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Summary 

The stability of the solutions of a system of differential equations with periodic coefficients has been 
examined using Floquet's theorem and a general method of solution has been programmed in ICL 1900 
Fortran. The application of the method is illustrated by the solution of two dynamical systems both of 
which are unsymmetrical rigid rotors in unsymmetrical bearings and the program has been used to 
obtain solutions for up to six simultaneous second-order differential equations with periodic coefficients. 
The relevance of the solutions for an associated system of equations having constant coefficients, to the 
solutions of the periodic system is discussed and used to propound a method for predicting the unstable 
regions of periodic systems of particular form. For Lagrangian systems without viscous damping a 
method is presented for calculating the limits of an unstable region. 

* Replaces RAE Tech. Memo Structure 794-A.R.C. 33 260 and RAE Tech. Report 67161-A.R.C. 29 
710. 
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1. Introduction 

The present need of a method for testing the stability of a set of second-order differential equations with 
periodic coefficients arose from an investigation into the dynamic behaviour of a flexible aircraft with 
two unsymmetric rigid rotors mounted on it. The method for testing the stability of such a system fol- 
lowed that given by Williams in Ref. 1. A general form of this was programmed in Mercury Autocode for 
the Atlas computer and subsequently re-programmed in ICL 1900 Fortran. 

The availability of this program was a big advance, since it was now possible to test the stability of 
large systems of equations with periodic coefficients (solutions for a system of six equations have been 
obtained), but it looked as though its usefulness would be restricted because apparently the program 
gave the answer 'stable' or 'unstable' and little more. Thus without further information, the assessment 
of the stability of a system would involve solving the periodic equations for equal increments of a param- 
eter, say rotor rotational speed, over the required range of that parameter. This would involve considerable 
computation and depending on the increment size may or may not show the unstable regions. However, 
since it was necessary to find the rotor speeds defining the unstable regions of the flexible-aircraft rotor 
system, several binary systems were solved for a large number of rotor speeds. At this stage it was noticed 
that the principal value solutions (see Section 3) for the periodic system followed very closely the principal 
value solutions of an associated constant coefficient system (obtained by omitting the time dependent 
terms of the periodic system) and that the results differed locally at an instability. Thus by examining 
solutions of this constant coefficient system it was possible to locate regions which were likely to have 
unstable solutions when the complete periodic equations were solved. These empirical observations 
combined with the solutions obtained for the periodic systems of Gladwell and Stammers 2 led to the 
method, detailed in Section 4, for predicting the unstable regions of a system of periodic equations of a 
particular form, but not restricted to two simultaneous equations. In essence the prediction method is 
purely a guide since the stability of the system can only be assessed by solving the periodic equations, 
but its value lies in the fact that it indicates values of the parameter for which solutions should be obtained 
initially. Also as more solutions of the periodic system are obtained, the plotting of these solutions on 
the 'principal value' graphs continually reduces the interpolations required and confirms with increasing 
certainty that all important regions are being investigated. Thus the necessity for solving the periodic 
equations at equal increments of a parameter has been removed together with the uncertainties inherent 
in such a process. When applied to larger systems of equations the method proved successful and it was 
of considerable help in locating the instabilities of a system with large periodic coefficients, i.e. when the 
solutions of the periodic system differ greatly from those of the constant coefficient system. 

It is shown in Section 6 that for a system without structural damping it is possible to calculate the range 
of an instability from three values of the unstable solution within the region. 

2. Analysis 

2.1. System Equations 

The equations for the system are assumed to have the form 

(A i + A2 sin 2~ot + Aa cos 2¢ot)/~ + Dl~ + o.~(D 2 -t- D3 sin 2¢ot + D4 cos 2cot)it + Eq = 0, (1) 

where A 1 , A 2 etc. are square matrices of order m and the equations are periodic of period z/ox The form 
of the periodic terms is appropriate for the rotor systems considered later, a~ then being the angular 
frequency of rotation of the rotor and t the real time. Not included in the form of equation (1) are Hill's 
equation and Mathieu's equation, both of which have periodic coefficients in the q term, but the program 
of Section 3 is easily modified to cope with such terms. 

2.2. Application of Floquet's Theorem 

Equation (1) can be written in the form, 

I~I + A-~D~I + A-~Eq = 0  (2) 



where A and D are periodic matrices and I is the unit matrix. This set of second order differential equations 
is reduced to a first order set by writing p -- ~ and rearranging 

o r  

= Z( t ) y  (4) 

where Z(t )  is the square matrix of order n(= 2m) on the right hand side of equation (3). Since Z(t )  is 
periodic of period v(= ~/~), 

Z( t  + ~) = Z( t ) .  (5) 

If 4~i(i = 1, 2 . . . .  n) is a set of n linearly independent solutions of equation (4) these are said to form a 
basis or a fundamental set 4 of solutions. Let ~(t) be the matrix whose n columns are n linearly indepen- 
dent solutions of equation (4), then ~(t) is known as a fundamental matrix and is non-singular (see Ref. 
4). It follows, therefore, that any fundamental matrix satisfies equation (4), i.e. 

do = Z(t)cb. (6) 

Let q~1, '2 be any two fundamental matrices, then 

Consequently 

Z ( t ) ~ l  = do1 = 

o r  

d 

d 

= Z ( t ) ~  + ~ 2 d { ~ t ~ p l } .  

d 

~1 = O2C 

where C is a constant non-singular matrix. 
Since Z(t)  is periodic we have, 

doi(t + ~) = Z( t  + z)¢}a(t + ~) 

= Z(t)¢bl(t + ~) 

and hence ~ ( t  + T) is a fundamental matrix. From equation (9) 

~ ( t  + ~) = qJ~(t)C~ 

= ~ ( t )  e ~'~, 

(7) 

(8) 

(9) 

(lo) 



where R~ is a non-unique matrix 4'5'6 such that 

C 1 = e Rt~. 

We then have, 

(11) 

giving 

and therefore s'6 

log(e R'~) = Rlz = K log A K -  1 

R 1 = K ( 1 / z  log A)K- 1. 

So the eigenvalues of R 1, crj(= aj + iflj), are given by 1/z log A and are determined modulo 2rri/z, the 
eigenvectors combined in K are the same as those ofe  R'~ and are called the Floquet modes t'7. The eigen- 
values of e al~, 2j(= pj + iv j), are called the characteristic roots or multipliers and the trj are called the 
characteristic exponents. 

If we write 

Z = diag (trj) 

( I ) l ( t  -F "C)e - R t ( t + t )  = q b t ( t ) e  RI~ e -Rt ( t+~)  

_ -  e~l(t) e-R.  

and so t ~ l ( t ) e - R ~ t ( _  P(t))  is periodic of period z. 
Consequently any fundamental matrix of equation (4) has the form 

• l(t) = P( t )  e Rlt (12) 

and this is Floquet 's  theorem. P(t) is determined by equation (12) over a period, and, since it is periodic, 
it is determined over ( -  oo, oo). The significance of Floquet's theorem is that the determination of a funda- 
mental matrix ~(t) over a period of P(t) leads, at once, to the determination of ~(t) over ( -  oo, oo). 

From equation (10) taking t = 0 and ~t(0) = I, as we do later, then 

(I)I(Z) = e Ra*. (13) 

The fundamental matrix q~l(z) can be calculated using a numerical step-by-step integration procedure 
over the period. 

From equations (9) and (10) we have, 

O2(t + z) = q)t(t + z)C -1  

= d91(t) ea~C -1 

= O2( t )C  eR'~C - 1 (14) 

Thus every fundamental matrix determines a matrix C ea'~C - 1 which is similar to e a' '. Such a simi- 
larity transformation does not affect a number of  the quantities associated with e a'~. In particular the 
eigenvalues of e R'~ are the same as those of C eR'~C- 1. 

If K is the matrix of right hand eigenvectors ofe  a~ and A = diag 2 i where all the 2 i are assumed distinct, 
then 

e a'~ = K A K - 1  



where the aj are assumed to be distinct, then 

K - 1 R 1 K  = Z.  

Putting • = O1K and PI = P K  in equation (12) gives 

O(t) = Pl( t )e  z' and Pl( t  + z) = Pl(t) .  

It follows that the columns q51,... , qS, of the matrix O, which forms a set of n linearly independent 
solutions of equation (4), are of the form, 

49j(t) = e¢@j(t) j = 1, 2 . . . . .  n 

where the Pl . . . .  , p, are periodic column vectors of P1. Thus if ~t(aj) < 0 or equivalently 

12~1 < 1 then as t ~ o% qSj(t) ~ 0 (15) 

exponentially fast. 

2.3. Reciprocal Sys tems  

A reciprocal system is one for which any characteristic root is either unity or one of a reciprocal pair 
and possible configurations of roots are given in Ref. 3. Thus if2 i is a non-unity eigenvalue of the funda- 
mental matrix • then so is 1/2i, and the characteristic exponents are then either zero or _+ o-~. 

Consider the system of n equations given by equation (4) for n independent initial conditions, i.e. 

d Y  
dt Z(t)Y. (16) 

Now, if • is a fundamental matrix of equation (16), we know that 

dO 
dt Z(t)O (17) 

and if the system is reciprocal the eigenvalues of • will be the same as those of O-  1. Assuming that the 
eigenvalues of • are distinct we have, 

• = P(O')-  x p -  a 

Substituting for • in equation (17) gives 

p d (~,)_ , p_  ~ = Z P ( ~ ' ) -  ' P -  ~ 

therefore, 

d t 1 
~ ( ~  ) -  = P - ' Z P ( ~ ' ) - ' .  (18) 

But, 

~ , ( ~ , ) -  1 = z 



which on differentiation gives, 

and so 

Using equation (18) we have, 

giving 

Equation (17) gives, on transposition 

and so 

o , d ( o , )  - ,  + ~t(O') (¢ ' ) - '  = 0 

d ( o ' ) - '  = - (03-  ' d(o ')(e~')-  1. 

1 d , 
P - ' Z P = - ( O ' ) -  ~ ( 0 )  

d 
--:-(0') = - @ ' P -  1 Z P .  (19) 
a t -  

d 
Z(o ' )  = O'Z' 

Z '  = - P -  I Z P .  (20) 

Thus if we can find a constant matrix P which satisfies equation (20) then the system given by equation 
(16) is reciprocal. 

The form of the characteristic equation for a reciprocal system is, 

2" + at2 "-1 + a22n-2 + . . .  + an-222 + an-l~ + 1 = 0  

where a k = a , _  k for k = 1, 2 . . . . .  n - 1. The constant term is given by the determinant of the fundamental 
matrix, O, and so IOI = I~-  11 = 1 .  

Consider the equation, 

A ~  + D(I + Eq = 0  

which when written in the form of equation (4), i.e. by making the substitution p = A~, gives, 

Z =  

This system is reciprocal if the matrices A and E are symmetric and the matrix (.4 - D) is constant and 
skew symmetric. Then the constant matrix P is given by, 

A- ,-,] - (  D) L _ _  
P =  I M 0 " 



3. Calculation of Characteristic Exponents 

The method for calculating the characteristic exponents, and thereby testing the stability, of a set of 
equations with periodic coefficients has been programmed in ICL 1900 Fortran. The form of the equations 
programmed is, 

(Am + A2esin 2(Dt + A3ecos 2(Dt)/t + Dlq + ----~ (D2 + / ) 3 e  sin 2(Dt + /94e cos 2(Dt)~ + Eq = 0 
(D O 

(22) 

where e, is a factor on the time dependent coefficients and (Do is a standard frequency associated with the 
matrices D2, D 3 and D4. These differential equations are reduced to a first-order set as in equation (3) 
and then integrated numerically over a period, with q~(0) = 1, using a Runge-Kutta variable step length 
procedure 8. The characteristic roots (2) and exponents (a)  of the fundamental matrix are calculated 
together with the Floquet modes, and the application of the conditions given in equation (15) determines 
the stability of the system. 

Provision is made for varying (D, the matrices A1, A 2 etc., the factor e on the periodic coefficients and 
the accuracy of the numerical integration. When (D is zero or the periodic terms are zero (e = 0) then the 
solution of the system of equations is merely an eigenvalue problem and numerical integration is not 
used. During the integration over a period, the step length is varied automatically to maintain the re- 
quired accuracy and relaxing the accuracy of the integration results in a considerable saving in computa- 
tion time. The form of the input and details of the output of the program are given in Appendix I. An 
important detail concerning the calculation of the characteristic exponents from the characteristic 
roots is the value taken by the imaginary part of log 2j. The principal value of J ( l o g  2i) i.e. - n ~< J ( l o g  2)  
~< 7t is always used and since (aj) = 1/zJ(log 2i) and 

z = "r/w, the range of J ( a j )  will be -09 <~ J( tr j )  ~< (D. 

4. Prediction of Unstable Regions 

4.1. Properties of Constant Coefficient Equations 

Let Z be an n × n constant coefficient matrix obtained by omitting the periodic terms of equation (1) 
and reducing the system so obtained to a set of first-order differential equations. Thus following equations 
(3) and (4) we have, 

p = Z y .  (23) 

Let d0 be a fundamental matrix of equation (23), it being obtained by integrating equation (23) over 
an interval of time. Then the fundamental matrix* is given by 

q~( t )=e 'z for l t l < m  and ~ ( 0 ) = I  

and so 

dqb 
- -  = Z ~ .  
d t  

Thus the use of the program determines the characteristic exponents which are 1/tlog(2i), where 
2i(i = 1, 2 . . . .  n) are the eigenvalues of e tz. 

Now if tri is an eigenvalue of Z then 

e t~' is an eigenvalue of e tz, 

8 



therefore 21 = e t~' and so the characteristic exponents determined by the program are 1/t log (e t ' ' )  = a t + 

2nn i / t ,  i.e. they are the eigenvalues of Z determined modulo 2ni / t .  

Taking t = z = n/o9 the uncertainty in the imaginary part  of ai becomes 2no~ where n is an integer. 
Again the computer  program calculates principal value solutions for the characteristic exponents and so 
we have - co  ~< J(a~) ~< o9. Thus the form of the solutions obtained for the constant coefficient system 
is the same as that of the periodic system. 

However, there is no need to resort to the method of Section 2 to solve equation (23) since we know 
that y = e~'tk~ is a typical solution giving on substitution, 

aik  ~ = Z k  i. 

This is now an eigenvalue problem and as such is not restricted to principal value solutions for the a i. 
Thus if we wish to compare the principal value solutions obtained for the periodic system with the eigen- 
value solutions obtained for the constant coefficient system, we may either eliminate the 'uncertainty'  
for the periodic system 1, which would entail a considerable amount  of computation, or 'condense'  the 
solutions of the constant coefficient system to 'principal f l * ' ( s ee  below). The latter is obviously preferable 
and can be achieved in the following manner. 

For  the constant coefficient system, the pair of values ___/3* (where fl* is the positive imaginary part  
of the characteristic exponent) are 'condensed'  to a value between the lines fl = 0 and fl = co (Fig. 1) 
by the addition of 2nco, where n is an appropriate integer. We shall call these condensed values the 'prin- 
cipal fl*'. The condensation can be made graphically or using 

principal fl* = 2o9r - fl* sgn r 

where 0 ~< principal fl* ~< co, r has the values - 0, 1, - i, 2, - 2 etc. and sgn ( -  0) = - 1. The values of 
r and the range over which they apply can be determined from the intersection of the lines fl = so9(s = 
1, 2, 3 . . . .  ) with the curve of fl* versus o9, Fig. 1. The modulus of r is the same either side of/3 = so9 for 
even s, Irl = s /2  and the sign o f r  is negative to the left of the line of even s. The condensation of a typical 
line to principal/3* is shown in Fig. 1. If we had solved the constant coefficient system in the same manner 
as the periodic system, i.e. integrating over an interval of time then the characteristic exponents would 
have been principal value solutions and would have been equivalent to the principal fl*. 

4.2. Relevance of Constant Coefficient Solutions 

The output of the program of Section 3 yields the valuable answer to the question 'Is the system stable 
or not?'.  However, the output would be even more useful if there were indications from a stable solution 
showing for what values of the variable an instability may result. The computer solutions for some 
simple reciprocal periodic two degree of freedom rotor systems were obtained for a large number of 
rotor speeds and various presentations of the results were tried to this end. The presentation finally 
established is shown in Figs. 3a and 3b, and from this came the empirical observation that instabilitites 
seemed to result from parameter  values in the region of the intersection of the constant coefficient prin- 
cipal value solutions, as indicated in Fig. 2. 

Gladwell and Stammers in Ref. 2 have given the conditions for limiting stability of a simple reciprocal 
two degree of freedom periodic system. If ax, a2 are two characteristic exponents of the system then the 
condition is, 

trl - a2 = 2iko9 q 
for ~ (24) 

k = 0, _1 ,  ___2, e tc . J  

In general the characteristic exponents, ai, will be complex ( =  ~i + i/~i) and occur in conjugate pairs, 
but for a stable reciprocal system the real part  of al will be zero, and the characteristic exponents will 

9 



then have the form + ifll, +_ ifl2. Using these roots in equation (24) gives the following conditions for 
limiting stability 

fl~ = kco (25) 

for 

k = 0 , _ l , _ 2 e t c ,  and i =  1,2 

and 

for 

fli - / ~ j  = 2ko9~ 
/ 

fli + flj 2k~ J 
(26) 

k =  0, ___l, _2,etc.  i , j=  1,2 and i # j .  

These conditions are then applied to the solutions of a constant coefficient system (obtained by neg- 
lecting the periodic terms) in order to deduce the regions in which instability is likely to occur when the 
periodic terms are included. 

As outlined previously, in order to minimise the amount of computation it is preferable to condense 
the constant coefficient solutions to principal values. Then it is a simple exercise to show that the Gladwell 
and Stammers conditions fl(w) = ko9 of equation (25) correspond to intersections of Type 1 (Fig. 2) for 
the principal value solutions and those given by equation (26) correspond to intersections of Types 2 
and 3 (Fig. 2). Type 3 has been distinguished from Type 2 because it has been found to give rise to a major 
instability for systems with distinct fl* at ~o = 0. In the majority of cases examined, the Type 2 intersection 
does not develop into an unstable region with the inclusion of the periodic terms and can be thought of 
as a line of limiting stability, i.e. the line is mathematically significant it being a stability boundary, (see 
Ref. 2). The degree of instability developing from a Type 1 intersection depends very much on the system 
but the unstable range of the periodic system decreases as m tends to zero. For all types of instability 
of the periodic system, the degree of instability can be assessed from the real part of the characteristic 
exponent. 

The empirical observations with regard to the relevance of the constant coefficient solutions have been 
extended to more complicated systems. A four degree of freedom case of different form (but still a reciprocal 
system when D1 = 0) is shown in Fig. 4a and it may be seen how clearly the critical regions are shown. 
It is emphasised that the prediction method is only a guide to the practical detail of using the computer 
program. If types of equations exist for which the constant coefficient solutions are irrelevant, then this 
will be apparent as soon as the initial solutions of the periodic system are plotted. The comparatively 
trivial effort used to obtain the constant coefficient solutions will then be wasted, but the user of the pro- 
gram will still be able to check the stability of the periodic system. The number of cases to be solved 
in order to check the stability over a range of parameter values will, however, have to be greater than for 
the cases considered above, where interpolations may soon be made with confidence. 

4.3. Summary of the Method 

To summarise the procedure to be adopted for the prediction of instabilities. First solve the associated 
constant coefficient system obtained by omitting the periodic terms from the equations. Then condense 
these eigenvalue solutions to principal values, this is easily effected graphically, and the type of inter- 
section, Fig. 2, will be apparent immediately. Next solve the periodic system, using the computer pro- 
gram, in t h e  regions indicated by the constant coefficient solutions. The real part of the characteristic 
exponents for the periodic system determines the stability and deviations in the variation of the imaginary 
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(J 
parts of the characteristic exponents from that of the constant coefficient solutions indicate further regions 
to be examined. It is important to investigate any deviations in the trends of the solutions since this usually 
means that an unstable region is in the vicinity. 

The procedure outlined is only a guide to the location of the unstable regions of a periodic system but 
it does provide a systematic approach where otherwise the only method would be to solve the periodic 
system at a number of arbitrary points. 

5. Applications of the Method 

5.1. Equations of Motion 

The equations of motion for the systems considered in Sections 5.2 and 5.3, namely systems with 
unsymmetrical rigid rotors in unsymmetrical bearings, have the form, 

A(t)?l + {Da + coD2 + A(t)}~ + Eq = 0 (27) 

where 

A(t) = A t + A 2 sin 2cot + A 3 cos 2cot. 

Also A(t) and E are symmetric matrices, D 1 is a diagonal matrix and D 2 is skew symmetric. Then equation 
(21) gives, 

Z =  I(D1 +coD2)A(t)-i --oEI 
A(t)- t 

and the system will be reciprocal when D 1 = 0. The characteristic roots, 2 i, will occur in complex pairs 
if the system is stable and the modulus of 2 i will be unity, i.e. R(ai) = 0. Thus the system will be, at the best, 
neutrally stable. 

5.2. An Unsymmetrical Rigid Rotor in Unsymmetrical Bearings 

Brosens and Cradall 9 have investigated the stability of an unsymmetrical rigid rotor mounted in 
unsymmetrical stiffness bearings. This system can be represented by two second-order differential equa- 
tions with periodic coefficients. The present method will be illustrated using this system and an example 
from an extension of Brosen and Cradall's work by Gladwell and Stammers 2. The coefficients for the 
two cases considered in this section are given in Appendix II.1, it will be noticed that there is no structural 
damping present, i.e. D t = 0 and so the system will be, at the best, neutrally stable. The system is of par- 
ticular interest since the gyroscopic terms, i.e. the elements of the matrix D2, are large. Shown in Fig. 
3a are the principal 13" obtained from the constant coefficient solutions and the computed solutions 
of the periodic system when the rotor has equal mounting stiffness. Shaft whirling instability occurs 
for a range of co from 1.203 to 2-1189 which is an expansion of the predicted co = 1.5, there being a notice- 
able departure from the constant coefficient solutions in this region. The equal root instability, Type 
3, predicted for co = 1.05 becomes a line of limiting stability since/31 =/32 at co = 0 (see Section 4). 
The other predicted instabilities are also lines of limiting stability. For the case of unequal mounting 
stiffnesses, Fig. 3b., three Type 1 intersections at co = 1.6, 0.55 and 0-44 have been shown to give rise to 
unstable regions, the range of the unstable region decreasing as co is reduced. There is an equal root 
instability, Type 3, in the region of the predicted co = 0.95 but although the lines are distorted in the 
region of co = 0.4 there was not an instability in the vicinity of this Type 2 intersection. 

When the gyroscopic and periodic terms are large, i.e. for a rotor with a large inertia inequality, then 
the full solutions show big differences from the constant coefficient solutions, Fig. 3c, and the prediction 
method is poor. However, a few solutions of the periodic system will soon establish the position of the 
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shifted lines and the rules concerning intersections can be applied again, leading quickly to the actual 
unstable regions. The Type 3 equal root instability in the region of to = 1.3 is predicted despite the large 
differences in the solutions of the constant coefficient and periodic systems. Also shown is a Type 2 
intersection which has given rise to an unstable region. The unstable regions obtained by Gladwell and 
Stammers 2 are shown for comparison on Fig. 3c, although the solutions are not in exact agreement 
the comparison is good. 

This system does not have an intersection of Type 1 for the constant coefficient solutions emanating 
from the point /3i = 1.2, to = 0, thus the instability of the periodic system at to = 2 is not predicted. 
It can also be seen in Fig. 3c that the solutions of the periodic system for values of to above the critical 
Type 3 region depart from the principal/3* line. This is always a warning and suggests seeking solutions 
for higher rotor speeds. 

5.3. Two Unsymmetrical Rotors on a Flexible Aircraft 

The dynamic equations for the system have the form of equation (1) with q defining normal modes 
of the elastic aircraft with the rotors replaced by non-rotating discs, the moment of inertia of a disc 
being the mean of the unequal moments of inertia of the rotor. The number of normal modes needed 
to describe the system was restricted by imposing an arbitrary frequency limit for the normal modes. 
Solutions are presented for a quaternary and a binary taken from this system of equations. The binary 
is of interest since there are no gyroscopic coupling terms present, D 2 = 0, and the quaternary serves 
as an example of a larger set of equations. The coefficients for the quaternary are given in Appendix II.2 
and the coefficients for the binary are obtained by deleting rows and columns two and four. The form 
of the equations is such that the periodic terms couple degrees of freedbm 1 and 2 with 3 and 4, the gyro- 
scopic terms couple 1 with 2 and 3 with 4 and the system composed of A 1, Dt and E, i.e. the associated 
constant coefficient system for co = 0, is uncoupled. 

Shown in Fig. 4a are the principal 13" and the full solutions for the quaternary without structural 
damping and so the system is, at the best, neutrally stable. For co = 0 the constant coefficient system 
is uncoupled and we can identify the degree of freedom numbers with the fl* solutions, this has been done 
in Fig. 4a. Since the periodic terms couple degrees of freedom 1 and 2 with 3 and 4 we might expect in- 
stabilities, to occur between 1 and 3, 1 and 4, 2 and 3, and 2 and 4. Equal root instabilities, Type 3, do 
occur and Fig. 4a shows the instabilities occurring at the intersections of the lines associated with the 
relevant degrees of freedom, i.e. 1 and 3 etc. The eigenvectors associated with these solutions will, of 
course, contain contributions from the other degrees of freedom. The equal root instabilities are in the 
regions predicted and are the major unstable regions for this system, Types 1 and 2 becoming line in- 
stabilities. The full solutions follow the constant coefficient solutions very closely and departures only 
occur near an unstable region. 

The binary example, Fig. 4b, is degrees of freedom 1 and 3 taken from the quaternary. Since there is 
no gyroscopic coupling between these degrees of freedom the constant coefficient solutions are lines of 
constant/3 and so the principal/3* give straight lines. The solutions of the periodic system are essentially 
the same as the solutions emanating from the degrees of freedom 1 and 3 of the quaternary. The solutions 
associated with 1 and 3 in the latter are distorted by the gyroscopic coupling present in the quaternary 
and the instabilities in the regions of co = 0.42 and to = 0.43, Fig. 4a, are not present in the binary since 
these instabilities arise from the inclusion of degrees of freedom 2 and 4. For  the binary, Fig. 4b, there is 
only one major instability (Type 3) and it is in the region of the predicted co = 0.345. This unstable region 
is shown in greater detail in Fig. 4c, and shows clearly the bifurcation marking the end of the unstable 
region. The range of this instability has been extended slightly compared with the same region in the 
quaternary. The solutions on the/3 = to line are line instabilities as are the intersections of Type 2. For 
a system as shown in Fig. 4b it is a simple matter to locate the likely unstable regions, when the values 
of/3 at to = 0 are known, because all lines are straight. 

Large systems of equations will have a multiplicity of intersections and would appear, at first sight, 
to be unmanageable. The system of this section will give rise to numerous possible instabilities, but 
examination of binary and quaternary sub-systems suggested that only the Type 3 intersections were 
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important. Also it became apparent, as solutions were obtained, that all the essential information could 
be gleaned from the binary and quaternary solutions and it was not necessary to solve the large system. 
Thus by examining sub-systems it should be possible either to avoid solving the large system altogether 
or to reduce the number of intersections that need be considered. 

6. Range of an Instability 

The limits of an unstable region for a reciprocal system can be obtained quite simply when three 
unstable solutions have been found in that region. The limits are calculated from the real part of the 
characteristic exponent, ~j, assuming the variation with o9 to be elliptic when the unstable region is 
bounded and hyperbolic when there is no upper limit to the instability. These assumptions certainly 
appear to be true for the unstable regions examined so far. 

When the unstable region is bounded an ellipse with an axis of symmetry coincident with the og-axis 
is assumed and three points are sufficient to enable the extremities to be calculated. The extremities of 
the ellipse give the range of co over which the system is unstable and the maximum value of ~.  Shown 
in Fig. 5a are the unstable regions computed for the quaternary of Section 5.2. Table 1 lists the calculated 
extremities of the ellipses for different selections of three unstable solutions and shows how close the 
variation of ct i with o9 is to an ellipse. It should be noted that the accuracy of the quaternary solutions 
was lower than those of the binary and some of the variation of the limits for the quaternary may be due 
to this lower accuracy. 

When a non-skew symmetric matrix D 1 is included in the system represented by equation (27) (making 
the system non-reciprocal), the variation of the real part of the characteristic exponent with co for an 
unstable region is no longer approximately elliptic. 

Figure 5b shows the variation ofctj with 09 for 0, 0.5, 1 and 2 per cent critical damping for a binary with 
widely spaced frequencies at co = 0 and no gyroscopic coupling. The width of the unstable region can 
increase with increasing structural damping, but the maximum values of %. decreases almost linearly 
with increasing structural damping. 

7. Conclusions 

A program is now available which can be used to test the stability of large systems of linear second- 
order differential equations with periodic coefficients. The method described for predicting unstable 
regions by applying rules to constant coefficient solutions of the system reduces the amount of computa- 
tion considerably and gives a systematic way of tackling the stability problem. The limits of an unstable 
region, for a reciprocal system, can be determined quite easily once three unstable solutions have been 
found within the region. The method has proved very useful in locating the unstable regions of a system 
describing the dynamic behaviour of a flexible aircraft on which are mounted two unsymmetrical rigid 
rotors. 
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LIST OF SYMBOLS 

A, D 

AI 'A2 'A3 'E  } 
D1, D2, D3, D4 

z(t) 

C, C1 

I 

K 

P(t) 

RI 

m 

n 

P 

q 

T~ S 

t 

Y 

A 

,~(t) 

~j 

principal fl* 

vj 

aj 

T 

Periodic matrices defined by equation (2) 

m × m matrices defined by equation (1) 

n × n periodic matrix 

n × n constant non-singular matrices 

Unit matrix 

Matrix of right hand eigenvectors of e Rr, the Floquet modes 

Periodic part of the solution of ¢(t) 

n × n matrices defined in equation (11) 

Order of the square matrices, A 1 , A2, E etc. 

Order of the square matrices, A(t), P(t), R etc. (n = 2m) 

The column matrix q differentiated with respect to time 

A column matrix of generalised co-ordinates 

Parameters used in the condensation to principal fl* 

Time 

A column matrix of the dependent variable of equation (4) 

A diagonal matrix of the characteristic roots 2 i 

A fundamental matrix of equation (4) 

Two fundamental matrices of equation (4) 

The real part of the jth characteristic exponent 

The imaginary part of the Jth characteristic exponent 

The positive value of fl~ obtained by solving the constant coefficient system 

The positive principal value of fl* 

The elementary truncation errors in the matrix • arising during the integration 

The accuracy required during integration 

A factor on the time dependent coefficients 

The jth characteristic root (= #j + ivy) 

The real part of the jth characteristic root 

The imaginary part of the jth characteristic root 

The jth characteristic exponent (= ej + ifll) 

The period of the equations (= n/co) 

The ith column of the fundamental matrix 
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LIST OF SYMBOLS--continued 

03 

(D O 

The frequency associated with equation (1) 

A standard frequency associated with the matrices D2, D 3 and D4 

Denotes differentiation with respect to time 

The real and imaginary parts of a complex number 
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APPENDIX I 

Details of Stability Program 

The method of testing the stability of a set of equations, having the form given in equation (22), has 
been programmed in ICL 1900 Fortran. The inverse of the matrix (A 1 + A2e sin 2~ot + A3e cos 2o~t), 
for any instant of time, is found using Choleski's method and the matrix must be symmetric and posi- 
tive definite. The equations are integrated using a modified version of the Kut ta-Merson variable step 
length routine 8 and at each selected step the equations are integrated for all initial conditions. The 
step length during the integration is varied automatically to maintain a specified accuracy, 3, and accur- 
acies varying from 10- 2 to 10- 6 have been used, the former being used for preliminary work. The accuracy 
defined by Merson is as follows: 
If Yij (i = 1, :2 . . . .  n , j  = 1, :2 . . . .  n) are the elementary truncation errors in ~ii arising at the end of a 
particular integration step, and I~Pi~lmax is the maximum modulus of ~ j  that has arisen during the course 
of the integration, then at the end of each step the following tests are applied : 

(a) If for any element, [Yij[ > ~ / 2 1 ~ 1  . . . .  return to the beginning of the step and try half the previous 

interval; 
(b) If for all elements, t?ijl ~< 6/641~ij[max, try double the interval for the next step; 
(c) Otherwise proceed with the same interval as before. 

Form of the Data 

(1) An integer m which is the order of the square matrices A ~ ,  A z  etc. m ~< 5. 
(2) The matrices A~, A 2 etc. in any order but preceded by the appropriate identifiers i.e. A1, A2, E etc. 

Null matrices need not be input and a matrix is only overwritten by a subsequent read with the same 
identifier. The identifier must be on a record by itself and is read on an A2 format. S e e  Note 1. 

(3) The character group ** starting a new record. 
(4) co o, the basic frequency. 
(5) 6, the accuracy required in the VINTSTEP integration routine. 
(6) An integer k, the number of og's for which solutions are required. 
(7) k pairs of values ~o~, DJC 1 . . . . .  tnk, DJCk, each pair on a new record, format (E0.0,  A3). DJC 

is a data jump character, see  Note 2. 
(8) DJC, another data jump character, format (A3), see  Note 3. 

Notes 

(i) All items (1}-(8) must start on a new record. Free format input is used wherever possible. 
(ii) The character groups allowed at (7), and the program action, are as follows: 

VVV (Where V -_- space) The eigenvalues are calculated. 
VEC Eigenvalues and eigenvectors are calculated. 
TDF The time dependent factors, ~, are applied to the periodic terms and the eigenvalues are 

calculated. 
T&V The time dependent factors are applied, eigenvalues and eigenvectors are calculated. 

When TDF  and T&V are used then j, an integer specifying the number of time dependent factors, 
and el . . . . .  e~ (where j ~< 10), the factors, must be supplied. The values, format (I0, 10E 0.0),  should 
follow the appropriate w, DJC pair. 

(iii) The character groups allowed at (8), and the program action, are as follows: 
N U N  Re-enters at (1) to read a new value of m etc. 
MTX Re-enters at (2) to read a new matrix etc. 
** V Re-enters at (4). (V -= space). 
ACC Re-enters at (5) to read a new VINTSTEP accuracy etc. 
END Execution is stopped. 

(iv) If a record starting with the character group CC is read at entry point (2), then the next record is 
read and output as a title. 
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Form of the Output 

The output to a lineprinter has the following form: 

Data titles 

The (mxm) matrices A 1, A2, E etc. in the order in which they were input and preceded by their identifier. 
The matrices are printed row by row. 

W0 = co 0 VINTSTEP ACCURACY = 6 

W = o) E P S  = ~1 

CHARACTERISTIC ROOTS 

{v j} 

VECTORS 

~{kl} ¢{kl}  

 {k2} J{k2} 

I N T E G R A T I O N  STEPS . . . . . . .  

CHARACTERISTIC EXPONENTS 

{a j} {fl j} for j =  1,2 . . . . .  n 

N(k.} J ( k . }  

If there is more than one value of ¢o and/or e then the output will continue, 

W . . . .  E P S  . . . .  

N O  T E S :  

(i) If there are no time dependent factors, then E P S  = el is omitted. 
(ii) If the vectors are not required, then VECTORS etc. is omitted. 

(iii) When ¢o = 0 or e = 0 then I N T E G R A T I O N  STEPS etc. is omitted and only the characteristic 
exponents are printed. 

(iv) For  real characteristic roots the zero imaginary part of the corresponding vector is not printed. 
(v) After the caption INTEGRATION STEPS two integers are printed. The first integer is the number 

of times the integration routine has been used and the second is the number of times the routine has been 
used usefully. When a step length is halved the calculation has to re-start at the previous step and so one 
pass through the routine is wasted. Thus the numbers give an indication of the difficulty encountered 
in the integration of the equations. 
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APPENDIX II 

Coefficients for the Systems of Section 5 

II.I. An Unsymmetrical Rigid Rotor in Unsymmetrical Bearings 

The coefficients for the system of Brosens and Cradall 9 are given below. The coefficients of the matrix 
E are dependent on the degree of asymmetry in the stiffness of the bearings. Standard frequency ~o o = 1.0. 

A,:[; ~] A2=[o 
0.234 

o,=[o ° Oo] 

°~: [o.41~ °7] 

o7] ~ [o74 o 
- 0 . 2 3 4 ]  

0~=[0 o.;43] 0~:[_0.46~ o] 
- 0.543 0 0.468 

Unsymmetrical bearings 

~: [1.;o~ o] 
0.293 

The coefficients for the case 

Symmetrical bearings 

~[; o] 
considered from the system of Gladwell and Stammers 2 are, 

~,:[; o] ~:[Oo.~ o;o] ~__ [o;6 _o.o°] 
o,__[~ ~] o~__[_,.~,o ,0,] °': [-"=o ,.=°] 
D 4 : [ 0  1;2] E :  [I06 0 ]  

1.2 0.4 

II.2. Two Unsymmetrical Rigid Rotors on a Flexible Aircraft 

The coefficients for a quaternary of this system are given below, and for example 2.24447, - 2  -= 
2-24447 x 10 -z. Standard frequency ~o o = 0.200015. 

AI= 

a 2 = 

A 3 = 

[ 00001 001 
I ° ° 

0 0 

2-24447, - 2  - 1.61889, - 1 

1 .49399, - I  5-33217, - 3 

0 0 

0 0 

- 2 . 2 2 8 8 9 , - 1  2-27265, - 2  

- 2 . 9 0 1 1 6 , - 2  1-10932, - 1 

2.24447, - 2  - 1.49399, - 1 

- 1-61889, - 1 5.33217, - 3 

0 0 

0 0 

-2-22889, - 1  -2.90116, - 2  

2 .27265 , -2  1.10932,-1 

0 0 

0 0 l 
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1[ 00000 000 
92 = F 0 6.26509, - 2  

-6.26509, - 2  0 

0 0 

0 0 

9 3 

= 

E = 

0 0 

0 0 

8 .91622, -2  - 9 . 0 9 1 2 6 , - 3  

1 .16055,-2  -4.43762, - 2  

0 0 

0 0 

8.97858, - 3  -6.47602, - 2  

- 5 . 9 7 6 3 8 , - 2  2 .13304, -3  

01.09113,-1 0 0 0 
0 2 .15519, -1  0 0 

0 0 1.29403, - 1  0 

0 0 3 .13668, -1  

0 

0 

0 

-6.18537, - 2  

8.91622, - 2  

-9-09126, - 3  

0 

0.-. 

8.97858, - 3 

-6-47602, - 2  

0 

0 

O] 
0 

6.18537, - 2  

0 

,16o~ ~] 
- 4-43762, - 

0 

0 

_~.9~3~,_~] 
2.13304, - 

0 

0 
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T A B L E  1 

Calculated Extremities of Unstable Regions 

Q u a t e r n a r y  of  sect ion 5.2 Uns tab le  range  (~)m.x x 102 

Region 1 

Region 2 

Region 3 

Region 4 

w = 0"326 14 ~ 0"348 49 

~o = 0"402 88 ~ 0.446 36 
0"402 85 ~ 0"446 42 

co = 0"432 78 ~ 0"464 99 
0"432 77 ~ 0"465 01 

o9 = 0"519 16 ~ 0"620 86 
0"520 32 ~ 0"620 85 
0"519 94 ~ 0"620 53 
0"520 06 --* 0"620 63 

1.222 312 

2.158 960 
2.159 089 

1-662 506 
1.662 448 

4.296 835 
4-303 402 
4.296 883 
4.296 937 

Binary  of  sect ion 5.2 Uns tab le  range (~ti)m. x × 102 

09 = 0-329 36 ~ 0"369 06 1.984 333 
0.329 36 -~  0.369 06 1.984 322 

Note." When  there is more  than  one ent ry  for a region the ca lcu la ted  extremit ies  are for different 
selections of  three unstable  solu t ions  within the region.  
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Principol /3j 

Constant coefficient solutions thol: hove 
been condensed 1:o principal l~j 

8 
~=5co~ 4~ ,s~3~ p=ZtO 

~=~ 

/]j 
6 

4 

r=l  .....-- 

-0  

3 

I"= - I  

0 I 2 3 4 5 6 7 
W 

FIG. 1. Condensation of constant coefficient solutions to principal/~*. 

23 



;).0 

I-5 

1.0 
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r£gion ond (JiyEs "type hUmbert(See section4) 
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FIG. 2. Predicted unstable regions. 
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3 
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I 
I 

Principal /3j (from constont coeFf solutions ) 

Neutrally stable "1 Solutions of 
Unstable ~ periodic system / 

I 
I 

/ 

0 I I 

0 I 2 3 

UnstabI¢ 

1"203 UllsIobllz 2.118 

t~ 

reqions from ref 9 

FIo. 3a. Variation of the imaginary part of the characteristic exponent with 
a)--Unsymmetrical rotor with equal mounting stiffnesses. 
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FIG. 3b. Variation of the imaginary part of the characteristic exponent with co---unsymmetrical rotor 
with unequal mounting stiffnesses. 



/3j 

3 

2 

0 
0 

(Fr0m constont coeff / Principal #j soJutions) / 

} sysr.¢m / / 

× Neutrally stobl¢ Solutions of / 

e Unstable periodic / 

® Equal root instability / 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
- / /  

/ x 

i / / / /  x " ... 

x x  ~ ~ x 

I Z 3 
G O  

nu I 

unstoble reqions from ref 6 

LO 

FIG. 3c. Variation of the imaginary part of the characteristic exponent with co--Rotor with large 
inertia inequality and unequal mounting stiffnesses. 
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FIG. 4a. Variation of the imaginary part  of the characteristic exponent with co 1 
Solutions for the quaternary of section 5.2. 
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FIG. 4b. Variation of the imaginary part of the characteristic exponent with co--- 
Solutions for the binary of section 5.2. 
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F1o. 4c. Variation of the imaginary part of the characteristic exponent with ~ - -  
Solutions in the vicinity of the unstable region of the binary of section 5.2. 

30 



0-02 

0"01 

0.32 0.34 
CO 

I 
0.36 

0.03 

0'02 

0"01 

0"06 

O'OS 

0"04- 

0"03 

0.02 

0"01 

0 

0'4. 0.42 0-44 0.4b 

f X m'mm'~X~ 

I ,I i 
0.60 

/ 
0.52 0-56 0.64 

t.o 

I 
0.48 

FIG. 5a. Variation of the real part of the characteristic exponent with or--- 
Quaternary without structural damping. 
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FIG. 5b. Variation of the real part of the characteristic exponent with eg--- 
Binary with viscous structural damping. 
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