N.A.E. dilurany.

CP No 17

ARC Technical Report

MINISTRY OF SUPPLY

AERONAUUTICAL RESEARCH COUNCIL CURRENT PAPERS

Wind Tunnel Tests on a One-Twelfth Scale Model of a Twin - Engined Military Transport (Airspeed C 13/45 Ayrshıre)

By

R WARDEN, Ph D, M Eng
of the Aerodynamics Division, NPL

Crown Copyright Reserved

Wind Tunnel Tests on a One-twelfth Scale Model of a I'win-engined Military Transport. - (Airspeed 0 13/45 Ayrshire).
- By -
R. Warden, Ph.D., M.Eng., of the Aerodynamios Division, N.P.J.

Introduotion and Sumary:

$13 \operatorname{tn}$ January, 1249
This report gives the results of wind tunnel tests on a one-twelfth scale model of the A.S.60-a high wing transport maohine having twin engines located in large underslung nacelles. The wing body interference and longitudinal stabjlity were measured. The stability tests inoluded measurements with propeliers running.,

The results indicate a noticeable fuselage interference effect on the tail and that slipstream has an cipreciable dostabilising effect under olimb conditions.

A comparison of tests made on pitohing moment at the R.A.E., and N.P.L., is inoluded.

Details of l'e日ts.

The tests were made in the Duplex wind tunnel at a wind speed of 60 ft . per sec., the equivalent Reynoids number being 0.334×10^{6}. The main aerdynamio details of the machine are tabulated in Table 1 and a general arrangement is shown in Figure 1.

The first series of tests comprised those without propellers and included tests on wing and fuselage senarately, and on various combinations of wing, fuselage, nacelles and cmpomage. For the tests with propellers munning a nev wing with the raoelles and part of the fuselage integrai with it had to be built to allow the installation of the model propeller drive. This consisted of a single motor, fitted in the fusclage, drawing the propellers through shafts and bevel gears buried In the wing and nacelles.

Tests on Wing Alone.

As this was the first low drag ring to be tested in the Duplex wind tunnel, it was decided to explore the boundary-layer flow by means of the "Ohina clay" and "lead aoetate - $\mathrm{H}_{2} \mathrm{~S}$ " techniques.
The/

Published by permission of the Director, NoP.L.

The main results of these tests are show in Figure 2. The shaded areas indroate the rear high surface friction regions as indicated by the "china clay" technique. The boundary lane thus determaned was so far back fron the leading edge that laminar separation was suspected, particularly at low lifts. An exploration using the "lead acetate - $\mathrm{H}_{2} \mathrm{~S}$ " technique showed that at a O_{L} of 0.19 laminar separation occurred on the upper surface of the wing at about 0.6 of the local chord from the leading edge. At a G of 0.59 the laminar separation could be detected only near the middle of the wing. Carcful exploration of the lower surface falled to reveal any signs of laminar separation over the range of incidence tested. It will be observed that at a G_{L} of $0.92(\alpha=10 \% 2)$ the lower surface is clear of any rear hagh friction reyion. At this σ_{L} the outer parts of the upper surface of the wang are completely turbulent, but there is a low friction region at the trailing edge, between 0.25 and 0.5 of the semi-span from the centre line. Ihis is due probably to a turbulent breakaway of the flow.

In all cases there was a terdency for inward flow on the upper surface which became more pronounced as the lift was increased. After consideration of the above results it vas decided to fit a $0!020$ diameter wire, at 50% of the local chord, on the upper surface only of the wing. All subsequent ohemscal explorations indicated that transition occurred at the ware. At 12° incidence (CL approximately 1.0) the flow behind the ware was very disturbed and definnte andications of reversed surface flow were obtained over the outer 25% of the span. The approach to this reversed flow had been noted at 10° incidence $\left(G_{I}=0.9\right)$ in the form of a very strong inward flow, almost parallel to the tralling edge, over the outer 20% of the span.

The effect of the wire on the forces measured on the wing alone is very small. On the straight part of the lift curve its effect is equivalent to a change of about 0.2 in incidence and it has no effect on the value of $d C_{I} / d a$. Stalling is sharper wath the ware than without but occurs at about the same angle. The effect on drag is negligible. The patching moment is increased by fitting the ware, the increase being roughly equavalent to a fommard shift of $0.05 \overline{0}$ in the centre of pressure between no lift and the initial stall. I'hese results are show plotted in Figure 3, which also includes the full scale lift against incidence curve as estamated by the firm. The slopes of the model and full scale lift curves are in close agreement, being 0.0925 G/degree model scale against an estimated value of $0.0955 \mathrm{G} /$ degree full scale. There is a difference of about 0.5 between the model and estimated full scale "no lift" angles of incidence.

Flovover lyacelles.
Streamer explorations of the flow over the nacelles and adjacent parts of the wing were carried out both whth and without the fuselage in position.

With the original design a kreakaway began at the nacellewing lower surface Junction some eight inches ahead of the wing trailing edge on the inboard side of the nacelle. A samilar but smaller breakaway on the outboard side of the nacelle began some five inches ahead of the wing trailing edge. At the trailing edge of the wing the disturbed area oovered the nacelle and extended some three or four inches along the wing.

To mprove this, fillets were fitted and the tail of the nacelle modified as show in Figure 4. With these alterations, the flow over the wing was good, but there was a small area of disturbed flow on the inboard sude of the nacelle near its tall. From these tests it appeared to be advantageous to build up the nacelles somewhat more on the inboard side than the outboard. The force measurements showed a very slight increase in the lift slope with the modified nacelles, compared whth that for the original nacelles, but there were no measurable differences in drag. All the oomplete model tests were made with the modified nacelle shape shown in Figure 4.

Interference Effects.
The wing and fuselage vere tested separately and the wing was tested with and without nacelles. Finally the wing and fuselage combination was tested with and without nacelles. From these tests the mutual interferenoe of the various parts could be deduced. A oorrection was applied to the surns of the separate drags to compensate for the loss of profile drag of that part of the wing covered by the body.

The interference tffects on drag are given in Figure 5. It will be noted that there is no significant difference between the wang-fuselage combination and wing alone plus fuselage over the range $0<G_{I}<0.6$. Above a I_{1} of 0.6 the interference drag increases steadily with $O_{\text {f }}$. When nacelles are fitted to the wing there is an appreciable interference drag at all positive lifts. At a O_{L} of 0.3 , this interference drag amounts to roughly eight per cent of the drag of the combination.

The effects on lift and pitching moment of adding the several model components to the wing are show in Figure 6. Although the "no lift" angle changea from $-3: 4$ for the wing alone to $-1!7$ for the complete model the slope of lift ourves remains practically the same.

The curves of pitching moment against lift reveal the destabilising effeots of both fuselage and nacelles and show that the negative value of $C_{m o}$ for the wing-fuselage combination is more than twice that of the wing alone.

The values of $\mathrm{C}_{\text {no }}$ for several conditions of the model tested are given below:-

Model Condition	C_{mo}
Wing alone (I'ransıtion not rixed)	-0.036
Wing alone (Iransition finxed at $\left.\begin{array}{c}\text { (In } \\ 0.5 \text { local chord }\end{array}\right)$	-0.031
Wing with two nacelles	-0.035
Wing with fuselage	-0.075
Wing whth fuselage and nacelles	-0.069

Tests with Various Angles of Tail Setting.

The changes in pitchang moment due to changes in the tail-setting angle are given in Table 3, for the complete model, and Table 4 for model without nacelles and shown in Figure 7. The most noticeable features due to f'atting the nacelles are the loss of stability and the marked deorease in pitching moments, equal to a deorease in $C_{m o}$ of 0.04 . The value of $\frac{d C_{m}}{d m_{m}}$ (G_{L} const.) for values of $C_{\text {, }}$ between 0 and 0.5 is not affected appreciably by the presence or otherwise of the nacelles and is approximately 0.035 per degree ohange in η_{T}.

Effect of Nacelles on Downvash at Tail.

The presence of the nacelles changes the angle of downash at the tail by -0.7 over the range of G_{I} from 0 to 0.7 . As shown in Figure 8 this change in dowwash angle agrees with the variation in lift angle produoed by fitting the nacelles to the wing-fuselage combination.

Tests with Various Elevator Angles.
The range of elevator angles covered by these tests was from -25° to $+20^{\circ}$ and the results are given in Table 5 , for flaps set at 0°, and Table 6 , for flaps set at 60°. The results are shown plotted in Figure 9. The striking feature of these ourves is thear irregularity, as opposed to the roughly parallel, straight line curves obtained in tests on other multi-engined models at the same Reynolds numbers in the Duplex wind tunnel.

If the patching moments be plotted against elevator angle at constant lift for values of 0 between 0 and 0.5 straight line curves can be drawn over the range of elevator angles from -10° to $+5^{\circ}$ but outside this range the curves are much kinked. For the above range of G_{L} the value of $d C_{m} / d \eta\left(G_{L}\right.$ const. $)$ is 0.024 per degree elevator movement.

Setting the flars to 60° increases the pitching moment appreciably over that without flaps at the same lifts. At a laft ooeffacient of 0.5 and with the elevators set at 0° tnis increase in pitching moment is equal to a C_{m} change of 0.115 . This change is roughly double that which ocours under similar conditions with the elevators sot at -10°.

These curves suggested that the flow in the region of the tail might be poor and an examination by means of streamers was made. This exploration revealed a region of dead air which began some, six or eight inohes in front of the tailplane leading eage and extended reamards over the fuselage. It is over this region that the sides of the fuselage converge rapidly, possibly too rapidly, towards the stempost.

Streamers placed in the position normally occupied by the tailplane leading edge showed that the nacelles had a marked effeot on the flow in that region. At low lifts there was less downwash behind the nacelles than at a point, on the same lateral line, behind the mid span of the wing. At about 8° incidence the dowmash behind these two points was equal and at higher angles of inoidence the downash behind the nacelles was the greater. Behind the nacelles the change in downash with vertioal height of the streamer was marked.

It was suggested that a wing upper surface breakaway in the region of the nacelles and fuselage might be a contributory cause to the trouble, so a streamer exploration of the flow in thas region was carried out. The examnation revealed a very disturbed flow over the rear part of the wing upper surface at $C_{L}{ }^{\prime} O$ greater than 0.6. This disturbed region extended outwards beyond the nacelles for some three or four inches.

In an attempt to improve the flow, the wing section in this rogion was faured so thet the outline of the rear part of the upper surface was a straight line from the trailing edge to the tangent of the original profile. This modification much improved the flow as shown by the streamers and indicated an appreaiable inflow towards the fuselage. Balance measurements, given below, show that the fairing had very little effect on either forces or pitching moments.

α^{0} Fuselage Datum	C_{I}	C_{D}	C_{m}	C_{I}	C_{D}	C_{m}
Normal	wing profile		Modifıed wing	profile		
-3.5	-0.18	0.0380	0.0343	-0.165	0.0377	0.0324
-1.5	+0.015	0.0326	0.0338	+0.03	0.0326	0.0323
+0.6	0.23	0.0330	0.0267	0.24	0.0331	0.0256
-2.7	0.455	0.0376	0.0191	0.465	0.0379	0.0182
6.8	0.805	0.0580	-0.0114	0.805	0.0580	-0.0096
10.9	0.94	0.0920	-0.0031	0.94	0.0920	-0.0033
13.9	1.06	0.168	-0.0337	1.065	0.168	-0.0362

Finally, some total head explorations in the vurtical plane through the position of the tailplane quarter chord line were made to determine the energy lost by the air before reaching the tailplane. The total head combs were fixed to the model so that they lay along the fuselage datum line, nominally $+0,2$ to the tallplane chord line. The results of these tests are given in Tables 7 and 8 and are shown in Figures 10 and 11.

The effects of incidence changes, with the total head conbs in the design position of the tailplane are shown in Figure 10. Up to 4° incidence the loss is negligible but above that angle it increases, steadily with flaps at 0° and rapidly with flaps set at 60°. It will be observed that at high angles of inoldence with the flaps set at 0° the loss tends to be greatest near the body, whereas with flaps set at 60° the loss is very much greater at the tip of the tailplane then at the body.

Figure 11 shows the results of explorations made at various distances from the thrust line, with the model set at 12° incidence. The curves show that the flow jillproves progressively with distance above the design position of the tail and deteriorates with distance below. The body interference efiect shows as an appreciable loss of head near the inboard end of the tailplane.

Tests with Propellers Running:
For these tests a new ving with part of the fuselage and nacelles made integral with it was fitted. This construction was neoessary to allow the incorporation inside the model of the motor and gearing requared to drive the propellers.

Owing to the shortness of time available for these tests it was decided to limut them to a $C_{I_{1}}$ range from 0.5 upwards and to cover a T_{c} range from 0.13 to 0.29 . This range covers the nomal olimb and also take-off whth flans set at 0°. Comparative tests winthout propellers were made in all cases. The results obtained are given in Tables 9 to 13 and Figures 12 to 16.

The effects of slipstream on lift are show in Figure 12. With flaps set at 0° a thrust equivalent to a T_{c} of 0.29 produces a ten per cent increase in lift at five degrees incidence, on the straight part of the lift-incidence curve. Beyond six degrees incidence, where the lift-incidence curve without propellers flattens out, the percentage increase in lift due to a II_{c} of 0.29 rises steadily and reaches 27% at an incidence of eleven degrees. Whth flaps set at 30° the maximum lift occurs at an incidence of $10: 5$ and the lift increment with a T_{c} of 0.29 represents a percentage increase of some 26%. At six degrees incidence, on the straight part of the lift curve, the percentage increase in lift due to the above T_{0} has fallen to about 16%.

The increase in 0_{L}, due to setting the flops to 30°, ranges from approximately 0.55 without prowellers to 0.68 with a T_{c} of 0.29 at the point of maxirnum lift with the flars set at thirty degrees.

On the same diagram is shown part of the lift curve obtained on the original model with filars set at 60°. The maximum Gi of 1.55 is attained at an incidence of eight degrees. The increment in $C_{\text {I }}$ due to the flaps at thas incidence is approximately 0.75 .

Finally it will be noted that the lift-incidence curves of the two models whthout propellers agree extremoly well.

The effect of slypstream on ritchang moments without tail and with several tail-settings is shown in Higure 13 for model without flaps and Figure 14 for model with flaps set at 30°. The families of curves are reasonably nomal and call for no special comment. The effect of slipstrean is destabilising and it-also tends to reduce the kink whoch is most marked in the without propeller case.

The angle of downwash at the tail is plotted against O_{L} in Figure 15, for the several cases in which it was possible to determine it. Whthout propellers the agreement between the first and second models is good. At a G_{L} of 0.5 the downash angle for the second model is 0.2 greater at $2: 1$ than the value derived for the first model. Without flaps and with slipstream the variation of angle of downwash with lift is much greater than without slipstream and there appears to be a variation With T_{c}. With flaps set at 30° the differences between the without propeller and various Tc cases $1 s$ much smaller. Due to the paucaty of points the curves must be treated as approximate only, but there is no reason to suppose that additional poants mould change them to any great extent.

The effect of slipstream on the pitching moments due to various elevator settings both without and wath flaps set at 30° is shown in Figure 16. Excepting the kink which oocurs in the without flap case the family of curves are of reasonably normal form. There are two points, however, which may be of interest. The furst is that at the most positive elevator angle tested, namely $+5^{\circ}$ without flaps and $+10^{\circ}$, with flaps set at 30°, the T_{0} effect on pitching moment is very small, as the elevator setting is reduced the effect of T_{C} on pitching moment inoreases progressavely. The second is that setting the flaps to 30°, besades inoreasing the pitching moment on the model, reduces the effectiveness of the elevators. Thus at a G_{L} of 1.25, the increment in C_{m} for a 10° movenent in elevator is 0.29 without flaps against 0.23 with flaps set at 30°.

Longztudinal Stability.

The tests whth propellers oovered a C_{L} range from 0.5 upwards. It is therefore not possible to determine the effects of slipstream on longitudinal stability at low lifts, but the information obtained indzates that the slipstream will have a destabilising effect.

The values of $K_{n}\left(=-\frac{d S_{m}}{d S_{L_{1}}}\right.$, stick fixed without propellers $)$ deduced from the test results are given below:-

Model Condition	K_{n} at		
	$\sigma_{\mathrm{L}}=0.2$	$\sigma_{\mathrm{L}}=0.4$	$\sigma_{\mathrm{L}}=0.6$
No tail no nacelles	-0.17	-0.15	-0.13
No tail with nacelles	0.21	-0.20	-0.10
With tail no nacelles	0.06	0.075	0.095
Complete model	0.035	0.04	0.0^{7}

Fron the above results it will be seen that the nooelles have a marked destabilising effect, which is larger when the dail is absent than when it is fitted.

Comparison of R.A.E., and NoI. I.e Fitching Moment I'est Resplts.

After the tests at the NP.L. had been complesed the model was transferred to the R.A.E. where rolling and yawing moments were measured and pitching moment tests vere rcpeated at Reynolds numbers (R) up to 1×10^{6}.

Comparable sets of tests from the two series aave been plotted on the sane diagrams and the results are shown in Figures 17, 18 and 19.

In Figure 17, G_{L} and O_{D} are plotted against the angle of the fuselage datum line. At the sare R the lift curves show very good agreement of theur stranght parts, but in the N.P.I. tests the initial stall begins between one and two degrees earlier than in the R.A.E. tests. The agreement at minmun drag is also very good, but as the incidence is increased the N.P.L. drag becomes the higher, being about $\%$ greater at an incidence of 11°.

The relation between lift and pitohing moment, with and without tail, is show in Figure 18. The general agreement again is very good. Whth tail, the N.P.L. interpolated curve for $\eta_{T}=-0.9$ agrees more closely with the R.A.E. ourves at the higher values of R than with that for the same R.

The effect of setting the elevators (η) is show in Figure 19. The N.P.I. results have been adjusted to a tail angle of -0.9 from one of -0.17 by adding the pitching moment increment due to the above change in tail angle. This inarement was obtained from Figure 18.

With $\eta=0$ all three curves are in good agreement. But as η is deareased the R effect on the R.A.E. curves increases and at $\eta=-15^{\circ}$ and -20° these curves are of quite different shapes. The N.P.L. curves agree more closely with the R.A.F.. curves obtained at the higher R.

Iongitudinal Stability.
The values of K_{m} deduced from the R.A.E. and N.P.I. tests are given below: -

Where Made	Vft/sec.	Model Conditions	$O_{L}=0.2$		
R.A.E.	180	less tail	-0.23	-0.23	-0.23
N.P.J.	60	$"$	-0.23	-0.19	-0.19
R.A.E.	180	Complete Model	0.04	0.055	0.07
N.P.J.	60	$"$	0.035	0.04	0.065

Table 1
Full scale Dimensions
Model scale $=1 / 12$ Full scale

Tests on a $1 / 12$ th scale model of the A.S. 60.
Wind Speed of Tests $=60 \mathrm{ft} . /$ seaond $\left(R=0.336 \times 10^{6}\right)$. Gills olosed in all tests on first model without propellers.

I'able No.2. Tests on Cormonents of the Model.

Tests on a $1 / 12$ th scale model of the A.S.60.
Table No.3. Effect of Varying Tlail Angle on Complete Model.
Gills olosed

```a Fuselage Datum```	G	$\mathrm{C}_{\mathrm{m}}$	$\mathrm{C}_{\text {L }}$	$C_{\text {D }}$	$\mathrm{C}_{\mathrm{m}}$	${ }_{\text {c }}$,	$\mathrm{C}_{\mathrm{m}}$	
	$r_{\text {I }}=-1.80^{\circ}$		$\eta_{T}=-0.17^{\circ}$			$\eta_{T}=1.43^{\circ}$		
-5.6	$-0.377$	0.0678	-0.363 0.0469		$\begin{aligned} & 0.0188 \\ & 0.0173 \end{aligned}$	-0.348 -0.0274		
-3.6	-0.193	0.0702	-0.177	c. 0382		-0.161	-0.0338	
-1.5	-0.025	0.0741	+0.020	0.0331	0.0181	+0.037	-0.0364	
+0.6	$+0.215$	0.0697	+0.232	0.0331	0.0116	0.249	-0.0478	
2.6	0.439	0.0666	0.458	0.0378	0.0024	0.475	-0.0621	
4.7	0.651	0.0568	0.670	0.0459	-0.0096	$0.683-0.0733$		
6.8	0.786	0.0395	0.805	0.0585	-0.0247	$0.815-0.0760$		
8.8	0.845	0.0420	0.862	0.0728	-0.0194	$0.871-0.0613$	-0.0613	
10.8	0.925	0.0424	0.938	0.0919	-0.0114	$0.954-0.0549$		
12.9	1.010	0.0347	1.025	0.1385	-0.0157	$1.040$	-0.0609	
13.9	1.045	0.0113	1.060	0.1670	-0.0374	1.070	-0.0831	
	$\eta_{T}=3.25^{\circ}$		$\eta_{T}=5.30^{\circ}$			${ }^{1} \eta_{T}=7.14^{\circ}$		
-5.6	-0.332 ${ }^{-0.1005}$		-0.311	-0.1685		-0.292	-0.2390	
-3.6	-0.150	-0.1020	$\begin{aligned} & -0.125 \\ & +0.075 \end{aligned}$	( $/ \begin{aligned} & -0.1730 \\ & -0.1810 \\ & -0.1880\end{aligned}$		$\begin{aligned} & -0.102 \\ & +0.096 \end{aligned}$	$\begin{aligned} & -0.2455 \\ & -0.2500 \end{aligned}$	
-1.5	+0.050	-0.1085						
+0.6	0.262	-0.1205	$\begin{array}{r} +0.075 \\ 0.288 \end{array}$	/	-0.1880	$\begin{aligned} & 0.308 \\ & 0.529 \end{aligned}$	-0.2500 -0.2565	
. 2.6	0.488	-0.1320	$\begin{aligned} & 0.512 \\ & 0.721 \end{aligned}$		-0.1930		-0.2530	
4.7	0.701	-0.1365		8	-0.1915	0.709	-0.2450	
6.8	0.832	-0.1350	$\begin{aligned} & 0.721 \\ & 0.849 \end{aligned}$		-0.1825	0.861	-0.2325	
8.8	0.888	-0.1220	0.903		-0.1640	0.915	-0.2135	
10.8	0.964	-0.1175	0.9801.065		-0.1595	$\begin{aligned} & 0.994 \\ & 1.080 \end{aligned}$	-0.2180	
12.9	1.055	-0.1200			-0.1600		-0.2195	
13.9	1.085	-0.1445	1.100		-0.1860	1.110	-0.2305	

Table 4./
$\theta$
l'ests on a $1 / 12$ th scale model of the A.S.60.
Table 4. Effect of Varying Tail Angle on Complete Model whthout Nacelles.

Fuselage Datum	G	$C_{\text {d }}$	$\mathrm{C}_{\mathrm{m}}$	$\mathrm{O}_{ \pm}$	$\mathrm{C}_{\mathrm{m}}$	$\mathrm{C}_{\text {L }}$	$\mathrm{C}_{\mathrm{m}}$
	$\eta_{T}=-0.17^{\circ}$			$\eta_{T I}=1.43^{\circ}$		$\eta_{T}=7.14^{\circ}$	
-5.6	-0.312	0.0386	0.0627	-0.296	0.0111	-0.239	-0.1850
-3.5	-0.122	0.0316	0.0594	-0.106	0.0029	-0.049	-0.2010
-1.5	+0.076	0.0281	0.0513	+0.092	-0.0046	+0.152	-0.2125
+0.6	0.295	0.0291	0.0412	0.310	-0.0168	0.370	-0.2255
2.7	0.523	0.0343	0.0255	0.537	-0.0342	0.596	-0.2370
4.7	0.738	0.0426	0.0060	0.754	-0.0565	0.810	-0.2475
6.8	0.874	0.0552	-0.0160	0.889	-0.0801	0.936	-0.2510
8.8	0.912	0.0694	-0.0429	0.924	-0.0956	0.967	-0.2440
10.8	0.984	0.0876	-0.0560	0.999	-0.1004	1.035	-0.2430
12.9	1.075	0.1095	-0.0731	1.090	-0.1210	1.125	-0.2620
13.9	1.110	0.1375	-0.0985	1.115	-0.1452	1.150	-0.2715

Table 50/

T'ests on a $1 / 12$ th scale model of the A.S. 60 .
T'able 5. Effect of Varying Elevator Angle on Complete Model with Tail at $-0.17^{\circ}$ to Fuselage Daturn.

Fuselage Datum	$C_{\text {L }}$	$\mathrm{C}_{\mathrm{m}}$	$O_{\text {L }}$	$\mathrm{C}_{\text {D }}$	$\mathrm{C}_{\mathrm{m}}$	$\mathrm{C}_{1}$	$\mathrm{C}_{\mathrm{m}}$
	$\eta=$	$20^{\circ}$	$n$	$=15^{\circ}$		$\eta$	$10^{\circ}$
-5.6	-0.301	-0.1830	-0.316		. -0.1465	-0.337	-0.1700
-3.5	-0.114	-0.1970	-0.132		-0.1460	-0.158	-0.1545
-1.5	+0.085	-0.2020	+0.067		-0.1460	+0.069	-0.1560
+0.6	. 0.296	-0.2060	0.279		-0.1545	0.276	-0.1430
2.7	0.521	-0.2155	0.506		-0.1645	0.499	-0.1340
4.8	0.738	-0.2540	0.724		-0.2030	0.712	-0.1595
6.8	0.880	-0.3010	0.872		-0.2700	0.857	-0.2215
8.8	0.926	-0.2635	0.919		-0.2350	0.892	-0.2080
10.9	1.000	-0.2525	0.995		-0.2130	0.984	-0.1820
12.9	1.092	-0.2605	1.083		-0.2155	1.070	-0.1735
13.9	1.130	-0.2995	1.118	,	-0.2475	1.105	-0.1990
	$\eta=$	5		$=0^{\circ}$		$\eta$	$-5^{\circ}$
-5.6	$-0.338$	-0.0795	-0.365	0.0467	0.0235	-0.392	0.1330
-3.5	-0.147	-0.0860	-0.178	0.0380	0.0227	-0.213	0.1475
-1.5	+0.052	-0.0935	+0.49	0.0328	0.0221	-0.014	0.1485
+0.0	0.263	-0.1020	0.231	0.0331	0.0157	+0.198	0.1385
2.7	0.490	-0.1120	0.457	0.0377	0.0068	0.423	0.1305
4.8	0.704	-0.1355	0.670	0.0459	-0.0063	0.636	0.1200
6.8	0.836	-0.1425	0.805	0.0583	-0.0208	0.774	0.1015
8.8	0.886	-0.1230	0.860	0.0728	-0.0146	0.832	0.0935
10.9	0.967	-0.1125	0.939	0.0921	-0.0101	0.912	0.0910
12.9	1.053	-0.1060	1.024	0.1374	-0.0136	1.002	0.0740
13.9	1.089	-0.1350	1.063	0.1678	-0.0401	1.044	0.0415
	$\eta=$	$-10^{\circ}$		$=-15^{\circ}$		$\eta$	$-25^{\circ}$
-5.6	-0.414	0.2035	-0.428		0.2630	-0.465	0.4045
-3.5	-0.236	0.2405	-0.2148		0.2830	-0.282	0.4125
-1.5	-0.043	0.2550	-0.056		0.3045	-0.089	0.4310
+0.6	$+0.173$	0.2335	+0.157		0.2910	+0.117	0.4390
2.7	0.396	0.2270	0.388		0.2685	0.345	0.4225
4.8	0.604	0.2325	0.631		0.2560	0.562	0.3955
6.8	0.740	0.2280	0.730		0.2795	0.698	0.3925
8.8	0.800	0.2150	C. 781		0.3015	0.751	0.4170
10.9	0.883	0.2035	0.862		0.2915	0.838	0.3970
12.9	0.974	0.1705	0.955	/	0.2575	0.935	0.3480
13.9	1.012	0.1355	0.997	/	0.2195	0.976	0.3015

Table 6./

I'ests on a $1 / 12$ th scale model of the A.S. 60.
Table 6. Tests on lodel, rith end rithout Tail, and with Flaps at $60^{\circ}$. Gills olosed
$\eta_{\Psi_{1}}=-0.17^{\circ}$ to ruselage Datum.

$a^{\circ}$   Fuselage Tatum	$\mathrm{G}_{\mathrm{L}}$	$\mathrm{C}_{\mathrm{D}}$	$\mathrm{C}_{\mathrm{m}}$	$\mathrm{C}_{\mathrm{L}}$	$\mathrm{C}_{\mathrm{m}}$	$c^{\text {c }}$	$\mathrm{C}_{\mathrm{m}}$
		$0^{\circ}$		$\eta$	$-10^{\circ}$	Model wi	hout Tall
$-5.3$	0.509	0.1589	0.1185	0.469	0.2720	0.587	-0.1611
-3.2	0.713	0.1576	0.1211	0.671	0.2815	0.782	-0.1198
-1.2	0.927	0.1616	0.1197	0.882	0.2870	0.980	-0.0896
+1.9	1.131	0.1712	0.1238	1.085	0.3050	1.176	-0.0533
3.0	1.350	0.1863	0.1144	1.275	0.3275	1.359	-0.0224
5.0	1.488	0.2058	0.1034	1.426	0.3365	1.520	+0.0046
7.0	1.538	0.2291	0.1023	1.478	0.3290	1.543	0.0402
9.0	1.549	0.2778	0.0839	1.484	0.3030	1.543	0.0634
11.0	1.465	0.4 .119	0.0274	1.411	0.2285	1.455	0.0630
13.0	1.340	0.4848	0.0058	1.300	0.1605	1.312	0.0710
14.0	1.315	0.5191	-0.0087	1.282	0.1330	1.284	0.0736

Table7./

The followng data applies to all cases．
Niouths of tubes $2 \frac{1}{2}{ }^{n}$ behind the position of the tallplane I．t．at side of body．
Combs set parallel to the fuselage datum line and normal to plane of symmetry of model．
Distance from centre line of sting to the 26 th（innermost）tube $=2.5^{\prime \prime}$ ．
Distance from centre lane of sting to the 1 st （outermost）tube $=20.9^{\prime \prime}$ ．
Distance between tubes $=0.75^{\prime \prime}$ ．
（a）Flaps set at $9^{\circ}$

	Tubes $3.75^{\circ}$ below L．E．of T＇ail．				T＇ubes $1.75^{\prime \prime}$ below L． E ．of I＇ail．				Tubes level with L．E．－T．E． chord of Tail．					Tubes 2．0＂above   I． E ．of Tazl．				Tubes 4．0＂abore L．E．of I＇all	
$\begin{gathered} \text { Tube } \\ \text { No. } \end{gathered}$	$a=0^{\circ}$	$\alpha=4^{\circ}$	$\alpha=8^{\circ}$	$\alpha=12^{\circ}$	$\alpha=0^{\circ}$	$\alpha=4^{\circ}$	$\alpha=8^{\circ}$	$\alpha=12^{\circ}$	$\alpha=0^{\circ}$	$\alpha=4^{\circ}$	$\alpha=8^{\circ}$	$\underline{\alpha}=10^{\circ}$	$a=12^{\circ}$	$\alpha=0^{\circ}$	$\alpha=4^{\circ}$	$\alpha=8^{\circ}$	$a=12^{\circ}$	$\mathrm{c}=8^{\circ}$	$\alpha=12^{\circ}$
1	1.01	1.01	0.89	1.00	0.99	0.98	0.58	0.97	1.00	0.99	0.98	0.98	0.82	1.00		1.00	0.96	$1+00$	1.00
2	1.01	1.01	0.90	0.99	0.99	0.97	0.98	0.96	1.00	0.98	0.98	0.99	0.81	1.00		1.00	0.97		1.00
3	1.01	1.01	0.91	0.99	0.99	0.98	0.97	0.97	1.00	0.98	0.97	0.98	0.82	1.00		1.00	0.97		1.00
4	1.01	1.01	0.83	0.99	0.99	0.97	0.91	0.97	1.00	0.98	0.91	0.95	0.82	1.00	－	0.99	0.91		0.99
5	1.00	0.97	0.86	0.98	0.98	0.95	0.83	0.96	0.99	0.98	0.82	0.90	0.84	0.98	1	0.99	0.83		0.94
6	1.01	0.91	0.96	0.99	0.99	0.93	0.81	0.98	1.00	0.98	0.79	0.83	0.87	1.00	\％	0.96	0.82		0.92
7	1.00	0.85	0.96	0.97	0.98	0.91	0.81	0.97	1.00	0.98	0.83	0.82	0.90	0.99	¢	0.95	0.81		0.89
8	0.96	0.84	0.98	0.96	0.99	0.91	0.86	C． 89	0.99	0.98	0.88	0.84	0.90	1.00	${ }_{4}$	0.97	－ 0.82		0.88
9	0.80	0.80	0.99	0.89	0.99	0.89	0.87	0.82	1.00	0.98	0.94	0.87	0.86	1.00	${ }_{\sim}^{5}$	0.99	0.83		0.89
10	0.72	0.97	0.96	C． 86	0.99	0.86	0.86	0.81	0.99	0.98	0.97	0.88	0.81	0.99	$\cdots$	0.99	0.84		0.91
11	0.73	0.91	0.85	0.90	0.98	0.82	0.83	0.84	1.00	0.98	0.97	0.91	0.81	0.99	\％	0.99	0.88		0.94
12	0.77	0.82	0.81	C． 96	0.99	0.79	0.82	0.87	0.97	0.98	0.97	0.93	0.84	0.99	${ }^{2}$	i	0.94		0.97
13	0.89	0.87	0.83	C． 98	0.99	0.81	0.84	0.90	1.00	0.99	0.97	0.96	0.89	0.99	$\stackrel{0}{4}$	¢	0.99		0.99
14	1.02	0.90	0.92	C． 99	0.99	0.86	0.87	0.92	1.00	0.99	0.97	0.97.	0.92	0.99	$\stackrel{\square}{4}$	\％	1.01		0.99
15	1.03	0.85	0.99	0.99	0.99	0.91	0.88	0.93	1.00	0.99	0.95	0.96	0.91	0.99	${ }_{2}^{20}$	$0^{10}$	1.00		0.99
16	1.03	0.92	0.98	1.00	1.00	0.97	0.85	0.94	1.00	0.99	0.92	0.92	0.88	0.99	－	¢	0.96		0.99
17	1.03		－	－	1.00	0.98	0.83	0.93	1.00	0.99	0.92	0.88	0.84	0.99	$\stackrel{\infty}{\infty}$	${ }_{0}{ }^{5}$	0.94		0.98
18	1.03	0.83	0.91	0.99	1.00	0.99	0.81	0.93	1.00	0.99	0.94	0.87	0.81	1.00	－	边	0.90		0.99
19	1.03	0.83	0.88	0.99	1.00	0.99	0.36	0.89	1.00	0.99	0.97	0.90	0.79	1.00		少的	0.90		0.99
20	1.03	0.83	0.86	0.97	1.00	0.99	0.91	0.83	1.00	0.99	0.98	0.91	0.76	1.02		$\bigcirc$	0.90		0.99

## Table 7．（Sontinued）．

（a）Flaps set at $0^{\circ}$

	Ratio of Hotal Head to Iotal Head of Free Stream $=p / q$																		
	Tubes $3.75^{\prime \prime}$ below I．E．of tail．				Tubes $1.75^{\prime \prime}$ below L．E．of Tail．				Tubes level with L．E．－T．E． chord of Tall．					Tubes 2．0＂above L．E．of Tail．				Iubes $4.0^{\prime \prime}$ guve L．E．of Tail．	
$\begin{aligned} & \text { Tube } \\ & \text { No. } \end{aligned}$	$\alpha=0^{\circ}$	$a=4^{\circ}$	$\alpha=8^{\circ}$	$\alpha^{\circ}=12^{\circ}$	$\alpha=0^{\circ}$	$\alpha=4^{\circ}$	$\alpha=8^{\circ}$	$\alpha=12^{\circ}$	$\alpha=0^{\circ}$	$\alpha=4^{\circ}$	$a=8^{\circ}$	$a=10^{\circ}$	$\alpha=12^{\circ}$	$\alpha=0^{\circ}$	$\alpha=4^{\circ}$	$\alpha=8^{\circ}$	$\alpha=12^{\circ}$	$a=8^{\circ}$	$a=12^{\circ}$
21	1.02	0.82	0.83	0.95	0.99	0.99	0.93	0.77	0.99	0.98	0.98	0.91	0.72	1.00	$\bigcirc$	O	0.91		0.98
22	1.02	0.82	0.83	0.93	0.99	0.99	0.94	0.72	0.99	0.98	0.98	0.92	0.71	1.00	$0^{\circ} \mathrm{O}$	$\stackrel{8}{8}$	0.92		0.98
23	1.02	0.80	0.30	0.90	0.97	0.98	0.93	0.70	0.98	0.98	0.98	0.92	0.73	0.99	＋	7	0.94		0.98
24	1.02	0.88	0.79	0.84	－	－	－	－	0.91	0.98	0.97	0.93	0.78	0.99		${ }_{0}^{42}{ }_{5}^{8}$	0.98		0.99
25	1.01	0.71	0.75	0.75	0.97	0.99	0.72	0.67	0.99	0.99	0.98	0.89	0.83	0.99		示留	1.00	$\downarrow$	0.99
26	0.64	0.48	0.65	0.64	0.65	0.72	0.61	0.61	0.96	0.98	0.98	0.87	0.85	0.99	50	$\stackrel{\sim}{\sim}$	1.01	1.00	0.99
																㔉			

## Arrange

 of $\mathrm{p} / \mathrm{q}$
(b) Flaps set at $60^{\circ}$


Tests on a $1 / 12$ th scale model of the A.S.60. with airscrews.

Table 2. Complete Model with Various Yail Settings. Gills Open. Elevators $0^{\circ}$. Blade Angle $25^{\circ}$. Wind Speed $=60 \mathrm{ft} . / \mathrm{sec}$.

J	To	$a^{\circ}$   Fuselage   Daturn	$\bigcirc$	${ }^{\text {C }}$ D	$\mathrm{C}_{\mathrm{m}}$
		With	Tail		
Without Airscrews		3.7	0.533	0.0384	0.0516
		6.8	0.758	0.0540	0.1095
		9.8	0.847	0.0759	0.1545
0.665		12.3	0.983	0.1187	0.1658
	0.29	3.7	0.587	-0.2054	0.0533
		6.8	0.868	-0.1836	0.1251
		9.8	1.050	-0.1508	0.1713
		12.8	1.266	-0.1026	0.2234
0.705	0.24	3.7	0.584	-0.1641	0.0550
		6.8	0.858	-0.1438	0.1211
		9.8	1.026	-0.1129	0.1731
		12.8	1.230	-0.0659	0.2190
0.755	0.19	3.7	0.575	-0.1238	0.0591
		6.8	0.843	-0.1037	0.1257
		9.8	0.999	-0.0733	0.1772
		12.8	1.187	-0.0278	0.2282
0.825	0.13	3.7	0.559	-0.0748	0.0619
		6.8	0.822	-0.0540	0.1286
		9.8	0.963	-0.0275	0.1822
		12.8	1.144	+0.0143	0.2226
		$\eta_{71}$	$-1.80^{\circ}$		
Without Airscrews		3.7	0.525	0.0430	0.0833
		6.8	0.768	0.0597	0.0585
		9.8	0.874	0.0822	0.0599
		12.9	1.018	0.1266	0.0429
0.665	0.29	3.7	0.558	-0.1999	0.1535
		6.8	$0.8<2$	-0.1779	0.1603
		9.8	1.053	-0.1454	0.1646
		12.9	1.226	-0.0938	0.1551
0.705	0.24	3.7	0.555	-0.1584	0.1444
		6.8	0.850	-0.1383	0.1516
		9.8	1.321	-0.1066	0.1657
		12.9	1.254	-0.0562	0.1442
0.755	0.19	3.7	0.549	-0.1169	0.1332
		6.8	0.836	-0.0974	0.1398
		9.8 12.9	0.981	-0.0669	0.1533
		12.9	1.217	-0.0187	0.1335
0.825	0.13	3.7	0.545	-0.0661	0.1222
		6.8	0.824	-0.0480	0.1249
		9.8	0.973	-0.0199	0.1340
		12.9	1.169	+0.0244	0.1224

I'ests on a $1 / 12$ th sorie model of the A.S.60.
Table 2:.(Continued.)

$J$	$T_{c}$	$\begin{gathered} a^{\circ} \\ \text { Fuselage } \\ \text { Datum } \\ \hline \end{gathered}$	$0_{1}$	$C_{\text {D }}$	$\mathrm{C}_{\mathrm{m}}$
			$-0.17^{\circ}$		
Wathout Airscrews		3.7	0.554	0.0436	0.0127
		6.8	0.792	0.0615	-0.0097
		9.8	0.887	0.0846	0.0024
		12.9	1.030	0.1283	-0.0199
0.665	0.29	3.7	0.592	-0.2005	0.0666
		6.8	0.892	-0.1781	0.0756
		9.8	1.084	-0.1455	0.0812
		12.9	1.316	-0.0911	0.0699
0.705	0.24	3.7	0.584	-0.1602	0.0608
		6.8	0.878	-0.1381	0.0700
		9.8	1.056	-0.1072	0.0795
		12.9	1.280	-0.0545	0.0631
0.755	0.19	3.7	0.578	-0.1193	0.0556
		6.8	0.863	-0.0968	0.0602
		9.8	1.030	-0.0650	0.0739
		12.9	1.240	-0.0151	0.0553
0.825	0.13	3.7	0.570	-0.0688	
		6.8	0.849	-0.0482	0.0516
		9.8	0.998	-0.0199	0.0640
		12.9	1.193	+0.0265	0.0503
1		$r_{r^{\prime}}=+1.43^{\circ}$			
Without	irscrews	3.7	0.359	0.0441	-0.0456
		6.8	0.806	0.0607	-0.0553
		9.8	0.905	0.0853	-0.0423
		12.9	1.040	0.1326	-0.0507
0.665	0.29	3.7	3.601	-0.1994	-0.0043
		6.8	0.906	-0.1743	-0.0028
		9.8	1.098	-0.1412	$+0.0020$
		12.9	1.323	-0.0874	-0,0023
0.705	0.24	3.7	0.597	-0.1577	-0.0104
		6.8	0.897	-0.1355	-0.0013
		9.8	1.074	-0.1024	-0.0024
		12.9	1.292	-0.0496	-0.0091
0.755	0.19	3.7	0.591	-0.1169	$-0.0166$
		6.8	0.877	-0.0935	-0.0129
		9.8	1.051	-0.0607	+0.0037
		12.9	1.247	-0.0116	-0.0124
0.825	0.13	3.7	0.582	-0.0665	-0.0199
		6.8	0.860	-0.0450	$-0.0204$
		9.8	1.012	-0.0162	-0.0095
		12.9	1.209	+0.0313	-0.0085

Tests on a $1 / 12 t r_{1}$ scale model of the A.S.60.
Table 10. Complete Hodel with Various Ejevator Settings. Gills Open. Blade Angle $25^{\circ} \eta_{11}=-0.17^{\circ}$. Wind Speed $=60 \mathrm{ft} . / \mathrm{sec}$.

J	$\mathrm{I}^{1}$	$a^{\circ}$ Fuselage Datum	$\mathrm{C}_{\text {I }}$	$C_{\text {D }}$	$\mathrm{C}_{\mathrm{m}}$
		Elevator Setting $-5^{\circ}$			
Without Anrscrews		3.7	0.520	0.0432	0.1352
0.665	0.29	6.8	0.763	0.0587	0.1067
		9.8	0.860	0.0815	0.1012
		12.9	1.006	0.1300	0.0904
		3.7	0.535	-0.2003	0.2203
		6.8	0.842	-0.1789	0.2203
0.705		9.8	1.041	-0.1484	0.2381
	0.24	12.9	1.269	-0.0968	0.2260
		3.7	0.535	-0.1598	0.2122
		6.8	0.835	-0.1400	0.2151
		9.8	1.022	-0.1083	0.2276
0.755	0.19	12.9	1.237	-0.0594	0.2156
		3.7	0.529	-0.1185	0.2010
		6.8	0.823	-0.0984	0.2086
0.825	0.13	9.8	0.994	-0.0667	0.2154
		12.9	1.200	-0.0203	0.1988
		3.7	0.519	-0.0682	0.1880
		6.8	0.806	-0.0494	0.1830
		9.8	0.962	-0.0221	0.1985
		12.9	1.153	+0.0220	0.1858
		Elevat	Settin		
Without Anrscrews		3.7	0.581	0.0453	-0.1026
0.665	0.29	6.8	0.824	0.0638	-0.1223
		9.8	C. 916	0.0877	-0.0963
		12.9	1.057	0.1381	-0.0991
		3.7	0.627	-0.1971	-0.0755
		6.8 9.8	0.923	-0.1737	-0.0678
0.705	0.24	9.8 12.9	1.125	-0.1367	-0.0742
		12.9 3.7	1.348 0.636	-0.0818 -0.1576	-0.0921 -0.0841
		6.8	0.932	-0.1338	-0.0734
0.755		9.8	1.116	-0.0998	-0.0759
	0.19	12.9	1.322	-0.0449	-0.0963
		3.7	0.637	-0.1155	-0.0880
		6.8	0.910	-0.0936	-0.0737
		9.8 12.9	1.086	-0.0586	-0.0709
0.825	0.13	12.9	1.289	-0.0063	-0.0912
		3.7 6.8	0.618	-0.0669	-0.0867
		6.8 9.8	0.894 1.047	-0.0449 -0.0142	-0.0803 -0.0713
		12.9	1.214	+0.0328	-0.0854

Tests on a $1 / 12$ th scale model of the A.S. 60.
Table 11. Complete Model wath Various Mlevator Settings. Gills Shut. Blade Angle $25^{\circ} m_{1}=-0.17^{\circ}$.
Wind speed $=60 \mathrm{ft} . / \mathrm{sec}$.

J	$T_{\text {c }}$	$a^{\circ}$   Fuselage Datum	$C_{L}$	$C^{\text {D }}$	$\mathrm{C}_{\mathrm{m}}$
		Elevator S	ting $-5^{\circ}$		
Without Airscrews		$3.7{ }^{\text {' }}$	0.521	0.0429	0.1335
		6.8	0.759	0.0581	0.1122
		9.8	0.864	0.0811	0.1064
		12.9	1.003	0.1276	0.0797
0.665	0.29	3.7	0.555	-0.1984	0.2125
		6.8	0.850	-0.1765	0.2203
		9.8	1.04,0	-0.1465	0.2359
		12.9	1.267	-0.0951	0.2288
0.705	0.24	3.7	0.550	-0.1582	0.2034
		6.8	0.837	-0.1381	0.2099
		9.8	1.019	-0.1001	0.2251
		1.2 .9	1.237	-0.0601	0.2167
0.755	0.19	3.7	0.543	-0.1186	0.1927
		6.8	0.822	-0.0985	0.1970
		9.8	0.993	-0.0697	0.2128
		12.9	1.205	-0.0208	0.2069
0.825	0.13	3.7	0.535	-0.0695	0.1802
		6.8	0.810	-0.0494	0.1807
		9.8	0.962	-0.0234	$0.1995$
		12.9	1.157	+0.0205	$0.1966$
		Elevator	ing $0^{\circ}$		
Without Airscrews		3.7	0.545	0.0428	0.0185
		6.8	0.794	0.0595	-0.0068
		9.8	0.887	0.0837	+0.0045
		12.9	-1.031	0.1306	-0.0038
0.665	0.29	3.7	0.592	-0.2015	0.0724
		6.8	0.891	-0.1776	0.0655
		9.8	1.083	-0.1439	0.0716
		12.9	1.308	-0.0912	0.0726
0.705	0.24	3.7	0.590	-0.1598	0.0665
		6.8	0.878	-0.1391 -0.1069	0.0620
		9.8 12.0	1.052 1.278	-0.1069 -0.0476	0.0683
0.755	0.19	3.7	1.278 0.579	-0.0476	0.0572 0.0564
		6.8	0.860	-0.0976	0.0523
		9.8	1.029	-0.0663	0.0656
		12.9	1.241	-0.0971	0.0567
0.825	0.13	3.7	0.569	-0.0697	0.0520
		6.8	0.845	-0.0486	0.0400
		9.8 12.8	0.997	-0.0208	0.0569
		12.9	1.185	+0.0245	0.0575

l'ests on a $1 / 1$ गth soale model of the A.S. 60.
Table 11. (Continued).

J	$T_{c}$	$\begin{gathered} \alpha^{\circ} \\ \text { Fuselage } \\ \text { Daturn } \end{gathered}$	$\mathrm{C}_{\mathrm{L}}$	${ }^{\text {c }}$	$\mathrm{C}_{\mathrm{m}}$
		Elevator	tting $+5^{\circ}$		
Without	rscrews	3.7	0.587	0.0447	-0.1067
		6.8	0.823	0.0625	-0.1220
		9.8	0.918	0.0872	-0.0968
		12.9	1.057	0.1354	-0.1022
0.665	0.29	3.7	0.637	-0.1994	-0.0790
		6.8	0.929	-0.1742	-0.0766
		9.8	1.129	-0.1391	-0.0809
		12.9	1.358	-0.0829	-0.0885
0.705	0.24	3.7	0.631	-0.1579	-0.0856
		6.8	0.914	-0.1347	-0.0776
		9.8	1.102	-0.1007	-0.0775
		12.9	1.321	-0.0462	-0.0912
0.755	0.19		0.620	-0.1175	-0.0895
		6.8	0.900	-0.0941	-0.0792
		9.8	1.068	-0.0602	-0.0740
		12.9	1.277	-0.0092	-0.0885
0.825	0.13	3.7	0.610	-0.0658	-0.0885
		6.8	0.881	-0.0142	-0.0837
		9.8	1.033	-0.0159	-0.070
		12.9	1.230	+0.0322	-0.0809

Tests on a $1 / 12$ th scale model of the A.S. 60.
Iable 12. Complete liodel with Various Illevator Settings.
Blade Angle $25^{\circ} M_{1^{+}}=-0.17^{\circ}$ GIIls Open. Flaps $30^{\circ}$. Wind Speed $60 \mathrm{ft} . / \mathrm{sec}$.

J '	T	$\begin{gathered} \alpha^{0} \\ \text { Fuselage } \\ \text { Datum } \end{gathered}$	$\widetilde{L}_{\text {I }}$	$\mathrm{C}_{\mathrm{D}}$	$\mathrm{C}_{\mathrm{m}}$
		Ilevator	Setting $0^{\circ}$		
Wathout	Airsorews	3.9	1.101	0.1145	0.0560
		7.0	1.347	0.1438	0.0228 ,
		10.0	1.404	0.1871	0.0263
		13.0	1.320	0.3332	-0.0172
0.665	0.29	3.9	1.24 .1	-0.1029	0.1429
		7.0	1.541	-0.0601	0.1558
		10.0	1.730	-0.0061	0.1467
		13.0	1.670	+0.1573	0.1308
0.705	0.24	3.9	1.222	-0.0663	0.1361
		7.0	1.517	-0.0266	0.1428
		10.0	1.692 .	+0.0268	0.1379
		13.0	1.637	0.1843	0.1145
0.755	0.19	3.9	1.199	-0.0289	0.1276
		7.0	1.437	+0.0118	0.1273
		10.0	1.653	0.0632	0.1243
		13.0	1.577	0.2146	0.0989
0.825	0.13	3.9	1.175	0.0168	0.1128
		7.0 10.0	1.459 1.592	0.0541 0.0997	0.1118 0.1077
		13.0	1.509	0.2441	0.0874
		Elevator	ctting +5 ${ }^{\circ}$		
Without Airscrews		3.9	1.133	0.1176	-0.0610
	$1 \cdot$	7.0	1.378	0.1478	-0.0992
		10.0	1.430	0.1921	-0.0902
0.665		13.0	1.337	0.3336	-0.0820
	0.29	3.9	1.278	-0.0981	+0.0105
		7.0	1.583	-0.0523	0.0129
		10.0	1.769	-0.0197	0.0133
		13.0	1.682	+0.1630	0.0034
0.705	0.24	3.9 7.0	1.261 1.555	-0.0622	0.0058
		10.0	1.733	+0.0128	0.0101
		13.0	1.671	0.1922	-0.0061
0.755	0.19	3.9	1.236	-0.0242	-0.0035
		7.0	1.529	+0.0178	-0.0082
		10.0	1.683	0.0477	+0.0025
		13.0	1.618	0.2244	-0.0190
0.825	0.13	3.9	1.210	0.0214	-0.0123
		7.0 10.0	1.491	0.0600	-0.0218
		10.0 13.0	1.624 1.548	0.0852 0.2564	-0.0026 -0.0170

Table 12. (Continued)./

Tests on a $1 / 12 t$. scale model of the A.S. 60.
I'able 12. (Continued).

J	$\mathrm{T}_{0}$	$\begin{gathered} \alpha^{\circ} \\ \text { Fuselage } \\ \text { Datum } \end{gathered}$	$\mathrm{C}_{\text {L }}$	$C_{\text {D }}$	$\mathrm{C}_{\mathrm{m}}$
		Elevator	tting		
Without Airscrews		3.9	1.146	0.1212	-0.1167
		7.0	1.388	0.1517	-0.1237
		10.0	1.442	0.1970	-0.1529
		13.0	1.328	0.3390	-0.1496
0.665	0.29	3.9	1.301	-0.0966	-0.0920
		7.0	1.614	-0.0499	-0.1086
		10.0	1.808	-0.0127	-0.1242
		13.0	. 1.736	+0.1705	-0.1190
0.7050.755	0.24	3.9	. 1.284	-0.0601	-0.1036
		7.0	1.582	-0.0156	-0.1075
		10.0	1.756	+0.0175	-0.1067
		13.0	1.651	0.1983	-0.1204
0.755	0.19	3.9 7.0	1.267	-0.0216	-0.1022
		7.0	1.554	$+0.0216$	-0.1163
		10.0	1.703	0.0516	-0.0913
		13.0 3.9	1.621	0.2220	-0.1187
0.825	0.13	3.9	1.235	0.0238	-0.1261
		7.0	1.517	0.0641	-0.1231
		10.0	1.657	0.0895	-0.0888
		13.0	1.561	0.2595	-0.1193

Table 13./

I'ests on a $1 / 12 \mathrm{tin}$ scalt mociel of the A.S.60.
I'able 13. Complete Rodel whth Various lail Settings.
Blade Angle $25^{\circ}$.
Wind Speed $60 \mathrm{ft} . / \mathrm{sec}$.

J	$\eta^{1}$	$\alpha^{\circ}$ Fuselage Datum	$\mathrm{C}_{\text {I, }}$	$\mathrm{C}_{\mathrm{D}}$	$\mathrm{C}_{\mathrm{m}}$
F Taxl Setting +1.430 to Fuselage Datum					
Without A	crews	3.9	1.111	0.1146	-0.0137
		7.0	1.359	0.1456	-0.0300
		10.0	1.421	0.1888	-0.0400
		13.0	1.322	0.3351	-0.0715
0.665	0.29	3.9	1.259	-0.1010	0.0785
		7.0	1.566	-0.0565	0.0812
		10.0	1.761	-0.0006	0.0835
		13.0	1.680	+0.1622	0.0605
0.705	0.24	3.9	1. 24.0	-0.0664	0.0718
		7.0	1.536	-0.0235	0.0685
		10.0	1.713	$+0.0300$	0.0686
		13.0	1.64 .2	0.1885	0.0542
0.755	0.19	3.9	1.225	-0.0270	0.0617
		7-0	1.509	+0.0140	0.0551
		10.0	1.681	0.0678	0.0574
		13.0	1.588	0.2168	0.0489
0.825	0.13	3.9	1.192	0.0178	0.0487
		7.0	1.481	0.0554	0.0377
		10.0	1.614	0.1029	0.0455
		13.0	1.500	0.2522	0.0427
: Mail Setting $+3.25^{\circ}$ to Fuselage Datum					
Wathout	Anrscrews	3.9	1.148	0.1170	-0.0894
		7.0	1.379	0.1480	-0.1079
		10.0	1.428	0.1923	-0.1101
		13.0	1.347	0.3353	-0.0959
0.665	0.29	3.9	1.292	-0.0985	-0.0091
		7.0	1.589	-0.0538	-0.0082
		10.0	1.780	+0.0030	-0.0136
		13.0	1.679	0.1629	-0.0178
0.705	0.24	3.9	1.274	-0.0626	-0.0090
		7.0	1.562	-0.0206	-0.0165
		10.0	1.770	$+0.0363$	-0.0230
		13.0	1.648	0.1917	-0.0152
0.755	0.19	3.9	1.253	-0.0265	-0.0250
		7.0	1.536	+0.0176	-0.0304
		10.0	1.687	0.0708	-0.0243
		13.0	1.590	0.2489	-0.0258
0.825	0.13	3.9	1.201	0.0199	-0.0334
		7.0	1.500	0.0594	-0.0376
		10.0	1.634	0.1071	-0.0277
		13.0	1.561	0.2455	-0.0219

Iests on a $1 / 12$ th scale model of the A.S. 60.
19able 13. (Continued).

$J$	$\mathrm{m}_{0}$	```\alpha Fuselage Datum```	9	$C_{\text {D }}$	$\mathrm{C}_{\mathrm{m}}$
		wat	t I'ail		
Without Airscrews		3.9	1.115	0.1119	-0.0197
		7.0	1.34 .8	0.1389	+0.0127
		10.0	1.392	0.1822	0.0631
0.665		13.0	1.322	0.3815	-0.0034
	0.29	3.9	1.294	-0.1038	-0.0435
		7.0	1.573	-0.0611	+0.0106
		10.0	1.743	-0.0066	0.0654
		13.0	1.671	0.1580	0.0775
0.705	0.21	3.9	1.269	-0.0685	-0.0364
		7.0	1.547	-0.0280	+0.0146
		10.0	1.711	+0.0252	0.0672
		13.0	1.621	0.1792	0.0885
0.755	0.19	3.9	1.241	-0.0297	-0.0303
		7.0	1.510	+0.0096	+0.0246
		10.0	1.658	0.0592	0.0724
		13.0	1.571	0.2102	0.0794
0.825	0.13	3.9	1.205	0.0155	-0.0181
		7.0	1.479	0.0511	+0.0293
		10.0	1.599	0.0972	0.0822
		13.0	1.526	0.2414	0.0844

AM.
$\frac{12,058}{\text { Fig I }}$

General arrangement of Airspeed A560. Model scale $=1 / 12$ Full scale
$\alpha=05^{\circ}$ (Lete)
$c_{L}=0.19$ surface $\frac{\frac{12,058}{F}, \underline{G}}{}$ Lower

$\alpha=45^{\circ}$


Shaded areas represent the high surface friction areas as indicated by the china clay-nitrobenzene technique figures ( 089 otc) give distance of boundary from LE in terms of the local chord $\quad$ position of laminar breakaway as indicated -x-x-x- Approximate position of laminar

Exploration of flow over plain model wing.


Lift and Drag against $\alpha^{\circ}$ (Fuselage Datum)

Effect of Fitting Transition wire at 05 chord on upper surface of wing - (Wing alone tests)


Pitching moment and Centre of Pressure against Lift

Effect of Fitting Transition wire at 05 Chord on Upper Surface of Wing - (Wing alone Tests)



Dragagainst Lift showing Interference Effects of Nacelles and Fuselage


12,058


Pitching Moment against Lift for various Tailplane settings with and without nacelles No Propelie-s


Lift agaunst Fuselage Datum Angle For model without tail

Fuselage	$C_{L}$	$7^{\circ}$	$\epsilon^{\circ}$	
Datum	(No Tail)			Complete Model
445	0.610	-1.8	2.65	
180	- 346	-0 17	163	
-0 55	- 119	$+1.43$	088	
-3.10	-0.118	325	015	
3.45	0.580	-0.17	$3 \cdot 28$	Model less Nacelles'
0.75	0.320	+143	218	
-7.30	-0.396	+714	-0.16	



Downwash with Tail against Lift without Tail


Pitching Moment against Lift for Different Elevator $n_{T}=-017^{\circ}$ to $\frac{\text { Angles }}{\text { Fuselage }}$ Datum


$\rho=\frac{\text { Total head in position exploned }}{\text { Free stream total head }}$

Tubes in the plane of the tailplane Mouth of tubes at $1 / 4$ chord point




Variation of $p / q$ at $\alpha=12^{\circ}$
where $p / q=\frac{\text { Total head in position explored }}{\text { Free stream total head }}$
Tests on a $1 / 12^{T H}$ Scale Model of the AS 60 Total head Distribution in Region of Talplane Position

$\frac{81519}{850 \%}$


Pitching moment against Lift, with Flaps set at $30^{\circ}$, for various tall plane settings, with and without slipstream



Pitching Moment against Lift for Various Elevator Angles with and without Flaps $3_{T}=-0^{\circ} 17$ Gllls open Blade Angle $=25^{\circ}$.


Comparison between RAE and NPL tests.
$C_{L}$ and $C_{D} v \alpha^{\circ}$ (Fuselage Datum Anglel
Mödel without empennage.


$C_{m} \cup C_{C}$ for various elevator settings
C.P. No. 17

12058
A.RC. Technical Report
printed and published by his majesty's stationery office
To be purchased from
York House, Kıngsway, IONDON, w'c 2429 Oxford Street, LONDON, w 1
PO Box 569, london, sel
13a Castle Street, edinburgh, 21 St Andrew's Crescent, cardiff
39 King Street, manchester, 21 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or from any Bookseller
1950
Price 3s. 6d net.
PRINTFD IN GRFAT BRITAIN

