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Summary 

Recent work of Hewitt on subsonic lifting-surface theory for wings with pointed apices has shown 
that representing both the singularity in the load at the apex and the detailed behaviour of the load near 
the apex leads to large increases in the accuracy of collocation methods. 

The strength of the singularity has been found in earlier calculations as a function of the apex angle 
of the wing. These calculations are extended here to include the nonsingular factor in the load, which 
also depends on the apex angle. Interpolation formulae are obtained, which provide an accurate closed- 
form approximation to the behaviour of the load distribution near the apex for all apex angles. 
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1. Introduction 

In the calculation of the subsonic flow past lifting wings, several collocation methods t give satisfactory 
solutions of the classical lifting-surface theory problem for wings with 'regular' planforms, i.e. planforms 
whose leading and trailing edges have no discontinuities in slope. However, when applied to planforms 
whose leading edges are cranked, these methods are less satisfactory, as the singular behaviour of the load 
predicted by linearised theory near the crank is not represented. 

In the case of  a swept wing with a pointed apex, i.e. a wing whose leading edge has a crank at the 
centre-section, the strength of the singularity in the load as the apex is approached along a ray is now 
known z'3'* and has been incorporated into a lifting-surface calculation for a particular planform by 
Hewitt s. However, Hewitt has also shown that substantially better accuracy is obtained using an appro- 
priate representation of the angular variation of the load near the apex, as well as its variation along 
the rays. 

Accordingly, the earlier calculations 2,3 concerning the singularity in the load have been extended to 
provide a representation of the behaviour of the load near the apex as a function of both the polar dis- 
tance and the polar angle about the apex, for all swept back wings. 

Germain 6 has shown that, according to the linearised theory of subsonic flow, the velocity potential 
in the neighbourhood of the apex of a lifting swept wing is dominated by a term which is an eigensolution 
of the differential equation and boundary conditions which govern the velocity potential of subsonic 
flow past an infinite plane sector with the same semi-apex angle as the wing 2. The velocity potential of 
the flow past the infinite plane sector has eigensolutions of the form 

49,, = r~mfm(O, a~) m = O, 1, 2 . . .  

where r is the distance from the apex, O and a~ are angular coordinates and fm and v,, depend 
on the semi-apex angle 7. The dominant eigensolution is the one for which the value of the exponent v 
lies between zero and one. We shall write this without suffices as 

49 = r~f  tO, aO . 

As the load is proportional to the streamwise derivative of the velocity potential, this first eigensolution 
governs the singular behaviour of the load ACp. The dominant term in the load can be written as 

ACp = r v-  lu-~:F(u), 

where u is a coordinate on the wing measured from the leading edges, so that the factor u -½ is the familiar 
square root singularity in the load at the leading edge. The factor F(u) is a regular function ofu depending 
on the semi-apex angle 7. It is this function that is required, as well as v, in order to describe the detailed 
behaviour of the load near the apex. 

Calculations of the exponent v for a large range of semi-apex angles 7 have previously been reported/. 
The method used involved the solution of a finite difference approximation to a second order partial 
differential equation for f in which v was an eigenvalue. The present report presents calculations of an 
approximate expression for F(u) from this finite difference solution for f, in the form of a cubic poly- 
nomial in u 

F(u) = a o + a lu  + a2u 2 + a3 u3, 

where the coefficients a i are functions of the semi-apex angle 7. This method, described in Section 3 and 
Appendix I, enables F(u) to be found for any semi-apex angle which is not too small. For smaller semi- 
apex angles, an expression for F(u) can be found from the series expansion for 49 for very slender wings 
given by Brown and Stewartson 3, and this is described in Section 4.1. This expression for F(u) can also be 
approximated by a cubic polynomial in u. The function F(u) can be found analytically for the cases when 
~, = 0 or n/2,  and these cases are considered in Sections 4.2 and 4.3. 



Cubic polynomial approximations for F(u) have been found using the above methods for a range 
of values of semi-apex angle between 0 and n/2, and the coefficients a i of these polynomials are given in 
Table 1. In order that the behaviour of the load near the apex can be found easily and quickly for any 
semi-apex angle 7 between 0 and n/2, the variation with 7 of v and each of the coefficients ai has been 
represented by a seventh order polynomial in 7. These are given in Section 5. 

To assess the overall accuracy of the method, F(u) has been calculated using two other methods 8'9 
for the case ~ = nl/4. A comparison of these results with those of the present method, see Table 2, shows 
very good agreement. 

Since Ref. 2 was published, additional values of the exponents vm have been calculated by different 
methods and the opportunity is taken in Appendix III and Figs. 9 to 12 of this report to compare the 
first two exponents for 0 ~< 7 ~< n, as calculated by the methods of Brown and Stewartson 3, Taylor 4 and 
Sack ~ 2 

2. The Equation for the Load 

According to the linearised theory, the velocity potential of the subsonic flow past the apex of a lifting 
swept wing is dominated by a term which is an eigensolution of the corresponding problem for an in- 
finite plane sector 6. The eigensolution takes the form 

q~ = rT(0, ~o), (1) 

where r is the difference from the apex,./ 'is a function of the polar angles O and {o, and v is a constant 
depending only on the semi-apex angle 7, lying in the range 0 ~< v ~< 1. As an eigensolution, q5 is only 
determined within a multiplicative constant. This means that the form of the load near the apex of the 
wing is given by the eigensolution, though its magnitude, which depends on conditions over the whole 
wing, must be found from a lifting-surface theory calculation. Previously, a table of values of v for different 
values of ? was calculated 2. This calculation has now been extended to find the eigenfunction f on the 
sector and hence the form of the wing load ACr. 

The rectangular coordinate system (Yl, Y2, Y3) of Ref. 1 is used, with Y3 = 0 the plane of the sector, 
Y2 = 0 the plane of symmetry of the flow, and the apex of the sector at the origin 0, see Fig. 1. 

The load ACr at a point (Yl, Y2) is given, according to linearised theory, by 

ACp(yl, Y2) = 40~1(Yl, Y2) s (2) 

where the suffix s denotes evaluation on the upper surface of the sector. Thus when q5 = r~f 

4~r~Of + 
v,] 

ACv(Yl,Y2) = vrV-lfzf-~ 
[ OYl --3 s" 

(3) 

In terms of u, a coordinate on the sector, as used by Hewitt 5, where 

cos 0 - cos ? 
U 

1 - c o s 0 c o s y  

and (4) 

cos 0 = Yl, 
r 

equation (3) for ACp can be written 
r v -  1 

A C ~ -  u~ R(u) 



where 

F(u) = 4u~r + 4 v u ' - -  f ~ . 
r )= 

(6) 

The  factor  u -*  represents the usual singularity of  ACp a t  the leading edges, so that  F(u) is a regular  func- 
t ion of u. f, and hence if, are determined only to a muit ipl icat ive constant,  and it is convenient  to remove  
this a rb i t ra ry  factor  f rom the functions we consider by dividing them by their values at the centreline 
of  the sector, where u = 1. raf=/Oy~ is zero when u = 1 (and Yl = 0, 0 = 0) since on the centreline, f= is 
independent  of  y l ,  and  therefore/~,  at u = 1, has the value 

frO) = 4v f=(1). 

We therefore consider  the behaviour  of  the load near  the apex given by the equat ion 

rV-- 1 

ACe(r, u) = u½ F(u) (7) 

where 

( v  ~3yl + -- r )= 
(8) 

and f=(u) is normal ised by its value at u = 1. Thus  the behaviour  of  the load can be deduced from the 
behaviour  of  f on the sector. 

3. Calculation of the Velocity Potential Eigenfunction and the Load 

The behaviour  o f f  on the sector  can be determined by the me thod  used in the earlier calculation 2 for 
v. Full details of  this calculat ion are given in Ref. 2, and the me thod  is summar i sed  below. 

The  velocity potent ia l  4, satisfies Laplace ' s  equat ion 

a24, 024) a24, 
o x--T  + + O y- 3 = o,  (9) 

with the bounda ry  condit ions that  ~b is symmetr ica l  abou t  Y2 ---- 0 and that  in the plane of  the sector, 
Y3 = O, 

and  

O~b = 0 for lY21 
< Y l  

¢9y 3 t a n  7 

4, = 0 for lY21 > Yl- 
tan 7 

(10) 

In a system of  o r thogona l  curvil inear coordinates  (r, 0o, r) such as that  used by Legendre 7, 

r cos 0o r sin 0o 
-- -- ~ ~,2~½ Yl cosh "c ' Y2 cosh'c  Y3 = r tanh z and  r = (y2 + y2 + yas , 



the subst i tut ion of the form (1) of  the velocity potential  

into equat ion (9) leads to the equat ion 

Oz 2 

¢ = ry(~, 0o) 

02f v(v + 1) r 
- -  + + 2 = o .  

This is a second order  partial  differential equat ion for f in the two variables z and 0 o, in which v is a 
parameter .  

A non-conformal  t ransformat ion  of coordinates  f rom (0 o, z) to (R, q~) is then made  so that  the domain  
of the p rob lem becomes  rectangular ,  as shown in Fig. 2. The  sector corresponds  to the line R = 1 and 
the line R = 0 to infinity upst ream.  The  equat ions  describing the t ransformat ion  are given in full in 
Ref. 2. However ,  on the sector, cp is related to the coordinates  0 and u by 

tan 0/2 [ 1 - u l +  
c o s ~ p -  t a n T / ~ -  11 + u] " (1t) 

In the (R, ~o) coordinate  system, the equat ion to be solved becomes 

~.aaf 1 ~ s 1 c32S" ( 
~b(R,q~)(0R2 + ~ ~ + R20qo2 j + v(v + 1)f  = 0 

where 

(R 2 + 0.25(R 4 + 2R 2 cos 2cp + 1) tan 2 y/2) 2 

~0(R, ~p) = (R 4 + 1 - 2R z cos 2~p) tan 2 7/2 

(12) 

The  bounda ry  condit ions on f are derived from those for ~b in equat ion (10). They apply  at the b o u n d a r y  
of the domain  and are 

(i) f =  Oon~o = 0 , 0  ~< R~< 1 and o n R  =O,O~<q~ ~< n/2, 

(ii) Of/SR = 0 on R = 1, 0 <~ g, ~ n/2, (13) 

(iii) Of/&p = 0 on ~o = n/2, 0 <.% R <~ 1. 

Since equat ion (12) and the boundary  condi t ions (13) are homogeneous ,  non-zero  solutions only exist 
for special values of  v, the eigenvalues of  the problem. 

We find approx imat ions  to these eigenvalues and the associated eigensolutions by using a finite 
difference approx ima t ion  to equat ion (12) at points  of  a grid over  the domain .  This leads to a matr ix  
equat ion 

(E o - 2I ) f  = 0 

where 

2 = v(v + 1), 

E o is a matrix with known coefficients, and f a vector  whose elements are the values of  a finite difference 
approx ima t ion  to f at the gridpoints.  Thus  for a non-tr ivial  solution for f, 2 must  be an eigenvalue of the 



matrix E 0 and f the corresponding eigenvector. A computer program has been written 2 to find 2 and f 
for a given semi-apex angle y and grid size, using inverse iteration lo. Details of the program are given in 
Appendix I. Those elements of f corresponding to grid points on the line R = 1 are the values of the finite 
difference approximation to f at the gridpoint values of q~ on the wing surface. 

The variation o f f  with u is illustrated in Fig. 3 for three semi-apex angles, f is zero at the leading edge 
where ~0 = 0, u = 0 and 0 = y, from the boundary conditions (13), and has been normalised so that its 
value is unity at the sector centreline, where q~ = n/2, u = 1 and 0 = 0. 

F can be expressed as a function ofq~ with the help of the following relationships between the coordinate 
systems in the plane of the sector: 

Y t = 1 - tan2(y/2)cos2 ~0 

r 1 + tan2(7/2)cos2 q~ ' 

and 

Then, from equation (8), 

sin 2 q~ 
U - -  

1 + cos 2 q~ 

3gO y~ 1 
= - cot ~o. 

(~Y 1 constant r 

and thus 

{U~F ~f ~(,0 y2constant u~Ylf~ F(~o) = &o ~y~ + r j s 

1 cos ~0 8fs 
F(~p) - v (1 + cos 2 ~p)½ &p 

sin  
+ (1 + cos 2 ~o) ~ + tana(y/2) cos 2 fs. (14) 

The original computer program has been extended to calculate the values of F(cp) at the gridpoint values 
of ~o, from equation (14), using a previously calculated, accurate value for the eigenvalue v and Lagrangian 
differentiation to calculate afsfigq~ at the gridpoints. It was found that a seven-point differentiation formula 
was sufficiently accurate, as it gave the same value for F(q~), to five significant figures, as a nine-point 
formula, over the range of values of q~. 

A cubic polynomial in u was then fitted through the values of F using a least-squares curve-fitting 
method, keeping the values of F at u = 0 and u = 1 fixed. This fitted polynomial predicts the variation 
of F with u very closely, as the residuals, i.e. the differences between the fitted and actual values of F, are 
mostly less than 0.00002, and the largest residual is only 0.00006. Thus for a specified semi-apex angle 
and mesh size, an approximation F for F is obtained: 

F(u)  = 2 0 + a l  u + a2 u2 + a3 u3 (151 

where 

and 

2 0 

3 
2i = I (16) 

i=0 

1 1 a~_~f o=o. 



A numerical approximation for F appropriate to an infinitely small mesh size is then obtained by 
extrapolation from a series of polynomials F(u) calculated for different mesh sizes. A square mesh with 
I equally spaced gridpoints along each side was used, l being 18, 19 or 20. It was found that the variation 
of each coefficient a~ with l could be approximated by 

C i 
ai(~', 1) = ~ + ai(7), (17) 

where c i and ki are constants for a particular 7 and ai(7) is the limit of the ai(7, 1) as I tends to infinity. The 
difference between this limiting value of ai and the ai for the largest mesh size was generally of the order 
of 0.001, but with a 2 and a 3 it increased to 0.008 for ~ near 90 degrees. Values of a0, a 1 and a 2 were calcu- 
lated using the formula (17), and then a 3 was found to satisfy the condition (16) 

3 
a i = 1, (18) 

i=O 

though, in practice, this value o f a  a differed by less than 0.0001 from that obtained from the formula (17). 
The polynomial 

a 0 + a l u  + a2 u2 + a3 u3 (19) 

is then a numerical approximation of the function F, at the specified semi-apex angle. 
Such polynominals for F have been calculated for a number of values of 7 between 27 and 90 degrees, 

and the coefficients a i of these are given in Table 1. However, the present method is unsuitable for low 
values of 7, since the extrapolation to zero mesh size becomes unreliable. For these values of 7, a poly- 
nomial representation for F has been obtained in Section 4.1, using a series expansion 3 for 4~ for small 7. 

The accuracy of the present method has been investigated by comparisons with other methods at 
7 = 27, 45 and 90 degrees. At y = 27 degrees, it is shown that the present method and the method for 
small 7 gives values of F differing by not more than 0-00008. In Appendix II, F calculated by the present 
method for 7 = 45 degrees is compared with F calculated by Taylor 9 and by Brown 8, who has calculated 
fs at this one semi-apex angle. This shows very good agreement between the functions calculated by 
different methods, the largest difference being 0.00015. Similarly good agreement is obtained for y = 90 
degrees, the present method giving the result 

F(u) = 1.00000 - 0-00005u + 0 - 0 0 0 1 7 U  2 - -  0-00012u 3, 

whereas the analytical result is shown in Section 4.3 to be 

F(u) = 1. 

The functions F(u) for three semi-apex angles are illustrated in Fig. 4. 

4. The Load for some Special Cases 

The numerical method given in the previous section provides a cubic polynomial approximation for 
F over a large range of values of semi-apex angles 7 between 27 and 90 degrees. To provide a representation 
of F over the range of ~, from zero to ~/2, the behaviour of F for small values of 7 was deduced from a 
series expansion for f due to Brown and Stewartson 3, and expressions for F when 7 = 0 and rt/2 have 
been found analytically. 



4.1. The Load for Small  Apex Angles 

When  ~ is small, the behaviour  of  F(u) can he derived f rom the series expansion for ~b calculated by 
Brown and Stewartson 3. They express ~b as 

d? = r~G(a)H(~) 

where, on the sector, 

( = sec ~Yl = sec ~; cos 0, 
r 

a = 1, G is constant ,  and so 

fs = H(O/H(~ = k). 

Lett ing 

k = s e c ~ ; =  1 + p  

( =  1 + p,u, (20) 

Brown and Stewartson derived a series expansion 8 for H in powers  of  p:  

H(#) = Ifi + ¼pp} - pZ{~ktl + ~2/fi} + O{pa(logp)Z}. 

Thus,  neglecting terms of  order  higher than p2 

/fi ÷ ¼pp} _ p2{~#~ ÷ ~ / ~ }  (21) 
fs = (1 ÷ ¼ p -  ,3_2, 

Y ~ F )  

where f~ is normal ised with respect  to its value at # = 1, 0 = 0, u = i. 
On  the sector, the coordinates  are related by 

Yl 1 + ku 

r k + u  

and 

u(1 + k) 
- - - ,  (22) 

Iz k + u  

so that  

d,u k(1 + k) 
du (k + u) 2 

and 

~u  
- - =  I - - U  2. 

r 3y t 



From equation (8), 

01~ du r ~Yl 

Substituting into this equation from equations (20), (21) and (22) we obtain an expression for F for small 7 : 

F(u)  = 
(1 + k) ½ 

(1 + ¼p - ~23pZ)(k + u) ~ 

[( I  - u2)kll 3 pu(l + k) p2[~u(l+k) 5#u( l+k)~21)  
x }v / + 4  ( k +  u) ( k +  u~ + f 2 [ ~ j  

{ I pu(1 W k) p213 u(1 + k) 1 ~u(1 + k )~ l l  I ~ )  
+ u(1 + ku)l 1 + 4 k + u L8 (k + u~ + 3 } [ ~ J  _] ]J  

in which terms of order higher than p2 have been neglected. 
This expression (23) is rather cumbersome for practical use, and so, in line with the method of the pre- 

vious section, F has been approximated numerically for certain values of 7 by a cubic polynomial of 
the form 

F(u) = ao + alu + a2 u2 + a3 u3- 

Values of the coefficients a~ are given in Table 1 for values of 7 up to 27 degrees. At 27 degrees, the agree- 
ment between the method of Section 3 and this method of Section 4.1 is extremely good, the former 

method giving 

F(u)=0.71740 + 0.33665u - 0.06948u z + 0.01543u 3 

and the method for small y giving 

F(u) = 0.71732 + 0.33708u - 0.07005u 2 + 0.01565u 3. 

This gives confidence that an expression for F can be found to sufficient accuracy over the whole range 
of semi-apex angles using one of these two methods. 

4.2. The Load for a Vanishing Apex Angle 

The function F(u) corresponding to a vanishingly small semi-apex angle can be calculated analytically 
from the series expansion 3 for q5 for small angles of ?. At ? = 0, v has the value 1, k = 1, and p = 0. 
Substituting these values into the expression (23) for F(u), we obtain 

F(u) = - -  . (24) 

Approximating this function in keeping with the representation of F(u) by a cubic polynomial over the 
whole range of semi-apex angles, we obtain the expression 

F(u) = 0.70711 + 0-35162u - 0-07589u 2 + 0.01716u 3. 

The functions fs(u) and F(u) when y = 0 are illustrated in Figs. 3 and 4. 

10 



4.3. The Load for an Unswept Wing 

When ~ = n/2, the sector becomes a half-plane and the flow is therefore two-dimensional and well- 
known 1 ~. The velocity potential tends to zero like the square root of the distance from the leading edge 
and the load tends to infinity like the reciprocal of the square root of the distance from the leading edge. 
Thus 

When 7 = n/2, cos 0 = u from equation (4). 

So 

v has the value ½ and fs = cos ~ 0 = u ~. 

Also the load 

q~ oc y~ 

= r ½ cos 4: 0. 

dp oz r~u ~, 

1 r - ½  r v -  1 
k C p oc --~ oc - -  - - -  

y~ cos ~ 0 u ~ " 

Therefore, when ~ = n/2, F(u) is identically equal to one. 
The functions fs(u) and F(u) for ~ = n/2 are illustrated in Figs. 3 and 4. 

5. Interpolation Formulae to give the Load for a General Semi-Apex Angle 

The methods of Sections 3 and 4 enable an expression for F(u) to be calculated for any specified semi- 
apex angle ~ in the range 0 ~< ~ ~< n/2. However, these methods are too complicated and time-consuming 
to be incorporated into a lifting-surface program, and a much simpler and quicker method of calculating 
v and F(u) for a general value of semi-apex angle ? is required for this purpose. 

A suitable method is interpolation from quantities v and F(u) known at tabular values of  7. The inter- 
polation for F(u) can be based on the expression by which F(u) is approximated by the methods of Sections 
3 and 4, 

F(u, ~) = ao(y ) + al(?)u + a2(7)u 2 + a3( ' ju  3. (25) 

This approximation (25) has been used for all values of V, so that interpolation is possible over the complete 
range of values of ~, although an approximation of the form 

F(u) = (1 + u) ~ x (a polynomial in u) 

would be more appropriate for very small 7, i.e. 7 less than n/12. 
Cubic polynomials for F(u) of the form (25) have been found at equally spaced values of V and are 

given in Table 1, together with the value of v used in the calculation o fF .  The variation of v and each of 
the coefficients ao, a 1 and a z with ~ has been approximated by a seventh order polynomial using a least- 
squares curve-fitting method. The variation o f a  3 with ? can then be found, since from equation (18) 

3 

Y a, (J  = I. 
i = 0  

11 



The po lynomia l s  for v and  the coefficients a i a r e ,  

v = 0.5 + (! - p)(0-5 + 0.487495p + 0.058458p 2 - 0.679288p 3 - 2.782556p 4 

+ 5-413016p 5 - 2.513314p6), 

a 0 = 1 + (! - p ) ( - 0 . 2 9 2 8 9  - 0.289532p - 0-306319p 2 - 0.595218p 3 + 3.447159p 4 

- 3.751175p 5 + 1.287896p6), 

a 1 = (1 - p)(0.35162 + 0.355542p + 0.238705p 2 + 1.392805p 3 - 6.210993p 4 

+ 6.285457p 5 - 2.000932p6), 

a 2 = (1 - p ) ( - 0 . 0 7 5 8 7  - 0.080020p - 0-005846p 2 - 0.568412p 3 + 2.708097p 4 

- 2.425370p 5 + 0-564653p 6) 

and 

a 3 = (l - p)(0-01714 + 0.014010p + 0.073460p 2 - 0.229175p 3 + 0.055737p 4 

-- 0.108912p 5 + 0.148383p 6) 

) 

(26) 

The  values of  the coefficients a i ca lcula ted  from these po lynomia l s  (26) at the t abu la r  values of  7 are 
close to the accura te ly  ca lcula ted  values of  the al given in Table  1, the difference mos t ly  being less than 
0.000! and the largest  difference 0.00022. The  dependence  of  the coefficients a~ on ~, is therefore well 
represented  by the po lynomia l s  (26), and  is i l lus t ra ted in Figs. 5 to 8. 

6. Conclusions 

The method  2 used previously  to calcula te  the s ingular  behav iour  of  the load  as the apex is a p p r o a c h e d  
a long  a ray  has been extended to calculate  how the load  near  the apex varies with the po la r  angle. The 
results have been expressed in the form of  a doub le  po lynomia l  in the  semi-apex angle  and  an angular  
coord ina te  on the wing, so that  they may  readi ly  be i nc o rpo ra t e d  in lifting surface p rograms .  The  accuracy  
has been assessed by compar i son  with the known  analy t ic  so lu t ion  for the upswept  wing, with a series 
expans ion  for s lender  wings and with two independen t  ca lcula t ions  avai lable  for 45 degree swept wings. 

C o m p a r i s o n  with o ther  ca lcula t ions  has conf i rmed the accuracy  of  the previous  eva lua t ion  of  the 
exponen t  of  the s ingular i ty  at  the  apex of  a swept back  wing. 

12 



a o , a l , a 2 , a 3  

ao,  a l  , a2,  a3 

ACp 

Eo 

f 

L, 

f, 

f 

F(u) 

F(u) 

G , H  

k 

I 

P 

r 

R,q~ 

U 

Y l , Y 2 , Y 3  

00~ T 

2 

Ym 

LIST OF SYMBOLS 

Coefficients of polynomial for F(u), see equation (17) 

Coefficients of polynomial for F(u), see equation (15) 

Wing load 

Matrix in finite difference solution 

Factor in the velocity potential ¢ 

Factor in the velocity potential eigensolution ¢,, 

Value of f at ith grid point 

Column vector { f l , . . . ,  fi . . . .  fu} 

Factor in load 

Finite difference approximation for F(u) 

Factors in the velocity potential ~b in Section 4.1 

= sec 7 

Number of gridpoints along side of mesh 

= k - 1, see equation (20) 

Distance from apex of sector 

Coordinate system for finite difference solution, see Section 3 and Fig. 2 

Coordinate on sector, see equation (4) 

Cartesian coordinate system, see Fig. 1 

Semi-apex angle 

= C O S  - 1  (y l / r )  

Orthogonal curvilinear coordinates, see Section 3 

Eigenvalue of finite difference solution 

= (~ - 1)/p, see equation (20) 

Exponent of distance factor in the velocity potential ~b, (= v o) 

Exponents of distance factor in the velocity potential eigensolution q~m 

13 



suffix 

P 

4~ 

q~ 

= 2 y / z  

Coordinate system, see Section 4.1 

First eigensolution of the disturbance velocity potential of flow past a sector 

Eigensolutions of the disturbance velocity potential of flow past a sector 

See R,  ¢p 

Denotes evaluation on the upper surface of the sector 
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A P P E N D I X  I 

Calculation of the Eigenfunction of the Matrix 

The eigenvalue 2 of  the matrix E o of  smallest  modulus  and its cor responding eigenfunction f are cal- 
culated using an inverse i terat ion scheme 1°. This scheme finds the eigenvalue with smallest  modulus  of  
a matr ix  A by successively solving the matrix equat ion 

Ay (p) = y t P - ~ ) ,  

for the vector ytP), where yt0~ is arbi trary.  If  the matr ix  A is of  order  n, and has eigenvectors x (r) and eigen- 
values e, ,  where r = 1 , 2 . . .  n, then an arbi t rary  vector  y(O~ can be expressed in the form 

y<O) = ~ flrX(r), 
, = l  

where the fir are constants.  After p steps of the i teration, we have 

tiP) = A - ly{p- t~ . . . . .  (A - t )vy{O) 

= ~ / ~ , - ~ x  {r~, 
r = l  

since Ax tr) = a,x ~r), A~x t') = c~2x tr) etc., the eigenvalues of  A -  ~ are the reciprocals of  those of  A, and the 
eigenvectors of  A -  ~ are the same as those of  A. 

Thus  if c~ is the eigenvalue of smallest  modulus,  

Y~P) = f l1~1  p x ~  + fir ~1 x~r~ . 
r =  2 ~ r  

The second term in the bracket  on the right decreases as p increases, until for large p, 

y<.~ =/~l~-~x~'~ + ~ )  

where e~P~ is a very small vector. 
In practice, y(P~ is normal ised with respect to its largest element after each step, in order  to avoid the 

possibility of accumula to r  overflow in the computer ,  so that  

y tp)=  ~-1{x~1) + ~ } ,  

where the largest element of  x t~ is unity, and  r] p) is a very small vector. Provided the i terat ion is cont inued 
until e] p) is sufficiently small, the eigenvalue of smallest modulus  is given by the inverse of  the largest 
e lement  of  ytP), and ytP) is its associated eigenvector,  which is determined to within a multiplicative 
constant.  

Any eigenvalue am of the matr ix  A can be found by this process, by considering a matr ix  B = (A  - g I )  

where g is an est imate of  ~,.. Providing that  g is a sufficiently close est imate of  ~,, for (a,. - g) to be the 
eigenvalue of B with smallest  modulus ,  the inverse iteration, 

Bz<p) = z t p  - 1), Z (0) arbi t rary,  

with normal isa t ion  of  z tp~ after each step will result in 

z ~  = (~,. - g)-~{x,m~ + ~ ) }  

16 



where e~ ) is a very small vector  and x (m) has its largest element unity. Thus  ztp) is the eigenvector corre- 
sponding to the eigenvalue a m, where (~,, - g) is the inverse of  the largest element of  z <p). 

The  rate of  convergence of  the i terat ion mainly  depends  on, and decreases with, the rat io of  the eigen- 
value of smallest  modulus  to the eigenvalue of  next smallest  modulus .  The  compu te r  p r o g r a m  of  Ref. 1 
therefore uses an i terat ion with the matr ix  E o - ,~o I,  where  ;~o is a good  est imate to 2, to get the i teration 
to converge quickly. 
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A P P E N D I X  II 

Comparison of F(u) at 7 = n/4 Calculated by Different Methods 

Calculations of  the behaviour  of  the load near the apex have previously concentrated on finding the 
values of  the exponents v m rather than the factor f of  the velocity potential. However,  in the course of  
his calculation 4, Taylor  obtains a series expansion for f, and Brown 8 has recently calculated values of  
f o n  the sector for the case 7 = re/4. These results are used here to calculate the corresponding functions 
F(u) for the case 7 = re/4, so that a compar ison can be made with F(u) calculated by the method of  Section 3. 

The series expansion obtained by Taylor  9 for the function f on the sector surface is 

L(t) = 0.96612 os t - N cos 3t - q 2  1 + ~ cos 3t + ~ 1 - ~ cos 5t - 

_ q 3  1 + ] 2 + 7 6 8  c o s 3 t +  1 
N N2) 
36 5-~ cos 5t + 

where N = - 8 v ( v  + 1) and q is a small parameter,  

q = e x p ( - T z K ' / K ) ,  

where K and K'  are complete elliptic integrals of  the first kind with modul i  k = sin 7 and k' = cos 7. The 
variable t is given by 

t -  
2 K  

where 

F rom equat ion (8) 

Yl (II.2) d n v = c o s O = - - .  
r 

F(u) = ~ + u ~ cos O f s 

= r Oy 1 8v + u~ dnv f (II.3) S" 

The relation between the coordinates  u and v can be derived using equat ion (4) 

cos 0 - cos 
U =  

i - cos 0 cos ~, 

dnv - k' h2cn2v 
1 - k'dnv (1 - k'dnv)(dnv + k') 

(II.4) 

18 



Also, from equation (II.2) 

0O SY//3 
r - -  - -  

Oyl cnv" 

Therefore, substituting into equation (II.3), we have 

F ( u )  = - 
v [(1 - k'dnv)(dnv + k')] 4 Ov / + dnv i ~ kTd-~v) f~" (II.5) 

Values ofF(u) have been calculated for a range of values ofu usin~g the formulae (II. 1) and (II.4) in equation 
(I1.5) for the case when ~ = ~/4. For  this case, k = k' = l /x/2,  Taylor s value for v is 0.8146, and the 
parameter of the series expansion (II.i), q, has the very small value of 0-04321. 

Brown has used the same coordinate, v, as Taylor in her calculation of values offs  at a large number 
of equally spaced values of v over a sector with semi-apex angle rt/4. Values of the function F(u) have been 
calculated from equation (II.5) using a six-point Lagrangian differentiation formula to calculate the 
derivative a f Jay, and Brown's value for v, which is 0.81465. 

The values of F(u) from the three methods of Taylor, Brown and Section 3 are given in Table 2. It can 
be seen that the agreement between the three methods is extremely close, differences between the values 
of the functions being no larger than the differences in the value of v calculated by the different methods, 
which is only 0.00015. 
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A P P E N D I X  III  

Comparison of the Exponents v m Calculated by Different Methods 

Since Ref. 2 was published, values of the exponents vm of the distance factor in the velocity potential 
eigenfunctions have been calculated by Taylor 4 and Sack 12. Taylor 's  method of calculation involves 
separation of the variables to obtain two Lam~ equations which have two separation constants, one of 
which is v,,(l + v,,). He obtains a series solution for each Lam~ equation in a small parameter,  combines 
these to eliminate one separation constant and thus obtains an equation which can be solved for v m. 

Sack considers the same Lam~ equations as Taylor, but treats each equation as having an eigenvalue 
and a common separation constant, A, which is vm(1 + vm). He describes a method for finding the eigen- 
value ofeach Lam~ equation for a given value of A. This involves expanding the eigenfunction as a Fourier 
series. The vector whose elements are the coefficients of this Fourier series is then the eigenvector of an 
infinite matrix. The corresponding eigenvalue can be found by truncating the matrix to finite size and then 
using a standard numerical method. In order to solve both Lam6 equations simultaneously, Sack con- 
siders the linear equation connecting the two eigenvalues of the two Lain6 equations and the separation 
constant A as a function of A, solves it for A using Newton's  method and hence finds the value of v,,. 

From the point of view of further developments, it is noteworthy that neither Taylor nor Sack restricts 
his eigensolutions to even functions of Y2, corresponding to flows with lateral symmetry. However, the 
method of Ref. 2 and the present Report considers the case appropriate to flow over the apex of a wing 
and so restricts the velocity potentials considered to those which are even functions of Y2. 

In this Appendix, we take the opportunity to compare the results of different calculations of the first 
two eigenvalues v 0 and v~ corresponding to symmetrical velocity potentials. 

Figs. 9 to 12 compare the values ofv 0 and v I , over a range of values of semi-apex angle 7, given by the 
calculations of Brown and Stewartson 3, Taylor 4, Sack 1 z and Rossiter 2. Extremely good agreement is 
obtained for v o, see Figs. 9 and 10, although for small semi-apex angles, v o is not given by Rossiter's 
method and is over-estimated by Taylor's.  Values of v~ for 7 greater than n/2 calculated by Sack and 
Rossiter are also in good agreement, see Fig. 11, although Rossiter's method does not give values for 
near n. Taylor 's  results agree for semi-apex angles between about  120 and 145 degrees but lose accuracy 
outside this range. For 7 less than hi2, see Fig. 12, only Sack and Taylor have calculated values of v I over 
the whole range of semi-apex angles. These are in good agreement for ), greater than n/4,  and exponents 
calculated by the other methods at 7 = 45 and 81 degrees also agree well. However, Taylor 's  method 
is not accurate for semi-apex angles below hi6. Taylor attributes this loss in accuracy to the fact that the 
parameters of the series solutions for the Lam6 equations are no longer sufficiently small for 7 not close 
to n/4  or 3n/4, this effect being more serious for the higher eigenvalues, i.e. v m > 1. Sack also gives reasons 
for believing his calculation method to be more accurate than Taylor's.  
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TABLE 1 

Coefficients of Cubic Polynomial Approximation for F(u) 

F(u) = a o + a l u  + azu 2 + a3 u3 

Semi-apex 
angle 

7 ° 

90 
81 
72 
63 
54 
45 
36 

27 

18 
9 
0 

Exponent 
V 

0.5 
0.5526 
0.6109 
0-6749 
0.7441 
0.8145 
0.8808 

0.9356 

0.9731 
0-9936 
1-0 

0 0 

1.0 
0.94957 
0.89894 
0.84982 
0.80375 
0.76493 
0.73558 
0.71740 
0.71732 
0.70934 
0.70731 
0.70711 

a l  

0 
0.04525 
0.09880 
0-15728 
0-21709 
0.26996 
0.31087 
0.33665 
0.33708 
0-34843 
0-35133 
0.35162 

a 2 

0 
0.00777 
0.00557 

-0.00624 
-0.02391 
-0-04325 
-0.05890 
-0.06948 
-0.07005 
-0.07457 
-0.07576 
-0.07589 

a 3 

0 
-0.00259 
-0.00331 
-0-00086 

0-00307 
0.00836 
0.01245 
0.01543 
0.01565 
0-01680 
0.01712 
0.01716 

Section 
describing 
method of 
calculation 

4.3 

3 

4.1 

4.2 

TABLE 2 

F(u) at y = n/4 calculated by different methods 

0 
0.0122 
0.0494 
0.1134 
0.2064 
0.3300 
0.4827 
0-6549 
0.8235 
0.9515 
1.0 

F(u) by method of 

Taylor 

0.7650 
0.7681 
0.7781 
0.7949 
0.8188 
0.8495 
0-8860 
0.9255 
0.9626 
0.9899 
1.0 

Brown 

0.7650 
0.7681 
0-7780 
0.7949 
0.8188 
0.8495 
0.8860 
0.9255 
0.9626 
0.9899 
1.0 

Section 

0.7649 
0.7682 
0.7782 
0.7950 
0-8189 
0.8496 
0-8861 
0.9255 
0.9626 
0.9899 
1.0 
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