band noise generated by turbulence. 

A different approach to the problem was typified by the work of Tyler and Sofrin, ~4 who studied the 
permissible acoustic modes in annular and cylindrical ducts, and the conditions under which these 



propagate or decay. They also demonstrated that interaction between blade rows could result in rotating 
pressure patterns that would couple into propagating duct modes, whereas an isolated subsonic rotor 
would excite only decaying modes. No attempt was made to predict the amplitude of the sound generated 
by a particular configuration, however, and the analysis assumes zero mean flow in the duct. The theory 
of Tyler and Sofrin was developed by Griffiths, a5 who also considered the effect of random modulation 
of the pure tone, and Morfey, 16 who included in his analysis the effects of waves reflected from the duct 
opening. 

Later work has been primarily concerned with the solution of the equations of compressible flow 
through a blade row in order to calculate the amplitudes of sound waves generated, transmitted or 
reflected, the methods used differing widely in their choice of blade row models and mathematical 
techniqfies. Kaji and Okazaki 1~ obtained a solution by representing each blade by an unsteady distribution 
of pressure doublets, and using the condition that there must be no net upwash at the blade surface to 
derive an integral equation for the unknown doublet distribution function, given a known input upwash 
perturbation. A simplified analysis based on semi-actuator disc theory, and giving good agreement 
with the more exact method for small blade spacing, was given by the same authors. A similar method 
to that used by Kaji and Okazaki was given by Carta, 18 who did not, however, attempt a complete 
solution but only considered the phenomenon of acoustic resonance or cut-off Carta and Fanti 19 also 
gave a simplified physical explanation of this phenomenon, pointing out in particular that at resonance 
the aerodynamic damping and unsteady lift become zero. Mani 2° used the integral equation derived by 
Kaji and Okazaki, went some way towards a treatment of the kernel function singularities, and took as 
input perturbations the viscous wakes and potential flow field from an adjacent blade row. 

Solutions to the reflection and transmission problems using the Wiener-Hopf technique were derived 
by Mani and Horvay 21 and Koch. zz The first of these regarded the blades as semi-infinite in the direction 
of transmission in order to solve the reflection problem, and semi-infinite in the opposite direction to 
calculate the transmitted wave. Koch obtained rather more accurate results assuming finite blades and 
retaining some of the attenuated waveguide modes formed in the interblade space. The method of Mani 
and Horvay improves as the ratio of blade chord to acoustic wavelength is increased, but both methods 
are in good agreement with the results of Ref. (17). An alternative solution to the same problem, suitable 
when the ratio of blade chord to acoustic wavelength is small, was given by Amiet and Sears, 23 who used 
the method of matched asymptotic expansions. The blade force was calculated using quasi-steady 
Prandtl-Glauert  theory and the result used in an acoustic dipole calculation. Again agreement with the 
results of Ref. (17) is good, except close to the cut-off condition for the blade row. 

Whitehead 24 developed a calculation method applicable to the transmission and reflection problems, 
and to the generation of sound by vibration and incoming flow disturbances, based upon the work of 
Lane and Friedman. 25 This takes harmonic solutions to the reduced wave equation and superimposes 
these with respect to an unknown function of wavenumber to satisfy the conditions of zero upwash at 
the blade surfaces, and zero pressure jump off the blades. An integral equation for the unknown wave- 
number function is set up, and the acoustic and aerodynamic properties of the blade row are given in 
terms of this function. The results agree closely with those of Refs. (17) and (25). 

Approximate solutions to the generation problem using simplified blade row models were given by 
Mani, z6 and Benzakein and Kazin. 27,28 Mani represented the blades by a set of point forces, while 
Benzakein and Kazin used a rotating line vortex model. Measurements in support of Ref. (26) were 
carried out by Mani and Lipstein 29 on a single compressor rotor excited by the wakes from an array of 
cylindrical rods, and gave reasonable agreement with the theoretical predictions. 

1.3. Present Work 

The present study includes a theoretical and an experimental investigation into the problems of sound 
generation, transmission and reflection by a blade row. A calculation method is presented in Section 2 
for an infinite two-dimensional cascade of flat plate blades operating at zero mean incidence, in which 
the cascade is replaced by a series of continuous singularity distributions. Solutions of the flow equations 
for each of these are summed together to give a solution for the complete cascade. The method is to some 



extent similar to that of Ref. (17), in that basic solutions harmonic in the cascade direction are eventually 
summed together, but the approach used here leads to considerable mathematical simplification. Further- 
more, the numerical method used in the solution of the integral equation for the unknown blade loading 
distribution, which includes a treatment of the kernel function singularities, gives a small and rapid 
computer program with the economic advantages which this entails. 

In Section 3 details are given of experiments carried out on a single rotor compressor test rig, with the 
blade excitation provided by the wakes from a set of upstream gauzes. The blades were first run with 
zero steady loading, in order to check the prediction of the sound generated, given by the analysis of 
Section 2, then in a loaded condition to test the validity of the analysis when applied to this case. The 
results of this investigation are described in Section 4, and the conclusions of the study are summarised 
in Section 5. 

2. Theoretical Analysis 

2.1. Flow Model 

The cascade flow model used in this analysis is shown in Fig. 1. The following assumptions are made: 
(i) The system is two-dimensional. This means that bending vibration of a blade may be represented 

by translational motion of the equivalent two-dimensional aerofoil in a direction normal to the chord 
line, and that torsional blade vibration becomes simply rotation about a fixed axis. 

(ii) The blades are fiat plates of negligible thickness. 
(iii) Effects of viscosity are neglected. There are therefore no boundary layers on the blades and the 

flow follows the blade surface without stalling. 
(iv) The mean angle of incidence is zero. There is no steady blade loading and the mainstream flow 

passes through the cascade undeflected. 
(v) All perturbations from the uniform mean flow are small, so that the flow equations may be linearised 

and the principle of superposition may be applied to the solutions obtained. 
(vi) Events occurring at any particular blade are duplicated at all other blades, with a constant phase 

angle between each blade and its neighbour. This phase angle is an integral fraction of 2n. 
(vii) The unsteady blade loading at the trailing edge is finite. This is the statement of the Kut ta-  

Joukowski condition for unsteady flow. 
(viii) The flow is subsonic. 
(ix) The flow is isentropic. 

2.2. Basic Equations 

The linearised equations of momentum and continuity are 

and 

a +v =0, 

au Ou au 1 ap 
o-i+ u u  + + - o  Po ax 

av av vaV 1 ap 
at +UUx+ ay +poay-° '  

(1) 

where U and Vare the mean velocities in the x and y directions respectively; u and v are the corresponding 
unsteady velocity perturbations; Po and p are the mean and perturbation densities. 

The flow is assumed to be isentropic, so that 

where a is the velocity of sound. 

ap dp 



For harmonic space and time dependence the perturbation quantities may be written 

u 

v = exp i(¢ot + s x  + fly), (3) 

P 

in which a, ~ and fi are constant amplitudes and s and fl are wave numbers. The vorticity in the flow is 
given by 

Ov Ou 

Ox Oy 
= ~ exp i(09t + s x  + fly), 

= ic¢~ - iflfl. 

Using (2) and (3), equations (1) become 

(02 + Us  + Vfl) a2spo 

s /p  o (co + Us  + Vfl) 

f l /po 0 

and the condition for a non-trivial solution of (5) is 

aZ fl V fl) 

(09 + Us  + 

(4) 

= o,  (5) 

(09 + U s  + Vfl)[(09 + Us  + Vfl) 2 - a 2 ( s  2 + fl2)l = 0. 

Two different physical phenomena are embodied in (6) and these will be considered separately. 

(6) 

2 . 3 .  P r e s s u r e  W a v e s  

Equation (6) may be satisfied by setting 

(09 + U~z + Vfl)  2 - a 2 ( s  2 + f12) = O. 

Using this relationship in conjunction 

and 

This is therefore a case of irrotational 
have 

(7) 

with (4) and (5) it follows that for perturbations of this type 

= O, (8) 

(09 + Us  + V D p o  
- = (9)  

s 
--  = - -  

ft. (10) 

pressure perturbations. Solving (7) for s in terms of fl and 09, we 

v(09 + v f l )  + av/(09 + v f l )  2 - (a 2 - u2) f l  2 
s = a2 _ U2 , (11) 

and with the assumption that fl is real (which will be justified later) two possibilities arise depending 
upon the sign of the expression under the square root. 

(a) (09 + Vfl) 2 --  (a  2 --  U2)f l  2 > O. 

In this case s is real and disturbances propagate undiminished as acoustic waves. 

(b) (oJ -[- V f l )  2 - -  (a 2 + U 2 ) f l  2 < 0 .  

Here s has an imaginary part, so that disturbances vary exponentially in amplitude with x. The sign 
outside the square root is chosen to satisfy the physical condition that these disturbances must decay as 
Ixl ~ o0. 

6 



In both cases the two values of a correspond one to upstream going and the other to downstream going 

perturbations. 

2.4. Vortieity Wave 

Equation (6) may also be satisfied by writing 

09+ Ua + V fl = O. (12) 

It then follows from equations (5) that in this case 

= 0, (13) 

fl (14) 

and (, ') 
= i c, + T ~ (15) 

Solving (12) for a we have 

(09 + Vfi) (16) 
U 

so that for real fi, a is always real and disturbances of this type propagate as vorticity waves with no 
associated pressure fluctuations. It is a simple matter to show that the phase velocity of the vorticity 
wave is equal to the component of the mainstream velocity in the direction normal to the wave front, 
and therefore that this wave is simply a spatial vorticity distribution being convected downstream by the 

mainstream flow. 

2.5. Solution for a Vortex Row 

The next step in the derivation of a solution for the complete cascade is to consider the effect of a row 
of bound vortices arranged along the y-axis as shown in Fig. 2. The vortices fluctuate in strength with 
amplitude F and angular frequency 09, with a constant phase angle ~b between each vortex and its im- 
mediate neighbour. The strength of the ruth vortex is therefore V exp i(ogt + m~). It is shown in Appendix I 
that such a vortex row may be represented by a series of continuous wave-like sheets of vorticity moving 

in the y-direction, as follows : 

?(y) = ~(y) exp io9t = -- exp i cot + s Y~' (17) 
~ = - o o  S 

where s is the vortex spacing and 7 is the vortex strength per unit length along the y-axis. These sheets, 
all of which have the same amplitude F/s, will be called 'cascade-waves'. 

In order for the flow perturbations produced by a single cascade-wave to be compatible with the 
wave itself they must have the same wave-number in the y-direction, that is, 

f i  _ ~b - 2~___~__r ( 1 8 )  
s 

for pressure and vorticity fluctuations alike, where r is the index of the cascade-wave. This is the justification 
for the earlier assumption that fl is real. The wavenumbers a may now be calculated in terms of o9, 4~ 
and the mainstream flow velocity from equations (11) and (16) for the different types of flow perturbation. 

To calculate the magnitudes of the perturbations produced by the cascade-wave, the conditions to be 
satisfied by these perturbations must be examined- Upstream of the cascade wave only the upstream 
going pressure perturbation can exist, while downstream both the downstream going pressure perturbation 



t 

and the convected vorticity wave may be present. Quantities associated with these different phenomena 
will be distinguished by suffices as follows' 

Upstream pressure perturbation--suffix 1 
Downstream pressure perturbation--suffix 2 
Convected vorticity wave--suffix 3. 
The equation of continuity through the cascade-wave is then 

(U + uO(po + p~) = (U + uz + u3)(po + P2) 

since P3 = 0. Expanding, neglecting terms of second order in fluctuating quantities, and dividing through- 
out by exp i(o~t + fly) we have 

U/Sx + Utpo = Up2 + u2po + U3Po- 

Re-writing in terms of ~1, v2 and v3 using equations (2), (9), (10) and (14), 

0~ 1 - -  ( 6 0  -1- U ~  1 -+ Ni l )  v l  : - + U~ 2 + Vfl) v2 - -  (19) 

Secondly, the velocity jump in the y-direction as the cascade-wave is crossed must be equal to the 
strength of the wave itself, so that 

f;2 + f~3 - vl = F/s. (20) 

Finally, since the convected vorticity wave consists of vorticity which is continuously shed from the 
cascade-wave, the strengths of the two must be related. It is shown in Appendix II that this relationship 
is given by 

~oF 
= --i Us" (21) 

Using equation (15) this becomes 

//2) _ coF 
°~3 + ~3 v3 - Us" (22) 

Equations (19), (20) and (22) may now be solved for the three unknown velocity perturbations 01, 
~2 and ~3, giving: 

_ F l~2t ~ i2, COS 0 I 
v1'2 = s 2A[ -T-1 -T- sin0 + x / ~  2M2A] (23) 

and 

F 2 2 + /~2 sin 0 
V3 = 

s A 

where the upper sign in (23) refers to ~i, the lower to ~2, and 

o)c 

W = x / U  2 + V 2 
and 

c = a normalising length which later will coincide with the blade chord length, 

0 = t a n -  1 _V 
U' 

W 
12 

and 
A = 22 + 1~2 + 22/~ sin 0. 

(24) 



The fluctuating quantities ~ and a are calculated from the values for ~ using equations (9), (10) and (14). 
The total effect of the complete vortex row is now obtained by simply summing together the effects of 
all the constituent cascade waves : 

vl,2,a(t°tal) = ~ vl,2,3 exp i(o~t + ~l,2,ax + fly) (25) 
r =  - - o 0  

where 

Here any single value of the multiple suffix may be taken throughout. 
These expressions are equivalent to those derived by Kaji iv for the doublet row. 

2.6 Derivation of Upwash Integral Equation for Cascade 

Each chordal element dz of the cascade shown in Fig. 1 forms a vortex row, and may be described as 
a series of cascade waves of the form 

~(Y)= ~ F(z°)dZ°expi f (dp-  2~r)( t 
r= - oo s s Y - Yo) (26) 

for the element at z o. Here F(z) is the blade vorticity distribution, ~b the interblade phase angle, and z 
is a co-ordinate measured from the blade leading edge in the chordal direction. The induced upwash 
velocities normal to the chord at the point z on the reference blade are of the form 

F(zo) dzo 
(v'cos 0 - u'sinO)expi{cot + (~cos 0 + flsinO)(z - Zo) } 

S r = - o o  
(27) 

where u', are defined by 

l)' S 

and a, ~ are given by equations (23), (24), (10) and (14). If (z - Zo) < 0, the relevant velocities are those 
associated with the upstream pressure perturbation; if(z - Zo) > 0, those associated with the downstream 
pressure perturbation and convected vorticity wave must be taken. The total upwash w(z)exp (kot) 
induced by the whole cascade is evaluated by integration along the blade chord. Thus 

/ .  F(zo) oo 
W ( Z )  Jo  Z [(v~ cos 0 - u~_ sin 0) exp i{(~2 cos 0 + fl sin O)(z - zo) } 

S r = - - o o  

+ (v~ cos 0 - u~ sin 0) exp i{(~3 COS 0 + flsin O)(z - Zo)}[ dzo 

I :  F(z°) ~ (v] cos 0 - u] sin 0) exp i{(~1 cos 0 + fl sin O)(z - Zo) } dzo, + 
S r =  - - o o  ~ z  

(29) 

which is written as 

w(e) f~. W = Fw(~o)K( ~ - Zo) dzo, (30) 

9 



where 

CO r 

K(rl)  (sTc)  r ~ I(vl cos 0 - u 2 sin 0) exp i(6~ 2 

+ (v; cos 0 - u; sin 0) exp i(~a cos 0 + (31) 
and 

1 o0 
K(~I) - ( s / c ) ~ = _  ® (V'l cos 0 - ul sin 0) exp i(al cos 0 +/~ sin 0)(t/) 

F / W  

Equation (30) is the upwash integral equation for the unknown vorticity distribution Fw, and may be 
solved with a given input velocity perturbation (-w(2)) to satisfy the condition that there should be no 
net upwash at the blade surface. 

cos 0 +/~ sin 0)(r/) 

/~ sin 0)(r/)l for r / >  0 

for r / <  0, 

2.7. Input Upwash Velocities 

The five types of input perturbation used are the same as those considered by Whitehead. 24 They are 
briefly described here. 

(i) Bending vibration of the blade with velocity normal to the chord-line w b exp (io)t) gives 

w(2) = w b. (32) 

(ii) Torsional vibration about the leading edge with angular displacement 6 exp ( imt)  gives 

w(~) = W6(1 + i22). (33) 

(iii) A convected sinusoidal wake perturbation inducing an upwash velocity w w exp (loot) at the leading 
edge of the reference blade gives 

w(2) = - w w exp ( -  i22). (34) 

(iv) An upstream going acoustic wave incident upon the cascade from downstream gives an upwash 
velocity of the form 

w(2) = - w u exp {i(d~u cos 0 +/~u sin 0)2}. (35) 

(v) Similarly, for a downstream going acoustic wave 

w(2) = - w  d exp {i(c~ a cos 0 +/~a sin 0)2}. (36) 

In cases (iv) and (v) the wavenumbers e and fl must satisfy equation (11). 

2.8. Far Field Acoustic Waves 

A particular cascade wave excites acoustic perturbations in the flow which may propagate un- 
attenuated or decay exponentially away from the cascade, depending on its value of fl and therefore of r, 
{fl  = ( ~  - 2nr ) / s } .  Which alternative will apply in a given case is determined by the condition set out 
in Section 2.3. If decaying perturbations are produced the mode is said to be 'cut-off'. For  a particular 
set of cascade parameters there is a definite value of Irl above which all modes are cut off, exciting 
perturbations with increasing decay rates as Irl increases. As M approaches unity this limiting value of 
Ir[ becomes infinite. For  each value of r which gives a propagating mode, a pair of waves is-formed, one 
travelling upstream and the other downstrearrt The waves produced in such a mode by the chordal 
element dz  o at z o are of the form 

1 
Pl,2 = sF(zo)Pl,2 exp ( k o t  + i0tl,2(x -- Xo) -I- i f l (y - -  Y o ) ) d z o  (37) 

10 



where the suffices have the same meanings as before. From equation (9) 

Pl,2 (~ + Ucq,2 + Vfl)Po 
v' (38) 

1,2 fl 

and v'~,2 is given by equations (23) and (28). Combining these and integrating over the chord gives the 
total amplitudes of the waves in this mode: 

P1,2 1 (2 + o2x, 2 cos 0 + ]~ sin 0)(' 1 
poW2 - (s/c)Vl' ,2 fl 1~ o Fw(£'o) exp { --(i6~1, 2 COS 0 + fl sin 0)~o} d~o (39) 

2.9. Lift and Moment 

Whitehead 3° has shown that the lift force acting on a blade is given by 

; F = - poW F(zo) dz o 
o 

which may be re-written as 

CL - F f j  p o W 2 C  --  - -  Fw(Z O) d~o. (40) 

Although this expression is derived in Ref. (30) for the incompressible case no alteration is necessary for 
application here. Similarly the moment acting about the leading edge is 

i M = - p o  W zoF(zo) dz o 

so that 

M f. 1 
CM . . . .  J ~oFw(2o) d~ o. (41) 

PO W 2 c 2  0 

2.10. Shed Vortex Sheet 

The vortex F(zo)exp (imt)dz o sheds, in a time interval 6t at t = t o, a free vortex of strength 
- icoF(zo) exp (icoto) dz o fit. The sheet of which this vortex forms a part, and which is convected at main- 
stream velocity W, is therefore of strength 

= imF(zo) exp (imto) dz o 6t 
W &  

Writing 

gives 

t o = t  
(Z -- ZO) 

W 

( = imF(z°) exp ( i°gz°/W) dZ° exp iogt - --i~) 

and integrating over the chord, the total amplitude of the sheet is given by 

( - i2 Fw(~o) exp (i2~,o) d~o. 
W 

(42) 

11 



2.11. Solution of the Upwash Integral Equation 

The kernel function K(~ - 80) of equation (30) contains two different types of infinite series, one 
corresponding to the convected vorticity wave and the other to the irrotational pressure perturbation. 
The vorticity wave series may be summed analytically, and it is shown in Appendix III that the result of 
this summation is given by 

~, (v~ cos 0 - u~ sin 0) exp {(ic23 cos 0 + i/~ sin 0)(q)} 
r = - - o o  

2 s sinh (2s/c cos 0) 

4Csin2 + ~  sinO + s i n h  2 ~cCOSO 

(43) 

The remaining series are summed numerically, their convergence being assured by the exponential 
behaviour of the higher order terms. 

The numerical method used in the solution of the integral equation follows closely that given by 
Whitehead 3° for the incompressible case. The following co-ordinate transformation is made: 

~'o = ½(1 - cos ~) 
and (44) 

= ½(1 - cose) 

and substitution in equation (30) gives 

f ~ FwK(½ cos ~O - ½ cos e)½ sin~0 &b = 
0 

w(½(1 - cos e)) 

W 
(45) 

The function Fw will be specified by its values at n points, given by 

zcl 
n 

(l = 0, 1 . . . . .  (n - 1)). 

The value of Fw at the trailing edge, when l = n, is indeterminate, since it is always multiplied by sin ~, 
which is zero at this point. Equation (45) may therefore be satisfied at n points, and these will be defined by 

rc(2m + 1) 
g - -  

2n 
(m = 0, 1 , . . . , ( n  - 1)). 

These values of e lie midway between the values of ¢ at which Fw is specified. 
A difficulty arises in the numerical evaluation of the integral in equation (45), owing to the singular 

behaviour of the kernel function K(q) when q = 0. The singularities are of two types, one behaving like 
{1 - M 2 exp (iM22q/1 - MZ)}/2/tq and the other like f (q) log  Iq] when q is small, where f (q)  is a well 
behaved function. The extraction of these singularities and the determination off(q)  are carried out in 
Appendix IV. Whitehead 3° has shown that except for the logarithmic term the integration may be per- 
formed using the trapezoidal rule, while the logarithmic term itself may be treated by means of the 
following formula : 

g(~)log½lcos~9 cosel de 2n , nl ~ ,  1 - - g n l o g e 2 +  r C ° S r e c ° s - -  , (46) 
0 n I r = l  

where ~'t"-- o denotes a summation in which the first and last terms are given half weight, and ~'r"-- 1 a 
summation in which the last term only has half weight. Writing the kernel function as 

K(q) = K'(q) + f(q) log Iql (47) 
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and carrying out the whole integration in this way, we have 

~, [- ,[1 r~l 1 zc2m + 1 / /1 rcl 1 
I K I - c o s - - -  cos ,=ok ~2 n 2 ~ I  - 2 f / 2 C ° S n  

x log, 2 + ~ '  1 cos rcr(2m + 1) 
~=1 r 2n 

= w[½{1 - cos (~2m + 1)/2n}] 

W 

7r2m + 1 t 
cos ~ ]  

7rrl;] [~_~sin_~Fw] cos -~--)j x k zn 

(48) 

In this equation Fw symbolises five sets of unknown values, corresponding to the five different input 
upwash velocities. Distinguishing between these by writing 

Fw = ~Fwb, f F w , , ~ F w w , ~ F w . , ~ F w a ,  (49) 

the equation may be written in matrix form as 

K E  = _U (50) 
where K is an n × n matrix with the element in the ruth row and /th column given by the first term in 
square brackets in equation (48); _IS is an n × 5 matrix with the/ th row given by 

zc sin ~I IFwb, Fw~, Fww, Fw~, Fwal~n n 

and _U is an n × 5 matrix whose ruth row is 

11, 1 + i2L - exp ( -  i2~,), - exp {i(~ cos 0 + / ~  sin 0)~}, - exp {i(~ a cos 0 +/~a sin 0)~}[ 

where 

~( rc2m + 1/ 
~ =  1 - c o s - - - - - ~ n  ]. 

The solution of equation (50) is then 

__F = K -  ~ U (51) 

2.12. Numerical Evaluation of Acoustic Wave Amplitudes, Lift and Moment Coefficients, anti Shed Wakes 

Equation (39) for the acoustic wave amplitudes may be written 

P1,2 fo l 
p o W 2  - VI,2(Zo)I"w(Zo) d2o (52) 

where 

1 , ( 2 + ~ a , 2 c o s 0 + l ~ s i n 0 )  exp{_(ial,2COS 0+/~sin0)2o}" (53) 
v~,2(~o) - (s/c) Vl,2 p 

Integrating by the trapezoidal rule, as in the previous section, we have 

Pl,2 _ ~,  V1,2 1 1 -  cos F w ~ s i n - - - ,  (54) 
Po W2 z=o n n 

The five different input perturbations are accommodated by means of a device similar to that used for Fw, 
a set of pressure coefficients being defined as follows: 

-'- - -~P1 Ww p wu w,l I E 2 wb 2b, ~P1 ~ , - W  1,2w' vP~.~u, ~P~,2~. (55) 
Po W2 ' ' 
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An identical method  is used for the lift and m o m e n t  coefficients and the shed wakes. Equat ion (40) for the 
lift gives 

" 1 n l  n 
F - - Z '  Fw~ sin - -  - ,  (56) 

Po Wzc l = O  n n 

with a set of  lift coefficients defined by 

_ Wb C L ~ , ~ C L w , ~ C L . , ~ C L a .  (57) F ~ CLb, 6 Ww w, w d 
poW2c 

F r o m  equat ion (41) for the m o m e n t  

M _ ~ '  Fw 1 1 - cos ~ s i n - -  - (58) 
PO W2c2 / = 0  n n 

and 

M 

and from equat ion (42) for the shed vortex sheet 

" ( rcl) 1 . rtlrc 
( i2 ~ ' F  w exp i~ 1 - cos n n n - -  = - -  ~ s i n  - -  - -  

W / = o  

and 

- -  w = ~ ~ ' '  V ~"' V ~ " 

Equat ions (54), (56), (58) and (60) may be collected together  and written in matr ix  form as 

where 

C = 

X is a 5 × n matr ix  whose / th  column 

C = XF 

P l b  

P~b 

CLb 

CMb 

(b 

is 

cos )) 
- 1  

-i2exp@(1-cos ) 

PI~ PIW Pt,, Pla 

Pz,~ P2w 

CL~ 

Substituting for F from equat ion (51) gives 

C = XK-1U.  

(59) 

(60) 

(61) 

(62) 

(63) 
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The required output matrix C may be calculated from this expression, since the matrices X, K and __U 
are all known. 

3. Experiments 

3.1. Introduction 

The experiments described in this Section were devised with the following objectives in mind : 
(i) To test predictions of the sound generated by a blade row given by the analysis of Section 2. 
(ii) To determine the extent to which these predictions are valid when the blades are at incidence, and 

consequently have finite steady loading. 
Certain features of a suitable test rig were therefore already established: 
(i) The blade loading had to be variable over a wide range, down to and including the unloaded condi- 

tion, and the blades had to be capable of efficient operation over this range. 
(ii) The flow had to be closely two-dimensional. 
(iii) A means of introducing a suitable perturbation into the flow had to be included, in order to excite 

the acoustic response. 
The chosen compromise consists of a low camber, high hub/tip ratio compressor-rotor running in a 

parallel walled annular duct. Sound waves in such a duct propagate in spiralling paths, but if radial 
effects are sufficiently small they may be regarded as two-dimensional. (This point is discussed further in 
Section 4.) Independently variable air inlet velocity and rotor speed enable the blade loading to be varied. 
A flow perturbation of the convected wake type is used, as this may easily be introduced by means of 
upstream obstacles, and in addition represents an important source of sound in practical turbomachines. 

The details of this arrangement are described in the following sections. 

3.2. Description of Apparatus--Air Supply 

Apart from the test section itself the whole of the apparatus is concerned with the delivery of a variable 
flow-rate, quiet air supply to the rotor annulus. The overall layout is shown in Fig. 3. 

Air enters the system through a Burgess 14 H silencer, which offers negligible resistance at the flow rates 
used in the experiments and which gives a sound attenuation of 50-55 dB in the frequency range of 
interest. The silencer discharges into a 849.5 litre (30 cu It) settling chamber lined, as are the other settling 
chambers in the system, with Perfonit Satellite 21 1.9 cm (3 inch) wood-fibre acoustic tiling. 

Following the settling chamber is a 38 cm (15 inch) Blackman centrifugal fan, with backward curved 
blades, which is capable of delivering 85 m3/min (3000 cu ft/min) of air against a head of 15.2 cm (6 
inches) of water. This is driven by a 5-6 kW (7-5 hp) electric motor coupled with a Wallwork variable 
speed drive unit, giving continuously controllable fan speed over a range of 5 : 1. A diffuser of area ratio 
4:1 links the fan to a second settling chamber of the same type as before, reducing the air velocity to 
3 m/see (10 ft/sec) at a flow rate of 85 m3/min (3000 cu ft/min) before entry to the chamber. The diffuser 
contains three horizontal and three vertical splitters. The flow at outlet from the fan is poorly distributed 
and a honeycomb is situated in the diffuser inlet in order to achieve acceptable uniformity. 

Leaving the settling chamber the flow enters a Burgess 16 L silencer, again of negligible resistance at the 
flow rates used. The background noise level at outlet from this silencer was measured using a 1.27 cm. 
(½ inch) Bruel and Kjoer condenser microphone fitted with a nose cone, mounted in the outlet plane and 
coupled to a Bruel and Kjoer 2203 sound level meter and 1613 octave filter set. Octave spectra are shown 
in Fig. 4. The frequency range of particular interest in the experiments was 400-800 Hz, and it will be 
noted that the system does not achieve its best attenuation until frequencies higher than 1000 Hz are 
used. Experiments planned in a higher frequency range or the use of silencers more effective at low 
frequencies therefore suggest themselves as possible modifications in future work of this type. 

A third and final settling chamber follows the silencer, and from here the flow enters a smooth contrac- 
tion which leads to the test section. The contraction contains a nose cone which together with the contrac- 
tion itself ultimately forms an annulus of the same dimensions as the rotor duct. The nose cone is supported 
by two cross pieces bolted to the settling chamber wall, so that disturbances introduced into the flow are 
smoothed by the subsequent acceleration. The total area ratio of contraction and nose cone is 5.6 : 1. 
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The entire apparatus is contained in a room whose walls and ceiling are lined with Treetex Slotac 
1.9 cm (3 inch) wood-fibre acoustic panelling, mounted on wooden battens. 

3.3. Description of Apparatus--Test Section 

3.3.1. Blade-wake geometry. It is shown in Section 2 that when a blade row operates in a suitably 
perturbed flow a number of propagating acoustic wave pairs may be formed, depending upon the inter- 
blade phase angle and frequency of the disturbance, and the blade-relative Mach number of the flow. The 
object of the blade-wake structure used in this apparatus is to ensure that only one such wave pair is 
formed, all other modes being cut-off. Measurements are thereby simplified considerably. 

To begin with, the perturbation introduced into the flow takes the form of a velocity fluctuation 
sinusoidal in the circumferential direction, superimposed on the main-stream velocity, so that in a 
rotor-fixed reference frame each blade encounters a disturbance at wake passing frequency only, with no 
higher harmonics. Secondly, there are 24 complete periods of this fluctuation in one circuit of the annulus, 
and 23 rotor blades, giving an interblade phase angle of - 2n/23 radians. If flow conditions are taken to be 
representative at blade mid-span, and if the main-stream flow is axial in a stationary reference frame, 
then the frequency parameter in a blade fixed frame is given by 

coc Nwc  sin 0 
2 = W -  Ro (64) 

where N w -- number of wakes, R o = duct radius at the blade mid-height, and the remaining symbols 
have their former meanings. In the experiments c/R o = 0-286, 0 is always between 26 and 33 degrees and 
the maximum blade-relative Mach number achievable is 0-13. Applying these figures to the cut-off 
condition of Section 2.3, it is easily shown that only the r = 0 mode can possibly propagate under these 
circumstances. Furthermore, calculation of the exponential decay term contained in the x-direction 
wavenumber of equation (11) for the next mode in the series, (r = - 1), gives the decay rate of perturbations 
in this mode. At a blade-relative roach number of 0.13 this is approximately 50 dB per chordal distance 
measured axially away from the blade row. Perturbations in other modes decay at even higher rates, so 
that all modes except that for which r = 0 may be neglected. In a stationary reference frame the observed 
effect is then that of a single propagating wave at blade passing frequency. 

Another way of looking at this situation is in terms of the interaction pattern model used by Tyler and 
Sofrin. 14 The 23 blade-24 sinusoidal wake configuration gives rise to a one-lobed interaction pattern 
rotating at 23 times rotor speed, and a series of multi-lobed patterns rotating at speeds such that the 
observed frequency in a stationary reference frame is blade passing frequency. Only the one-lobed pattern 
rotates at a speed high enough for propagation to occur, which leads to the same result as before. 

3.3.2. Test section--construction. The construction of the test section is illustrated in Fig. 5. Many of the 
details are given in the figure and will not be described here. 

To obviate the need for support struts, with their disturbing effect upon the flow, the entire hub and 
rotor assembly is overhung from the outlet end. The disadvantage of this type of assembly is its freedom to 
vibrate, particularly if resonating to the rotary motion of the shaft, and the massive hub mounting shown 
in the figure was designed to raise the lowest natural frequency of the assembly to a safe level. 

The rotor carries 23 blades formed in fibre-glass reinforced epoxy resin, of section 10 C5/20 C50, chord 
3.81 cm (1.5 inches) and aspect ratio unity. The hub/tip ratio is 0.75, space/chord ratio 0.96 at blade mid- 
span and the blades are mounted at a stagger angle of 34 degrees. Cascade data given in Ref. (31) suggests 
that such a blade row will run unloaded without encountering negative stall, the chord-based blade- 
relative Reynolds numbers used in the experiments being approximately l0 s . The rotor shaft is driven by 
a 1.5 kW (2 hp) electric motor supplied from an A.C./D.C. converter/controller: transmission is by 
rubber V-belt. 

Microphones and probes may be inserted into the flow through a series of 1.27 cm (½ inch) holes 
drilled in the outer annulus wall and spaced axially at 15.24 cm (6 inch) intervals. At each of these positions 
a steel block drilled with a concentric 1.27 cm (½ inch) hole is attached to the casing. Further holes in these 
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blocks, drilled normal to the axis of the central hole, tapped and fitted with grub screws, provide a means 
of securing instruments in a fixed position. 

The wake perturbation is introduced into the flow by means of 24 equally spaced, 1.27 cm (½ inch) wide 
strips of wire gauze, mounted radially between wooden rings and located as shown in Fig. 5. The gauze is 
woven from 38 SWG stainless steel wire with 50 meshes per 2.54 cm (inch), giving a screening area of 
49 per cent. The determination of the wake profile is described in Section 3.5. 

3.4. Instrumentation 

The main-stream flow velocity and direction are measured by means of a 3.2 mm (~ inch) diameter 
cylindrical three hole probe, calibrated before use against a standard N.P.L. probe. This is located in a 
bush, which is in turn inserted into one of the instrument mounting blocks already described, as shown in 
Fig. 6. A yaw-meter is bolted to the block, and the probe is clamped in thus so that its holes are at blade 
mid-height. The zero angle of the yaw-meter is determined by prior measurement in a calibration tunnel 
with an accurately known flow direction, followed by alignment of the assembly in the same position 
relative to the axis of the test section. Pressure differences registered by the probe are measured on a 
sloping multi-tube manometer containing silicon oil, and inclined at 30 degrees to the horizontal. 

The blade passing frequency (and hence rotor speed) is measured by means of a toothed disc locked to 
the rotor shaft outboard of the drive pulley, with 23 projections evenly spaced around its circumference. 
The passage of the projections activates a Dawe 3532A electromagnetic pick-up fixed to the test-section 
casing, feeding its signal via an impedance transformer to a Racal counter. The counter therefore gives a 

direct reading of blade passing frequency. 
Measurements of acoustic wave amplitudes are made by means of a Bruel and Kjoer 1.27 cm (½ inch) 

condenser microphone fitted with a cathode follower and coupled to a Bruel and Kjoer type 2107 frequency 
analyser. The microphone is located in one of the instrument mounting blocks, with its face flush with the 
outer annulus wall. A visual check on the microphone signal is provided by means of a cathode ray oscillo- 
scope, receiving the output from the frequency analyser. 

3.5. Preliminary Measurements 

3.5.1. Rotor stage characteristic. In determining the rotor characteristic a full range of operating 
conditions was spanned by first varying the rotor speed relative to the air supply rate, then by varying the 
blockage at the annulus outlet by means of wooden shutters clamped to the hub support structure. The 
pressure rise across the rotor was registered using 1.5 mm (~6 inch) static tappings drilled in 1.27 cm (½ inch) 
rods, which were inserted in the instrument blocks immediately upstream and downstream of the blades. 
Flow velocities and directions were given by the three hole probe already described, situated for the 
purpose 23 cm (9 inches) downstream of the rotor, and the blade speed by the magnetic pick-up and 
counter. 

At each operating point the axial flow velocity Cx was determined from the absolute flow velocity and 
angle relative to the axial direction, and the blade speed U b, at mid-span, from the rotor speed and mean 
duct radius Ro. The pressures at the static tappings were displayed on the multi-tube manometer. 

The complete characteristic is shown in Fig. 7. 

3.5.2. Wake perturbations. It has already been stated that the wake perturbation downstream of the 
gauzes takes the form of a circumferentially sinusoidal velocity profile superimposed upon the main- 
stream flow. This was verified in an experiment which included a determination of the profile amplitude 
and axial decay rate. 

The rotor assembly and duct casing were removed and the contraction outlet, complete with gauzes, 
was fitted with a false annular duct of the same dimensions as the test section. Slots 3 mm (~ inch) wide 
and subtending an angle of 32 degrees at the duct axis were cut in the outer casing, spaced axially at 
2.54 cm (1 inch) intervals. A traverse gear carrying the three hole probe was mounted on rails so that the 
probe could be inserted through any one of the slots and traversed circumferentially. Each gauze occupies 
an angle range of 15 degrees, so the probe could be traversed through two complete periods of the wake 
profile. 
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A number of traverses was made at various air supply rates and axial stations, with the probe holes 
situated at annulus mid-height. It was found that the wake velocity profiles, expressed as a percentage 
perturbation about the mean, were independent of the mean velocity and were very closely sinusoidal. A 
typical result is shown in Fig. 8. The profile amplitudes were plotted against the downstream distance 
from the gauzes of the station at which they were measured, giving the decay curve of Fig 9. A calculated 
decay curve based upon the two-dimensional mixing length theory of Schlichting a2 is also shown in the 
figure, and the actual decay rate is clearly rather higher than would be expected on this basis. The reason 
for this is not clear. Tangential velocity components introduced by the decay of the wake profile are small 
and were neglected. 

During this experiment a number of radial traverses were made with the probe at varying axial and 
circumferential locations, verifying that radial and boundary layer effects were negligible. 

3.6. Acoustic Experiments 

3.6.1. Un••aded b•ading. This experiment was designed t• test the predicti•ns •f ac•ustic wave amp•itude 
given by the analysis of Section 2. Measurements were made on the downstream-going pressure wave 
produced by the rotor when excited by the gauze wake velocity perturbation. 

The apparatus was set up as described in the foregoing sections, with the three hole probe situated 
23 cm (9 inches) downstream of the rotor, its holes at annulus mid-height. Measurements were made over 
the widest achievable range of blade-relative Mach number by varying the rotor speed and air supply rate. 
For each change of Mach number the unloaded condition was found by setting the probe yaw angle to 
zero and noting the point at which the flow emerged axially from the rotor; there was then no transfer of 
tangential momentum to the flow and consequently no steady tangential blade force. Viscous effects 
would lead to a small axial force component and a pressure drop across the rotor, but this was ignored. 
At each point the barometric pressure was recorded, and the flow temperature measured by means of a 
thermometer inserted at the duct outlet, to enable the air density (Po) and sound-speed (a) to be calculated. 
Flow velocities were then derived from the reading of the multi-tube manometer, and the blade speed 
measured using the magnetic pick-up and counter as before. 

It was found that the relative outlet flow angle tan-  ~ (Ub/C~) , where U b is the blade speed and C x the 
axial flow velocity, lay always in the range 26.0 to 27.0 degrees. On this basis the flow angle and theoretical 
fiat plate stagger angle 0, used in the analysis, was taken to be 26.5 degrees. This is equivalent to the 
assumption that the velocity triangles (see Fig. 10) scale linearly with the flow velocity, and that the 
frequency parameter is constant and given by equation (64). Moreover, since the interblade phase angle 
is predetermined by the blade-wake structure, as described in Section 3.3.1, the only variable parameter 
affecting sound generation is the blade-relative Mach number. The input upwash velocity normal to the 
theoretical aerofoil surface can also be determined, since this is given by 

Ww _ ACx sin 0 cos 0 (65) 
W C~ 

where ACx is the amplitude of the wake velocity perturbation and the remaining symbols have their 
former meanings. The value of ACx/C x was obtained from Fig. 9 and gave ww/W = 5.0 per cent for this 
experiment. 

Measurements of the pressure wave amplitudes were made using the Bruel and Kjoer microphone and 
frequency analyser already described. The microphone signal contained background broad-band noise, 
and was passed through a filter incorporated in the frequency analyser which gave a 6 per cent bandwidth 
at the 3 dB points when centred on blade passing frequency. The rotor speed was stable to within 0.2 per 
cent of its time-mean value, so the blade passing frequency was in no danger of passing outside the filter 
bandwidth. The frequency analyser gave a meter reading of the sound pressure level in dB relative to 
0.0002 dyne/sq cm, from which the acoustic wave amplitude could be calculated. Low frequency 
unsteadiness in the flow gave rise to some amplitude modulation of the signal, which was counteracted 
by using a meter with a heavily damped motion, thereby averaging out the side-band components. The 
origin of this effect is discussed by Barry and Moore in Ref. (33). 
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Measurement of the downstream-going wave amplitude was further complicated by the presence of an 
additional wave travelling in the opposite direction, reflected from the duct outlet. It is shown in Appendix 
V that the effect of such a combination is the formation of an axial amplitude distribution with successive 
maxima and minima, where the distance between any adjacent pair of these is a function of the axial 
wavenumbers of the constituent waves. Also, the amplitude of the incident wave is the mean of the maxi- 
mum and minimum values, and the amplitude of the reflected wave is one half of the difference between 
the two. For each operating condition, therefore, the sound pressure level was measured at each of the 
axially spaced instrument mounting stations, enabling the amplitude distribution to be plotted and its 
maxima, minima, and wavelength to be determined. The amplitude of the downstream-going wave and the 
ratio of reflected to incident wave amplitudes could then be calculated. These ratios, which are the reflec- 
tion coefficients for the duct opening, are presented in Fig. 11 ; the effect of the reflected wave on the rotor 
excitation is discussed in Section 4. 

3.6.2. Loaded blading. Two further experiments were performed with the rotor blades in a steadily 
loaded condition, in order to test the validity of the theoretical analysis when the condition of zero mean 
incidence is disregarded. The experimental procedure was the same as in the unloaded blading case, but it 
was necessary to regard the flow geometry in a slightly different way, because the main-stream flow was no 
longer uniform. Since the downstream-going acoustic wave was the object of the investigation, the most 
obvious approach was to use the outlet flow relative to the rotor as a basis for the determination of blade- 
relative Mach number, frequency parameter and equivalent theoretical stagger angle 0, and this is the 

course that was followed. 
Measurements were made at two different rotor loading conditions, shown on the characteristic of Fig. 

7, corresponding to Ap/½PoU~ = 0.625 and 0.805. These were established by presetting the yaw-meter 
angle and holding the absolute outlet flow angle constant. The velocity triangles, which are shown in 
Fig. 10, were again found to scale linearly with flow velocity, the angle 0 lying in the ranges 31 to 32 
and 32 to 33 degrees respectively. The input upwash perturbation was then determined using equation (65), 

as before. 

• 3.6.3. Control experiments. The three experiments described above were repeated in the absence of an 
input wake perturbation, in order to confirm that the physical origin of the measured acoustic waves had 
been assumed correctly. The procedure was in every way similar to that already followed, except that the 

wake generating gauzes were removed. 

3.7. Experimental Accuracy 

The error associated with the main-stream velocity measurements, which were made using the sloping 
multi-tube manometer, depended to some extent upon the magnitude of the measured velocity itself. At 
low velocities the manometer levels were very steady, and the accuracy of the measurement was limited by 
the manometer itself. The worst error in this range was probably about 1.3 mm (0.05 inches) of silicon oil, 
measured on the sloping scale, representing for example at cut-off in the highly loaded case an error of 
approximately 3 per cent in the measured dynamic head. At high velocities unsteadiness in the manometer 
levels became the principal source of inaccuracy, but the greater magnitude of the measured quantities 
meant that the relative error introduced was no worse than the 3 per cent estimated for the low velocity 
case. 

The combination of three hole probe and manometer was sensitive to changes in yaw angle of 5 minutes, 
a change which could easily be measured on the vernier yaw-meter. The greatest error here, however, was 
associated with the alignment of the yaw-meter relative to the duct axis, which was accurate only to about 
1 degree. This was of the same order as the measured variation in the flow angle 0, and was regarded as 
acceptable. 

Errors in the measurement of blade passing frequency and rotor speed were negligible, being substanti- 
ally less than the fluctuation of the rotor speed itself. This in turn amounted to a mere 0.2 per cent variation. 

By far the largest source of error in the measurements of acoustic wave amplitude was the fluctuation 
in this quantity introduced by flow unsteadiness, mentioned in Section 3.6.1. The meter incorporated in the 
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frequency analyser was heavily damped, so that this random amplitude modulation could be largely 
averaged out of the signal, and it was estimated that the meter could be read to within +½ dB. This 
represents an error of 4-6 per cent in the measured amplitude. 

4. Results and Discussion 

4.1. Computer Program and Theoretical Results 

The calculation method described in Section 2 has been programmed in ASA Fortran for the TITAN 
computer in the Cambridge University Mathematical Laboratory. The program takes input values of 
space-chord ratio (SIC), stagger (0), frequency parameter (2), interblade phase angle (4~) and Mach number 
(M) and produces as output the elements of the matrix _C. On TITAN the time taken to compute one set of 
coefficients is approximately 0-1 n 2 seconds, where n is the number of points at which the upwash integral 
equation is satisfied, and the program requires 8 K of core store. 

The accuracy of the numerical integration involved in the calculation depends heavily upon the chosen 
value of n. By repeating a calculation with successively higher values of n, and observing the behaviour 
of the calculated coefficients, the minimum n required for a desired degree of accuracy can be determined. 
Some examples of this process for the coefficient CLb, which is typical of the elements of matrix _C, and for a 
variety of physical conditions, are shown in Table 1. The main inferences are summarised here: 

(a) For incompressible flow through a low stagger (0 < 60 degrees) cascade of moderate space-chord 
ratio (S/C > 1), with a frequency parameter of about 7 or less, a value of n = 5 is sufficient to ensure 
convergence to four places of decimals. 

(b) At high Mach numbers, the other conditions described above being retained, the required value of 
n is increased to 5. Examples are given for M = 0-5 and 0-8. 

(c) For  cascades with high stagger and large spacing, or low stagger and small spacing, provided that 
the Mach number and frequency parameter are low, n = 5 is still sufficient. 

(d) When high stagger (0 > 60 degrees) is combined with small spacing (SIC < 0.5) convergence 
deteriorates markedly. For S/C = 0.5 and 0 = 60 degrees a value of n = 11 is required, and with S/C = 
0.5, 0 = 75 degrees, convergence is poor up to n = 13. 

(e) In cases of high frequency parameter (2 > 8) convergence deteriorates, and with ,t = 10, as in the 
examples given, is poor up to n = 15. 

The correctness of the calculation method and program have been checked by comparison with the 
results of Whitehead, 24'3° Lane and Friedman 25 and Kaji and Okazaki. iv In Table 2 lift and moment 
coefficients for an incompressible flow calculated by the present program are compared with results from 
Refs. (24) and (30). Agreement is excellent, particularly between the present method and Ref. (30), which 
share the same numerical computation procedure in this case. A comparison between some of the co- 
efficients calculated for a compressible flow and those given in Refs. (24) and (25) is shown in Table 3. Here 
the value of n = 3 used by Whitehead and by Lane and Friedman is rather low for the numerical methods 
used in the present analysis, but agreement is very good when a value of n = 5 is used. In these tables 
the coefficients as defined in Section 2 have been divided by a factor of n in order to conform to the 
definitions used by the other authors. 

Fig. 12 shows a comparison with results given by Kaji and Okazaki for a cascade excited by an upstream 
going incident acoustic wave, Ref. (17). There is excellent agreement at all points. 

4.2. Comparison of Experimental Results with Theoretical Predictions 

4.2.l. Unloaded blades. The results of the experiment performed on the unloaded rotor, together with 
the corresponding theoretical prediction, are shown in Fig. 13. The cut-off Mach number and acoustic 
wave amplitudes beyond cut-off are well predicted, but the range of Mach number obtainable with the 
present apparatus is small, and it is impossible to say whether or not the agreement will survive extension 
to higher speeds. The measurements made in the absence of the perturbation gauzes indicate that isolated 
rotor effects, such as the detection of blade wakes by the microphones, are negligibly small. The theoretical 
analysis predicts that at cut-off the acoustic wave appears with infinite amplitude, though Whitehead z4 
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has shown that in this condition the energy propagating away from the rotor remains finite. In practice the 
cut-off point is much less clearly defined, and appreciable sound amplitudes are detected before the 
predicted cut-off point is reached, when the decay rate of this particular mode becomes small. The low 
sound levels observed well below cut-off are probably background noise. 

Two further departures from ideal conditions must be mentioned here. It is assumed in the theoretical 
analysis that radial effects are negligible and that the flow may be regarded as two-dimensional. Tyler and 
Sofrin 14 have shown that each circumferential acoustic mode is made up of a series of complex radial 
pressure patterns, each radial mode being characterised by the number of nodes occurring in the distribu- 
tion of pressure across the annulus, and although their analysis is confined to the case where there is no 
mean flow, essentially the same arguments with regard to radial modes apply here. In the present case only 
the first radial mode reaches its cut-off condition, and with the hub-tip ratio of 0.75 the radial pressure 
distribution for this mode is almost uniform. Neglect of radial effects in the acoustic perturbation is 
therefore justified. Even so, the definition of mainstream flow parameters at the duct mean radius is an 
approximation which must be borne in mind. 

Secondly, as pointed out in Section 3, there is in addition to the downstream going wave of immediate 
interest an upstream going wave reflected from the duct opening. The measured reflection coefficients for 
the opening are shown in Fig. 11. The distance Ax between successive peaks of the axial amplitude distribu- 
tion formed by superposition of the two waves was also measured, and a comparison of the values obtained 
with those calculated by the method of Appendix V is shown in Fig. 14. The agreement is very good except 
close to cut-oK where Ax is large and difficult to measure accurately. The contribution of the reflected 
wave to the acoustic excitation of the rotor has been ignored in the application of the theoretical analysis 
to the experimental case, an approximation which is good except, again, in a small region close to cut-off, 
where reflection coefficients for the rotor itself are large. The calculated reflection coefficients are presented 
in Fig. 15. Quite large differences between experiment and theory are difficult to detect in this region, 
because of the rapid rate of change of wave amplitude with Mach number, and elsewhere the double 
reflection results in a wave of much smaller amplitude than that excited by the gauze wakes. 

4.2.2. Loaded blades. The measured and predicted wave amplitudes for the loaded rotor experiments 
are shown in Figs. 16 and 17. As before the cut-off Mach numbers are well predicted, but the measured 
wave amplitudes above cut-off are much larger than those predicted theoretically, an effect which worsens 
as the blade loading is increased. A possible explanation for this lies in the interaction between the incom- 
ing flow perturbations and the potential flow field about the loaded rotor blades, which leads to the 
formation of a distribution of quadrupole acoustic sources in the space surrounding the blade row. This 
phenomenon, which is raised in its fundamental form by Lighthill, z is described with respect to turbo- 
machinery by Morfey? 6'av The analysis of Section 2 does not allow for such a source distribution, taking 
account only of the dipole acoustic sources distributed along the blades themselves and resulting from 
the fluctuating blade forces. Such an explanation is not altogether convincing, however, in view of the 
very low Mach numbers involved; the work of Morfey 3v suggests that quadrupole sources should not be 
important until axial Mach numbers of approximately 0-2 are reached. The main conclusion to be drawn 
is that a zero loading theory is inadequate when applied to loaded blades, and a more sophisticated 
calculation method must be developed if this case is to be treated. 

The remarks of Section 4.2.1 on isolated rotor effects and the reflected wave apply here also. Measured 
and theoretical values of Ax for the axial amplitude distributions are shown in Figs. 18 and 19, and agree- 

ment is again very good. 
The zeros in the theoretical curves of Figs. 16 and 17 occur when the direction of wave propagation is 

parallel to the blade chord. Since the fluctuating forces which generate the waves are always normal to the 
blade chord, no sound can be radiated in this direction. The same effect is found in the curve of Fig, 13 
when the Math number scale is extended. 

4.2.3. Influence of blade speed. Fig 20 shows the curves of Figs. 13, 16 and 17 replotted to a scale of 
blade Mach number Ub/a in place of relative flow Mach number W/a. Several features emerge. 

(i) All curves show approximately the same cut-off Mach number, corresponding to an interaction 
pattern Mach number (which is given by 23 x blade Math  number) of unity. This is a consequence of the 
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very low mean flow rate, which means that the cut-off condition given by Section 2.3, that is : 

(co + V~) 2 - (a 2 - U2)]~ 2 ~> 0 

reduces to 

or  

0)2 > aZfl2 (approx.) 

co 
pattern Mach no. -- - -  > 1. a/~ 

This is precisely the same as the cut-off condition given by Tyler and Sofrin (14) for the zero mean flow 
case. 

(ii) The limited range of the zero-lift experiment can be seen very clearly in this figure, and it is obviously 
impossible to say whether or not the experimental results for this case will diverge from the theoretical 
predictions, as in the loaded blade case, when the Mach number range is extended. 

(iii) The discrepancy between theory and experiment increases with blade loading, so that some effect 
of loading is still apparent. With the low Mach numbers involved this is unlikely to be an interaction 
between the steady and unsteady perturbation fields, and is more probably an effect of thickness, camber 
and finite deflection of the mean flow, all of which are unaccounted for in the analysis but which may all 
affect the dipole source distribution. 

5. Conclusions and Suggestions for Development 

5.1. Conclusions 

(a) A computer program based upon the calculation method of Section 2 enables prediction of the 
generation, transmission and reflection of acoustic waves by an unloaded cascade of fiat plate blades, 
the unsteady force and moment coefficients for the blades and the strength of the shed vortex wakes, for 
perturbations arising from blade vibration, incident acoustic waves, and convected wake disturbances 
from upstream obstacles. The results obtained agree closely with force and moment coefficients calculated 
by Lane and Friedman 25 and Whitehead, z4 and with generated acoustic wave amplitudes predicted by 
Kaji and Okazaki.17 The calculation method gives a program which is quicker in operation and smaller 
than that devised by Whitehead, and while similar to the method used by Karl and Okazaki avoids much 
of the latter's mathematical complexity. The treatment of the kernel function singularities in the upwash 
integral equation is a further feature absent from the method of Ref. (17). 

(b) The program is successful in predicting the acoustic wave amplitudes generated by a compressor 
rotor running in a duct and excited by a sinusoidal wake perturbation, provided that no steady forces 
act on the blades. This conclusion applies to the limited range of blade-relative Mach number obtained 
in the experiments to date, but nevertheless forms strong evidence that the noise generation process is 
correctly understood in this case. In particular the ge, neralisation of the Kutta-Joukowski condition to 
unsteady flow appears to be valid up to frequency parameters of at least 3. The cut-off phonemenon and 
wave geometry are also well predicted. 

(c) When the blades are steadily loaded the observed wave amplitudes are greater than those predicted 
by the theory, and this discrepancy increases with increasing loading, The cut-off Mach number and wave 
geometry still give good agreement between experiment and theory. A zero steady lift theory is therefore 
of very limited value under these circumstances. 

(d) The wake velocity perturbations in the annular duct decay more rapidly than would be expected 
on the basis of a two-dimensional mixing length theory, even in the absence of a radial pressure gradient to 
incite secondary flow. This phenomenon remains to be explained, and may be important in the prediction 
of the noise generated by blade-wake interaction in practical turbomachines. 
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5.2. Further Work 

As already mentioned, the Mach number range which can be obtained with the present apparatus is 
small, and as an immediate development it is proposed to increase this by using a more powerful air 
supply farL At the same time the blade-wake geometry can be varied so that different circumferential 
duct modes may be studied. A further experimental possibility with a definite practical application is the 
operation of the blades in a stalled condition, and the investigation of the effect of stalling on sound 

generation. 
However, the greatest need for development is in the theoretical analysis, which must be generalised 

to include the effect of steady blade forces. Apart from their effect on the dipole acoustic sources already 
considered, these forces also lead to the introduction of a number of new sound sources (Re[ (1)), in 
particular a quadrupole source field caused by the interaction of the potential flow around the blades 
with the incoming velocity perturbations. Morfey s6 has estimated the magnitude of some of these sources, 
demonstrating their increasing importance as the flow Mach number rises. The effect of steady blade 
forces is also important in the blade vibration problem, since Whitehead 38 has shown that it is only 
with steady lift that bending flutter can occur. A theory taking account of both steady lift and compressi- 
bility would therefore be valuable. 

Some progress has been made with this problem by Whitehead, 39 who suggests a solution based upon 
the division of the flow into a steady uniform field, a steady perturbation field, and an unsteady perturba- 
tion field, with each component small compared with its predecessor. The relevant new sources then 
appear as interactions between the perturbation fields, and may be approximated by solving for each of 
these in the absence of the other, and combining the two to calculate the source strengths. The present 
calculation method would be used in the solution for the separate fields, and it is felt that its greatest 
initial usefulness lies in this direction. 

Other developments of the theory are contemplated which, though more distant, may be no less 
important. Among these are the inclusion of three-dimensional effects and the acceptance as an input 
flow perturbation of intake or atmospheric turbulence. Finally, the treatment of transonic and supersonic 
machines is of increasing relevance and might usefully be considered in addition. 
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LIST OF SYMBOLS 
Sound speed 

Coefficients in cascade wave series 
~ 1  --  M 2 

Blade chord length 

Coefficients in expansion of kernel function logarithmic singularity 

Logarithmic singularity function 

Integer 

Integer: blade index 

Integer : number of points at which upwash equation is satisfied 

Pressure perturbation : integer in Appendix I 

Static pressure rise across rotor 

Cascade wave and acoustic mode index 

Entropy : blade spacing 

Time 

Velocity perturbation in x-direction 

Velocity perturbation in y-direction 

Upwash velocity perturbation 

Cartesian co-ordinates 

Cycle length of axial amplitude distribution 

Co-ordinate measured in direction of blade chord 
z/c 
22 q_ /~2 + 22/~ sin 0 

Matrix of output coefficients 

Lift coefficient 

Moment coefficient 

Axial velocity 

Amplitude of velocity wake perturbation 

Blade force 

Kernel function of upwash integral equation 

Kernel function matrix 

Mach number: blade moment 

Number of rotor blades 

Number of gauze wakes 

Acoustic pressure coefficient 

Duct reflection coefficient 

Annulus mean radius 

Mainstream velocity in x-direction 

Upwash perturbation matrix 

Blade speed at mid-span 

Mainstream velocity in y-direction 
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v(.) 
W 

~ 

Y 

D 

5 

0 

P 

Po 

0 
O9 

F 

r~ 

Function defined by equation (53) 

Mainstream velocity x/U 2 + V 2 

Matrix defined by equation (62) 

2Mrl/b 2 

Wavenumber in x-direction 

c~c 

Wavenumber in y-direction 

#c 
Strength of cascade wave 

Angular displacement of blade 

Transformed chordwise co-ordinate 

Dummy argument 

Tan-1 (V/U):theoretical stagger angle 

Frequency parameter: ogc/W 

Vorticity 

Density perturbation 

Mainstream density 

Phase angles--Appendix V 

Interblade phase angle 

Transformed chordwise co-ordinate 

Angular frequency 

Vortex strength 

Matrix of blade vorticity 

r / w  

Suffices--generated waves 

1 Upstream pressure wave 

2 Downstream pressure wave 

3 Convected vorticity wave 

Suffices--input perturbations and output coefficients 

b Bending vibration 

6 Torsional vibration 

W Convected! wake perturbation 

u Upstream going acoustic wave 

d Downstream going acoustic wave 

- Denotes peak amplitude 

' Denotes division by F/S 
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A P P E N D I X  I 

Representation of a Vortex Row by a Series of Cascade Waves 

If the array of vortices shown in Fig. 2 is to simulate a real rotor  row then it must be cyclic in the 
y-direction with a period Ns, where N is the number  of blades in the row. Suppose now that the array 
may be represented by a series of the form 

[i2nny I 
9(Y)= ,=~-oo a" e x p / N s - s  / (I.1) 

then 

| ~Ns i2nny I 
a, = ~s . j  ° ~(y)exp - ~ 1  dy. (I.2) 

The function "7'(Y) may be regarded as a set of delta functions, the mth vortex being given by the function 
F exp (im4)) 15(y - ms), so that the contr ibut ion to the above integral from this vortex is 

iZnnms I 
F e x p  imO - Ns J" 

Therefore,  

a n = ~  ~ exp imp) 
m = 0  

F 1 - exp (iN4) - i2nn) 
- Ns 1 - exp (iQ) - 2nn/N)" (I.3) 

Because of the periodicity of the array, N~b = 2rip, where p is an integer, a, is therefore zero except when 

(p - n) = rX (I.4) 

where r is also an integer. In this case the above expression for a, simplifies to 

F 
an = - .  ( I . 5 )  

S 

Substitution in equation (I.1) from equations (I.4) and (I.5) gives 

"7(Y) = ,=~_ ~ s F e x p  {i(p - NssrNl2ny~-J 

which is the expression used in Section 2.5. 
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A P P E N D I X  II  

Relationship between Cascade Wave and Conveeted Vorticity Wave 

Consider  an element 6Yo at y = Yo of the cascade wave given by 

F 
7(Y) = - exp (io~t + /fly). 

S 

In a t ime &o, at t = t o, this element sheds a quanti ty of free vorticity 

F 
- - i o )  exp (icot o + ifiyo) 6y o &o 

S 

which is convected downs t ream by a fluid element of area U g)Yo &. The si tuation is illustrated in Fig. 21. 
The convected vorticity wave is therefore given by 

icoF 
- Us exp(ic°t° + ifiY°) (II.1) 

Put t ing  

X 
t -  t o = - ~  and Y - Y o =  V ( t - t o )  

gives 

-- Us --U- + ifly - 

and incorpora t ing  equat ion (12), which states that  for the convected vorticity wave 

c o +  U ~ + V fi = O, 

we have 

(II.2) 

icoF 
4 -  Us 

exp (loot + ic~x + ifly). (II.3) 

Therefore  

i~oF 

Us 
(II.4) 

which is equat ion (21). 
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E v a l u a t i o n  o f  

From equation (16) for (~3 

A P P E N D I X  III 

(v; cos 0 - u; sin 0) exp l(i023 cos 0 + i/~ sin 0)ql 

c2 3 c o s O + / ~ s i n O =  - 2  

which is independent of r. This term may therefore be removed from the summation. 
From equations (14), (24) and (28) 

22 + /~2 sin 0 
v~ = 2 z  +/~2 + 2 2 f l s i n 0  

and 

Then 

Now ]~ ~b - 2~r - - - ,  so that 
(s/c) 

where 

(III.1) 

,lp cos 0 
u; = 22 + f12 + 22/~ sin 0" (III.2) 

,~2 COS 0 

(v~ cos 0 - u~ sin 0) = 22 + f12 + 22/~ sin 0" 

(v~ cos 0 - u~ sin 0) = 22(s/c) 2 cos OS(r) 

1 _ -4 z(0+2 sin0)( b 2 

(III.3) 

The required sum is ~r~=_~o S(r). The summation is carried out by a method based upon the calculus of 
residues, Ref. (34), which employs the following formula: 

S(r) = - g {The sum of the residues of cot rczS(z) at the poles of S(z)}, 
r = -oo 

and the residues at these poles are 

i 
47~2s/c cos 0" 

Inserting these values in the above summation formula gives, after some manipulation, 

1 sinh (2s/c cos 0) 
S(r) (IliA) 

~=_~ 42s/ccosOsin2 + ~  sin0 + s i n h  2 ~cCOS0 

Finally, incorporating equations (I.12) and (I.13) we have 

~ (v; cos 0 - u; sin 0) exp 1(i~3 cos 0 + ifi sin 0)t/I 

sinh' i c °s0'(  )exp, 
4 c  2 S s i n 0  + s i n h  2 cos0 

+ 2 c  

which is equation (43). 
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APPENDIX IV 

Kernel Function Singularities 

The singularities in the kernel function of equation (30) appear because the velocities induced at the 
point ~, on the reference blade by the vorticity at this same point are infinite. The remaining blades in 
the cascade can give rise to non-singular terms only. Consequently in the extraction of the singularities, 
the reference blade may be treated as though it were an isolated aerofoil. 

Fung as gives an expression for the kernel function for such an aerofoil. With adapted notation this is 

K(r/) = - ~2 exp ( iMY)iMLH]2)(I  YI) - H~02)(I rJ) 
I rl 

i2bexp(_i2r l )21o l + b  ff,M 4 g ~ + exp (iu)HtoZ)(Mlul) du (IV. 1) 

where 

b = ~/1 - M 2 

and 

2M 
Y =  

H~o 2) and H~ 2) are Hankel functions of the second kind, order 0 and 1 respectively. 
Expanding the Hankel functions and discarding terms which do not involve log [ Y[ or Y- 1 gives 

z2jllYIloglYI +~Jo lYI log lYI  K(rl) = - - ~ e x p ( i M Y )  iM-~T ~-~Iq 7z 

e x p ( - t 2 t / ) ~ - ~ l o g - ~ -  + .  exp(iu) - JolMu] loglMul du . (IV.2) 
"J0 

2 Y I \ 2 i  
The t e r m - ~ e x p ( i M Y )  iM-(~l[--(-~] may be separated from this expressiorL It forms the non- 

logarithmic singularity mentioned in Section 2.11, that is 

x/1 - M z exp (iMZ2q/(1 - M2)) 

2rcr/ 

Furthermore it is easily shown that as M -* 0 (r/finite) the terms involving log IMI cancel, so that there 
is no singularity at M = 0. Subtracting out these terms we are left with 

2 log Y K(r/) - 2rob exp (iMY) {MJI(Y) + iJo(Y)} 

Y/M 

2rc2b exp ( -  i2rl)Jo exp (iu)Jo(Mu) log [ul du. 

dx = exp (iu)Jo(Mu) du 

f. 
X = exp (iX)Jo(Mx) dx, 

0 

Putting 

Y/M ~'/M X du. 
log u o - ~ o  f u Z 

:he integral may be written 

f Y/M exp (iu)Jo(Mu) log lul du = 
0 

(IV.3) 
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Now dz can be expanded as follows 

d Z = 1 + c lu  + c2u 2 + etc. 

where c 1 , c2, etc. are constants. Therefore 

Z = u + ½clu 2 + etc., 

Z log lul -- ,  0 a s  u -+  0 

and J'o TM (X/u) du becomes a power series in Y/M.  

Once again discarding non-logari thmic terms, we have finally 

y f. r/M du 
2 log e x p ( i M Y ) { M Y ~ ( Y )  + iYo(Y)} + b 2 e x p ( - i 2 q ) J o  exp (iu)do(Mu) OVA) K(~/) = - 27r--/~ 

where the expression multiplying log [ Y/M[ is the fir/) of Section 2.11. This function may be expanded 
as a power series of the form 

2 
fir/) - 2~b(do + d~q + dar/2 + etc.), (IV.5) 

the integration being carried out term by term. Only the first term in the expansion becomes infinite 
at r/ = 0 when multiplied by log Iq[, but it is necessary to retain some of the others in the formula of 
equat ion (46) as these are handled badly by the trapezoidal rule. It is found by trial, however, that no 
significant increase in accuracy results from taking terms of higher order than 113. The required coefficients 

are 

d o = i 

and 

_ M 2 

d2 = - i  1 - ~ f f ~  

1( 1 
d 3 =  - ~  1 -- 

M2) ~2 
+aV 

M 2 1 3 M 4 M6 / ,,]3. 
~ + ~ q- 3b 4 8 b 6 '{- 6-b-6 J 

(IV.6) 
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A P P E N D I X  V 

Effect of Reflected Wave on Duct Measurements 

When a reflected wave is present in the duct the net pressure perturbation at a point is given by adding 
together the effects of one wave of downstream-going type and one of upstream-going type. At a fixed 
circumferential location we have 

p = ~ cos (cot + ~2 x + z2) + R~ cos (tot + ~lx + zl) 

where p is the amplitude of the downstream-going wave, R is the reflection coefficient of the duct opening, 
z~ and z2 are fixed phase angles, and a~ and 52 are the wavenumbers defined by equation (11). With 
some manipulation this expression may be re-written as 

p = p[(1 + R 2) + 2R cos {(a 2 - . l ) x  + 2z~}] ½ 

x + - - 2  x+z'~ +tan-~  ~ t a n ~ x + z ~  

where 

t 272 - -  ~ 1  r "C2 -[-  "~1 

z2 - 2 ' zl - 2 

The amplitude of the combined perturbation therefore fluctuates between ~(1 + R) and/3(1 - R), so 
that both p and R may be determined from a knowledge of the maximum and minimum values of this 
amplitude. In addition the distance between two successive maxima or minima is given by 

2~ 
A x - -  

6 2 - -  5 1  

and this can be calculated using equation (I I). 
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T A B L E  I 

C o n v e r g e n c e  o f  N u m e r i c a l  S o l u t i o n  

1.0 

3.8 

1-0 

0.25 

1.0 

0.5 

1-0 

0.5 

1.59  

0.5 

0.0 

0.0 

30 ° 

0.0 

60 ° 

60 ° 

75 ° 

75 ° 

75 ° 

1.0 

1-4 

0.631 

1.0 

1.0 

1.0 

1.0 

1.0 

10-0 

10-0 

TC 

M 

0.0 

0-5 

0.8 

0.2 

0.1 

0.1 

0.1 

0.1 

0-18 

10 
11 
12 

5 
6 
7 

11 
12 
13 

13 
14 
15 

13 
14 
15 

R e a l  

2.7504 
2.7505 
2-7505 

1-0901 
1-0902 
1.0902 

1.0263 
1.0264 
1.0264 

0.3773 
0.3774 
0.3774 

2.5683 
2-5682 
2.5682 

5-3658 
5.3659 
5.3659 

2.2613 
2.2613 
2.2613 

5-0914 
5.1350 
5.1430 

1.6249 
1-6250 
1-6254 

0.1 

0-1 
5.1428 
5.1380 
5.1439 

CLb 

Imaginary  

- 0 - 0 5 0 7  
- 0 . 0 5 0 7  
- 0 . 0 5 0 7  

- 1.4515 
- 1.4515 
- 1.4515 

-0 -7685  
- 0 . 7 6 8 4  
- 0 - 7 6 8 4  

0-1968 
0.1970 
0.1970 

- 0 . 1 0 7 0  
-0 .1071  
--0.1071 

- 0 . 5 7 9 0  
- 0 . 5 7 9 0  
- 0.5790 

0.0649 
0.0649 
0.0649 

12-9404 
13.0203 
13.0349 

- 8.8657 
- 8.8661 
- 8.8669 

13.0349 
13.0238 
13.0336 
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q~/2rc = 0.5 

T A B L E  2 

Comparison with Incompressible Results 

Freq.  Par.  = 2.0, M = O, s /c  = 1.0, n = 4 

Bending Tors ion  Wakes  

c~ 
a - 0 . 7 3 0 3  - 0 . 3 8 2 0  - 0 . 4 8 3 4  
b - 0 . 7 3 1 8  - 0 . 3 8 1 7  - 0 . 4 4 0 9  
c - 0 . 7 3 1 7  - 0 . 3 8 1 6  - 0 . 4 4 0 7  

- 1.4372 - 0 . 3 2 4 5  0-3743 
- 1.4382 - 0 . 3 2 4 9  0.3752 
- 1.4373 - 0 . 3 2 4 8  0-3752 

C~t 

a - 0 . 2 0 2 6  - 0 . 2 3 6 2  0.0408 
b - 0 . 2 0 3 5  - 0 . 2 3 6 2  0.0395 
c - 0 - 2 0 3 7  -0 .2361  0-0385 

- 0 - 6 5 9 4  - 0 . 0 9 0 0  0.1038 
- 0 - 6 6 0 2  - 0 - 0 9 0 3  0.1043 
- 0 . 6 5 9 8  - 0 . 0 9 0 3  0.1044 

0 = 45 °, ~b/2rc = 0-5 

Bending Tors ion  Wakes  

c~ 
a - 0 . 6 8 4 0  
b - 0 . 6 7 9 6  
c - 0 . 6 7 9 5  

- 0 . 3 1 6 0  - 0 . 4 6 7 3  - 1.3036 - 0 . 2 6 8 0  0.3548 
- 0 . 3 1 8 0  - 0 . 4 5 9 6  - 1.3020 -0 .2671  0.3518 
- 0 . 3 1 8 1  - 0 . 4 5 9 5  - 1.3017 - 0 . 2 6 7 2  0.3517 

CM 
a - 0 . 1 9 0 3  
b - 0 . 1 8 7 5  
c - 0 - 1 8 7 6  

- 0 . 2 0 7 3  0.0197 - 0 . 6 0 1 5  - 0 . 0 7 4 5  0.0988 
- 0 . 2 0 8 0  0.0239 - 0 . 5 9 9 8  - 0 - 0 7 3 7  0.0971 
- 0 . 2 0 8 1  0.0233 - 0 . 5 9 9 7  - 0 . 0 7 3 7  0.0970 

0 = 75 °, ~b/27z = 0.8 

Bending Tors ion  Wakes  

CL 
a - 0 . 2 8 4 1  - 0 . 3 7 9 2  0.0309 -0 .7971  - 0 . 2 8 0 6  0-0116 
b - 0 . 2 6 8 6  - 0 . 3 8 2 1  0.0428 - 0 . 7 8 2 2  -0 .2741  - 0 - 0 0 6 4  
c - 0 . 2 6 8 6  - 0 . 3 8 2 3  0.0429 - 0 . 7 8 1 9  -0 .2741  -0 -0065  

C~t 
a - 0 . 0 7 5 7  - 0 . 2 2 1 0  0.1598 -0 .4561  - 0 . 0 7 1 0  0.0066 
b - 0 . 0 6 8 5  - 0 . 2 2 6 4  0.1658 - 0 . 4 5 7 3  -0 .0661  - 0 . 0 0 5 0  
c - 0 . 0 6 8 5  - 0 - 2 2 6 4  0.1652 - 0 - 4 5 7 0  -0 -0658  - 0 . 0 0 4 9  

N o t e .  a = Ref. (24), b = Ref. (30), c = present  p rogram.  
F o r  each coefficient first the real par t  then the imaginary  par t  is shown on the same line. 
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TABLE 3 

Comparison with Compressible Results 

sic = 3.8; 0 = 0; ~b/2n = 0-5; M = 0-5 

2 =  1.0 

Bending Torsion 

CL 

a -0 .7212 0.0665 -0 .8277 -0 .0866 
b -0 .7200  0.0672 -0-8266 -0-0856 
c -0 .7178 0-0684 -0-8213 -0-0807 
d -0.7191 0-0672 -0-8236 -0-0840 

CM 

a 0.1509 -0-1051 0-1826 
b 0.1506 -0-1052 0-1824 
c 0.1497 -0-1038 0-1795 
d 0.1509 -0-1045 0-1824 

-0-1496 
-0 .1497 
-0-1471 
-0 .1483 

2 =  1-2 

Bending Torsion 

CL 

a -0 .7546 0-0962 -0-9137 
b -0-7538 0.0959 -0 .9127 
c -0-7458 0.0978 -0-8966 
d -0-7502 0.0960 -0-9048 

-0-0660 
-0-0664 
-0 .0576 
-0-0634 

C~ 

a 0.1323 -0-1301 0-1733 
b 0-1323 -0 .1300 0-1733 
c 0.1305 -0 .1263 0.1675 
d 0.1328 -0 .1288 0.1734 

-0-1964 
-0.1961 
-0 .1894 
-0-1934 

2 = 1.4 

Bending Torsion 

CL 

a -0 .3383 0.4648 -0 .5077 0-5073 
b -0 .3433 0-4670 -0-5158 0.5077 
c -0.3491 0.4550 -0 .5100 0.4882 
d -0 .3470 0-4620 -0 .5147 0-4997 

CM 

a -0-0303 -0-1167 -0-0319 -0 .2319 
b -0-0306 -0 .1180 -0 .0310 -0-2344 
c -0.0291 -0.1165 -0-0241 -0-2295 
d -0-0269 -0-1198 -0-0257 -0-2328 

Note. a = Ref. (24); b = Ref. (25); c = present program, 
n = 3; d = present program, n = 5. 

For  each coefficient first the real part  then the imaginary part  
is shown on the same line. 

Coefficients are referred to an axis position at the mid-chord 
point. 
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