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Summary 

A review is made of certain approximate analytic methods which are capable of solving a wide class of 
strongly nonlinear, ordinary, differential equations. Contained in this class are many equations which arise 
from the analysis of physical situations, e.g. the equation of Van der Pol and the unforced Duffing equation. 
The relative accuracy of these methods is assessed by applying them to a particular strongly nonlinear equation 
and comparing the solutions with numerical solutions obtained on a digital computer. The results show the 
R.A.E. and CJ. methods to be a useful and accurate means of solving this particular equation over a wide range 
of the coefficients involved. 

* Replaces A.R.C. 33 861 
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1. Introduction 

The differential equation 

+ F(x,  2) = O, 

has been the subject of many studies. When F(x,  2) has the form 

(1) 

F(x,  2) = c l x  + e f ( x ,  2), (2) 

it is referred to as 'weakly nonlinear' with a small parameter ~ and may be solved, to a high degree of accuracy, 
by techniques such as that of Kry[offand Bogoliuboff, hereafter referred to as K and B. The method of K and 
B, described in Ref. 1, is based on small perturbations of the harmonic oscillator equation 

5i + c , x  = O, cL > O, (3) 

and makes use of the "principle of averaging' which, as presented in Ref. 1, appears to be a crude approxima- 
tion but has since been put on a rigorous mathematical basis. (See Ref. 2, Chapter 15.) A convenient summary of 
small perturbation techniques, which use the solutions of equation (3) as 'generating solutions', may be found 
in Ref. 3, pp. 211-415, together with the original references. These include the formal perturbation procedure 
of Poincar6, the developments ofthe K and B procedure by Bogoliuboffand Mitropolsky and the ~stroboscopic 
method'  of Minorsky. 

When F(x,  2) does not have a weakly nonlinear form, equation (1) is said to be ~strongly nonlinear' and the 
application of small perturbation techniques will, in most cases, give inaccurate results. In this situation, 
recourse may be made t6 qualitative methods associated with the concept of the "phase plane', by which means 
existence and (in)stability of solutions may be demonstrated and the solution curves constructed by various 
graphical means. (See for example Ref. 4, Chapter 2 or Ref 5, Chapters 1 and 2.) Such methods do not, how- 
ever, give an explicit algebraic form for the solution. 

In cases where equation (1) may be written 

5i + b2 + c l x  + e f ( x ,  2) = O, (4) 

with b, c t > 0, the characteristic roots of the degenerate linear equation have negative real parts. If f (x ,  2) 
is analytic in x, 2 then the solution of equation (4) may be expressed in series form by means of Lyapunov's 
Expansion Theorem, (see Ref. 6, pp. 95-106), or by the topological method of Ref. 7. For instance in Refs. 7 
and 8 it has been shown that when the characteristic roots of 

5~ + b2 + c~x = 0 (5) 

are complex, the general solution of 

is 

+ b2 + c~x + c3 x3 = 0  (6) 

n = l  r = l  

where 

k =½b and m 2 = cl - k 2. (8) 

It is, of course, re-assuring to know that such a solution exists, but in strongly nonlinear cases the usefulness of 
equation (7) is questionable, since, to obtain adequate accuracy, it is necessary to evaluate a large number of 
terms in the summation. 

For many physical applications it is desirable to have more manageable, though perhaps approximate, 
forms for the solution of equations (1) or (4) and several workers have obtained these. Probably the first is 
that given in Re['. l, Chapters 3 and 4 and the extensions to this technique by Bogoliuboff and Mitropo[sky. 



More recently a modified form of the K and B method was proposed by Beecham and Titchener in Ref. 9. 

The form of  the solution, 
x = a cos ~b, (9) 

is retained but the nonlinear "damping', 2, and 'frequency', co, are defined as 2 = ~/a and co = ~b, where these are 
obtained by a simple iterative procedure as functions of the amplitude, a(t). Further extensions and examples 
of this technique have been discussed by Ross, by Titchener and by Simpson in Refs. 10, 11, 12 and 13. These 
include applications to the interpretation and presentation of nonlinear characteristics of flight vehicles, from 
experimental data, and the prediction of their dynamic response. This method, which has, in Refs. 10 and 13, 
been extended to systems of higher order and several degrees of freedom, will be referred to as the "R.A.E. 

method'. 
A different approach to the problem stems from the fact that the equation 

.~ 71- ClX + C3 X3 = 0 (10) 

has an exact general solution in terms of Jacobian elliptic functions, (see Ref. 14, Chapter 7). Using this as a 
basis Barkham and Soudack, in a series of papers,'S-1 s have developed and refined an approximate solution 

for the class of equations 

5i + m2(x + yx 3) + e f (x ,  .~, t) = O, (11) 

with y > 0, m 2 > 0 and e a small constant. This solution has the form 

x = a(t)Cn{~(t) ,  ~t(t)}, (12) 

where Cn{ }istheJacobianell ipt ic  functionofargument ~ ( t ) a n d m o d u l u s # , ( s e e  Ref. 14,Chapter6). 

In cases such as 

~f(x ,  2, t) ~ b2, 

where the transformation 

x = v e x p  - b d t  = v e x p ( - t b t )  (13) 

reduces equation (1 l) to the form 

i; + ~v  + ~ ( t ) v  ~ = o ,  (14) 

it is possible to apply the work of Kuzmak, 2° to obtain an approximate solution. 
An approach, based on perturbations of the elliptic equation (10), has also been used by Christopher in 

Ref. 19, where attention has been restricted to the case e l (x ,  5c, t) =- bic. Subsequent development of this work 
has given rise to a method which is capable of being applied to the more general class of equation (11). This 
technique will, with apologies, be referred to as the CJ method (Christopher-Jacobian method). 

The purpose of the present report is first to review briefly the R.A.E. and CJ methods and then to apply 
them to a particular strongly nonlinear equation for comparison with exact numerical solutions. 

2. The R.A.E. Method 

2.1. Description of Method 

The R.A.E. method as described in Ref. 9 was originally developed to give approximate analytic solutions 
for the damping and frequency as functions of the amplitude of the envelope, but it may be readily extended to 
give the complete solution, with the independent variable and the phase angle as parametric functions of the 

amplitude. 
The solution is assumed to be of the form 

X = a COS ¢ ,  (15) 



where 'damping', ,l, and "frequency', co, are defined as 

2 = -  and 
a 

Thus 

= ~b. (16 )  

.~ = a(3. cos ~p - co sin @) 

and 

5~ = -a{(co 2 - 3.2 _ J~)cos ~b + (69 + 23.co)sin ~b}. 

As in the Kryloffand Bogoliuboff method, equation (1) is multiplied by sin ~k and cos ~k respectively, and the 
average value over one cycle of ~ is assumed to be zero. Here, the damping and frequency, ). and co, are assumed 
to be equal to their values at mid-cycle, but their derivatives are retained. Then Ref. 9 gives that 

I a d(co) 2] 
3 . = l t / 2 c o  1 +4co~ daa ] (17) 

and 

2a d,1 092 = 3. 2 + 12 + (18) 

where 

I f2. 
I t  n a J o  F sin ~ dtp, lz 1 f~ = - -  F cos ~ d~ 

n a  

and d / d t  has been replaced by a2(d /da) .  

Equations (17) and (18) may be solved iteratively, to give 2(a) and co(a). The extension to the original report 
is to integrate combinations of these functions, to give 

fl =f°da t = d t  = Ja~0~ daa d a  ,G~o) 2a  (19) 

and 

r 

= co d t  = ~a da.  
(0} 

(20) 

The complete solution, x( t )  = a cos ~, is then readily obtained in the form x(a), t(a). 

2.2. Application to Equation (6) 

With F(x,~) = bye + c ~ x  + ¢3 X3` then 

11 = -bco 

and 

12 = b 2  + c t + 3c3a2. 

It is shown in Ref. 9 that the second approximation, obtained after one iteration, gives good agreement for the 
variation of,;. and co with amplitude when compared with numerical solution of the equation. Thus 

_ - -  b c o  2 

2o) 2 + 3£3a2 (21) 



and 

i.e. 

where m 2 = cl - b2/4. 
On substituting into equation (19), 

and equation (20) gives that 

b 2 
W2 = Ct _ 4- + ¼c3a2; (22) 

3 2 - b ( m  2 + gc3a ) 
2 =  2m 2 + 9cza2 , 

t = ~ loge ~a2(O)Em2 + ¼cza2(O)]i]" (23) 

9 2 
l f f  (2m 2 + -~c3a ) 3_ ~2,~ da. (24) 

= - b  io, a( m2 + ~ 3 "  J 

The form of the solution of equation (24) depends on the sign of m 2. For positive m 2, with 4mZ/3c3 = a z, then 

2a [ a(O)[(aZ + a2)' + a])} (25) 
~ =  3x//~32b ( [  ~" 0"2 + a2(0)]} -- [02 + a2]~ + ~ -  loge t a [ ~  T a2(0)] ~ + a j  

and 

I, (aZ(O)[ °2 + a2(O)]F~ (26) 
t =  ,ogo ( + a22  j- 

For m 2 = 0, then 

_ 3 @ [ a ( 0 )  - a] (27) 

and 

t = ~ loge 

With negative m 2, for which the degenerate linear problem is more than critically damped, 

3 x / ~ 3 {  23( I 6 I [ ! ] ) }  sin- t (29) -- 2b [a2(0) - 62]~ - [a2 - 62]~ + ~- ~ )  - s in- l  

L - 62? 

where 6-' = -4m2/3c3.  
This latter solution exists only for a > 8, which from equation (22h in turn implies that the frequency is real. 

3. The CJ Method 

The method was developed in Ref. 19, in relation to the equauon 

5~ + b2 + clx + c3x 3 = 0 for b, c t , c  3 > 0 (30) 



and has subsequently been generalised in relation to equation (11). Because of certain differences in the formula- 
tion of the solutions in Ref. 19 and in the more general case, and because the computations of Section 4 are 
based on the formulation of Ref. 19, it is convenient to restrict the present section to a summary of the method 
of Ref. 19. 

Using the transformation equation (I 3) and normalizing with respect to x(0) = v(0) gives 

fi + m2{u + y(t)u a} = 0, ( 3 0  

where 

u = v / x ( O ) ,  

fi = d u / d t ,  

k = b/2, 

l'rl 2 ~ C 1 - -  k 2, 

~)(0) = c 3 x 2 ( O ) / m  2 

and 

y(t) = ~(0) e -  2k,. 

It is assumed, on the basis of arguments which are developed in Ref. 19, Section 3, that the solution of equation 
(31) may be written as 

u(t) = C(t)Cn{ ~(t), /~(t)}, (32) 

where 

¢,(t) = 0 4 0  d t  - 4~(t) (33) 

is the argument of the Jacobian elliptic function Cn{ }, and #(t) its modulus. All four of the functions C(t), ~o(t), 
~b(t) and #(t) are required to be determined. 

Differentiating equation (32) with respect to t then gives 

ft = - C c o S n D n  + {COn + C S n D n ~  + C(1 - #2 ) - t lq~Sn(Dn  I _ SnCn)}  (34) 

where 

I @ , # )  = C n Z d ~  = p-E{E@,/-t) - (1 - p2)~b} (35) 

and 

£ E(~, ~) = Dn 2 d~b 

is the incomplete elliptic integral of the second kind. A second differentiation then gives 

ii = - C ~ o 2 C n ( D n  2 - p2Sn2) - c~SnDn~ - C S n D n &  + (oCCn(l  - 2 D n 2 ) ~ -  

-coC~(1 - i z z ) - l { I C n ( l  - 2Dn 2) + S n V n ( l  - 2Sn2)}fi + 

+ d { £ : O ,  _ - 
+ CSnDn(b + C(I #2) i p f iSn (Dnl  - SnCn)} .  

(36) 

(37) 



Because equation (31) is an equation of second order, it requires only two distinct arbitrary functions in the 
formulation of its general solution; it is, therefore, possible to impose two constraints upon the form of fi and 
/i in such a way as to produce simultaneous relationships of dependence between C(t), o)(t), ~(t) and /2(0- 

One way of doing this is to require that 

fi = - Co)SnDn 1 (38) 

and fi = _ CooZCn(Dn 2 - /22Sn 2) 

which is the form these derivatives would have ifb = 0. For equation (38) to be true, it follows that the constraint 

relations 
~ C n  + CSnDn(o + C(1 - /22)-t/2Sn(DnI - SnCn)fi  = 0 (39) 

and 

o2SnDnC + CSnDn(o + coCCn(l  - 2DnE)q ~ + coC/2(1 - /22)- t{iCn(1 _ 2Dn 2) + SnDn(1 - 2Sn2)}~ = 0 (40) 

must be satisfied. " It is the approximate satisfaction of equations (39) and (40), and, thereby, the determination of C(t), . etc., 
that constitutes the basis of the CJ method. The imposition of constraints in this manner is, of course, not 
new and closely parallels the approach of K and B in Ref. 1 when dealing with perturbations of equation (3). 

An added advantage of the imposition of equation (38) is that the solution satisfies the identity 

_~sCn{@ '/2} = (2/22 - l)Cn{qs,/2} - 2/2ZCn3{@ ,/2} (41) 

and, thereby, gives rise to the expressions 

o9 z = m2(1 + yC2), 

2/212 = "~C2/(1 + )'C2), 

2¢02/2 2 = m 2 ~ C  2 

(42) 

(43) 

(44) 

and 
yC 2 = co2/rn z - 1 =/22/(½ _/22). (45) 

It will be noted that for 7C 2 >/0, 0 ~/22 ~< ½; the value 3, = 0,/2 = 0 corresponding to the degeneration of 

equation (30) to the equation of the perturbed harmonic oscillator. 

The initial values, which will be known, are 

u(o) = ~, = C(O)Cn{ - 4 ) ( 0 ) , / 2 ( 0 ) }  = I 

and 

ti(0) = ?,2 = - C(O)co(OISn{ - 4)(0), /2(0)} Dn{ - 4)(0),/2(0)}, 

from which it follows that 

c ( 0 )  = t / C n {  - 4)(O),/2(0t} 

Or 

~(0) = arc cos {l/C(0)}" 
(46) 



and that 

- [ { 27(0'[~2t 2]* ~ ] (47) 
C 2(0 )=?  '(0) --1 _ {1 +y(0)} 2 + mZ l i t /  J A" 

For real C only the positive branch of the root is taken. 
The qualitative nature of the "solution may readily be obtained by resort to "phase plane' techniques and 

will be of a 'damped' form which may, or may not, be oscillatory in character. Both the frequency and degree 
of damping will be dependent on u and t. Provided m 2 > 0, y C  z will be finite, therefore #2(0)  < 1 and ~z(t) ---, 0 
a s t  ~ oo. 

The solutions C(t), co(t), O(t) and #(t) to the simultaneous equations (39), (40), (42) and (43) are not apparent. 
However, the coefficients of 12, &, q~ and / i  in equations (39) and (40) are capable of being expressed as the 
sums of integral powers of Sn. It follows that these coefficients have a period of 4K(p), where K(/z) is the complete 
elliptic integral of the first kind. Provided then that C, ~o. 4) and p are varying slowly with t. compared to the 
variation of the periodic coefficients, it is then appropriate to consider an approximate solution for C, co, 0 
and #, based on the principle of averaging. This procedure again closely parallels that of K and B in Ref. 1. 
The resulting averaged equations constitute an approximation to equations (39) and (40) whose accuracy will 
be greatest when the instantaneous frequency, ~b = co - q~, is large in comparison with d?, &,/i  and q~. See 
Ref. 2, Chapters 14, 15 and 16 for a rigorous presentation of the averaging theorems. 

3.1. First Approximation,  li = 0 

Earlier work has demonstrated that a reasonable first approximation is achieved by taking/i = 0 in equations 
(39) and (40). This does not, of course, mean that p is constant, but that p is varying sufficiently slowly with t 
for the terms containing/i to be ignored. Thus equations (39) and (40) become 

CCn + CSnDncp = 0 (48) 

and 

(c012 + C(o)SnDn + coC(l - 2DnZ)Cn~) = O, (49) 

respectively. Eliminating q~ between these equations gives, after division by coC an expression in terms of Sn, 

• ° 

C(I - 2#ZSn z + p2Sn4) + co(Sn 2 - -  l~Sn 4) = O. 
(19 

(50) 

The coefficients of 12/C and &/co are periodic of period 4K(~) and, as explained above, an approximation to 
equation (50) may be obtained by averaging the periodic coefficients over the period 0 to 4K(p). This gives 

(1 - 21~ZQt + p2Q2 ) + m--(Q 1 - #2Qz ) = 0 
CO 

(51) 

where, as shown in the appendix of Ref. 19, 

and 

i f  2 I Qt(P) = - ~  Jo Sn2 dO = p -  1 - E(#)/K(p)} 

= } +  + + . . .  

1 [.~K 35 . 4  
Q2(#) ~ 3o sn4 a0 = ~ + h~,2 + , ~ r ~  + . . . .  

(52) 

(53) 



these series being rapidly convergent. If terms up to an including/~ are retained, then upon substitution for 
Qt and Q2 in equation (51), and division throughout by the coefficient of C/C, there emerges the equation 

(~ 1 eb (54) ~+~g=o. 

Integration of equation (54) with respect to t then gives 

c(o) = L~--~6~_I = + ~(o)c~(o)j = / ( o ) J  

Eliminating C between equations (48) and (49) gives, after multiplication throughout by Cn, 

oaC#a{Cn2(l _ 2Dn 2) - Sn2Dn z} + CSnCnDn69 = O, 

which upon .averaging over the period 0 to 4K(/0 becomes 

_l~l  I [.4,, 
( -  i + 2 / Q ,  - / Q 2 ) 4  = \gl4-ff  Jo sncno, ,  dO = o 

(55) 

o r  

and 

Now 

Write 

4 = 0  

4~(t) = 4~(o). 

L L oodt = m {1 + 7C2}~ dt. 

y2 = , / ( t )CZ(t)  

then upon differentiation 

Y _ e  k= - k - ~ ,  
y C o) 

from equation (54). Differentiating equation (42) gives 

y~/(1 + yZ); 
U) 

hence 

i_' = - k  - b ' Y / ( l  + y21 
Y 

(56) 

(57) 

o r  

3 ,2 ~, = - k y ( l  + ).2)/(1 + ~-~ ). 

10 



Expressing equation (57) in terms of y then gives 

f l o~d t  rn f  r(° = -- (1 + 3y2)y-l(1 + y2)-~dy  
k ~y(o~ 

{n(t) + 1}{fl(0)-- ~ ' (58) 

where f~(t) = co(t)/m = (l + y2)~. (59) 

It will be seen that equations (55), (58) and (59) correspond to those of the second approximation of Ref. 19. 

3.2. Second Approximation 

In this approximation the terms containing fi, omitted from the first approximation, are now included. 
From equation (39) 

C~ = -{C(1 - #2)-~ufiSn(DnI - SnCn) + CCn}/(SnDn), 

which upon substitution into equation (40) gives, after multiplication by SnDn, 

(o~C + C(o)SnZDn 2 - ~o(~Cn2(1 - 2Dn 2) + ~oC(l - p2)- tpfi{SnZDn2(1 _ 2Sn 2) + Sn2Cn2(1 _ 2DnZ)} = 0. (60) 

From equations (44) and (45) 

which upon differentiation gives 

2 # 2 ~ 2  = ~ 2  _ m 2 

/#i = &(½ - p2)/co. (61) 

Substituting. this result into equation (60) and dividing by ~oC yields, after expression in terms of Sn, 

(1 - 2#2Sn 2 +/22Sn  4) + °)(SnZ - ½Sn 4) = O. 
(1) (62) 

Averaging this equation over the period 0 to 4K(~), and dividing throughout by the resulting coefficient of 
(;/C, gives 

(D 
+ R(p2) ~ = O, (63) 

~o 

where terms up to and including #4 have been retained and 

From equations (6l) and (63) 

R(~,~) = ~ + _ ~ 2  + ~ i , 4  + . . . .  

C R(pZ)j~fi 
c (½ - ~') 

(64) 

thus 

foG F ~l', -~ dt = - R(t~2)p(½ - I f l ) - '  dl~ 
v u(o) 

11 



!i/ 
or  

where 

I ~  2~t~-I 0"2348 
C(t) = C(0) - # ~ t t /  exp [G{#Z(t)} - G{#2(0)}], 

#~(0)j 

G(# 2) = 0.1572# 2 + 0-0438# 4 + . . . .  

N o w  

C k, 
y C 

which upon substitution for C/C from equation (63), and some further manipulation, gives 

f) = - y { k  + R(#2)y))/(l + y2)}. 

Upon substitution from equation (67) into equation (57), and expression of R(# 2) in terms of y, gives 

codt = -~ -  ~log, [{q~(t)+ 1}{f~(0)- 1} + 1.469{~(t) - ~(0)} + 

+0.201{E~-t(t) - n-'(0)} - 0.015{EU 3(t) - ~-3(0)} + .--]- 

(65) 

(66) 

(67) 

(68) 

From equation (39) 

s n o n { 4 ,  + (1 - # 2 ) - ' 1 # ~ }  = (1 - # 2 ) - , S n 2 C n # ~  _ C n ~ ,  

which upon multiplication by SnDn and averaging over 0 to 4K(#) becomes 

(Q [ -- #2Q2)4 = (l - #2)-  l#fi snaCnDn dO - ~ do SnCnDn dO - 

- ( l  - #2)-t#f~{SnZDn2l} . . . . .  g¢" 

The first and second of these integrals are zero, whilst 

, 2 2 -2[Sn2Dn2{E(O,# ) --  (l -- #2)0}] . . . . .  ge" ~Sn Dn I} . . . . .  g, = #  

Now, as shown in Ref. 14, p. 136, equation (7), E(¢, #) may be expanded in the form 

E(0,1t) = ~ E  ~ , #  0 + SnCrl{°~o (#2) + °~2(/-/2)Sn2 + " '" q- O~2m(#2}Sn2m q- "" "} 

thus 

) t 2 )" l(l #2)-t/~ E 2-" # - ( 1  --ll  z) 0 Sn2Dn 2d0  + 
(Q~ - # Q2 4~ = - ~ K - ' # -  - 

;/ t + ~ 0~2m(# 2) S n  2m + 3 C n O n  2 dO . 

m=O 

(69) 

(70) 

12 



! 

Since 

then 

fo *K Sn2"+3CnDn  z dO = 0, for m = 0, 1, 2 . . . . .  

I - ~ ' f 2 E l Z r p ) - ( 1 - / l z ) } O  

= - ~ ( 1  - ~ , 2 ) - ' ~ , ~ ( 1  - ~ F ,  ~ - ...)~,. 

In the first approximat ion  4; = 0. It might reasonably be anticipated that an adequate  second approximat ion  
for 4; will be obtained by replacing (1 - ~6# z - . . . )  by uni ty;  hence 

i' 4; - 3(1 - p2)-  ~#/i~b = -¼(1 - pz) -~pl~  e)d t .  (71) 

Integrat ion of  this equat ion then gives 

4,(t) = 4,(0) + (1 - I d ) - q H ( t )  - H(0)}, (72) 

where 

3m _ _ 3  
m H(t) 4K x 2 ~ { -  1-469fU a 

and 

- 0.5WfU 2 + 0-572fU 3 + 0 . I56W~ -4 _ 0.177fU 5 

- 0 . 0 8 3 W ~  -6  + 0.146fU 7 + 0.055q~fU 8 _ 0 .033f ] -9 . . . }  

= - 1.469f2(0) + 0.799f~- t(0) + 0-348f~- 3(0) + 0-2f~- 5(0) + . . . .  

(73) 

(74) 

4. A Numerical Comparison and Conclusions 

The equat ion chosen as the basis for the numerical compar i son  between the R.A.E. and CJ methods was 

5~ + bS: + c l x  + C3 X3 = 0 ,  (75) 

with b, c t ,  c 3 > 0. By writing 

z = vt (761 

equation (75) can be transformed into 

9 , ,  

v - x  + vbx'  + c l x  + c j x  3 = O, 

where x' = dx/dr .  Choosing v 2 = c~ then permits this equation to be reduced to the normalized form 

x"  + qx'  + x + p x  3 = 0 

where q = b/v and p = c3/v z = c3./c j. For the purpose of the compar ison it was assumed that c, 
throughout ,  and, thereby, that equation (75) was already in normalized form. 

The compar ison  was made between solutions obtained by the following methods '  
(a) numerical integration using a standard integration technique on a digital computer ,  
(b) the R.A.E. method, 

(77 )  

= 1.0, 

13 



(c) the CJ method. 
(d) the 'refined approximat ion '  of Barkham and Soudack as described in Refs. 17 and 18. 

The technique of (d) gives the solution of equation (75) in the form 

x = a(t)Cn{tp(t), I~}, ' (78) 

where 

- b t  i ]  (79) 
a ( t ) = e x p  2 ( 1 ~ ) 2  , 

f -bt ]7 
4 , (0=  I + p e x P ~ l - - ~ 2 ~ j  v t -  qS(0), (80) 

Pa2(O) (81) 
/~2 = 2{1 + pa2(O)} ' 

1~ 2 ~ C 1 

and 

p = C3/Cl. (82) 

For the purpose of this comparison the calculations using methods (b) and (c) were programmed for digital 
machines at the R.A.E. Farnborough and C.I.T., Cranfield, respectively. In many cases it would be anticipated 
that these approximate methods might be employed in association with small electronic calculators or slide 
rules. Some such calculations were done and, although not presented here, gave accurate comparisons with 
their programmed counterparts. The values of Cn required in the methods (c) and (d) were obtained either, 
from the tables of Ref. 21, or, in the case of the programmed solutions, by means of a sub-routine based on 

the descending Landen transformation (see Ref. 22, p. 573). 
Computat ions were made for the fourteen cases: 

b = 0-1, c 3 = 1,2, 10, 100 

b = 0.5, c 3 = 1,2, 10, 100 

b = 1-0, c 3 = 1, 2, 10, 100 

b = 2 - 0 ,  c 3 = 2,10 

with c~ = t-0, x(0) = 1.0, ~(0) = 0 throughout. The results are shown in graphical form in Figs. 1 to 14. It can 
be seen from these that the method of Barkham and Soudack (d) is, in general, of a lower order of accuracy 
than the other methods. The R.A.E. and CJ methods give solutions which are, for most of these cases, close 
to each other and have a high degree of accuracy. Both of these methods accurately predict the envelopes of 
maximum and minimum, and both tend to become less accurate in cases where the ratio b/c 3 is relatively 
large, as does the method of Barkham and Soudack. This inaccuracy is particularly marked at lower values oft.  
With b fixed there is a tendency for the R.A.E. method to develop a 'phase '  error with increasing c 3 and t. 
This effect is much smaller in the CJ method. A shortcoming of the CJ method, as formulated in Section 3 is 
that it is limited to cases where m 2 = c t - b2/4 > 0 and, therefore, cannot be used when b 2 > 4c I or, in the 
present example, when b >~ 2. This restriction does not, however, apply to the other techniques and a limited 
comparison for b = 2 is shown in Figs. 13 and 14. Both these figures demonstrate the inaccuracy associated 

with relatively large values o f b / c  3 already observed in Figs. 1 to 12. 
it is clear that both the R.A.E. and CJ methods offer a useful means of solving equation (75) to a satisfactory 

degree of accuracy for many purposes. In order to be able to draw similar conclusions about the application of 
these techniques to a wider class of equations such as equation (11) or equation (1) further extensive numerical 

comparisons are required. 
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Ct 
C3 

k 

m 

P 

q 

r 

t 

U 

V 

X 

2 

X' 

Y 

a(O 

C(t) 

F(x, .~) } 
f(x,~) 

H(t) 

II 

I2 

Q~(~) 

Q2(~ 2) 

ROd) 

Cn(G ~) } 
Sn(O, I~) 
Dn(O, U) 

I(0,~0 

E(0, ~,) 

7(0 

LIST OF SYMBOLS 

Constant coefficients, equation (6) 

b/2 
(cl - k2) ~ 

C3/Cl 

b/v 

See equation (7) 

Independent variable, usually time in applications to dynamics 

v/x(O) 

x exp (kt) 

Dependent variable 

dx/dt 

dx/dT 

{?(t)CZ(t)} ~ 

Amplitude function, equation (15) 

Amplitude function, equation (32) 

Nonlinear functions, equations (1) and (2) 

See equations (72) and (73) 

I f2~ 
- -  F sin 0 dO 
na do 

1 f2~ 
- -  F cos 0 dO 
na 3o 

Complete elliptic integral of the first kind of modulus/~ 

4--K Sn 2 dO 

lfo*K 4--K Sn 4 dO 

See equation (64) 

Jacobian elliptic functions of argument 0 and modulus/L 

o" CnZ d O 

i" Dj.t2 d O 

Coefficients in equation (14) 

),(0) exp ( - 2kt) 

[5 



~,(o) 

6 

8 

2 

u(t) 

V 

(7 

T 

4,(t) 
¢(t) 

co(t) 
~ (~)  

LIST OF SYMBOLS (cont.) 

C3x2(O)/m 2 

{ --4m2/(3c3)} ~ 

A small parameter, equation (2) 

~/a 

Modulus of Jacobian elliptic functions; see equations (32) and (45) 

{4m2/(3c3)} ~ 

vt 

Instantaneous phase angle, see equation (33) 

Angle function, equation (15), 
argument of Jacobian elliptic function, equation (32) 

Inst~mtaneous frequency, equations (16), (33) and (42) 

See equation (74) 

co(t)/m, non-dimensional frequency 
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