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Summary

Recent work of Hewitt on subsonic lifting-surface theory for wings with pointed apices has shown
that representing both the singularity in the load at the apex and the detailed behaviour of the load near
the apex leads to large increases in the accuracy of collocation methods.

The strength of the singularity has been found in earlier calculations as a function of the apex angle
of the wing. These calculations are extended here to include the nonsingular factor in the load, which
also depends on the apex angle. Interpolation formulae are obtained, which provide an accurate closed-
form approximation to the behaviour of the load distribution near the apex for all apex angles.
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1. Introduction

In the calculation of the subsonic flow past lifting wings, several collocation methods' give satisfactory
solutions of the classical lifting-surface theory problem for wings with ‘regular’ planforms, i.e. planforms
whose leading and trailing edges have no discontinuities in slope. However, when applied to planforms
whose leading edges are cranked, these methods are less satisfactory, as the singular behaviour of the load
predicted by linearised theory near the crank is not represented.

In the case of a swept wing with a pointed apex, i.e. a wing whose leading edge has a crank at the
centre-section, the strength of the singularity in the load as the apex is approached along a ray is now
known?*** and has been incorporated into a lifting-surface calculation for a particular planform by
Hewitt®. However, Hewitt has also shown that substantially better accuracy is obtained using an appro-
priate representation of the angular variation of the load near the apex, as well as its variation along
the rays.

Accordingly, the earlier calculations®* concerning the singularity in the load have been extended to
provide a representation of the behaviour of the load near the apex as a function of both the polar dis-
tance and the polar angle about the apex, for all swept back wings.

Germain® has shown that, according to the linearised theory of subsonic flow, the velocity potential
in the neighbourhood of the apex of a lifting swept wing is dominated by a term which is an eigensolution
of the differential equation and boundary conditions which govern the velocity potential of subsonic
flow past an infinite plane sector with the same semi-apex angle as the wing?. The velocity potential of
the flow past the infinite plane sector has eigensolutions of the form

G =r"f (8, w) m=0,12...

where 7 is the distance from the apex, $ and w are angular coordinates and Jwm and v, depend
on the semi-apex angle y. The dominant eigensolution is the one for which the value of the exponent v
lies between zero and one. We shall write this without suffices as

¢ =1 ($, w).

As the load is proportional to the streamwise derivative of the velocity potential, this first eigensolution
governs the singular behaviour of the load AC,. The dominant term in the load can be written as

AC, = r'"'u"*F(u),

where u is a coordinate on the wing measured from the leading edges, so that the factor u~* is the familiar
square root singularity in the load at the leading edge. The factor F(u) is a regular function of u depending
on the semi-apex angle y. It is this function that is required, as well as v, in order to describe the detailed
behaviour of the load near the apex.

Calculations of the exponent v for a large range of semi-apex angles y have previously been reported?.
The method used involved the solution of a finite difference approximation to a second order partial
differential equation for fin which v was an eigenvalue. The present report presents calculations of an
approximate expression for F(u) from this finite difference solution for £, in the form of a cubic poly-
nomial in u

F(u) = ao + a,u + a,u® + azu’,

where the coefficients g, are functions of the semi-apex angle y. This method, described in Section 3 and
Appendix I, enables F(u) to be found for any semi-apex angle which is not too small. For smaller semi-
apex angles, an expression for F(u) can be found from the series expansion for ¢ for very slender wings
given by Brown and Stewartson?, and this is described in Section 4.1. This expression for F(u) can also be
approximated by a cubic polynomial in u. The function F(u) can be found analytically for the cases when
y = 0 or /2, and these cases are considered in Sections 4.2 and 4.3.



Cubic polynomial approximations for F(u) have been found using the above methods for a range
of values of semi-apex angle between 0 and /2, and the coefficients g, of these polynomials are given in
Table 1. In order that the behaviour of the load near the apex can be found easily and quickly for any
semi-apex angle y between 0 and /2, the variation with y of v and each of the coefficients g; has been
represented by a seventh order polynomial in y. These are given in Section 5.

To assess the overall accuracy of the method, F(u) has been calculated using two other methods®
for the case y = m/4. A comparison of these results with those of the present method, see Table 2, shows
very good agreement.

Since Ref. 2 was published, additional values of the exponents v, have been calculated by different
methods and the opportumty is taken in Appendix III and Figs. 9 to 12 of this report to compare the
first two exponents for 0 < y < =, as calculated by the methods of Brown and Stewartson?, Taylor* and
Sack'2.

2. The Equation for the Load

According to the linearised theory, the velocity potential of the subsonic flow past the apex of a lifting
swept wing is dominated by a term which is an eigensolution of the corresponding problem for an in-
finite plane sector®. The eigensolution takes the form

b = r'f(9, o), (1)

where r is the difference from the apex, f'is a function of the polar angles 3 and w, and v is a constant
depending only on the semi-apex angle y, lying in the range 0 < v < 1. As an eigensolution, ¢ is only
determined within a multiplicative constant. This means that the form of the load near the apex of the
wing is given by the eigensolution, though its magnitude, which depends on conditions over the whole
wing, must be found from a lifting-surface theory calculation. Previously, a table of values of v for different
values of y was calculated?. This calculation has now been extended to find the eigenfunction f on the
sector and hence the form of the wing load AC,.

The rectangular coordinate system (y,, y,, y3) of Ref. 1 is used, with y, = 0 the plane of the sector,
y, = 0the plane of symmetry of the flow, and the apex of the sector at the origin 0, see Fig. 1.

The load AC, at a point (y,, y,) is given, according to linearised theory, by

0¢
AC(yy.y2) = 4571@1’“)

s

where the suffix s denotes evaluation on the upper surface of the sector. Thus when ¢ = r’f

_ vaf v—1 yl
ACp(yl,yz)——4{r 6y1+ vr fr K (3)

In terms of u, a coordinate on the sector, as used by Hewitt>, where

_ cosfl —cosy
1 — cosf@cosy
and @

cosf = —,

equation (3) for AC, can be written




where

_ d 1
Flu) = { + a){ v %-ny} . (6)

1

The factor u™* represents the usual singularity of AC, at the leading edges, so that F(u) is a regular func-
tion of u. f, and hence F, are determined onlytoa multlphcatlve constant, and it is convenient to remove
this arbitrary factor from the functions we consider by dividing them by their values at the centreline
of the sector, where u = 1. r@f/éy1 is zero when u = 1 (and y, = 0, § = 0) since on the centreline, f, is
independent of y,, and therefore F, at u = 1, has the value

F(1) = 4vf(1)
We therefore consider the behaviour of the load near the apex given by the equation

v—1

AC,(r,u) = ru_% F(u) )
where
r o i
F(w) = {“ 4 6yf YT f} (8)
i s

and f(u) is normalised by its value at u = 1. Thus the behaviour of the load can be deduced from the
behaviour of f on the sector.

3. Calculation of the Velocity Potential Eigenfunction and the Load

The behaviour of f on the sector can be determined by the method used in the earlier calculation? for
v. Full details of this calculation are given in Ref. 2, and the method is summarised below.
The velocity potential ¢ satisfies Laplace’s equation

0’9 P ¢

J—— —  —— = O, 9

o "ot T o ©
with the boundary conditions that ¢ is symmetrical about y, = 0 and that in the plane of the sector,

y3=05

|y,

%0 for¥el
0ys ortany <
and (10)
[¥2l
=0 fi .
¢ Oftan > Yy

In a system of orthogonal curvilinear coordinates (r, 8, 7) such as that used by Legendre’,

rcos 8, rsin 8,
coshz’ 27 cosht’

y, = ys=rtanht and r=(y?+ y? + y}?,



the substitution of the form (1) of the velocity potential

¢ = r“f(r, 60)

into equation (9) leads to the equation

f O v+ 1)
LA A\ ' S
T 003 * osh? rf

This is a second order partial differential equation for f in the two variables 7 and §,, in which v is a
parameter.

A non-conformal transformation of coordinates from (8, 7) to (R, @) is then made so that the domain
of the problem becomes rectangular, as shown in Fig. 2. The sector corresponds to the line R = 1 and
the line R = 0 to infinity upstiream. The equations describing the transformation are given in full in
Ref. 2. However, on the sector, ¢ is related to the coordinates § and u by

cos _tan2 (1 —u\? (1)
(p_tany/Z" 14+u
In the (R, @) coordinate system, the equation to be solved becomes
o 1of 1 2%f
lﬁ(R,(P){W‘FEﬁ‘FFa—(pz +V(V+1)f——0 (12)

where

_ (R* + 0-25(R* + 2R?cos 2¢ + 1)tan’y/2)?

Rs
VIR ) (R* + 1 — 2R? cos 2¢) tan? 7,2

The boundary conditions on f are derived from those for ¢ in equation (10). They apply at the boundary
of the domain and are

(1) f=0o0ne=00gR<landon R=0,0<¢ < 7n/2,
(i1) 0f/éR=00nR =1,0< ¢ < n/2, (13)
(iii) ffop =0onge =n/2,0 < R< L.

Since equation (12) and the boundary conditions (13) are homogeneous, non-zero solutions only exist
for special values of v, the eigenvalues of the problem.

We find approximations to these eigenvalues and the associated eigensolutions by using a finite
difference approximation to equation (12) at points of a grid over the domain. This leads to a matrix
equation

(E, —ADf=0
where
A=+ 1),

E, is a matrix with known coefficients, and f a vector whose elements are the values of a finite difference
approximation to f at the gridpoints. Thus for a non-trivial solution for f, 1 must be an eigenvalue of the



matrix E, and f the corresponding eigenvector. A computer program has been written? to find 1 and f
for a given semi-apex angle y and grid size, using inverse iteration?. Details of the program are given in
Appendix 1. Those elements of f corresponding to grid points on the line R = 1 are the values of the finite
difference approximation to f at the gridpoint values of ¢ on the wing surface.

The variation of f with u is illustrated in Fig. 3 for three semi-apex angles. f is zero at the leading edge
where ¢ = 0,u = 0 and € = y, from the boundary conditions (13), and has been normalised so that its
value is unity at the sector centreline, where ¢ = n/2,u = land § = 0.

F can be expressed as a function of ¢ with the help of the following relationships between the coordinate
systems in the plane of the sector:

y; _ 1 — tan*(y/2) cos® ¢

r 1+ tan%(y/2) cos? ¢’

_ sino
T 14 costo
and
7, 1
@ = ~cot .
ayl »y2 constant r
Then, from equation (8),
A
u*r of Ogp gl
Flo) = { e +ur=—f
v a(p ayl y2 constant r K]

and thus

1 cos ¢ of. sin ¢ 1 — tan%(y/2) cos? ¢
Fo)=-—7—=—37- RY 3 )f (14)
v (1 4+ cos? @)t dp (1 + cos? )t |1 + tan’(y/2) cos® ¢

The original computer program has been extended to calculate the values of F(p) at the gridpoint values
of @, from equation (14), using a previously calculated, accurate value for the eigenvalue v and Lagrangian
differentiation to calculate 8 f/d¢ at the gridpoints. It was found that a seven-point differentiation formula
was sufficiently accurate, as it gave the same value for F(¢), to five significant figures, as a nine-point
formula, over the range of values of ¢.

A cubic polynomial in u was then fitted through the values of F using a least-squares curve-fitting
method, keeping the values of F at u = 0 and u = 1 fixed. This fitted polynomial predicts the variation
of F with u very closely, as the residuals, i.e. the differences between the fitted and actual values of F, are
mostly less than 0-00002, and the largest residual is only 0-00006. Thus for a specified semi-apex angle y
and mesh size, an approximation F for F is obtained:

F(u) = @ + a,u + a,u’ + azu’ (15)
where
3
Y a=1 (16)
i=0
and
_ 11 9
Ty = — —= ——
° Ty \/E o0 ¢=0

3



A numerical approximation for F appropriate to an infinitely small mesh size is then obtained by
extrapolation from a series of polynomials F(u) calculated for different mesh sizes. A square mesh with
l equally spaced gridpoints along each side was used, ! being 18, 19 or 20. It was found that the variation
of each coefficient a, with / could be approximated by

a1 = 5 + al), (17

where c; and k; are constants for a particular y and a(y) is the limit of the a(y, I) as ] tends to infinity. The
difference between this limiting value of ¢, and the g, for the largest mesh size was generally of the order
of 0-001, but with a, and a; it increased to 0-008 for y near 90 degrees. Values of ¢y, a, and a, were calcu-
lated using the formula (17), and then a; was found to satisfy the condition (16)

3
Y oa=1, (18)
i=0

though, in practice, this value of a; differed by less than 0-0001 from that obtained from the formula (17).
The polynomial

ag + au + au® + agu’ (19
ot & 3

is then a numerical approximation of the function F, at the specified semi-apex angle.

Such polynominals for F have been calculated for a number of values of y between 27 and 90 degrees,
and the coefficients a; of these are given in Table 1. However, the present method is unsuitable for low
values of y, since the extrapolation to zero mesh size becomes unreliable. For these values of y, a poly-
nomial representation for F has been obtained in Section 4.1, using a series expansion? for ¢ for small y.

The accuracy of the present method has been investigated by comparisons with other methods at
y = 27, 45 and 90 degrees. At y = 27 degrees, it is shown that the present method and the method for
small y gives values of F differing by not more than 0-00008. In Appendix I1, F calculated by the present
method for y = 45 degrees is compared with F calculated by Taylor® and by Brown®, who has calculated
f, at this one semi-apex angle. This shows very good agreement between the functions calculated by
different methods, the largest difference being 0-00015. Similarly good agreement is obtained for y = 90
degrees, the present method giving the result

F(u) = 1-00000 — 0-00005u4 + 0-00017u® — 0-00012u3,
whereas the analytical result is shown in Section 4.3 to be
F(u) = 1.

The functions F(u) for three semi-apex angles are illustrated in Fig. 4.

4. The Load for some Special Cases

The numerical method given in the previous section provides a cubic polynomial approximation for
Foveralargerange of values of semi-apex angles y between 27 and 90 degrees. To provide a representation
of F over the range of y from zero to n/2, the behaviour of F for small values of y was deduced from a
series expansion for f due to Brown and Stewartson®, and expressions for F when y = 0 and #/2 have
been found analytically.



4.1. The Load for Small Apex Angles

When y is small, the behaviour of F(u) can be derived from the series expansion for ¢ calculated by
Brown and Stewartson®. They express ¢ as

¢ = r'G(o)H(()
where, on the sector,

1

{= secyT = secycosf,

o = 1, G is constant, and so
fo = HQYH( = k).
Letting
k=secy=1+p
{=1+py (20)

Brown and Stewartson derived a series expansion® for H in powers of p:
H(y) = p* + jput — p*{3uf + $52) + O{p(log p)*}.
Thus, neglecting terms of order higher than p?

_ e — pP Rt + )

%
T+ -3

21

where f; is normalised with respect to its valueat u = 1,8 = 0, u = 1.
On the sector, the coordinates are related by

21_1_1+ku
r k+u
and
_u(l + k)
T k+u’ (22)
so that
d_,u_k(1+k)
du_(k~l—u)2
and
ou
Fe— =1 — u?.
ay,



From equation (8),

v du du dy,

s

F(u) = {uz gﬁlﬁra—u + u%);—lf} .

Substituting into this equation from equations (20), (21) and (22) we obtain an expression for F for small y:

(1 + k)
(1 + 3p — Br*)k + w)?

(1 — u?)k 3 pu(l + k) 9u(l +k 5 fu(l + k)*
X[ 2y (1+Z(k+u)_pz[g(k+u)+§{k+u”)
1 pu(l + k Jul + k) 1 fu(l + k)
el )]

in which terms of order higher than p? have been neglected.

This expression (23) is rather cumbersome for practical use, and so, in line with the method of the pre-
vious section, F has been approximated numerically for certain values of y by a cubic polynomial of
the form

Flu) =

F(u) = ay + a,u + a,u® + azu’.

Values of the coefficients g, are given in Table 1 for values of y up to 27 degrees. At 27 degrees, the agree-
ment between the method of Section 3 and this method of Section 4.1 is extremely good, the former
method giving

F(u) = 071740 + 0-33665u — 0-06948u* + 0-01543u°
and the method for small y giving
F(u) = 0-71732 + 0-33708u — 0-07005u> + 0-01565u>.

This gives confidence that an expression for F can be found to sufficient accuracy over the whole range
of semi-apex angles using one of these two methods.

4.2. The Load for a Vanishing Apex Angle

The function F(u) corresponding to a vanishingly small semi-apex angle can be calculated analytically
from the series expansion® for ¢ for small angles of y. At y = 0, v has the value 1, k=1, and p= 0.
Substituting these values into the expression (23) for F(u), we obtain

(24)

Fl) = (1 + u)%.

Approximating this function in keeping with the representation of F(u) by a cubic polynomial over the
whole range of semi-apex angles, we obtain the expression

F(u) = 070711 + 0-35162u — 0-07589u* + 0-01716u>.

The functions f,(#) and F(u) when y = 0 are illustrated in Figs. 3 and 4.
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4.3. The Load for an Unswept Wing

When y = n/2, the sector becomes a half-plane and the flow is therefore two-dimensional and well-
known!!, The velocity potential tends to zero like the square root of the distance from the leading edge
and the load tends to infinity like the reciprocal of the square root of the distance from the leading edge.
Thus

¢ oc yi

= r¥ cos? .
When y = n/2, cos 8 = u from equation (4).
So

¢ o« ruy,
v has the value } and f, = cos? § = u?,
Also the load

AC, o é oc i = A

Py Tcostl ut
Therefore, when y = =n/2, F(u) is identically equal to one.
The functions f(u) and F(u) for y = n/2 are illustrated in Figs. 3 and 4.

5. Interpolation Formulae to give the Load for a General Semi-Apex Angle

The methods of Sections 3 and 4 enable an expression for F(u) to be calculated for any specified semi-
apex angle yin the range 0 < y < n/2. However, these methods are too complicated and time-consuming
to be incorporated into a lifting-surface program, and a much simpler and quicker method of calculating
v and F(u) for a general value of semi-apex angle y is required for this purpose.

A suitable method is interpolation from quantities v and Fu) known at tabular values of y. The inter-
polation for F(u) can be based on the expression by which F(u) is approximated by the methods of Sections
3 and 4,

F(u,y) = ao(y) + a,(y)u + ax(yu® + as(y)u’. (25)

This approximation (25) has been used for all values of y, so that interpolation is possible over the complete
range of values of vy, although an approximation of the form

F(u) = (1 + u)* x (a polynomial in u)
would be more appropriate for very small y, i.e. y less than 7/12.
Cubic polynomials for F(u) of the form (25) have been found at equally spaced values of y and are
given in Table 1, together with the value of v used in the calculation of F. The variation of v and each of

the coefficients a,, a; and a, with y has been approximated by a seventh order polynomial using a least-
squares curve-fitting method. The variation of a, with y can then be found, since from equation (18)

3
Z afy) = 1.
i=0

11



The polynomials for v and the coefficients g are,

v =035+ (1 — p)(0-5 + 0-487495p + 0-058458p> — 0-679288p° — 2.782556p
+ 5413016p° — 2.513314p°),

g =1+ (1 — p)(—029289 — 0:289532p — 0:306319p% — 0:595218p> + 3-447159p*
—3751175p% + 1-287896p5),

a, = (1 — p)(035162 + 0-355542p + 0-238705p2 + 1-392805p> — 6:210993p*
+ 6:285457p% — 2.00093205),

a; = (1 — p)(—0:07587 — 0:080020p — 0-005846p> — 0.568412p% + 2-708097p* (26)

— 2:425370p% + 0-564653p°)
and
a; = (1 — p)(0-01714 + 0-014010p + 0-073460p% — 0-229175p3 + 0-055737p*
— 0-108912p°% + 0-148383p°)
Y

where p = (;tﬁ)

J

The values of the coefficients g, calculated from these polynomials (26) at the tabular values of y are
close to the accurately calculated values of the a; given in Table 1, the difference mostly being less than
0-0001 and the largest difference 0-00022. The dependence of the coeflicients a; on y is therefore well
represented by the polynomials (26), and is illustrated in Figs. 5 to 8.

6. Cenclusions

The method? used previously to calculate the singular behaviour of the load as the apex is approached
along a ray has been extended to calculate how the load near the apex varies with the polar angle. The
results have been expressed in the form of a double polynomial in the semi-apex angle and an angular
coordinate on the wing, so that they may readily be incorporated in lifting surface programs. The accuracy
has been assessed by comparison with the known analytic solution for the upswept wing, with a series
expansion for slender wings and with two independent calculations available for 45 degree swept wings.

Comparison with other calculations has confirmed the accuracy of the previous evaluation of the
exponent of the singularity at the apex of a swept back wing.

12



LIST OF SYMBOLS

Ao, 4,,0,,0, Coefficients of polynomial for F(u), see equation (17)
Gy, 08y,0,,05 Coefficients of polynomial for F(u), see equation (15)
AC, Wing load
E, Matrix in finite difference solution
f Factor in the velocity potential ¢
o Factor in the velocity potential eigensolution ¢,
fi Value of f at ith grid point

f Column vector {f;,..., fis--- fu}

F(u) Factor in load
F(u) Finite difference approximation for F(u)
G, H Factors in the velocity potential ¢ in Section 4.1
k = $eCy
! Number of gridpoints along side of mesh
P = k — 1, see equation (20)
r Distance from apex of sector
R, ¢ Coordinate system for finite difference solution, see Section 3 and Fig. 2
u Coordinate on sector, see equation (4)
Vi:V2.V3 Cartesian coordinate system, see Fig. 1
Y Semi-apex angle
8 = cos™ ! (y,/r)
0.1 Orthogonal curvilinear coordinates, see Section 3
A Eigenvalue of finite difference solution
u = ({ — 1)/p, see equation (20)
v Exponent of distance factor in the velocity potential ¢, (= vg)

Exponents of distance factor in the velocity potential eigensolution ¢,,

13



P = 2y/n

gl Coordinate system, see Section 4.1
¢ First eigensolution of the disturbance velocity potential of flow past a sector
o Eigensolutions of the disturbance velocity potential of flow past a sector
@ See R, ¢
Suffix
s Denotes evaluation on the upper surface of the sector
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APPENDIX I
Calculation of the Eigenfunction of the Matrix

The eigenvalue A of the matrix E, of smallest modulus and its corresponding eigenfunction f are cal-
culated using an inverse iteration scheme!®. This scheme finds the eigenvalue with smallest modulus of
a matrix A by successively solving the matrix equation

Ay(p) — y(p— 1 ),

for the vector y'», where y'© is arbitrary. If the matrix A is of order n, and has eigenvectors x” and eigen-
values o,, where r = 1,2... s, then an arbitrary vector y'® can be expressed in the form

n
YO =Y Bx®,
r=1

where the f, are constants. After p steps of the iteration, we have

y(p) — A—ly(p—l) = . . = (A—l)py(o)

n
Z ﬁrar— px(r),

r=1

since Ax" = a,x", 42x" = a?x" etc., the eigenvalues of A~ ! are the reciprocals of those of 4, and the
eigenvectors of A~ ! are the same as those of A.
Thus if &, is the eigenvalue of smallest modulus,

_ - o\
y(p) — Blal pexth Z Br 21 xiny
r=2 O(,.
The second term in the bracket on the right decreases as p increases, until for large p,
y(p) — ﬁlal—px(l) + g(lp)

where ¢” is a very small vector.
In practice, y*”’ is normalised with respect to its largest element after each step, in order to avoid the
possibility of accumulator overflow in the computer, so that

-1 1
y(p) = o {x( ) + 8(‘1’)},

where the largest element of x!? is unity, and £/’ is a very small vector. Provided the iteration is continued
until € is sufficiently small, the eigenvalue of smallest modulus is given by the inverse of the largest
element of ¥y, and y"” is its associated eigenvector, which is determined to within a multiplicative
constant.

Any eigenvalue a,, of the matrix A can be found by this process, by considering a matrix B = (4 — gI)
where g is an estimate of «,,. Providing that g is a sufficiently close estimate of a,, for («,, — g) to be the
eigenvalue of B with smallest modulus, the inverse iteration,

Bz? = zP7 1), z'? arbitrary,
with normalisation of z'” after each step will result in

20 = (o — )7 (X + o)
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where £ is a very small vector and x™ has its largest element unity. Thus z# is the eigenvector corre-
sponding to the eigenvalue «,,, where («,, — g) is the inverse of the largest element of z'?.

The rate of convergence of the iteration mainly depends on, and decreases with, the ratio of the eigen-
value of smallest modulus to the eigenvalue of next smallest modulus. The computer program of Ref. 1
therefore uses an iteration with the matrix E, — 4,I, where 4, is a good estimate to A, to get the iteration
to converge quickly.
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APPENDIX IT
Comparison of F(u) at y = n/4 Calculated by Different Methods

Calculations of the behaviour of the load near the apex have previously concentrated on finding the
values of the exponents v, rather than the factor f of the velocity potential. However, in the course of
his calculation*, Taylor obtains a series expansion for f, and Brown® has recently calculated values of
fon the sector for the case y = n/4. These results are used here to calculate the corresponding functions
F(u) for the case y = n/4, so that a comparison can be made with F(u) calculated by the method of Section 3.

The series expansion obtained by Taylor® for the function f on the sector surface is

_ q N N N N
f(H= 0-96612':0031 — 16N cos3t —gq { (1 + cos 3t + 24( 32) cos St}

g 32
N 1+N+N2 cos3t+ |1 E N? cos 5t +
TS 768 36 576)
+ L_N + N cos 7t (IL.1)
2 36 4608 '
where N = —8v(v + 1) and ¢ is a small parameter,

q = exp(—nK'/K),

where K and K’ are complete elliptic integrals of the first kind with moduli k = siny and k' = cos y. The
variable ¢ is given by

. oy
2K
where
Y1
dnv = cos @ = - (11.2)

From equation (8)

F(u) = {Ev_Tf u*cos@f}

s

_ {uz dv of

+ ut dno I1.3
e 1} 113)

s

The relation between the coordinates u and v can be derived using equation (4)

cosfl — cosy

1 —cosBcosy

_dw -k h2env
1 —Kdw (1 — Kdnv)(dnv + k')

(IL4)
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Also, from equation (I1.2)

av snv

Oy, T om

Therefore, substituting into equation (I1.3), we have

dnv — k' )%

F(u)=— —) +dnl)m

v [(1 — Kdnv)(dnv + k) dv

1 ksnv (_ﬁ(?fs

Js-

(IL5)

Values of F(u) have been calculated for a range of values of u using the formulae (II.1) and (I1.4) in equation
(IL5) for the case when y = n/4. For this case, k = k' = 1/,/2, Taylor’s value for v is 0-8146, and the

parameter of the series expansion (II.1), g, has the very small value of 0-04321.

Brown has used the same coordinate, v, as Taylor in her calculation of values of £, at a large number
of equally spaced values of v over a sector with semi-apex angle n/4. Values of the function F(u) have been
calculated from equation (IL.5) using a six-point Lagrangian differentiation formula to calculate the

derivative 8 f,/év, and Brown’s value for v, which is 0-81465.

The values of F(u) from the three methods of Taylor, Brown and Section 3 are given in Table 2. It can
be seen that the agreement between the three methods is extremely close, differences between the values
of the functions being no larger than the differences in the value of v calculated by the different methods,

which is only 0-00015.
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APPENDIX III
Comparison of the Exponents v, Calculated by Different Methods

Since Ref. 2 was published, values of the exponents v, of the distance factor in the velocity potential
eigenfunctions have been calculated by Taylor* and Sack'?. Taylor’s method of calculation involves
separation of the variables to obtain two Lamé equations which have two separation constants, one of
which is v, (1 + v,,). He obtains a series solution for each Lamé equation in a small parameter, combines
these to eliminate one separation constant and thus obtains an equation which can be solved for v,,.

Sack considers the same Lamé equations as Taylor, but treats each equation as having an eigenvalue
and a common separation constant, A, which is v,(1 + v,,). He describes a method for finding the eigen-
value of each Lameé equation for a given value of A. This involves expanding the eigenfunction as a Fourier
series. The vector whose elements are the coefficients of this Fourier series is then the eigenvector of an
infinite matrix. The corresponding eigenvalue can be found by truncating the matrix to finite size and then
using a standard numerical method. In order to solve both Lamé equations simultaneously, Sack con-
siders the linear equation connecting the two eigenvalues of the two Lamé equations and the separation
constant A as a function of A, solves it for A using Newton’s method and hence finds the value of v,,.

From the point of view of further developments, it is noteworthy that neither Taylor nor Sack restricts
his eigensolutions to even functions of y,, corresponding to flows with lateral symmetry. However, the
method of Ref. 2 and the present Report considers the case appropriate to flow over the apex of a wing
and so restricts the velocity potentials considered to those which are even functions of y,.

In this Appendix, we take the opportunity to compare the results of different calculations of the first
two eigenvalues v, and v, corresponding to symmetrical velocity potentials.

Figs. 9 to 12 compare the values of vy and v, , over a range of values of semi-apex angle y, given by the
calculations of Brown and Stewartson?®, Taylor*, Sack!? and Rossiter?. Extremely good agreement is
obtained for v, see Figs. 9 and 10, although for small semi-apex angles, v, is not given by Rossiter’s
method and is over-estimated by Taylor’s. Values of v, for y greater than n/2 calculated by Sack and
Rossiter are also in good agreement, see Fig. 11, although Rossiter’s method does not give values for y
near 7. Taylor’s results agree for semi-apex angles between about 120 and 145 degrees but lose accuracy
outside this range. For 7 less than n/2, see Fig. 12, only Sack and Taylor have calculated values of v, over
the whole range of semi-apex angles. These are in good agreement for y greater than n/4, and exponents
calculated by the other methods at y = 45 and 81 degrees also agree well. However, Taylor’s method
1s not accurate for semi-apex angles below n/6. Taylor attributes this loss in accuracy to the fact that the
parameters of the series solutions for the Lamé equations are no longer sufficiently small for y not close
to n/4 or 3n/4, this effect being more serious for the higher eigenvalues, i.e. v,, > 1. Sack also gives reasons
for believing his calculation method to be more accurate than Taylor’s.
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Coefficients of Cubic Polynomial Approximation for F(u)

F(u) = ag + a,u + au® + azu’

TABLE 1

Section
Semi-apex describing
angle | Exponent method of
7° v aq a, a, a, calculation
90 0.5 1-0 0 0 0 4.3
81 0-5526 0-94957 | 004525 000777 —0-00259
72 0-6109 0-89894 | 0-09880 0-00557 —0-00331
63 0-6749 0-84982 | 0-15728| —0-00624 —0-00086
54 0-7441 0-80375 021709 | —0-02391 0-00307 > 3
45 0-8145 0-76493 | 0-26996| —0-04325 0-00836
36 0-8808 073558 | 0-31087| —0.05890 0-01245
071740 | 0.33665| —006948 001543
27| 09336 {0-7 1732 | 033708 —0.07005 001565
18 0-9731 0.70934 0.34843 ] —0-07457 0-01680 } 4-1
9 0-9936 070731 0-35133| —0-07576 001712
0 1.0 070711 0-35162| —0-07589 001716 4.2
TABLE 2

F(u) at y = =/4 calculated by different methods

F(u) by method of

u
Taylor Brown Section 3

0 0-7650 0-7650 0-7649
0-0122 0-7681 0-7681 0-7682
0-0494 0-7781 0-7780 0-7782
0-1134 0-7949 0-7949 0-7950
0-2064 0-8188 0-8188 0-8189
0-3300 0-8495 0-8495 0-8496
0-4827 0-8860 0-8860 0-8861
0-6549 0-9255 0-9255 09255
0-8235 09626 0-9626 09626
0-9515 0-9899 0-9899 0-9899
1.0 1-0 1-0 1.0
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