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Summary 

The practicability of allowing approximately for the higher-frequency normal modes of a structure by 
using a residual flexibility matrix is examined somewhat philosophically. There appears to be a better method 
of approximation, which retains the concept of residual flexibility, and arguments in favour of it are given. 
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I. Introduction 

The study of the dynamical behaviour of a deformable aircraft inevitably involves the semi-rigid representa- 
tion of the flexibility of the aircraft. There are two popular representations ; in the one the aircraft deflection is 
described in terms of the deflections under discrete loads acting one at a time, and in the other these are re- 
placed by the deflections of the undamped aircraft when oscillating at its natural frequencies. Calculations of 
the second of these-- the normal modes--often use a matrix made up from the first--the flexibility matr ix--  
as data, and if complete numerical accuracy could be achieved there would be no difference in the results of 
aeroelastic calculations using either the flexibility matrix or the complete set of normal modes derived from it. 

The most obvious lure of normal modes is perhaps the possibility of obtaining good approximations by 
using a truncated set and thus decreasing the number of equations to be solved. In a recent report 1 Taylor 
has suggested that aeroelastic calculations be made using a truncated set of normal modes and making up for 
their inadequacy by including a residual flexibility matrix 2 which allows for the further static flexibility of the 
structure. This present Report has been written in the belief that the order of a flexibility matrix is often no 
true measure of its accuracy, and that the deficiencies of the normal mode approach are only important when 
part of the loading is discrete. Based on these beliefs, a completely modal approach which can include the 
effects of residual flexibility, is suggested as the most economic. 

The concept of residual flexibility is first examined and then applied to a typical set of equations without 
recourse to the use of a 'free-free flexibility matrix q,2,3 which is a popular artifice for using data for a con- 
strained structure in equations for its unconstrained motion. It is an artifice however which couples the inertia 
and stiffness data for the system at an early stage, obscuring to some extent the physics of subsequent operations. 
Finally, the merits of an equivalent completely modal approach are expounded. 

2. Residual Flexibility Matrices 

2.1 Derivation 

Consider the free vibrations of a structure that is sufficiently constrained for a flexibility matrix to exist. 
Its motion can be described by the matrix equation 

( - ~ 2 M  + F-1)qf = 0, (1) 

where M and F are positive definite symmetric matrices. For  example, if the structure were a cantilever beam, 
the matrix M could be a diagonal matrix of discrete masses representing its inertia, in which case qf would 
be a column matrix of the deflections of the masses and F would be the familiar matrix of flexibility coefficients 
for single loads at each of the mass points in turn. The inverse of the flexibility matrix, F -  1 is the stiffness 
matrix for the sets of modes ('stiffness matrix' modes for the constrained system), in each of which every loading 
point but one has no deflection, the odd one having unit deflection. 

Let ql, q2 be column matrices of the generalised coordinates of the normal modes ; q2 referring to the modes 
of higher frequency. Then the deflections of the masses can be written 

qf=(U1, U2)(ql), 
q2 

where the columns of the square matrix (U1, U2) are the modal 
normal modes 

u;! 

where El l , E22 are diagonal matrices whose elements are the 

Premultiplying equation (3) by ' ' [U'll -1 and postmultiplying by 
u'21 

= 1 (U1, U2 )- 1 (4) 
U'2] E22 

Equation (4) inverted is 

EH ~u~/ 

(2) 

vectors, From the orthogonal properties of 

o) 
E2 2 , (3) 

stiffness coefficients of the normal modes. 

(U1, U2 )- 1 gives 

(5) 



from which 
F = U , E ; ;  U'~ + UzE~)U'z. (6) 

If the system is approximated to by the coordinates ql alone, 

FR = U 2 E ; ) U ' 2  = F - U I E I I U ' I  (7) 

can be looked on as the 'residual flexibility'. The matrix F g is singular, having the same rank as E22. The 
definition above of F R is the definition of a residual flexibility matrix used below. 

2.2 Application 

Consider a discrete unconstrained system under aerodynamic stiffness, C, and mechanical forcing, f ,  rep- 
resented by the equation 

~U'j.] ~]y F -1 qf ~U'j.] C(Ur, Uf ) qf Jr- U'y r f. (8) 

The displacements of the points of the system to which M, C, F and f refer are given by 

U "[q'~ Z = (U,, y)[qf] , (9) 

where qr are the generalised coordinates of the normal rigid-body modes and the qs are generalised coordinates 
which are normal to the qr coordinates with respect to inertia and for which a non-singular flexibility matrix 
F exists. 

Take as an example a simple beam and assume that a flexibility matrix has been determined for it when it is 
constrained by forces only. As mentioned above, the inverse of this flexibility matrix is the stiffness matrix 
for a set of modes in which each loading point has unit deflection in turn. If the mass points are coincident 
with the loading and constraint points, it is obvious that these modes will not be normal to the rigid-body 
modes with respect to inertia. A set of modes exists however which have the same distortions but which also 
have rigid-body deflections sufficient for them to be normal to further rigid-body deflections and qf are the 
generalised coordinates of this set. Since the modes differ from the first modes only by rigid-body displacements 
they have the same stiffness matrix and hence the same flexibility matrix. The inertia matrix is different however 
since the absolute deflections of the masses in the two sets of modes are not the same. It should be noted that 
the aerodynamic stiffness matrix C is made up of the aerodynamic forces at all the loading and constraint 
points when there is unit deflection at each of them in turn. 

Let Cf, -= U)CU, etc., J~ -= U;fe tc . ,  and 

q f = ( U 1 ,  U2)( ql ), (10) 
q2 

where ql, q2 are generalised coordinates for the finite-frequency normal modes, q2 referring to the modes of 

/1223 q2 E22] q2 U~2/ Cfr Cff] U1 U2 2 . " (11) 

If the accelerations of the system are low, A22q2 will be much smaller than E22q2 and the last submatrix equation 
of (11) can be approximated to by 

{ ( q ) + 4 .  E22q2 = U 2 (Cf,,Cfz) Ulqa + U2q2 

which rearranged is 

I • (E22 -- S'2Cyfg2)q2 = 02 (G'" Cff) Uaql 

Premultiplying by U2E2~ gives, remembering equation (7), 

{ (0)+4- (I - FRCIf)U2q2 = FR (Cfr, Cfy) U,ql 

higher frequency. 
Equation 8 can be written 



and hence 

( )( )(0) q, I 0 q, + 

Ulq 1 d- U2q 2 IFRCft I q- IF R glq 1 IF R 

where i = (I -- FRC::)-1. 
Note that 

I + iFRC:: = i .  

(To prove this premultiply the equation by i -  1 ). 
From equations (11) and (15) 

I q, [Arr A:,J(~])-I-(E10ql) = (I 00]){(;2[ Cry, Ctfl ('FRCf, ~)(Ulql) -t- (]FORff) + (~)}" 
Hence 

- ( q ' ) + f ' U l q l  
A,,gl, = (C,, + C,:IFRC:,, C,:I) 

(15) 

(16) 

(17) 

(18) 

{ ,19, A l l g  h + Ex:q~ = U'~ [(I + CffIFR)C:~, Cf:I] U:q,  

Note that C::I = C::(I - FRC::) -1 = (I - C::FR)-:C::  = IC:: {say) and that 

I + iC::F R = i .  (20) 

Hence equation (19) can be written 

,-{ ( q. )+::}. AI~? h + E:lq~ = U , I  (C:,, C::) U:ql  

By ignoring the inertia forces in the less-grave normal modes, equation (11) has been replaced by equations 
(18) and (21). 

Thus the full number of equations has been reduced to the number that have non-negligible inertia co- 
efficients but the coefficients of these new equations are evaluated from matrices whose order is the same as 
that of the flexibility matrix. It can be seen from equation (7) that the residual flexibility matrix describes the 
flexibility that is left when the system is constrained so that it cannot deflect in its graver modes. Thus, even 
the simplest loading of the residual system will lead to a complicated deflection since the deflection can only 
be described in terms of the shapes of the higher-frequency modes. 

Associated with this residual flexibility matrix is an aerodynamic stiffness matrix of the same order. Any 
ihcrease in accuracy due to the inclusion of the residual flexibility is likely to be lost if this aerodynamic stiffness 
matrix is not accurate enough for the aerodynamic stiffnesses in the higher-frequency modes to be obtained. 
Thus a large number of collocation points will be needed in the application of the aerodynamic theory if the 
order of the matrices is at all large and, whether or not the necessary accuracy is achieved, the calculation 
will be expensive in time and effort. 

2.3 Criticism 

Flexibility matrices are generally ill-conditioned. This is essentially the result of the loadings used in their 
determination, and these are about the worst possible from this point of view. If the deflection of the structure 
under a discrete load is regarded as an arbitrary mode, the column of the deflections at the loading points 
can be expressed as Zarby = ~ ,~  1 e,Z, where z, is a column of the deflections in the rth normal mode and ~, 
is a scalar. Since the load is single, it is likely that cq will be the largest ~ and c~ will decrease as r increases. In a 
sense the usual flexibility matrix contains too much information on the amount  of energy needed to distort 
the structure into a simple shape and too little about the more complicated shapes. The result of this is that 
what is left of the flexibility matrix gets less and less accurate as the graver modes are extracted. Minhinnick 
has suggested 4 that about one significant decimal figure is lost when each normal mode is found. Thus the 
number of significant figures to which the flexibility coefficients are determined certainly puts an upper limit 
on the number of normal modes that can be found accurately. When this limit is reached the residual flexibility 



matrix is dross as far as the normal mode type of calculation is concerned and if the flexibility matrix has 
been determined by tests, its residue is likely to consist largely of the expression of what are actually physical 
impossibilities. In these circumstances the author believes it impolitic to include the residual flexibility in the 
data for further calculations. 

Were flexibility coefficients commonly found for multiple loads, the position might be better, for in this case 
it would be possible to arrange the loads so that a different a, was largest at each loading condition. In still-air 
resonance tests an attempt is made to make all the a, save one zero. 

3. Calculation of Normal Modes 

In the above, 'free-free flexibility matrices' have been avoided since their use introduces an unnecessary 
sophistication. 

For completeness, a method of deriving the normal modes of a free-free structure directly from the simple 
flexibility matrix is reiterated below. 

The equation for the finite-frequency normal modes of the typical system is, following equation (8), 

(~o 2 U'fMU: - F -  1)qf = (0), (22) 

with 

by the definition of q:.  
Put 

U'~MU: = (0) 

U: = U: + UrQ, (24) 

i.e., the deflections in the 'stiffness matrix' modes for the free-free system, U:, are the sums of the deflections 
in the 'stiffness matrix" modes for the constrained system (see Section 2.1), U:, and the rigid-body deflections 
necessary for orthogonality, UrQ. Substituting for U: from equation (24) in equation (23) gives 

which rearranged is 

C;M(U: + C,Q.) = (o), 

From equations (24) and (26) 

(2 = - A 2  ~ U ; M U s ,  

Us = (I - UrA~ 1U;M)U:. (27) 

Substituting for Us in equation (22) gives 

{092 U}(M - MU,  A~ 1U;M)U:}q: = F -  Xq:. (28) 

The best method of solving equation (28) generally is to replace F by the product of a lower triangular 
matrix and its transpose, i.e. 

¢ F = LrL  ~, (29) 

and 

L'rF- 1Lv = I. (30) 

Putting q: = Lvq v and premultiplying by L~ equation (28) can be written 

co2 L,eU)(M _ MUrA~, 1U,M)UyLvqv = q~. (31) 

Library computer programs based on this method are readily available. The above method cannot be applied 
if the matrix F is not positive definite as it should be from physical considerations since the triangular matrices 
are then either indeterminate or complex. If the deficiency is due to numerical difficulties a possible method ol 
overcoming it is to replace the flexibility matrix by its positive latent roots, A L, and their vectors, UL. 

Let 

F U  L = ULAL 

where U L has more rows than columns, but U'LUL = I, and A g is a diagonal matrix. 



/' 

Equation (28), written in terms of the flexibility matrix rather than its inverse and with M substituted for 
( m  - M U r A ~  ~ U',M), is 

o)2FUjeMUsqs = qf '  (33) 
½ Putting qs = ULALqL and premultiplying by AZ~Uk equation (33) becomes 

(-o2A-£ ½U'LFU}MUsULA~qL = qL. (34) 

Substituting for U~F using the transpose of equation (32), with the assumption that F is at least symmetric, 

co2A[U'L [-J)MUyULA[qL = qL, (35) 

which is of the same form as equation (31) but of lower order. 
The above results are directly applicable to equation (8) et seq. U s is given by equation (27) and if the columns 

of Ux are the latent vectors pertaining to the graver modes of frequencies [COx] so that 

qs = U l q l ,  cf. equation (10) (36) 

from equation (28), 

and from equation (7), 

A ~  = UiU)MU s U~ (37) 

Ell  = [co2]All (38) 

F R = F - U1E-[11U',. (39) 

However, the next part of the evaluation of the coefficients of equations (18) and (21) involves a number of 
operations on matrices probably large in order. Much the simpler approach is to calculate more normal modes 
and allow for their flexibility by the method described below. 

4. Suggested Structural Representation 

No problem involving a complex structure can be solved exactly. Most methods of approximation can be 
regarded as the replacement of the infinite degree of flexibility of the structure by flexibility in a finite number of 
necessarily arbitrary semi-rigid modes. In the case of flexibility coefficients, the arbitrary modes are the de- 
flections of the structure under discrete loads, in the case of stiffness coefficients they are the deflections under 
positional constraints and in the case of normal modes they are the deflections under normal loading dis- 
tributions which are the product of the mass of the structure and the deflections themselves. 

Whether a parti,cular set of arbitrary modes is suitable for use in a calculation depends on whether the 
displacements, calculated as the result of the combination of arbitrary loading distributions taken to be the 
equivalent of the actual loading distributions, are close enough to the actual displacements. 

The number of normal modes needed for accurat~ representation is not all that easy to pontify upon. In 
one case in which aerodynamic loads occur, i.e., flutter, for a number of years it has been assumed with apparent 
success that they could he represented by a limited number of normal inertia loadings, i.e., loading proportional 
to the local mass multiplied by the displacement in the mode, and it seems reasonable that aerodynamic loads, 
being reasonably well distributed, can be economically represented by normal inertia loadings in other types 
of calculation. Whilst the accuracy of a calculation probably increases more or less evenly, up to a point, 
as the number of well distributed flexibility coefficients used to describe the structure is increased, the increase 
in accuracy when the number of normal modes included is increased depends to a large extent on the shapes 
of the normal modes added. Quite often a good approximation can be obtained using only one or two normal 
modes--not  necessarily the gravest. In general, however, all the modes down to the fundamental are included. 
It is essential that the normal modes should include all those likely to be an important part of the actual de- 
flection. Thus, if a divergence calculation is made on a wing whose torsion mode is third in order of frequency, 
it is useless to make a calculation based on only the first two modes. 

Normal modes are less efficient as a means of structural representation when the loading is discrete. This is a 
consequence of the large number of normal inertia loadings needed to represent a discrete load. For such 
loads flexibility matrices seem more appropriate since they themselves are derived from point loads. For 
calculations in which both distributed and discrete loads are involved, the optimum treatment is probably 
to use both normal and arbitrary modes, the arbitrary modes being given by the columns of the flexibility 



matrix for the points at which the discrete loads act. This would have the disadvantage of introducing structural 
couplings into the equations and worsen their condition but some idea of the possible advantages is given by 
the example quoted by Schwendler and MacNeal  z of a cantilevered torsion bar, with an oscillating load at its 
free end at half the frequency of the fundamental mode. The exact mechanical admittance (O, ip/T) of this system 
is 1-27324; the admittance when only the fundamental mode is involved is 1.08076 which becomes 1-27019 
when residual flexibility is added but the admittance when only the fundamental and a mode of linear twist 
between root and tip are included is 1.27321. The author intends to test this artifice more fully in the case 
of the allied problem of the flutter of wings with stores whose mass can be varied. The discrete-load modes 
could be modified to modes that are normal to each other and the true normal modes, either with respect to 
inertia only or to both inertia and stiffness, but this should be done only if they cannot be included otherwise. 

5. Advantages of Normal Modes 

The overriding requirement of any calculation is that the results should be what they purport  to be. It is 
far better to have no results than results that are wrong but not suspect. Thus every opportunity should be 
taken to apply checks, particularly those which involve some thought. Ocular examination of flexibility 
matrices is unrewarding, being limited simply to a check of symmetry and the absence of gross errors. The matrix 
can be checked for positive-definiteness but if it fails this check there is little that can be done to correct the 
fault on a physical basis with only the raw matrix as evidence. If the normal modes are found, the structural 
data are then available in a form which has enough character for a judgement of its accuracy to be made on 
past experience and physical intuition. If  the flexibility matrix is not positive definite, one or more of the latent 
roots of the dynamical matrix will be negative and a decision can be made according to the order of the negative 
root and the shapes of the modes as to whether the fault is fundamental or due to numerical deficiencies such 
as round-off error. If  the latter is the case it will be possible to continue into further calculation, if sufficient 
plausible modes have been obtained, without further tampering with the data. The results of still-air resonance 
test s are generally available in the case of actual aircraft for an overall check of the representation of the structure. 

The inclusion of aerodynamic forces and residual flexibility is easier if the representation is by normal modes. 
Rewrite equation (8) as 

,40, 
0 E2z xq2 LC2~ C22] q2 f21 

where C,~ - U',CU~, .f, - U' , f  and here the qx modes include the q, modes. C,~ is the matrix of generalised 
aerodynamic stiffness based on the work done in the modes r by the aerodynamic forces which arise from 
deflections in the modes s. These can be calculated as best thought fit, bearing in mind the complexity of the 
modes, and it is possible for some of the elements of the matrices to be treated as negligible. It follows im- 
mediately that 

(E22 -- CEz)q 2 : C21ql  - I - f2  (41) 

and 

( -coZAl l  + El t )q l  = {Cll + C12(E22 - C22)-lCE1}q1 + f l  + C12(Ea2 - C22)-1f2 (42) 

which replace equations (13) and (18) respectively. (E22 -- C22) will be singular only if C22 is appropriate to a 
critical static divergence speed in the q2 coordinates alone. 

The representation of structural damping is always a difficulty. In calculations based on normal modes 
it is often assumed that the modes are orthogonal with respect to the damping as well as the stiffness and 
inertia. This is undoubtedly an oversimplification but on the face of it normal modes provide a better basis 
for representation of damping than influence matrices. 

Finally some account should be taken of economy. A unified approach to flutter calculations on the one 
hand and stability and control problems on the other has long been advocated. To the flutter engineer, 
basically studying maintained oscillations at a single frequency, normal modes appear to have no real com- 
petitors as far as structural representation is concerned. Hence the normal modes of aircraft will be found 
in any case and their use as data in other aeroelastic calculations should not incur extra work. 

6. Conclusions 

It is advantageous to use normal modes rather than influence matrices for structural representations in 
aeroelastic calculations for the following reasons: 



(a) it is easier to check the data and reject that part which is inaccurate, 
(b) the data is presented in a comprehensible form and the characteristics of the degrees of freedom being 

allowed are known, 
(c) the calculation of the aerodynamic coefficients is simplified, 
(d) residual flexibility can be included easily and accurately, 
(e) the order of the matrices involved in the calculation of the coefficients of the reduced simultaneous 

equations is decreased. 

In cases where discrete loads are present, modes which are the deflections of the structure under static loads 
at the appropriate points should be added to the normal modes. Hence equations should be formulated in a 
way which allows account to be taken of structurai couplings. 
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