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Summary 

Computer programs have been written to evaluate the integrals of lifting-surface theory for the velocity field 
of a thin wing with given load distribution. Different programs are used for the downwash at points on the 
wing, and for any or all three velocity components off the wing. The heart of the programs is an analytic 
evaluation of the spanwise integral over a short line following the local sweep: by combining together a number 
of such integrals, the complete integral over the wing is built up. Both programs are tested by comparison with 
other results : exact linear theory for a two-dimensional fiat plate, a result of Garner for a rectangular wing, 
theory for an infinite swept wing with isobars kinked at the centre line, and comparison for a tapered wing with 
a pioneer program written by Freestone. The downwash program cannot compute the downwash at the apex of 
a swept wing with rounded isobars, nor exactly at a wing tip. 

* Replaces R.A.E. Technical Reports 69231 and 70146 (A.R.C. 32 144 and 32 549) 
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1. Introduction 

The fundamental equation of linearized theory for a lifting wing in a uniform flow (lifting surface theory) 
gives the downwash at any point in the plane of the wing as an integral of the wing loading over the planform. 
This result gives the solution to the wing warp design problem. For the off-design problem it forms the basis 
of the collocation methods of Multhopp a type, and of the approximations 2 leading to the standard R.A.E. 
method, a However, Garner 4 has questioned the accuracy of the collocation methods, and a check on both 
these and the R.A.E. method would be useful. A computer program to evaluate the downwash integral directly 
and accurately, given the wing loading and planform, would provide such a check. 

Freestone 5 has written a pioneer program, which imposes a rectangular computing grid on the physical 
planform, suitably refined near the 'control point '  where the downwash is required and where the integrand is 
singular. This gives good results for the centre section of a rectangular wing, s but we expect less accuracy for 
swept or curved planforms, because then the rectangular grid no longer follows the leading and/or trailing 
edges. This difficulty is aggravated by the leading edge singularity of linear theory in the loading. 

For these reasons, an improved program was required. Moreover, sometimes----e.g, to extend the benefit of 
the sweep effect on the critical Mach number into the centre--we are interested in load distributions with kinked 
isobars at the centre section of swept wings, and since this means the downwash has a logarithmic singularity 
at the kink in the plane (z = 0) of the doublet distribution representing the lifting surface, it was felt worthwhile 
to write a version of the program to calculate the more general downwash integral for points off this plane, 
that is z ~ 0, in order to improve centre section design methods. This version may also be applied later to the 
wing-fuselage interaction problem. 

The program for z = 0 is actually a modification of the program for z ¢ 0, and both programs work in 
basically the same way. We transform to a new chordwise variable ~b (just as in the collocation methods) so 
that the leading and trailing edges form two co-ordinate lines, and the (normally inverse square root) singu- 
larity in the loading at the leading edge becomes easy to handle. This avoids the difficulties associated with 
Freestone's method, mentioned above. The wing is partitioned spanwise into a number of narrow strips run- 
ning from the leading edge to the trailing edge; any cranks must be included as partition lines, but otherwise 
the method of partition is at our disposal. On any strip a given value of the new chordwise variable ~b corre- 
sponds to a short line across the strip; on this short line the loading is approximated by a quadratic polynomial 
in the spanwise co-ordinate. Then the spanwise integration over this short line is done analytically (the case 
z = 0 requires special treatment) and by repeating this process for several suitable values of q~ and applying 
the trapezoidal rule chordwise the double integral over the complete strip is built up. Finally, the contributions 
from all the strips are added up to give the integral over the whole wing. 

For z small but not zero, the chordwise variation of the spanwise integral across the strip containing the 
control point is quite rapid near this point but always bounded, and by taking a sufficient number of values of 
~b near the control point, we can calculate the whole contribution from this strip as accurately as we please. 
When z = 0, it is necessary (in the present version of the program) to arrange that the control point shall lie 
strictly between two partition lines forming the limits of the spanwise integration, which is otherwise divergent 
all along the chord. (Even then, two chordwise singularities appear at the control point, but these can be 
handled without trouble.) 

This means that the downwash cannot be evaluated on crank stations, and a special routine is needed to 
deal with the centre line of a swept wing. 

This problem can be tackled in another way : instead of putting z = 0, we can put y = 0 first, and then we 
find that when the quadratic polynomial expression for the load distribution is introduced to allow analytic 
spanwise integration across a small strip adjoining the centre line, the contributions of the first two terms (for 
y = 0, z ~ 0) to the following chordwise integration show logarithmic infinities as z --* 0. One of these is the 
one that arises when a distribution of kinked isobars is imposed. We show that when the isobars are rounded, 
the two singularities cancel; two other terms containing products of z with divergent integrals can be evaluated 
in the limit z ~ 0 and the remaining terms can be dealt with as before. 

The method is not completely satisfactory, as there is a mathematical defect: at the apex of a swept wing, 
because of the proximity of port and starboard leading-edge loading singularities the three-term expression for 
the loading breaks down. Since this is only a contribution to an integral, one hopes that by choosing a suffi- 
ciently fine mesh near the apex the resulting inaccuracy can be kept small for control points a few mesh points 
down the chord, but the downwash can never be evaluated at the apex itself. 

For  some applications, it is convenient to be able to compute streamwash and sidewash also (for z ~ 0), 
and the relevant formulae are given in an Appendix. Any or all velocity components may be calculated in a run. 



The program is written for incompressible flow. By the Prandt l -Glauer t  rule, it may be applied to subsonic 
flows by working with the analogous wing. 

2. The Downwash Integral in Subsonic Lifting-Surface Theory 

The downwash integral in linear theory for z # 0 is not  so familiar as that for z = 0, so we derive it briefly 

here. 
In the usual Cartesian axes centred on the wing apex with 0x downstream, 0y to s tarboard and 0z upwards, 

let the perturbat ion potential be q~, giving a perturbat ion velocity field u = Vcp superposed on the uniform free- 
stream (U, 0, 0). Let the density and pressure be p, p : use subscripts u and I to denote values on upper and lower 
surfaces of the wing: then by Bernoulli 's equation with squares neglected, the loading l on the wing is 

l(x, y) - Pz - P, 2 ~3 
½ p U  2 - U 63X (q~u - ~ t ) .  (11 

Define 

q5 = ~p. - q)t, (2) 

so that (1) gives 

~?x - 1Ul(x' y)' (3) 

The discontinuity qb in the harmonic  function (p on the wing, and wake, which in linearized theor:) are assumed 
to lie in the plane z = 0, can be represented by a doublet distribution in this plane with the doublet axes in 
the z direct ion '  

l , , ,  
~o(x, y, z) - 4~r 

2.=0 

where 

'F 2 = ( X  --  X) 2 + ( Y -  y)2 + z 2. (5) 

Integrating by parts with respect to X, 

qo(x, y, z) = ~ ep(X, Y) d X  dY  

z--O 

- ~ -  ( y ~  +.2c?X_ ( Y , z ) + - - r  d X d Y  
z = O  

z ¢b(X, Y) C(Y,z)  + X - x d Y  
= ~  ( Y - ~ 2  + z2 r _ 

z c?~/OX C(Y, c) + - -  d X  dY. (6) 
4-7r (y  __ y)2 + y2 r 

z = O  

Now, far upstream (X = - -~ ) there is no potential discontinuity so • = 0, and the term in curly brackets 
vanishes far downst ream (X = ~=.) if C(I~; z) is chosen equal to - 1. Also in the integral of (6) q~ - 0 everywhere 
upstream of the wing, and downstream of it the wake cannot  support  a pressure difference, so from (3) 
~?q~/?x = 0 on the wake, and the double integral is taken over the wing alone:  

q){x, y,  Z) = -4~ (} f  Z y ~  + Z 2 l r d X  d Y, 

wing 

so the downwash ~ = -(l/U)(~,~o/(?z) is 

1 ~? f f  I (X ,Y )  (1 X - x )  d X d Y .  
~ ( x , y , z )  = - 8 ~ :  ( y _  y)2 + z 2 r 

wing 

4 



3. Transformation of the Integral 

The task at hand is the evaluation of the double integral (7) for some points (x, y, z), where z may or may 
not be zero, when the planform S is given, along with a load distribution l(X, Y) which will have singularities on 
the planform edges. 2 When z = 0, the integrand also has a line singularity Y = y and a point singularity at the 
control point (X, Y) = (x, y); when z :~ 0 these last are absent in the mathematical sense, but since z may be a 
fraction of a per cent of the local chord, the integrand will not be numerically well-behaved near this line 
Y = y (we may call it the control line). The first part of the kernel of (7) 

~ t ~ z [ z l { ( Y  - y)2 + z2}], 

considered as a function of Y, has a minimum value -l/Z 2 at Y = y, and two maxima values + 1/8z 2 at 
Y = y _4- zv/3, which is sufficient to demonstrate the point. 

To overcome this obstacle for small z, we try to choose a spanwise neighbourhood of Y = y small enough 
for a simple representation of the loading I to be accurate, and then we can perform the spanwise integration 
across this neighbourhood analytically, leaving only the chordwise integration to be done numerically. So 
we partition the wing spanwise by a number of straight lines Y = constant, see Fig. 1 ; the loading can be speci- 
fied as data along each partition line, and typically by using information on three consecutive partition lines 
for each chordwise position (A'B'C', say, in Fig. 1) we can fit a parabolic interpolation function across the strip 
bounded by two of them and then integrate spanwise over the strip. Normally the way we group these parti- 
tion lines by threes is at our disposal, and we try to arrange the grouping so that the control line lies strictly 
inside an integration strip (AC, say, in Fig. 1); then the first derivative of the interpolate is continuous at the 
control line (this corresponds to unkinked isobars) and we avoid introducing spurious logarithmic terms (we 
know this from experience, but it will also be clear later when the analysis is complete). 

First, it is convenient to transform the chordwise variable X to a new one 4~ such that the leading and trail- 
ing edges become co-ordinate lines and the singularities in the loading at these edges become numerically 
tractable. 'The transformation is standard and the same as that used in the collocation or R.A.E. standard 
methods : if the leading edge is given by x = xL(y) and the chord by c = c(y), the transformation is 

X = XL(Y  ) + ½c(Y)(1 - cos q~). (8) 

Then the leading and tr~iiling edges correspond to q~ = 0 and ~b = zt respectively. In Fig. 1, A', B', C' correspond 
to the same value of q~. The integral (7) is now written in the form 

where 

= 8~ st~p 2 d(o z d Y ( y  _- ~-2 ~ z 2 1 x (9) 
s s t r ip  r 

L(dp, Y) = I(X, Y)c(Y) sin (b. 

Since I(X, Y) usually behaves like (X - xL)-~ near the leading edge, while sin q~ behaves like (X - xD ~, the 
product L is usually well-behaved and finite there, and similarly at the trailing edge where L usually goes to 
zero quadratically in (g - ,;b). 

In dealing with the spanwise integration across a typical strip, it saves trouble to change the origin to the 
point Y = y and adjust the limits of integration accordingly, since then y does not appear explicitly in the 
integrand. We write 

Y -  Y = q (10) 

and expand L(q~, Y) for constant ~b as a three-term Taylor series in q : 

L(c~, Y) = go + ~lgl + q2g2. (11) 

This representation is to be valid in the strip q_ ~< q ,%< i,/+, say, even though the strip does not in general 
include the point q = 0. Figure 2 shows such a case. Thus the contributions from go, gl,  g2 are not necessarily 
in decreasing order. This is the price we pay for the simplification (10). It is a small price, because (11) is 
always derived from a local expansion about some point r/*, say, which is in the strip. 

In the same way we find an expression for the term X - x in (9). Introducing the local section co-ordinate 
by 

X = XL(Y) + c(Y)~ (12) 



so that ~ = ½(1 - cos qS) and hence ~ is constant  a long the lines 4~ = constant,  we see that  the variat ion of 
(X - x) is entirely due to the variat ion of XL(Y) and c(Y) across the strip. Looking  again at (9), we see that  
because of the presence of r given by (5), we must  be content  with a linear variat ion in Y or t/ of  these 
two geometr ic  parameters ,  or else the spanwise integral of (9) will become an elliptic integral and we shall not  
be able to evaluate it analytically. This should not greatly disturb us since swept-wing planforms of current  
interest do frequently have their leading and trailing edges made  up of straight-line segments,  but it does mean  
that  we may  need m a n y  small integrat ion strips in our  part i t ioning when curved planforms with rapid sweep 
changes are studied, and it also requ i res - - reasonab ly  e n o u g h - - t h a t  cranks  in the p lanform shall lie on parti- 
tion lines, and we may not  integrate at one step across a strip with a crank in its interior. 

Fitt ing straight lines to XL(Y) and c(Y) in the range t/_ ~< q ~< t/+, if t/* is a reference point  in this range then 

XL(Y) = XL(y + q*) + (Y -- y -- t/*)X~.(y + r/*) 

= xL* + ttx}~(y + t/*) (13) 

where x* = XL(y + ~*) -- tl*X'L(y + q*): we remark  that  in general x~ is not equal to XL(y) because there may  
be cranks or leading edge curvature  present. The  physical significance of x* is indicated in Fig. 3. X'L(y + tl*) 
is taken constant  across the strip and we may  write it just  x~. Similarly, we have 

c(Y) = c* + tic' (14) 

where c* = c(y + tl*) - tl*c'(y + r/*), see Fig. 3; and so (12) gives 

x - x = (x,,. + c * ~  - x )  + ,7(xi .  + c ' { )  

= h +  tla (15) 

a = x~ + c'~ is recognised as the local sweep at  (X, Y). The  physical significance of h, for a given 3, is also indi- 
cated in Fig. 3. We can now write (9) in the form 

1 _ 1 U 

ct - 8n~trlps~_,,+,2Jo & b [ ~ a ( q + ) -  cq(t/_)] (16) 

~ - c?z - g ° I °  + g l l ~  + g212 (17) 

i =  z f d,Tgo + g,n + g2n2[ h + tla) gfl~ g2i2 
1~2 -[- Z2 I 1 --r = g°i° + + 

r 2 = (h + qa) 2 + r/2 + Z 2. 

making  use of (5), (11) and (15). 
It may  be verified by direct differentiation that  

(18) 

(19) 

a zr z h + ~a 
- - a r c t a n - -  - z2 72 Oq qh - -  z 2 a  r + 

and so 

l o  - -  

i 0 { arc tan z zr t -- - - + a r c t a n - -  
q t/h - -  z 2 a  

OI o tl htl(r 2 + Z 2) "t- a2 ' 2 ( r  2 - -  z 2) 

t~z rl 2 + z 2 r(h 2 + bZz2) (q  2 --1- 2: 2) 
(20) 

Here we have written 

b a = 1 + a 2. (21) 



Again, the gl integral of (18) can be written 

i l  = z In (r + h + qa) - z ( a / b ) l n f  

f = r + qb + ha/b. 

Differentiating (22) with respect to z, we have 

with 

11 = l n ( r + h + q a ) +  

Finally, we have after manipulation 

r ( r + h + q a )  In f +  . 

( a ~3 in f ) Z 2 i o "  i2  = z ~ - ~ r  - 

D i f f e r e n t i a t i n g  with respect to z, 

_ _ _ + - 2z~  o - Z2Io" lz  = ~ -~r  -b31n f - Z -~  r -~  

(22) 

(23) 

(24) 

(25) 

4.  I n t e g r a t i o n  O u t b o a r d  o f  R o o t  on  the  W i n g  P l a n e  (z = 0)  

Let us consider the evaluation of (16) from the standpoint of the classical problem posed by (7) for the 
downwash on the plane z = 0 of linearized theory. In dealing with the spanwise singularity (7) Mangler has 
shown 1 how to define the finite part for the spanwise integral--which is otherwise divergent--by retaining 
z # 0 and carrying out the analysis before letting z ~ 0. The analysis here is complicated by the change of co- 
ordinates and the extra terms we have brought in, but the general principle is the same: the vital spanwise 
integration across the control section is done first, then z is allowed to vanish. 

By formally putting z = 0, we have 

) r0-h 
I o ( ~ , . , o )  ~ h - 1  - (26) 

where 

r 2 = (h + qa) 2 q-/ ' /2; fo = ro + qb + ha/b; (27) 

and 

Hence (17) gives 

a 
I1(q5, r/, 0) = ln(r o + h + r/a) - ~ ln fo  

a h 
I2(ck, rl, O) = q - ~ ro - ~ In fo- 

(28) 

(29) 

(cq)z= 0 = golo(~b, r/, 0) + gl ln(ro + h + rla) - [gl(a/b) + g2(h/b3)] Info + g2[q - (a/b2)ro] (30) 

The expression (30) is not suitable as it stands for the numerical chordwise integration which must be done 
next, because, as we shall see, there are two chordwise singularities. However, neither singularity is difficult to 
handle. The first one (with the coefficient go) gives an integral similar to the chordwise integral of linearized two- 
dimensional section theory, which is likewise defined as a Cauchy principal value, the second one is a (weaker) 



logari thmic singularity (lnfo) which turns out easier to p rog ram than the first because it only appears  when 
dealing with the control  line integration strip, whereas the first one may appear  (depending on the p lanform 
geometry)  on all the integration strips. 

The method used is s tandard,  but it is well to set down the details for reference. We shall consider each 
singularity in turn. 

We begin with the contr ibut ion from I 0 in (26) to (30); putt ing in the integrat ion limits from (16), we have 

F r o  - hl  "+ 
= {31} 

We note  in passing that  this becomes infinite also when one of the limits of  integrat ion t/+ or r/_ is zero. 
Thus (31) cannot  be used to find the downwash  (for z = 0) on crank stations, which are natural  integrat ion 
boundar ies  in our method.  

Even when q + is not zero, equat ion (31) certainly has an infinity on the control  strip where h = 0. By equat ions 
(13j through (15), with q* = 0, this occurs at the control  point where ~ (and 4}, by (12)) is given by xL(y) + 
c{y}~ = x. By (15) h varies linearly with ~ so the chordwise integral o f :q0  has a simple Cauchy principal value. 
The analogy with the result for two-dimensional  sections (or infinite sheared wings) may  be seen by inserting 
the limits q+ = _+ or, for which 

lim (r o - h)/tl+ = +b.  

The spanwise loading is constant,  so go -= g0(~), gL = g2 = 0 and the two-dimensional  result follows. 
To  deal with the chordwise integration of (31), for a general strip, consider 

fi = go (@r  r° - h]"+ (32) 
k q J , -  

go is a function of 4} as far as any part icular  integrat ion strip is concerned. Not ing  that, when h = 0 (27) gives 

ro = [t/lb (33) 

we find 

lim fl = tic = g0@c)b~(sgn 17+ - sgn ~/_). 
h+O 

(34) 

The suffix c refers to condit ions at h = 0 (the control  point,  on the control  strip). F r o m  (34) we see that when 
q+ and r/ have the same sign, that  is for any integrat ion strip other  than the control  one, tic = 0 and there 
is only a ratio of  two zeros to consider in (31)" for the control  strip, q < 0, y/+ > 0 and tic = 2go(@c)bc. 

We now consider the function 

czl o - flc/h = (fi - flc)/h. (35) 

This function has a limit as h ---, 0, which can be found by L 'Hosp i t a l ' s  rule. Not ing from (27) and 115) 

dr° ( da/d~l 
ro~[~ = (h + qa) 1 + q ~ ]  

= qa(l + tlc'/c*) at h = 0  

the limit works  out as 

d f l [ d g o ( @ ) / d c ~  ac'7 { g ° I  q An- J&=~c" 
,,,, t (36) 

Like tic the first term in (36) only has to be compu ted  at the control  point, and is zero elsewhere, but the 
second term does not vanish for the other integration strips. We employ  (36) quite generally, instead of 135), 
whenever h becomes very small (Ih] < 10 -4  in the program).  



The chordwise integrat ion now proceeds,  using (35) rather  than  (31). The  use of(35) implies an extra integral 
to be added on, given by 

30 h "  (37) 

Away from the control  strip,/?c -- 0; on the control  strip, by (12) and (15) 

h = ½c(cos ~b c - cos ~b) 

and the integral vanishes, for all q5 c. Thus  (35) entails no extra contr ibut ion at all, on any integration strip. 
We turn next to the logari thmic singularity in (30). This is not  due to the term gl In (r o + h + r/a), but we 

remark  that  if r/+_ = 0, r o = [hi and so this logar i thm will be infinite for h < 0: thus this expression, as well as 
(31), is forbidden for evaluation of downwash  on crank stat ions when z = 0. 

The  singularity actually comes in the t e rm 

( a  h )  
- g l~  + g2~5 lnfo.  (38) 

F r o m  (27) and  (33)fo vanishes when h = 0 and r/ > 0. It is well behaved for r / <  0, so integrat ion strips to star- 
boa rd  of the control  line are trouble-free;  to deal with the por t  side, we remark  that  

(r o + r/b + ha /b ) ( r  o - rib - ha/b)  = h2/b z (39) 

so the expression 

- ( g l a / b  + g2h /b3 ) ( sgn  r/)In [r 0 + (sgn r/)(r/b + ha/b)] (40) 

is identical with (38) when r / >  0, differs f rom it by a term independent  of r/(which we can ignore) when r / <  0, 
and is well-behaved for both  r / >  0 and r / <  0, so we can use (40) to por t  and s tarboard ,  where no singularities 
will arise. 

The  control  strip, with r/+ > 0, r/_ < 0, again forms an exception, as we cannot  use (40) on both sides at 
once without  first introducing the constant  on the right side of (39). This leads to 

cq l  = - ( g l a / b  + g 2 h / b 3 ) { [ ( s g n r / ) l n  {r o + (sgnr/)(r /b  + ha/b)}]~ + - + 21nb  - 21n[hl}. (41) 

The  last two terms in (41) come in only on the control  strip. In this case, we integrate chordwise the function 

where 

cq 1 - / 7 1  In [hi (42) 

fll  = (2g la /b)e=oo.  (43) 

(42) is finite everywhere on the control  strip, in par t icular  at the control  point  where h = 0, but it does have a 
logar i thmic infinity in slope there, so the chordwise refinement technique used for z va 0 will still be needed for 
z = 0 to deal with this term alone, unlike the function (35) which is perfectly well behaved near  h = 0. 

This time, to balance the fll term, we must  add to the chordwise integral of (42) the integral 

where 

/31 In Ihl d~b = 3~[~: In 1½c(y)} + J]  (44) 

J = In [cos ~b c - cos q~[ d4~. (45) 

We find, as for (37), that  dJ/d(9  c = 0, so J = constant  = (J)0~=~/2 = - n  In 2, and (44) becomes 

fll~z In {¼c(y)}. 

This completes  the discussion of the chordwise singularities. 

(46) 



Collecting together  these results, we find for (16) when y :~ 0 

where 

~ { (  a} l f f  )} = n l n  {lc(y)} + ~ ~ d~b([ao]~ +- + ~2 
(X(X, y, 0) --  81 ~ the strips 

and 

r° - h (sgnr/)(go)th=th~ ~ + gl ln(ro + h + qa) - g l~  + g 2 ~  % = go tl 

~ 2 = - 2 6  g~ + g 2  ( l n b - l n l h l ) +  gl lnlhl • 
th~ 

Here 6 = 1 for the control  strip, and 6 = 0 elsewhere. 
When h - 0, by (36) the first term in % must be replaced by 

s g n r / [ ~ o  + go~-~c ] + 7 ~b th:,A 

(47) 

(48) 

(49) 

(50) 

5. Rounded  I so b a r s  at  W i n g  R o o t ,  y = z = 0 

The expressions derived in Section 4 are satisfactory when the control  point  (x, y) does not lie on the centre 
line (or ano ther  crank station), since a layout  as in Fig. 1 can be chosen with 7 -  < 0, q+ > 0. But when the 
control  point  is on the centre line, y = 0, we must  choose the first integrat ion strip with 7 -  = 0, 7+ > 0, and 
then (26) and (28) break down, a l though (29) is still all right. 

To overcome this difficulty, we must  manipula te  (20) and (24) into different forms using the regulari ty of  the 
loading at the centre line to remove  the infinities which occur. This  is explained next. 

When the control  point lies in the centre section y = 0, (16) can be written over  only half  the wing, by 
symmetry  : 

,{;: f: } ~(x,O,z) = - ~  d4~[~1(~+)- ~1(0)] + ~ d4,[~,(7+)- ~,(~-)] • (51) 
s t r i p s  {rJ _ , t /+  ) 

~ / _ > 0  

When z = 0 the terms in the ou tboard  summat ion  can be dealt with by the method  of Section 4, but not the 
~i(0) sub- term in the first te rm:  it is this te rm which concerns us here. It is computa t iona l ly  convenient  (we 
shall see that  we do not have to calculate the local values gl(,;b), only 80 and g2, on the centre line) to treat  
"L(7+) as well as ~(0) ,  and so we hold both  7 and z in the formulae  (20), (24) for the moment .  For  nota t ional  
simplicity we also d rop  the suffix + on 7 +, as we shall not ment ion  the ou tboa rd  strips again in this section. 
It is also convenient  to work  with the local section coordinate  3. 

With the reference line 7" = 0 at the centre line Y = 0, we have 

8 1  = sin ~b. O[l(~, 7)c(rl)]/&l (52) 

where the derivative is evaluated at constant  q~ or ~. Using (3), we write the potential  difference @ = ½UA 
where the loading 1 = OA/OX. (U is the free s t ream velocity.) With X = XL(7) + ~C(7), Y = 7, we have 

and 

3A ~A 
= c ( q ) ~ - -  = c (q ) l (¢ ,  ~1) (53)  

OX 

~A (x~.+ ¢c') + ~ .  
0n 
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Here xk + c'~ = a(~) = local sweep, see equation (15). Also, everywhere on the centre section except at leading 
edge and trailing edge, gA/gy = 0 by the unswept-isobars condition. Hence, on the centre line, for 0 < ~ < 1 

OA 
- -  = a(~)l(~,  0). (54)  
gq 

Using (52) and (53), we have 

f~ /,1 g2 A 
g,(q~)I1 d~b = 2 J0 O - ~  I1 d~ 

/'P g2 A d ~ 
= 2 1 i m J o o - ~ l l  g F - , 1  

(since integrand is bounded near the trailing edge, so that the integral from p to 1 tends to 0 as p ~ 1) 

FOA -Io f°gAOI, ) 
=2limo._,, L "Jo- Jo 

Now A --- 0 at ~ = 0 (the leading edge) for all q, and so OA/Or/= 0 at ~ = 0. Also for 0 < p < 1 gA/Oq is given 
by (54) and so tends to 0 as p --* 1 by the Kutta condition. Thus the first term vanishes at both ends of the 
range. Using (54) we can rewrite the second term 

- 2 l i m  a(~)l(~,  0 de .  
p--*l 

The integrand is bounded near the trailing edge, so we can put p = 1. We now change the variable of integra- 
tion back to ~b, but we note that I1 depends on ~ only through h, which is equal to x* + c*( - x by (15) so 
that 

g . g  O 
= c  

since c* = c, the centre line being its own  reference line. Thus finally 

g,(~b)I, d~b = - a(~)l(¢, 0)c(0) sin 4) dq~ = - go(q~)a(~b)-~- &b. (55) 

With the help of (55) the first term inside the curly brackets of (51) is now written, in the notation of (17), 

[golo + g111 + g2Ia]~ dq~ = go(q~) I 0 - a Oh ] + g212 0 d~b. (56) 

From (24) 

01, : (~ r~)(i + t/@)h 2 + 
Oh + r 

c'rln f b__~{!h + r/a)r/ at/ b_~3}] g(az 2 ) + - -  + + - " (57) 

The c' terms arise because a and b are not constants for a tapered wing, but vary with h; from (15) 

ga gag¢  c' 

gh a~ Oh c 

g a  d a d  a c' 
- -  = 

Oh b gh da (a 2 + 1) ½ bac" 
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For  q :¢ 0. we let z ~ 0 and combine (20) and (57) in (56) to give: 

, 
I o a (0, t/, 0) - -r/h ro 

a c ' f _ q  In Jo a ~ ' ! h  + r/a)r/ 
+ " L  r o + b W + b / o (  ~'o 

+~-+ (58) 

For  q = 0, retain z va 0 at first. Write 

Then (20) gives 

rl = [r],=o = (h 2 + z2) ~ 

./, = [ f ] , = o  = r, + ha/b. 

ah 2 a ab 2 z 2 
I0( 0, O, z) - - (59) 

rl(h 2 + bZz 2) r 1 rl(h 2 -I- bZz2)" 

It is the first term on the right side of (59j that causes the infinity in the downwash on a thin wing with 
kinked isobars, since the integral 

f o  fh~.~ 1~ a go(O) a dO dh rl =2vh,~.~ rl 

shows a logari thmic infinity for z ---, 0. However,  when the isobars are rounded the first term in OIa/c~h given by 
(57) produces a term l /r  I which cancels it out  when the combinat ion I o - a?A1/c~h is taken in (56). In fact. at 
r / = 0  

I o - a ? , h l ( O , O , z ) =  lnj~ + + a - - - ~ : -  c 160/ 

Now insert into (56) and consider the first two terms. We integrate over a small region containing the control  
point 0 = 0~, say, corresponding to X = x, h = 0 ; outside this region the integrand is well-behaved and tends 
to 0 as z ---, 0. Putt ing 

20 
4, = 0~ + - -  , 

c sin 0¢ 

and letting the small region correspond to - c  ~ 0 ~< c, the first two terms in (60) contr ibute 

rl(h 2 + b2zZ)j dO 

= ~ [go(q~c)a(0c) At- 0(0)3 0//2 q_ Z2)5 (0 2 -1"- Z2)½(I]/2 -1- bZz2 ) d 0  

2 o +c)a(O 4 0 1 bz 02 + z2)  + oOz]  b +,t  
- ~sin~ 1_(O2+zO 2ablnbz(O2+zO--~OzJ_ +° t z ) -*Z~ l  -2~lnv~_~/~ 

= 4 l ( x , O ) { G - ~ l n ( b c + a ~ ) }  a s z ~ 0  (61) 

making use of  (21) and the definition of  go when the centre line is its own reference line. Thus, in spite of the 
presence of z 2 in the numerators,  the first two terms of (60) make a finite contr ibut ion to the integral (56). 

As z --* O, the third term in (60) tends to the value (aZ/bh). This matches with a similar term in the expression 
(58), and so when taking the difference of the two limits q and 0 in (56) these two terms cancel. 

The last term in (60) has no effect since the parallel analysis to (61) leads to 

c s i ~  gk~_l-~ --' 0 as z - , O .  
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Collecting the results (29), (58), (60) and (61), and slightly simplifying the square brackets in (58), we have for 
the expression (56) 

fi:[ ( aOI'l 1 n --4 go(~bc)fa ~ } ff { [~{ro-h a2ri]i " a go(~b) I o -  - ~ ]  +g212 odeS= ~ (  ~ -  ln tb~+a~)  + dq5 go ri ro ) ro 

l 
+ c [ b 3 + f o l b  4 b 2 bro cb g ~ z=O 

a _ h " 
+ g'2[ri -- ~ r o  ~ - ln  fO]o }. (62) 

The integral in (62) still has two singularities in it, one due to the term 1/h and the other due to the term 
(In .fl)~ = o, since 

(fl)~=o = [hi + ha/b =- foo, say. 

These two singularities are removed in the same way as the corresponding ones in Section 4. At h = 0, 

a 2 1 r o - h aari = b - 
ri r o b b 

so a part goJbch is subtracted to deal with the 1/h singularity, and a part goc(acc'/bac) In ]hi is added to deal with 
the In [hi one. Since 

 7--0 
and from (46) 

fi ln ]hi d~b = n In (¼c), 

we must subtract go¢(acc'/b3c)n In (¼c) to compensate, and (62) becomes--with a little further rearrangement--  

f o [  ( I n _ ~  } acc' 0121 4 go~ fa  ln(b~ + a~) - go~-y2nln(¼c) go I o -  a ~ - ]  + g212 od~b = - esin~b~[ c b~c 

fi + d~ g o ~ to1 b~J 

( )( ) cac c' a h l n f o _ l n f o  ° + g o c c b c  + go c ~- - gz~x ~- In Ihl 

+ g ° c b 3 1 _ f o k b  - r i b -  ro I Jo + g2 r i - ~ r o  o " (63) 

At the control point, where h = 0, the first line in the integrand of (63) is dealt with by L'Hospital 's rule ; the 
second and third lines contain jump discontinuities at h = 0, because foo/lh[ does, but these will be inte- 
grated correctly by the trapezoidal rule if the mid-point of the jump values is taken. Thus when h = 0, the inte- 
grand in (63) is replaced by 

½ c s i n ~ b b + q - t b  - ~ - 1  +g°cb--3{a - 2 + l n ( 2 r i b 2 ) } + g 2  r i - ~ r  ~ (64) 

evaluated at ~b = q~c- 
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6. Loading Representations and Other Details 

6.1. Parabola Fitting 

Before any spanwise integration can be done, the values of go, g~ and g2 in the expansion (11) must be known. 
A typical integration strip contains 3 partition lines, for example the lines A, B, C in Fig. 1, and if L(~b, Y) is 
known at 3 points corresponding to a given ~b, for example the points A', B', C', the parabola is (writing Ya 
for the value of Y on the line A, and L ( A ' )  for the value of L at the point A') 

L = L ( B ' )  + E ( Y -  Y~) + E ' ( Y  - YB) 2, (65) 

where we write 

Y c - - Y B = h l ,  

L (C ' )  - L ( B ' )  = j ~ ,  

YA-- YB=h2, 

L ( A ' )  - L ( B ' )  = J2 

and 

E = ( j2h~ - j x h Z ~ ) / h , h z ( h a  - h2), 

E'  = ( j l h 2  - j z h l ) / h l h 2 ( h l  - h2). 

In this case B is the reference line, and carries the value YB = Y + q* where in general r/* # 0, see Fig. 2. 
Replacing Ys by r/s according to (10), we have for (65) 

L = L ( B ' )  + E(tl - ~1") + E'(tl  - r/*) 2 

whence 

go = L ( B ' )  - Etl* + E'r/.2, 
ga = E -  2E 'q*  (66) 

and 

g2 ~ Et" 

In this way the local expansion about r/ = r/* is transformed into one about q = 0, so that the spanwise 
integrations can be accomplished for all the strips, and not just the control strip. The reader may enquire 
whether time and computing effort would be saved by employing a simple panel-type method of integration 
over the strips other than the control strip, rather than the complicated equations of Sections 4 and 5. The answer 
is that such a method turns out to be significantly less accurate than analytic integration for several strips on 
either side of the control strip, typically to about quarter span to port and starboard, and in any case (because 
of the chordwise refinement, to be discussed later) the control strip takes up more computing time than the 
other strips. So the analytic method is used, starting with (66), even for the strip shown in Fig. 2. 

For such a strip, we remark (perhaps tritely) that t / =  r/_ would be line A, and r / =  q+ would be line C. 
However, this would not always be true. Consider the situation when the control point is on an "even' parti- 
tion line, for example the fourth, counting the centre line as zero (Fig. 4). The integration program always starts 
from the centre line r/ = 0 and works outwards to starboard (after each starboard strip it does the mirror- 
image port strip also, except when y = 0, that is when the control line is the centre line, in which case we 
take advantage of symmetry of wing and loading and simply double the final answer). So the program begins 
with the strip (0, 2), the lines 0, 1, 2 corresponding to r /=  q_, q*, r/+. But it would not normally do the strip 
(2, 4) next, because line 4 is the control line ; we have seen in Section 4 that the control line cannot correspond 
to r / =  q + or q = r/_ when z = 0, and even when z # 0 we would prefer it otherwise. The different representa- 
tions of the loading over (2, 4) and (4, 6) could not be expected to join perfectly at line 4; there would be a 
very slight discontinuity in first spanwise derivative at 4, leading to a very small In z term in the computed 
downwash (physically the discontinuity represents a spurious isobar kink if the planform is well-behaved). 
So information on lines 2, 3, 4 (corresponding to A, B, C on Fig. 1) is used to compute (66) for each ~b, but the 
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integration is done over (2, 3); line 2 becomes t / =  q_, line 3 t / =  r/+. Then we integrate over (3, 5) in the 
usual way, and avoid spurious discontinuities in the representation at the control line. 

The same sort of break would be made if line 3 in Fig. 4 happened to be a kink station ; the only difference 
is that when integrating over (2, 3) information is taken from the lines 1, 2, 3. Thus a slight program restriction 
is that there must be at least one partition line between any two kink stations or between the centre line and 

a kink. 
We proceed similarly when the control point is on the centre section plane, y = 0, but not on the wing 

plane, so that z ¢ 0. If the planform is swept, and the isobars are kinked in the physical plane, for instance to 
maintain the outboard chordwise loading right into the root, the downwash has a real singularity of In z 
type and there is no problem ; the program for z ¢ 0 will evaluate it, including the In z behaviour to sufficient 
accuracy. For this case, the first integration strip is (0, 2). But if the isobars are rounded and we are attempting 
the evaluation ofdownwash on the centre line y = z = 0, as in Section 5, we need to calculate the second span- 
wise coefficient g2 for use in (63). One method we have tried for this is to generate a value of the first spanwise 
derivative gl at the root, with the help of the rounded-isobars condition. With the values of L on r/ = 0 and on 
the first outboard station t / =  q+, this gives 3 conditions to determine a quadratic fit across the strip (0, 1). 

The rounded-isobars condition (Ol/aY)x = 0 gives 

¢ x ~ r 

(Ol/04))r by (8) and (15). 
- a ½c sin 4) 

The value of (OL/cTY) 4, is now obtained in terms of l* = / s i n  4); we have 

Ol 1 Ol* cos4) l* 

04) - sin 4) 04) sin 2 4) 

and so 

( OL ) = ~-~{c(Y)l(4), Y)sin 4)} 

, a(Ol/~34))r 
= c ' l *  + c sin q~ ~ s~n 

= c'l*+ 2a si 4)04) s-~n2~ l " 
(67) 

And this is the value of E to use in (65) on tile centre line. Hence 

gz - E' = [L(C') - L(B') - EY1]/Y 2. (68) 

At the leading and trailing edges, (67) breaks down. However, at the trailing edge 4) = n, l = 0 (by the Kutta  
condition) and so E = E' = 0 and there is no problem. 

We remark that l* is a more convenient function to work with than I because, like L, it is usually well-behaved 
in 0 ~< 4) ~< n; see the discussion under (9). In particular, Ol*/O4) is more amenable to numerical calculation 
than 01/04) which is unbounded as 4) ~ 0. However, because in general 01"/04) would have to be computed 
numerically (with consequent small error) the question arises whether defining E by (67) on the centre line would 
indeed ensure no spurious logarithmic behaviour in the downwash. 

In fact, in a region of the apex of a swept wing, this value of E is rather sensitive to the accuracy with 
which 01"/04) is calculated, and to the position of the other datum point at q+ ; since in general ~1"/04) will not 
be known analytically, and a 4-point central difference formula would place a heavy strain on the smoothness of 
the data, we must be content with a 2-point central difference formula for ~3l*/~4) and hope we have a suffi- 
ciently close computing mesh in both directions. If the spanwise mesh is close, we can also try linear extra- 
polation of g2 from the ordinary values calculated on the first two outboard partition lines. After many 
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numerical  experiments  with the swept wing discussed in the next section un~ler Results, we have found that  the 
method using the analytic value of 01"/0~ gave the best results and the extrapolated values of  g2, the worst, 
compared  with ano ther  compute r  solution ; so in that  section we have given the results with the 2-point  central 
difference values, these being normal ly  the best available. 

This behaviour  highlights an impor tan t  deficiency in the program.  Nea r  the apex of a swept wing, a line of  
constant  ~b would be roughly parallel to the s ta rboard  leading edge, approach ing  the centre line from the star- 
board  side ; if this line were extrapolated to the por t  side it would cut the por t  leading edge at a point  P which 
would be very close to the centre line for centre line points near  the apex. Since this point  P on the por t  wing 
carries a loading singularity, the circle of  convergence of a power  series for our  function L about  (q~, 0) cannot  
extend beyond P, and so the region in which our three- term representat ion of L is valid becomes very small as 
the apex is approached.  Mathemat ica l ly  our  technique is not valid, and for comput ing  purposes we need to 
take a fine spanwise part i t ioning (to keep the contr ibut ion to the chordwise integral from the wrongly treated 
region as small as possible) to calculate downwash  at all reliably on the centre line. One  way in which this snag 
manifests itself is in the sensitivity of g2 to which we have referred above.  

We turn now to a difficulty which arises when integrating up to the wing tips. Without  loss of generality we 
may scale the wing with respect to the semi-span so that  the tips are at Y = _+ 1. Near  the tips the loading 
is usually elliptic z and so 

L = 0[(1 - y2)~] near  Y = +1 .  (69) 

It follows that  ?L/O Y is unbounded  near  the tips, and so L cannot  be well represented by parabolas  near  the 
tips. Unfor tunate ly  the present method is geared to representat ion by parabo las ;  a proper  representat ion of L 
leads to elliptic functions which we aim to avoid:  so we seek a representat ion which is a best fit, in the least 
squares sense, near  the tips, and use it over  the last interval (m - 1, m) where m is the number  of ou tboard  parti-  
tion lines. This will be better than the usual 3 point  fit over  (m - 2, m - 1, m) but  it will not be perfect, so 
we aim to make  the last interval as small as possible by using a variable part i t ion spacing spanwise as shown in 
Fig. 1. For  example,  we might use the Mul thopp  ~ distr ibution 

Yk = sin (kg/2m), k = 0(1)m. 

When the control  line is well inboard,  the error  from the integrat ion over  (m - 1, m) is very small. If  the control  
line is actually the line m - 1, the error  is compara t ive ly  large, but we can diminish it by interpolat ing more  
part i t ion lines between control  line and tip, and interpolat ing for L on these lines using (69). 

By shifts of origin and scale, the prob lem can be turned into a universal p rob lem of finding the best pa rabo la  
fit in 0 ~< 2 ~< 1 to the function 

9 = ~ .  

We can weight the fit suitably, to match it to the rest of the curve in 5~ ~> 1, by demanding  that  the pa rabo la  pass 
through (1, 1 ). The most  general such pa rabo la  (with axis vertical) is 

Minimising the integral 

leads to 

-9 = a:~ 2 + b2 + (1 - a - b). 

fo  [(a22 + b2 + 1 -  a - b) - 2~}2 dR 

a =  10 - ~ =  -0 .4761905 

b = 272  z 1 7 =  1-295238. 

(70) 

The  two (2, -9) curves are shown in Fig. 5. The overall fit is quite good, the average error  in 9 being abou t  0.02, 
but the difference in slopes at (1, 1) is sufficient to ruin the calculation of downwash  on the line m - 1 (corre- 
sponding to 5? = 1). 

F rom (70), near  the s ta rboard  tip the parabol ic  fit to L taking the value L(B') at the point  B'(0, Y = Y,,_ 1 ) is 

L ( y)2 ( l y )  
- + b  + a L ~ ' )  a 1 - - ] z ~ - i  1--~Y~_,  ( 1 -  - b )  
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so that 

E = 
L(B') L(B') 

(2a + b) = -0.342857 
1 - Ym-a 1 -- Y~-I 

L(B') L(B') 
E ' =  a{1 _ y,._02 - -0-4761905(1 _ y,._l) 2 

Near the port tip Y = !1_,, = - 1 the same value of E' is used (with Y_,,+ ~ + 1 in place of 1 - Y,,_ a ; the same 
thing if the partitioning is symmetrical about the centre line) but the sign of E is changed. 

6.2. Chordwise Refinement 

From the discussion of Section 4 it is clear that when z is small al as given by (17) will exhibit large chord- 
wise variations on and near the control strip. When z = 0, c~ 1 contains two singularities, which are removed to 
leave a more tractable function % ; when z is small but non-zero, these singularities disappear mathematically 
but two sharp turning points appear instead and these need accurate definition before numerical integration 
can be attempted. 

Referring to (16), let us write 

A1 - -  ~ l ( q + )  --  0~1(~]-)" 

From the present viewpoint, A1 is a function of q~. Figure 6 shows the typical chordwise behaviour of A1; the 
control point, where h = 0, is assumed to be at the mid chord point R, and the range 0 ~< ¢ ~< z~ has been 
divided into 16 equal intervals at A, B . . . .  at which/(and hence L) is supposed given. The height and steepness 
of the peaks depend on z, but z = 0.005 (for unit semi-span) is representative of the scales shown. Clearly the 
chordwise integral cannot be determined accurately from just the values of A1 at A, B . . . . .  Q, R, S . . . . .  

So the range is divided into three sub-ranges by setting markers usually 1 or 2 points away from the control 
point on either side; the best number P' of points to use depends on z and on the number of chordwise 
points overall, but P'  must be at least one. If P' = 1, the markers are at (2 and S in Fig. 6. The integral from Q 
to S is calculated by trapezoidal rule using the data points Q, R, S and again using every other data point, in 
this case just Q, S. If the results do not agree to within a specified tolerance, ~ say, then extra points are taken at 
the mid points of the existing intervals, say at Q1, R1 in the inset of Fig. 6; L is interpolated to the correspond- 
ing values of ¢ on each partition line, A1 is calculated at the newly added points and a better value of the 
integral is obtained. The process is repeated until successive values differ by the required tolerance. 

Although this technique is particularly useful near the control point, there is nothing to prevent itbeing used 
to refine the integrals for the outer sub-ranges. In general, different levels of refinement are required for all 3 
sub-ranges. A1 tends to be small in the trailing edge sub-range (from S to ~ = z~) for two reasons. First, l 
decreases towards the trailing edge. Second, consider the last factor of the kernel in (7). When IX - x] >> 
I Y - y[, we have 

1 -  ( X  - x ) / r  - 1 - s g n ( X - x ) = 0  

2 

(X > x) 

(X < x). 

So the kernel (and hence A ~) is much smaller far downstream of the control point, as illustrated in Fig. 6, and 
this sub-range needs less refinement. 

We can apply this method to all the integration strips. There are roughly m of these strips, and in general we 
deal with three sub-ranges in each, so by (16) the maximum error in c~ would be (3me)/16~. If we need at 
least three decimal places accuracy (3D) in c~, this gives 

- 0.017/m. 

In practice the errors are not cumulative, and much smaller outboard of the control strip, and this tolerance 
gives at least 4D accuracy. 

If the control point is near (within P' points of) the leading or trailing edges, one sub-range disappears and 
there are only 2 sub-ranges to integrate over, in each strip. 

The next question is, how is L to be interpolated on the partition lines. At first, it was thought that linear 
interpolation between neighbouring points, with a quadratic interpolation at the leading and trailing edges, 
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would be good enough : for fiat plate loading, the function L behaves chordwise like (1 + cos ~b) and with 16 
chordwise datum points a typical error in the downwash is 0.5 per cent. However, if higher Fourier components 
are introduced into the chordwise loading, the errors can rise to upwards of 1 per cent. A quadratic chordwise 
interpolation rule was next tried, using information typically from points (p - 1, p, p + 1) to interpolate be- 
tween points (p, p + l), and on average the errors were roughly halved using this rule. But it is a one-sided 
rule, it is unsymmetrical and does not produce an arcwise smooth interpolate, and so we have developed a 
rule which does produce an interpolate with a continuous first derivative. To do this, we prescribe the values 
of the first derivative at each data point, requiring that these values equal the 2-point central difference values, 
which would be obtained by a quadratic through (p - 1, p, p + 1): 

p 

(A being the steplength). In the range (p, p + 1) this gives 2 conditions to be satisfied at each end, so a cubic 
is fitted to the 4 conditions, and the complete set of cubics defines the chordwise interpolate. It is not a cubic 
spline interpolate as the second derivatives are discontinuous in general, but it is simpler and quicker to generate 
than a cubic spline. For the cases mentioned above, still further improvement in accuracy is obtained. 

The first derivatives are set to zero at the leading and trailing edges. This avoids theoretical logarithmic 
singularities in the integration near these points, away from the root. 

Finally, it is possible to calculate the downwash at the leading and trailing edges (except the apex of a swept 
wing), by making the following provisions. At the trailing edge, the factor (got~h) in (48) or (63) is replaced by 
its L'Hospital  equivalent, and at both leading and trailing edges (q5 = 0, 7r) the factor 

dgo/d~ 

sin ~b 

in (50) or (64) is replaced by its L'Hospital  equivalent 

[ a3go/d 2 7 

The second derivative is calculated from a 3-point rule consistent with the cubic interpolate; it must be con- 
sistent, otherwise the chordwise integrand will be discontinuous and the chordwise refinement necessary to 
overcome this will increase computing times unacceptably. 

7. E x a m p l e s  

7.1.  Unyawe d  Infinite Flat Plate  

As a first check on the program, we consider the two-dimensional flow over a fiat plate of constant (unit) 
chord and infinite span. An exact solution is available in linearized theory ; if the incidence is ¼, the load distri- 
bution (which is independent of Y, of course) is 

t ( x )  = ( 1 / x  - 1)~. 

Inserting into (7) and performing the spanwise integration, we have 

1 ( '"  ( 1 / X  - 1)~(x - X )  d X  

Putting successively X = sin 2 ~, tan ~, = t, we find 

1 1 ~o t 2 - a dt 
O~ -- 4 ~ , ]0  t4 -- 2at2 + b 

where (for this section only) we write 

a - -  
x(1 - x) - z 2 x 2 + z 2 

b -  
(1 - x) 2 + z TM (1 - x) 2 + z TM 
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With 

c (b a2) ~ z ---- - -  - -  > 0  
(1  - x)  z + z 2 

we have 

1 1 fo ~° t 2 - - a  
a = ~ - 2--~ (t 2 - -  a-~ -+ c 2 dt 

_ 1 1 Re dt 
4 2n t 2 - (a + ic) 

which can be evaluated by contour integration'  

1 1 i 1 1 e 

4 4 R e d + i e  4 4 d  2 + e  2 

where 

(d + ie) 2 = a + ic, e > 0 

whence 

d2 

and so 

= = ¼ - - (71) 

On the flat plate z = 0, a 2 = b, and ~ = ¼, as it should. The analytic solution is thus known for the flat plate 
of infinite aspect ratio. 

The computer  program for z # 0 was run, at fixed (x/c, z/c) positions on the centre section of a rectangular 
wing with flat plate loading, constant along the span, for various values of aspect ratio AR.  Positions near the 
leading edge were chosen, as the downwash varies quite rapidly there. Figure 7 shows the downwash at each 
position, as a function of l I A R ,  along with the values from (71) for infinite A R ,  and we see that all points 
for each position lie exactly on parallel straight lines, to within graphical accuracy (3D). We can see how this 
comes about, as follows. The difference in downwash for finite and infinite wings with constant spanwise load- 
ing is chiefly due to the concentrated trailing vortex shed from each wing tip on the finite wing; for points on 
the centre section these two semi-infinite vortices are roughly equivalent to a single two-dimensional vortex 
of the same strength FU, where F = ½nCCL = ¼no, and so induce an extra downwash 

F ~ c  1 

2~zs 2~s 4 A R  

so that 

a(1/AR)  4'  

independently of position, and hence the parallel lines, which in Fig. 7 have slopes around 0-258 to 0.260. 
As further evidence, we draw attention to the three points for A R  = 24, x/c  = 0.0955; since the difference 

between results z/c = 0-012, 0-006 is just twice that for z/c = 0.006, 0.003, the linear variation of downwash 
with z near the plate (which can be analytically predicted for z << x, z << 1 - x) is also verified. For these 
calculations, 20 chordwise stations and m = 10 spanwise stations were used to specify the loading. 
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7.2. Rectangular Wing with Elliptic Loading 

We next consider a rectangular wing, which being unswept will not  incur the problems associated with the 
apex of a swept wing. We take the aspect ratio to be 6 and impose a flat-plate chordwise and elliptic spanwise 
loading 

1 = (c/x - I)4(1 -- yZ/s2)+. 

To get some idea of  the numbers expected from classical aerofoil theory, we observe that the section lift 
coefficient 

Q(y)  = ½7z(1 - y2/s2)-~- 

and then Prandt l ' s  classical aerofoil equat ion 3 gives 

c~(y) = c~ e + cq 

CL(y) 1 f_  d(cCL) dy' 
- 2re + ~  ~ dy '  y - y ' "  

This result can be derived from the assumption 

IX - xl < < I Y -  Yl 

in equat ions (5) and (7). for z ~ 0. 
Substituting for CL, and putting y = 0, we find 

(72) 

and 

c% = 0.25 

c~ i = (c/s)(g/16) = 0.06545 (aspect ratio = 6). 

% is just the flat-plate downwash on an infinite wing with two-dimensional  chordwise loading, while cq is a 
measure of the contr ibution from the trailing vortex system. F rom the assumption (72) it follows that cq is 
independent of x and is just half its value in the wake where the vortices are effectively infinite upstream and 
downstream. This leads to the value e = e~ + cq = 0.315. For  a finite wing, ~ is rather more  than half its wake 
value, so in the R.A.E. standard method it is multiplied by a downwash factor 3 co with a value between 1 and 
2. For  aspect ratio 6, ~o = 1.026 and 

= ~ e  -I" f D ~  i = 0.317, 

so the classical treatment gives a value of ~ = 0-317 on the centre line. How well this approximat ion is con- 
firmed is shown in Fig. 8, in which this result is compared with calculations due to Garner,  7 reported also by 
Freestone. 5 

We observe that, for this particular unswept wing, the assumption (72) with the incorporated downwash 
factor together produce an error of  about  4 per cent in trailing-edge downwash  ; that there is an error at all 
here is entirely due to the aspect ratio being finite (6) rather than infinite. 

Using the program for z 4: 0, at each chordwise station the downwash was calculated for two suitably small 
values z/c = 0-0015 and 0.0030, and the results are also shown in Fig. 8. Since the isobars are perfectly smooth  
at the centre line, we again expect the downwash to be partly constant  and partly propor t ional  to z, and indeed 
(except at the last point, x/c = 0-975, before the trailing edge) the points for z/c = 0-0015 lie halfway between 
the Garner  curve and the points for z/c = 0-0030, at the same x/c. Thus the program is again indirectly verified. 
The effect near the leading edge is startling considering the large difference involved; it comes about  because 
al though the downwash on z = 0 remains finite as x --, 0 + ,  the downwash on x = 0 is unbounded  as z ---, 0 + .  
(It is readily verified from (71) for the previous problem that the downwash is 0(z-~-).) This non-uniform 
behaviour,  as the same point is approached from different directions, is a consequence of linear theory and the 
thin-wing assumpt ion:  it affects the calculations considerably very near the leading edge, as Fig. 8 shows. 

The downwash  computed  on the centre line by the method of Section 5 is also shown in Fig. 8, including the 
leading edge x/c = 0 and the trailing edge x/c = 1, and we see that the values all agree with those from Garner ' s  
theory to within the three figures of graphical accuracy. 
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For interest, the centre-line warp 

z(x/c) f l  
= c~(x') dx'  

C x/c 

is computed and results from present method and R.A.E. standard method are shown in Fig. 9. We see that 
the assumptions of the R.A.E. method (as above) produce an error of about 3 per cent at x / c  = 0-3, for this 
unswept wing. 

7.3. Swept Constant Chord Wing 

To demonstrate the program's  operation on a kinked isobar configuration, we take a swept wing of constant 
chord with straight leading edges port and starboard, so that each half of the planform is a parallelogram, and 
impose flat-plate loading on it as for the unswept wing of Section 7.1, with constant spanwise loading : 

t (X)  = ( 1 / X  - 1) ~. 

Wings with 45 degrees sweepback and aspect ratios of 6, 12 and 24 were studied. Sixteen chordwise stations 
were used. With the aspect ratio 6, the chordwise downwash distribution at the centre line is shown in Fig. 10 
for z /c  = 0.005 and 0.010. Also shown, is the flat plate chordwise downwash distribution on a yawed infinite 
straight wing carrying the same loading, which distribution would also be expected on a section of our finite 
wing, far outboard but not near the tip. For  this case, on z = 0 the spanwise integration yields 

(t~)yawed wing = (~)unyawed wing b 

= 0"25~vf2 = 0.354. 

The figure thus shows the sort of extra reverse camber needed to maintain the same load distribution at the 
centre section of this swept wing ; it depends on z but certainly no longer has flat plate character. We also notice 
in passing that for the larger value of z /c  the downwash dips sharply as we approach the apex, which is the 
same effect as before : there is a region of strong upwash just above the leading edge. 

From the results for these three aspect ratios, we may again extrapolate to the infinite wing just as for the 
unswept case. The results for three near-mid-chord stations are shown in Fig. 11 (the vertical scale has been 
stretched and broken up, as there is very little difference between the results on the scale of Fig. 10). We also 
show theoretical results for the infinite wing, computed from the formula :6 

b l(X)(x-X)dX a £ l ( X ) d X  a fo" l ( X ) d X  z2b 2 
~(x, o, z) : ~ (x - x )  ~ + z~b 2 + ~ [(x 2 - X ] - e ~  z~] ~ ~ [(x - X) ~ + z~] ~ (x - X) 2 + z2b ~ 

= K 1 + Ks + Ka. 

This expression also follows from Section 3, with g~ = g2 = 0 but a ¢- 0. K1 comes from the limit q = oo in 
the spanwise integration ; it is analogous to the two-dimensional flat-plate result of Section 7.1 and can be dealt 
with similarly by replacing z by zb and finally multiplying by b. Also, when x = 0, K x is again 0(z--~) as z ~ 0 + ,  
which dominates K2 and K3 and accounts for the strong upwash field near the apex. K 2 and K 3 come from the 
limit ~/ --- 0, and for our flat-plate loading they are elliptic integrals. These were not manipulated into standard 
forms but evaluated directly by trapezoidal integration with 256 points in a check program;  the results are 
nearly identical with the extrapolated values from the main program, as the four points for each station are 
nearly collinear. Similar agreement was found elsewhere, except near the leading edge where the accuracy of 
the check program fell off. This could be improved by taking more than 256 points, but it is a very minor detail. 

The logarithmic singularity in the downwash for kinked isobars as z ~ 0 comes from the integral K2. For 
z, z 1 << x,  1 - x ,  K2 gives 

c~(x, O, z) - c~(x, O, z l) ~ (a/2n)l(x) In (21/Z). 

So near the mid-chord we expect the function 

c~(x, 0, z) - ~(x, 0, zl) 

X = (a/2n)l(x) In ( z l / z )  
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to be approximately 1. The table below shows the chordwise variation of X and confirms this expectation. 

x/c 0.0381 0-1464 0.3087 0.5000 0.6913 0.8536 0.9619 
X 1.324 1.100 1.056 1.047 1.055 1.094 1.302 

Near the leading edge, K 2 gives precedence to K~ which has the stronger singularity. 
Similar reasoning to that for the unswept wings of Section 7.1 leads to the approximate result 

O(1/AR) = I - sin = 0.073. 

The values from Fig. 11 are 0.073, 0.080, 0-083, in good agreement. 

7.4. Swept Wing 'A' 

Wing A has a swept planform with straight leading and trailing edges to port and starboard, streamwise 
tips, aspect ratio 6, taper ratio ~ and midchord sweep angle 30 degrees. Thus, for unit semi-span, the leading 
edge and chord are given by 

and 
x L = 0.7440168 Y 

c = 0.5 - 0.3333333Y 
O ~ Y ~ I .  

As a mutual check on their individual programs, M. M. Freestone 5 and the author assumed flat-plate chordwise 
loading and elliptic spanwise loading with an overall lift coefficient C L = 1 : 

Freestone used a 15 (chordwise) x 20 (spanwise) rectangular grid in the physical plane, while the author used 
a 20 x 20 grid with uniform spanwise spacing. This is contrary to the decision of Section 6.1 : the program 
was still being developed. Thus calculations near the tip would have been useless, but good results were still 
expected well inboard. 

The isobars are now kinked at the centre line, so the downwash cannot be calculated there for z = 0. Instead 
comparisons were made at two sections well inboard, Y = 0.05 and 0.1, and one section near mid-span, Y = 0.4, 
and are shown in Fig. 12. (The author 's  results were originally extrapolated from those for 3 values of z ~ 0, 
but the program for z = 0 gave exactly the same results. Thus the present work really does verify this latter 
program.) The overall agreement is good, particularly for Y = 0.4 where the camber section is virtually a flat- 
plate. A closer examination reveals that for the inboard sections Y = 0-05 and 0.1 the Freestone values show 
some oscillation along the chord about the author 's  comparatively smooth curve, and for Y = 0-4 one Freestone 
value, for a point quite near the leading edge, lies well below the general straight line. It is thought that 
Freestone's program (which has a fixed number of grid refinements for each point, set in advance by the 
programmer) did not refine sufficiently for this point, and that further refinement would have considerably 
improved this value: however, it is also thought that Freestone's grid, which does not follow the contours of 
swept planforms, may introduce some integration errors at the edges which are responsible for the oscillatory 
behaviour. This can even be important near the trailing edge (where the chord loading is small), as the values 
there show in Fig. 12 (for the inboard section). The author 's  program trades this defect against analytical 
complexity, apparently with profit. 

7.5. Special Delta Wing 

No proper test of the method for thin swept wings was available at the time of writing. A load distribution 
obtained by Multhopp's  collocation method 2 cannot be used as this method depends on first rounding the 
apex. So an artificial case was chosen to check the program further. An analytic load distribution was chosen 
to give a square-root (not inverse square-root) singularity along the leading edges of a 45 degree delta wing 
(the root chord thus being equal to the semi-span), and to go to zero at the trailing edge. The actual trailing-edge 
behaviour was chosen quadratic, for the following reason. It is possible to specify the wing instead as a constant 
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chord wing, still with 45 degree sweep, with only the triangle loaded, and to repeat the calculations for this wing 
as a check, both on and off the centre line. For  the constant chord model, the local sweep a will be everywhere 
constant and the spanwise rate of change of chord c' will be zero ; for the triangular model, a will vary along 
the chord and c' will here be equal to - 1 .  For  self consistency the results must agree even though all the 
numbers in the arithmetic will be differen~ Now if the normal trailing edge behaviour is chosen, then on the 
constant model the function L will have ~i sharp change of slope on a chordline outboard of the centre line, 
and the chordwise interpolation routine will produce results which depend on where the data points are. 
A quadratic variation must be chosen to fair smoothly into the region of zero loading behind the triangle. A 
factor 10 was inserted to obtain downwash values in the range 0 to 1, and the analytic formula chosen was thus 

l(x, y) = lO(x 2 -- y2)~(1 -- x) 2. 

The computed distribution of downwash both on and off the centre line is shown in Fig. 13. Thirty-two 
chordwise points were used, as this run was done before the cubic interpolation technique had been decided 
on. Values at each of three stations near the centre line were calculated using both models ; the same values of ~b 
lead to different values of the physical coordinate x when y :~ 0 so the points obtained are different but all lie 
on the same curve (except perhaps the last point on the station y = 0.05). This is not important as it does no 
more than verify the consistency of Section 4. Now, when y = 0 the control points are the same for both models, 
and the results of the two calculations (also shown in the table below) agree to 3 decimal places and cannot be 
distinguished on the graph. This verifies the consistency of the present method. 

x 

Constant chord 
wing 

Triangular wing 

0-0381 0.1464 0.3087 0.5000 0.6913 0.8536 0.9619 1.0 

-0-0705 0.1293 0.4578 0-7564 0.9036 0.9101 0.8729 0.8584 

-0.0707 0.1291 0.4579 0-7564 0.9029 0.9093 0.8730 0.8589 

Moreover, we see from the figure that the curve for y = 0 is within a reasonable extrapolation region of the 
three curves shown for y :~ 0. 

On Fig. 13 we also show downwash values obtained from the corresponding program of Freestone. 4 These 
are consistently higher than our values, and the differences are larger than one would expect from the 
comparison reported in Section 7.4 with Fig. 12, so if Freestone's results (obtained using a 20 x 20 Cartesian 
grid with refinement) are accepted as near accurate, then our results are perhaps a maximum of 2 per cent in 
error. As discussed in Section 6, our computation is sensitive to the method used for calculating g2 ; we can 
improve the accuracy by using analytic or high-order difference approximations for Ol*/Oq5 on the centre 
line, but these resources are not normally available and so the calculation would not be representative. Mean- 
while, the present results give an estimate of the likely error using this particular partition line spacing (y/c = O, 
0.025) for our 45 degree swept wing.? 

8. Concluding Remarks 

We now have two programs which use as data the planform shape and steady loading distribution at points 
on a planform grid, and calculate the downwash derived from linear theory ; one program for points on the plan- 
form with z = 0, the other for points offit with z ~ 0. The storage requirements are not high, as not much more 

is required than is needed for the above data, though the analytic complexity is considerable ; in these days of 
high speed computers the number of function evaluations in the chordwise refinement scheme causes no 
alarm; the accuracy of the output depends primarily on the denseness of the input and is quite acceptable, for 
the cases considered in this Report, with only 16 × 20 or so input numbers. 

The program for z ¢ 0 has obvious uses. The designer may specify a straight isobar configuration with 
mathematical kinks at the centre section of a swept wing. In thin wing theory this leads to the impossible 
situation of infinite downwash on the centre section y = z = 0; but in practice the wing always has a finite 

5" Since the writing of the above, the author has tried the program on the centre line of a flat cropped delta 
wing with a loading calculated by the method of Hewitt, 8 including the apex eigensolutions found by Rossiter. 9 
The author failed to obtain consistent results, and concludes that for such loadings his program is in fact 
inadequate on the centre line of a swept wing. 
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thickness distribution~ and so we can escape with a computation of downwa'sh on the thick wing which, com- 
pounded with the velocity component due to thickness only, gives a possible design centre section. Another 
possible application is the design of wing-fuselage combinations for given load distribution, when similar pro- 
grams for the calculation of the other induced velocity components are required. 

The program for z = 0 could also serve as a design tool, perhaps the most accurate to date of its kind. 
Moreover, there is doubt about the accuracy of the collocation meth~ods (at points other than collocation points) 
for the loading problem, 4 and there are some challengeable assumptions in the R.A.E. standard method:3 
these points may be clarified by a direct check with the program, as has recently been done by Weber.l° 

The program can also attempt to compute the downwash on the centre line y = z = 0--with qualifications. 
For wings without centre line sweep (for instance, rectangular wings) there seems to be no problem : for swept 
wings, a grave mathematical difficulty arises at the apex and a close mesh spacing is required to obtain numerical 
results in which we may have any confidence, even though an excellent self-check has been obtained for the 
special wing discussed in Section 7.5. At the moment this difficulty has not been tackled. 

Finally, we mention that the downwash can be calculated both at leading and at trailing edges (except at the 
apex of a swept wing), but not at the wing tips, because of the fictitious way the loading is represented there. 
But it is doubtful whether this last restriction matters much in practice, as there is always the shed wing tip 
vortex to contend with. 
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go,  g l ,  g2 
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xL, xL(Y) 
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A 
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tl 
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Subscripts 

O 

1 

LIST OF SYMBOLS 

Aspect ratio 

Local sweep, x~ + c'~ 

+ 1) 

Chord 

dc( Y)/ d Y 

r + ~lb + ha/b 

Coefficients in expansion of L about control line : 
L(4), Y) = go + qgl + r/2g2 

x~ + c * ~ - x ; d e f i n e d b y X - x = h + r / a  

Indefinite integral over spanwise strip, see (18) 

.I = g0 i0  + g l I 1  q- g2 i2  

Ip = Oip/~z 

Wing load distribution 

l sin ~b 

l(X, Y)e( Y) sin q~ 

r 2 ~--- ( X  --  x) 2 --~ (Y - y)2 + z2 
= ( h + ~ / a )  2 + q 2  + z  2 

Semispan 

Freestream velocity 

Cartesian coordinates of point where downwash is being evaluated 

Cartesian coordinates of point in wing plane 

leading edge X coordinate 

dxL(Y)/dY 

Downwash 

~I/Oz = golo + g111 + g212 

Potential jump across wing plane = ½UA; I = OA/3x 

Chordwise angular coordinate : ~ = 2!(1 - cos q~) 

Local section coordinate: X = xL(Y) -]- ~c(Y) 

Y - y; spanwise coordinate measured from control line 

Limits of spanwise integration strip 

Reference point for expansions, q_ <~ q* .%< ~7+ 

On f, r: values when z = 0 

On f, r: values when ~t = 0 

Values when h = 0 (control point) 
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APPENDIX 

The Computing Formulae for Streamwash and Sidewash 

The potential per unit free stream has been derived in Section 2 as 

q ~ ( x , y , z ) = ~  ( y _ y ) Z + z  2 1 
wing 

and the velocity components of V~0 

X -r x]  dX d Y (A-l) 

can also be written as double integrals over the wing planform. The downwash ct = - w t has been considered 
in the main text, and we have to deal similarly with the streamwash u t and sidewash vt in the case z # 0. 

By the method of Section 3, (A-l) is transformed first to a sum of strip integrals similar to (9) 

1 E I f  dc~.z d Y . ( y - - ~ 2 ~ _ z 2  1 
q~(x, y, z) = ~ ~,,ip~ 2 30 t~ip r 

and then, making use of equations (10), (11) and (15), we have (A-2) in the form similar to (16) 

(A-2) 

Q9 = 8- -~s t r ips(~-J /+)  ~" ,,'0 

where, as (18) 

l =  z fd,  g° + -i-+ +-z2 t/2g2 Flu h +r~_ aJ = go]o+ g a l l +  g212 (A-4) 

with 

r 2 = (h +r/a) 2 + q2 + z2. 

The integrals in (A-4) have been evaluated analytically in Section 3" 

zr z (A-5) = - -  arctan - ,  ]o arctan tlh - zZa 

]1 = z ln ( r  + h + rla ) - z(a/b)ln f (A-6) 

and 

]2 = z  1 / - b - g r -  l n f  -Z2]o  (A-7) 

where, as (23), f = r + rlb + ha/b. 
To find u~, we differentiate (A-3) with respect to x under the integral sign. Since x only enters (A-4) through h 
as in (15), it follows that the equivalent operator to O/Ox in (A-4) is (-O/Oh). So the streamwash is given by 
(A-3) with ix in place of ], where 

l~ = Ol/Ox = 
2, z ( h a + q b 2 ) ( a  ~__g)h+qa+ra/b 

-07.~Oh = (go - g2 z } r ~  -+ z--~) + glz-~ + g2 z rf 

z z(h + qa)a z 
- gl r + g2 rb 2 + g2~--~ln f (A-8) 
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We can verify that (A-8) gives the correct answer in the limit z ~ 0 + .  Outside a small ne ighbourhood of 
the control  point (x, y), ]~ = 0 for z = 0. At the control  point, O]o/~h is singular; also, by (15), h = 0. On  the 
control  strip q < 0, ~/+ > 0, h is just the distance downstream of the control  point, and we take our  small 
ne ighbourhood  to be - ~  ~< h ~< e. Changing the chordwise variable to h, and replacing (go/c sin ~b) by its 
value l(x, y) at h = 0, we have the integral in (A-3) rewritten for u~ 

nc 

2 f o d O [ ] ~ ( q ) ] ~ 2 = 1 2 f _ . ( c - - ~ - i n ~ d h ) [ - g o ~ h ] i  I 

= - l ( x , y )  arctan qh a r c t a n -  i _ j _ ,  + O(z). 

Now keep ~: fixed and let z -~ 0. The second arctangent  is independent of  h and does not contribute. Since 
r > 0, the first one contributes 

- = - l ( x , y ) { (O - r e ) -  (z~ - 0)} = 2~l(x,y) l(x, y) arctan (sgn h)(sgn ~/) , ,_ ,_~ 

so (A-3) gives 

ut(x, y, O) = ¼l(x, y). 

To find the sidewash v~, we differentiate (A-3) with respect to y under the integral sign. Now, from (15) and 
the definition Y - y = q, we have 

0 8 
8 y -  a~hh Or I (A-9) 

as the equivalent operator  to use on ]o, ]1, ]2 in (A-4). The coefficients g;, also depend on y, for (11) is an 
expansion about  Y = y:  to see this, write it first as an expansion about  Y = 0: 

L = L o + Y L  1 + YaL 2 

in which the L, depend only on the initial data  for L, and then substitute for Y: 

L = Lo + (y + q)L 1 + 0 2 + tl)ZL2 

from which 

go = Lo + yL1 + y2L2, 

gl = L1 + 2yL2 

and 

g2 ~ L2 

and so 

dg_9_o = dgl dg2 = 
dy gl " dy = 292 ; dy O. (A-10) 

Applying (A-9) to the I , ,  and (ADO) to the g,, v t is given by (A-3) with i~, in place of ], where 
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Making use of (A-4) and (A-8), this gives 

Iy = - a lx  - z g° +/,/2/~gl_]_ "~,7. 2 r/2g2 (1 

with i o, i 1 from (A-5), (A-6). 

h + ~a) 
- + gllo + 292Ia r 

(A-11) 
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