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Summary 

Results are presented of a study of the pressures on the flat windward surfaces of two wings with curved, 
sharp leading edges. The leading edges of one of the wings are convex outwards, whereas those of the second 
are concave outwards. The wings were tested at nominal free stream Mach numbers of 2.5, 3.5 and 4.5. The 
results indicate that the changes in flow development due to the curvature of the leading edges are qualitatively 
similar at all the Mach numbers. In the case of the first wing, the spanwise pressure distribution changed con- 
siderably as the flow developed downstream of the vertex. However, the changes in the spanwise pressure 
distribution on the wing with concave leading edge, though observable, were much less. The pressure distribu- 
tion on the two wings has been calculated using the concept of an 'equivalent delta wing', but modified to take 
into account the upstream effect. Comparisons with experiments show that the agreement is fairly good, except 
at very high incidences and over the outer half of the semi-span. Possible reasons for this discrepancy are dis- 
cussed. Finally an attempt has been made to justify the definition of an equivalent delta wing based on a simple 
physical idea. 

* Replaces A.R.C. 34 293 and Appendix. 
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1. Introduction 

At the present time, very little is known about the characteristics of wings with curved leading edges in 
non-linear supersonic or hypersonic flow. A program has therefore been started in the Cambridge University 
Engineering Department to study the characteristics of such wings at moderately high supersonic Mach 
numbers. This report presents results from a study of the pressures on two wings of non-conical planform at 
free-stream Mach numbers of 2.5, 3-5 and 4.5, and at high incidence where non-linear effects are important. 

2. Apparatus and Tests 

2.1. Tunnel 

The investigations were carried out in two different facilities : 
(i) the tests at Moo = 2.5 and 3.5 and at incidences up to about 31 degrees were carried out in the CUED 

supersonic wind tunnel which is an intermittent blowdown facility and has a working section of 114 mm by 
178 mm, 

(ii) the tests at M~ = 3.5 and 4.5 and at incidences greater than 31 degrees were carried out in the 3 ft by 4 ft 
High Supersonic Speed Tunnel at the Royal Aircraft Establishment, Bedford.* 

2.2. Models 

Both models have a fiat pressure surface and sharp leading edges. Model 'a' has a leading edge which is 
convex outwards (generally called a Gothic planform) and Model 'b' has a leading edge curved concave out- 
wards (we refer to this as a concave-leading-edge wing). The shapes of the leading edges were chosen so that 
the shock wave was detached at Moo = 3.51 and over a range of incidences. This was done by applying the 
exact two-dimensional oblique-shock relations normal to the leading edge at every point. The planform shapes 
and the longitudinal and transverse sections of the two models are shown in Fig. 1, which also gives the equations 
describing the leading edges. 

The suction surfaces of both models have a triangular cross-section. It is tacitly assumed however, that the 
windward side pressures obtained for this particular suction surface shape is representative of other leeward 
surface shapes also, and in particular of a zero thickness wing. In fact, the experiments of Squire 1 on delta wings 
have shown that except at very small incidences and close to the leading edges, the suction surface shape has 
negligible effect on the windward surface pressures. 

The models are made out of a high strength alloy steel and for the Cambridge tests were sting mounted on an 
incidence changing jack which in turn was mounted on the tunnel. For the Bedford tests (since the ratio of the 
tunnel test-section size to the model size is very large), several models were mounted in the tunnel on a specially 
designed model carrying system (Fig. 11 shows the model carrier). The models (including some from other 
studies) were mounted one above the other in the vertical plane, the spacing between the models being decided 
by two factors, (a) minimum interference between the models, and (b) maximum allowable overall length of 
the model carrier. The model carrier was mounted on the sting carrier shaft which in turn was mounted on a 
moving quadrant. The sting carrier shaft could be controlled in pitch through a total range of 32 degrees 
(5 degrees depression and 27 degrees elevation) with respect to the horizontal. The models themselves were 
individually mounted on the carrier at various angles (Fig. 11) with respect to the horizontal to get a higher 
range of incidence. 

To measure the static pressures, a number of hypodermic tubes of 1.626 mm OD and 1.092 mm ID were 
laid in suitably milled grooves running in the streamwise direction. The grooves were then filled with Araldite 
and the surface hand polished to get as smooth a surface as possible. At any one time, the pressures at one 
chordwise station only could be measured. After these pressures had been measured, the set of static holes 
were sealed with paraffin wax and holes at the subsequent chordwise position were then drilled. All the static 
pressure holes had a diameter of 0.3046 ram. 

2.3. Range of Test Conditions 

2.3.1. Cambridge tests. The tests were made at nominal free stream Mach numbers of 3.51 and 2.49 respec- 
tively. The corresponding free stream Reynolds numbers are 51 x 1 0  6 per metre and 30-3 x 1 0  6 per metre. 

* The author thanks Dr. L. Pennelegion, R.A.E., Bedford for granting permission to use the tunnel and Mr. 
G. V. F. Smith for his assistance in planning and conducting the experiments at Bedford. 



The angle ~,f incidence (defined with respect to the plane of the leading edge, which in these cases is the same 
as that of ~ae pressure surface) was varied in 4 degree steps for the Gothic wing and in 2 degree steps for the 
concave-leading-edge wing. The maximum angles of incidence (31 ° 35' and 27 ° 20' for the Gothic wing at 
M~ = 3-51 and 2.49 respectively, 26 ° 51' and 22 ° 54' for the concave-leading-edge wing at the two Mach 
numbers) were governed by considerations of flow breakdown in the tunnel. In fact, even at these values of the 
incidences the boundary layer on the floor of the test section separated due to the strong shock wave of the 
wing. However, as judged from the schlieren photographs, the reflected wave system passed sufficiently 
far downstream of the region of interest so as not to produce any noticeable changes in the flow field of the 
wing. 

The pressures were measured on a conventional multitube mercury manometer  referred to atmospheric 
pressure. 

Schlieren and shadowgraph studies were made for both the models at the two Mach numbers. The schlieren 
system in these tests was a conventional two-mirror horizontal Z-shape light-path system used with vertical 
cut off. All the runs were made with natural transition of the boundary layer. 

2.3.2. R.A.E., Bedford Tests. These tests were made at Mach numbers of 3.5 and 4.5. The corresponding 
free stream Reynolds numbers were 22.6 × 10 6 per metre and 27.2 × 10 6 per metre. The angle of attack was 
varied in steps of about  5 degrees from 32 to 62 degrees (concave-leading-edge wing) and from 32 to 61 degrees 
(Gothic wing). 

Since the number of tunnel runs was limited, only a limited number of static pressure holes were used. The 
pressure distributions obtained in the Cambridge tests were used as a guide in the selection of the static pressure 
holes to give maximum coverage of data. The pressures were sensed by a transducer and recorded. The scanning 
operation was controlled manually and sufficient time wasgiven (about 2 minutes) before the data was logged 
and scanning continued. Once all the ports had been scanned, the angle of attack was changed and the process 
repeated. 

These tests were also made with natural transition of the boundary layer. 

2.4. Accuracy of the Results 

Experimental inaccuracies arise from such sources as non-uniformity of the flow in the test section, in- 
accuracies in the manometer,  lags in the pressure tubes and errors due to imperfections at the static pressure 
holes. 

Over the region occupied by the model, non-uniformities in the test section flow account for variations in 
Mach numbers of +0.04 in the 3.5 liner and of +0.05 in the 2.5 liner. The variations in the flow directions 
are about +0-2 degrees in the 3.5 liner and +0-3 degrees in the 2.5 liner. These correspond to errors in Cp of 
+ 2 percent in the 3-5 liner and _ 4 percent in the 2.5 liner. 

The pressure can be read in the manometer  to an accuracy of +0.05 mm of Hg. A similar figure applies to 
the reference pressure also. Therefore, the pressure is accurate to _ 1 mm of Hg. At both nominal free stream 
Mach numbers of 3.51 and 2.49, this corresponds to an error in Cp of _+ 0.002. 

It is thought that errors due to lags in the pressure lines are negligible since the pressure levels were quite 
high and sufficient time was given for the pressures to settle down before the manometer  was frozen. Further- 
more, results with increasing and decreasing incidence showed hardly any noticeable difference. 

The angle of incidence was found to be repeatable to within _+ 10 minutes. Previous experience with the 
incidence changing jack (Hillier 2) has shown that during a run, the aerodynamic loads on the model did not 
cause any noticeable deflection of the model. Thus the angles of incidence quoted in the figures are subject to 
inaccuracies of about + 10 minutes. 

The errors involved in the R.A.E., Bedford tests are expected to be smaller than the values quoted for the 
Cambridge tests. 

Another error which needs to be considered is that due to the lateral asymmetry of the model. Static pressure 
holes are provided on either side of, and staggered off the centreline, mainly to obtain a fuller coverage across 
the span. This incidentally helps in assessing the errors due to lateral asymmetry of the model. For example, 
the wiggles perceptible in many of the spanwise pressure distributions can in part be attributed to such an 
asymmetry. An examination of the pressure distributions indicate that a majority of the results lie within a 
scatter band about  __+0.015 in Cp. 

Viscous effects are not thought to be of much importance since the non-linear effects typical of a hypersonic 
environment have been produced at relatively moderate Mach numbers by having high angles of incidence. 
Furthermore, the fact that the Reynolds numbers are high would also suggest that viscous interaction effects 
are not likely to have any noticeable effect on the flow field. 



3. Results and Discussions 

3.1. Presentation of  Results 

Static pressures were measured on either side of the model centreline and at various chordwise positions. 
The spanwise coordinate is non-dimensionalised by the local semi-span b. All pressures are presented in the 

form of the pressure coefficient Cp. 
Centreline pressure distributions for the two wings at all Mach numbers and over the full range of incidence 

are given in Figs. 2a through 2d (Cambridge tests) and 13a through 13d (Bedford tests). The spanwise pressure 
distributions are shown in Figs. 3 through 6 (Cambridge tests) and Figs. 14 through 17 (Bedford tests). A majority 
of the experiments has been repeated more than once and the data shown in the figures are the mean of the 
runs. In no case however, was the difference in Cp between any two runs greater than the uncertainty quoted in 

Section 2.4. 
Since the measurements have been made in two different facilities, it is necessary to check that the two sets 

of results are consistent. The obvious way of doing this is to plot the pressures at selected points as functions of 
angle of attack. Typical results are presented in Fig. 12. From the figure it is clear that the two sets of results 
are fully self-consistent. It is of particular interest to note that the two centreline data merge smoothly with the 
Cole and Brainerd 3 solution for the slender wings at angles of attack near 90 degrees. 

3.2. Discussion of Results 

Since frequent reference will be made to the thin-shock-layer theory, we begin the discussion with a very 

brief outline of the theory itself. 
The theory of thin shock layers, as developed by Messiter 4 for slender delta wings of zero thickness (and later 

extended by Hida, 5 Squire 6 to include thickness effects) consists of expanding the flow variables in terms of a 
density ratio e across the shock wave assumed to lie in the plane of the leading edges. 

( H e r e e _  , -  1 2 ) 
7 4- 1 + ( v  + 1)M~sin 2e  " 

The equations of motion and the boundary conditions are then simplified on the assumption that e is small 
and terms involving second and higher powers of e can be neglected. The zeroth order solution (e = 0) corre- 
sponds to the simple Newtonian result. To the first order in e, it can be shown that the flow field depends on 
two similarity parameters f~ and C which are the sweep back and the thickness of the wing in a transformed 
plane. In fact, ~q -- cot A/e ½ tan c~ and C = hie ½ cot A where A is the sweep back angle, h is the thickness of 
the wing and e is the incidence, the last two being measured with respect to the plane of the leading edge. 
Detailed discussions of the theory are available in Ref. 2; we will not therefore discuss it here again, but simply 
point out that the shock stand-off distance y~ (measured normal to the wing surface) and Cp at any spanwise 

position z/b on a conical wing can be written as 

Ys(z/b ; f~, C) = e tan ~y*(z/b; C, f~) 
X 

and 
Cp(z/b; f~, C) = 2 sin 2 ~(1 + ep*(z/b ; f~, C) + 2ClUe), 

where y* and p* are functions which are obtained as solutions of the simplified equations of motion. Squire v 
has given detailed charts of y* and p* as functions of C with f~ as a parameter and for different values of the 
spanwise co-ordinate z/b. All the calculations made in this report are based on these charts. It has been shown 
by Squire ~ that the error in Cp calculated using these charts is -T- 0.01 (sin z c~ + 5/M z) for 7 = 1.4. 

In what follows, the Cambridge tests are discussed fully at first, as is the concept of the 'equivalent delta wing' 
suggested for the prediction of pressures. The information gained in these sections is then used to interpret 
the data obtained from the Bedford tests (Section 5). 

3.2.1. Centerline Pressure Distribution. Figures 2 (a through d) show the centreline pressure distributions. 
Figures 2a and 2b refer to the Models a and b respectively at M~ = 3.5 while 2c and 2d refer to Moo = 2.5. 
For  practical reasons, pressures could not be measured upstream of x/c = 0.2 and x/c = 0-4 in the two models 
respectively. However, the range of x/c covered is wide enough to establish certain general trends. The chain 
dashed line in each figure represents the Cp corresponding to a conical wing of sweep back angle equal to that 
of the given wing at the vertex,* calculated using thin shock layer theory (SquireT). 

* We refer to this in future as vertex conical flow for brevity. 



It is seen from Figs. 2a and 2b that while the pressures decrease from the vertex downstream in Model 'a ' ,  
they remain more or less constant in Model 'b'. An interesting feature of the results is that the pressures on the 
Gothic wing upstream of x/c "~ 0.3 agree quite well with Cp corresponding to the vertex conical flow. (The 
agreement at lower incidences (typically ~ < 13 degrees) is not so good, but this presumably is due to the 
doubtful validity of the thin shock theory itself at large values of ~..) Furthermore,  the pressures on the concave 
leading edge wing at all x/c (again at the higher incidences) agree rather well with the theoretical value of Cp 
corresponding to the vertex conical flow. 

Results from the Moo = 2.5 measurements (Figs. 2c and 2d) indicate that the pressures generally decrease 
downstream of approximately x/c = 0.3 in the Gothic wing and increase downstream of the same station in the 
concave-leading-edge wing. Furthermore, the pressures on both the wings upstream of x/c = 0.3 seem to 
approach the theoretical pressure corresponding to the respective vertex conical flows. 

The behaviours mentioned above can be explained by referring to Fig. 8, which is a plot of the function p* 
at z/b = 0 versus the parameter  f~ (f~ is the only parameter  to be considered since we are considering flat wings). 
Now, at each point of the leading edge of the wings under consideration, we can define a local sweepback angle 
and thus a corresponding f~LOCAL. Indicated in the figure are the values of f~ at the vertex (f2v) and the f~LOCAL 
at x/c = 1, for the two models at both Mach numbers and at the maximum and minimum values of the in- 
cidence. 

Considering the Moo = 3.5 results first, it is clear that at all incidences, the Gothic wing lies in a region where 
p* depends rather strongly on Q. The concave-leading-edge wing on the other hand lies much further to the 
right in the plot, in a region where p* is only a relatively weak function of f~. Furthermore the variation of f~ 
from the vertex to the trailing edge in the Gothic wing is more by a factor of about three than the corresponding 
variation in the concave-leading-edge wing. Therefore, the experimental data show a large change in the pres- 
sures downstream of the vertex in the Gothic wing, whereas in the concave-leading-edge wing, it is more or 
less constant. 

Similar arguments apply to the M~o -- 2.5 results: the concave-leading-edge wing is shifted to the left in 
Fig. 8 and thus the pressures do show a noticeable change downstream of the vertex. 

These results seem to suggest that we can discuss qualitatively the general behaviour of a wing with curved 
leading edges based on the local values of f~. However, as will be discussed later, the changes are always over- 
estimated by using ~LOCAL' 

3.2.2. Spanwise Pressure Distributions 
Model ' a '  : Figs. 3 and 4 show the pressure distributions in terms of C v versus z/b at Mach numbers 3.5 and 

2-5 respectively. The chain-dashed lines in each figure represent the theoretical Cp distribution corresponding 
to the vertex conical flow, calculated using the thin-shock-layer theory. It is seen from the figures that the 
pressure distribution changes appreciably as the flow develops downstream of the vertex. At Moo -- 3.5 and 
x/c -- 0.2 and 0.3, the results seem to be in reasonable agreement with the calculated vertex conical flow over 
the central 50 per cent of the span. (Due to practical reasons, results could not be obtained closer to the leading 
edge.) It should be noted that even in this region, the flow is not conical, but rather the pressures are constant 
along lines z/b = constant. The distributions from x/c = 0.2 to x/c = 0-5 show that the pressures are lowest 
near the centreline and increase outboard, which of course is characteristic of flat wings of moderate and large 
aspect ratios. This, as has been pointed out by Squire,~ is because the flow about a flat wing of large aspect 
ratio in sections parallel to the free stream, tends to be similar to the flow past a flat plate with a detached 
shock wave: thus the pressure is highest at the leading edge and falls off inboard. The magnitude of the increase 
in Cp from the centreline outboard however decreases with x/c. (This of course is due to the decreasing local f2.) 
At x/c -- 0.6, the pressures at higher incidences are almost uniform across the span up to about z/b = 0-7, 
which is the last measurement station. At lower incidences (typically ~< 13°), the pressures increase very slightly 
outboard. Downstream of x/c -- 0.6, the pressure decreases f rom the centreline outboard, which is character- 
istic of the flow over an inclined cone (or equivalently a thick wing). This suggests, again following Squire, 
that the flow about a flat wing of small aspect ratio is three-dimensional and the high pressure at the centre is 
associated with a normal cross-flow shock there. 

The same comments apply to the Moo = 2.5 results; the cone flow behaviour is particularly pronounced 
here, as can be seen from the pressure distributions at x/c = 0.7, 0.8 and 0.9. 

Model ' b '  : Figs. 5 and 6 show the corresponding pressure distributions. The most interesting feature of the 
M e -- 3.5 pressure distributions is the fact that right up to x/c -- 0.9, the distribution over the central 40 per 
cent of the wing span shows hardly any noticeable change compared with the vertex conical flow. Outboard  
of z/b ~- 0.5, the measured pressures are higher than the pressures at corresponding points in a delta wing 
of sweep back angle the same as that of the given wing at the vertex. This is not surprising since arguments 



based on the local sweep back angle also suggest the same. However, as was mentioned earlier, the changes in 
the pressure distribution are overestimated by a purely local calculation. 

In the case of the Moo = 2.5 results, the centreline pressure, as discussed in Section 3.2.1, increased down- 
stream of the vertex. Therefore, except at x/c = 0.4, the pressure distributions show noticeable differences from 
the vertex conical-flow results. Some of the low incidence results (for e.g. a = 13 ° 46' at x/c = 0-4 through 
0.9) show a remarkable agreement with the corresponding vertex conical-flow results. This agreement could 
be completely fortuitous since the 'small' parameter e of the thin-shock-layer theory is more than 2 and the 
validity of the approximation needs careful assessment. 

4. Prediction of Pressures by an Equivalent Delta-Wing Concept 

It was mentioned in the earlier sections that we can define at every point of the leading edge of the wing a 
local sweep-back angle and thus a local value of the parameter fL Further, we have also seen that the behaviour 
of the wing can be qualitatively explained by considering the local f2 (~L) in conjunction with thin-shock-layer 
theory. It would seem appropriate that we enquire whether the pressures calculated based on f~L agree with 
the experiments. (This approach can be termed as a 'local conical' approximation.) Calculations were thus 
made of the spanwise pressure distributions for the two wings at both Mach numbers and over the full range 
of incidencel The results are shown in Figs. 2 through 6 as dashed lines. From Figs. 2 (a to d), it is clear that 
the trend is predicted correctly though the magnitudes of the pressure are not correct. The same conclusion 
can be drawn from the spanwise pressure distributions also (Figs. 3 through 6). The experimental data in all 
the cases lie between the vertex conical and the local conical flow results. Furthermore it seems that the differ- 
ence between the experimental data and the local conical flow result decreases as one moves outboard from 
the centreline of the wing. This fact is not surprising since one would expect the flow at the leading edge to be 
dominated by local conditions. 

From the preceding discussion, it is clear that the flow at any point on the wing is influenced by both local 
conditions and conditions upstream of it, the local condition having a larger influence closer to the leading 
edge. In calculating the pressure distribution therefore, one would have to allow for this upstream effect, which 
itself varies across the span. One of the simplest methods of doing this is to define an 'equivalent' delta wing 
at each spanwise station. The 'equivalent' delta wing, characterised by the parameter ~e, is expressed as a 
function of the vertex conical wing (which is assumed to characterise the upstream effect) and the local conical 
wing (to account for the local effect), say of the form 

~e(z/b, x/c) = al~v + a2~L(x/c) 

a 1 and a2 are necessarily functions of z/b. It is neither obvious nor possible to determine a~ and a2 precisely; 
the best possible values can only be found by trial and error. It was found that the values a~ -- (2 - z/b)/4 and 
a2 = (2 + z/b)/4 gave reasonably good agreement with the experiments. Thus, the pressure at any point of 
the given wing is that at a corresponding point on an 'equivalent' delta wing defined by ~o(z/b, x/c) = 
(2 - z/b)/4f~v + (2 + z/b)/4f~L(x/c). On the centreline (z/b = 0), the influence of the vertex and the local 
flows are equal. Note that at the leading edge, the equivalent delta wing is not the local delta wing as one 
would expect. 

The solid lines in all the figures (2 through 6) represent the pressures calculated using this equivalent delta 
wing definition from the charts presented by Squire v for conical wings. As can be judged from the figures, the 
agreement between the prediction and experiments is in general very good. However, since there are not many 
experimental data outboard of z/b ~- 0.8, it is very difficult to argue on the accuracy of the method closer to 
the leading edge. But judging from the results of the concave-leading-edge wing, where there are some experi- 
mental data up to z/b = 0-9, we suggest that the method gives reasonable results at least up to z/b = 0.9. In 
passing, it should be noted that even for conical wings, the accuracy of the thin-shock-layer calculations close 
to the leading edge is not established. 

Using the same definition of fl~, the shock shape Ys can also be calculated from the charts of y* presented 
by Squire. 7 Figs. 7a and 7b show the centreline shock stand-offdistance plotted as a function of the streamwise 
distance x for the two wings at both Maeh numbers and at typical values of angles of incidence. It is seen from 
the figures that the shock is curved, although the curvature is only just noticeable. In the Gothic wing, the shock 
moves inwards (towards the body) wP.h the streamwise distance, whereas in the concave-leading-edge wing, 
it moves outwards from the body. There are reflected in the corresponding pressure distributions (pressures 
decreasing downstream of the vertex in the Gothic wing and increasing in the concave-leading-edge wing). 

Also shown in the figures (by circles) is the centreline shock stand-off distance measured from the shadow- 
graph pictures of the flow field. The agreement between the estimation and the measurement appears to be 



reasonably good, although in some cases (Moo = 3-5, • = 17 ° 58' and Mo~ = 2-5, e = 16 ° 7' concave-leading- 
edge wing; M~ = 3-5, c~ -- 31 ° 35' Gothic wing), the shock curvature seems to be slightly overestimated by 
the calculation. The disagreement in the M~o = 3.5, ~ = 17 ° 58' (concave-leading-edge wing) and M~ = 3.5, 

= 31 ° 35' (Gothic wing) is however within the uncertainty in measuring the shock stand-off distance. The 
disparity in the case of Moo = 2.5, e = 16 ° 7' (concave-leading-edge wing) is relatively much larger. 

A plausible explanation for the success of the prediction method discussed in the preceding paragraphs can 
be given as follows. Let us consider two points A and B on the surface of, say, the Gothic wing--one (A) on 
the centreline and the other (B) closer to the leading edge. The domains of dependence of these points are the 
regions bounded by the fore Mach cones from the points. The Mach lines can be drawn if we know the Mach 
number distribution in the shock layer. The Mach number distribution is calculated using the measured 
pressure distribution and the shock shapes calculated using the 'equivalent '  delta wing concept. Fig. 9 shows 
the Mach lines from the points A and B at M~ = 3.5 and at two incidences 13 ° 29' and 31 ° 35' (lines AA 1 
and AA 2 respectively). (Note that the curvature of the Mach lines due to the non-uniform Mach number 
distribution in the shock layer has been neglected.) The 'equivalent '  delta wing appropriate to the point A is 
therefore the one corresponding to A1 or A z , depending on the incidence. At any one incidence, however, the 
difference in f~ between A~ and A z is quite small: the same 'equivalent '  delta wing is therefore used at all 
incidences. Furthermore A 1 and A 2 both lie roughly halfway between 0 and A' (the vertex and x/c = 0-5). 
Thus the use of an f~e which is the mean offer and f~L seems to be reasonable. 

Also shown in the figure is the domain of dependence of a point B which is at 70 per cent semispan from 
the centreline. It is seen that the Mach lines BBa and BB 2 intersect the leading edge closer to A' than AA1 
and AA 2, confirming that the local influence is in fact stronger than the influence from the vertex. Further- 
more, here also, the difference in Mach angles between the highest and lowest incidence is quite small. Thus 
the sort of the 'equivalent '  delta wing suggested seems to be reasonable over the full incidence range. 

Similar arguments apply for other points on the wing, as well as at M~ = 2.5. 
In Fig. 10 is plotted the Mach angle ~2 in the shock layer (x/c = 0-5 for the Gothic wing) as a function of 

the incidence e for various Mach numbers. Also shown are the e = 1 line and the line to the left of which the 
shock is attached near the vertex. The maximum ~2 (0~ = 27 ° at M~ = 2.5) and the minimum Pz (~ = 14° at 
M~ = 3-5) obtained from the experimental data are also marked in the figure. Thus, it would appear that 
within this range of/~z, the suggested definition of an 'equivalent '  delta wing gives reasonable results. 

5. Discussion of the R.A.E., Bedford Results 

5.1. Centreline Pressure Distributions 

Since only a limited number of runs were made, a full coverage in x/c could not be obtained. The points 
which are shown flagged have been obtained by interpolation of the corresponding spanwise pressure distribu- 
tions. Also shown in the figures are the pressure distributions for the vertex conical flow (chain-dashed line) 
and the pressures for the local conical flow (dash-dot line). 

Considering the concave-leading-edge wing first (Model b, Figs. 13a and 13b), at both Mach numbers and 
at all angles of attack, there is a tendency for the pressures to increase slightly ; furthermore, the pressures 
seem to follow the trend suggested by the local conical theory. It should be noted, however, that the difference 
between the local and the vertex flow results is small. For example, the calculated local Cp is just 3 per cent 
greater than the calculated vertex Cp. 

For the Gothic wing (Model a, Figs. 13c and 13d), the pressures decrease downstream from the vertex. 
The differences between the local flow and the vertex flow pressures are considerable and the experimental 
data fall roughly between them at the lower end of the incidence range. At the higher incidences, there is an 
indication that the pressures tend to follow the local flow result more closely. 

Looking at the trend of the pressure variations, it appears that the sort of approximation given earlier for 
low incidences [f~ = (~v + C~L)/2] is good up to incidences of about 40 to 45 degrees. Beyond this, a better 
approximation would seem to be to consider the local flow itself. This behaviour is to be expected for the 
following reason. At low angles of attack (say < 30 to 35 degrees) and at moderately high Mach numbers 
(>2.5  to 3), the Mach number in the shock layer is still reasonably high. The fore Mach cone from any point 
on the wing is thus swept considerably forward (see Fig. 9). Therefore, the point under consideration is likely 
to be influenced considerably by a region close to the vertex and hence some averaging of the vertex and local 
flows gives the right pressure. As the angle of attack increases, the Mach number  in the shock layer decreases, 
thus the Mach lines from any point on the wing will be swept much less forward than at lower incidences. 
This implies that the region of influence of the point is much larger and includes portions of the leading edge 
much closer to the point. On general grounds, one might expect that even within the region of influence, the 



regions closer to the point have a larger influence on it than the regions far from it. Therefore, at high incidences 

the pressures should follow the local flow results more closely. 
At the two highest incidences for x/c > 0.8, the pressures on both wings show marked departures from 

earlier behaviour. This is thought to be due to the interference between the models. 

5.2. Spanwise Pressure Distributions 

These are shown in Figs. 14 and 15 for Model b at M = 3.5 and 4.5 respectively and in Figs. 16 and 17 for 
Model a at the two Mach numbers. Also plotted in the figures are the results for the vertex conical flow (chain 
dashed line) and the local conical flow (dash-dot line), both calculated using thin-shock-layer theory. 

Considering the concave-leading-edge wing (Model b) first, at both Mach numbers and at all chordwise 
stations, the pressure distributions at the low incidences show an outward positive pressure gradient, character- 
istic of moderate and large aspect ratio wings. Furthermore, the increase in pressure outboard seems to be 
increasing slightly with x/c, this of course is to be expected because the sweepback decreases with x/c. As the 
incidence is increased, the pressure distribution becomes uniform and then starts to exhibit the outward 
negative pressure gradient, characteristic of a small-aspect-ratio wing. Once the pressure distribution has 
changed from one of outward increasing type to one of outward decreasing type, the outward negative gradient 
increases with angle of attack at all chordwise stations. 

The differences between the calculated vertex Cp and the calculated local Cp are small, again being just 
greater than the experimental uncertainties. The pressures are predicted well by the local flow calculations 
(or by the vertex flow for the reason mentioned above) up to about 40 degrees incidence. Beyond this, the experi- 
mental pressures outboard of 50 to 60 per cent semi-span decrease much more rapidly than the calculations 
show, although inboard of 50 to 60 per cent semi-span, the pressures are given well by the local flow calculations. 
It is interesting that the incidence range over which the character of the pressure distribution changes from one 
of outward positive gradient to one of negative gradient is reproduced quite faithfully by the local flow 

calculations. 
The Gothic wing pressure distributions downstream of x/c = 0.4 all belong to the outward negative gradient 

type. In this case, the difference between the local flow and the vertex flow is much larger. At the lower end 
of the incidence range the experimental data fall between the vertex and the local flow results, an approximation 
of the kind suggested earlier for low incidences (i.e. f~e = (2 - z/b)/4f~v + (2 + z/b)/4f~L) may thus be ex- 
pected to give the right pressures. As the angle of attack increases, however, the experimental data are seen to 
be in better agreement with the local flow results (presumably for the reason already discussed) over the inboard 
50 to 60 per cent of the wing semi-span. Outboard of this, the pressures decrease much more rapidly than either 
the local flow or the low incidence approximation would seem to indicate. 

Summarising, we might say that the concept of an 'equivalent' delta wing is useful in predicting the form 
and magnitude of the pressure distribution on wings of non-conical planform. The approximate definition of 

an 'equivalent' delta wing 

2 + z/b 2 - z/b f~v + ~L(x/c) 
f~e(x/c, z/b) - 4 4 

holds as long as the average Mach number in the shock layer is around 2 ; this means that the Mach angle in 
the shock layer is around 30 degrees. At very high incidences (which from the experimental results seems to be 
> 40 degrees), the pressures seem to be well predicted by a purely local calculation, inboard of about 60 per cent 
semi-span. Note that at very high free stream Mach numbers, e is very small so that the perturbation ~p* on 
the Newtonian flow is also very small. The difference between the vertex and the local flow is thus small, and 
for a first approximation, either result may be considered. 

Possible reasons for the rapid decrease of pressure outboard of 60 per cent semi-span at high angles of 
attack are now discussed. As the angle of attack increases, the magnitude of the chordwise component of the 
velocity decreases (roughly like cos c0, while the spanwise component increases. In fact, at the Cole and 
Brainerd limit (slender wing at near 90 degrees to free stream), the only velocity that needs to be considered is 
the spanwise velocity. Spanwise strip theory is thus valid and the results immediately show that the centreline 
is a stagnation line and the leading edge a sonic line. In this model, the pressure distribution would show a 
rapid decrease of pressure from the stagnation value on the centreline to the sonic value at leading edge. 

Another and probably a stronger reason (particularly since the phenomenon has been noted at much lower 
incidences than is normally considered (>  75 degrees) for the validity of the Cole and Brainerd theory), could 
be the upper surface effect. All the calculations have been made with the assumption that the upper surface 
has no effect on the lower surface flow. This is valid at moderate angles of attack when the upper surface flow 



is attached at the leading edge with supersonic expansion around the leading edge. At higher angle of attack, 
the upper surface flow is of the fully separated type, 8 thus invalidating the important assumption of indepen- 
dence of upper and lower surfaces. In particular, the lower pressure on the upper surface can communicate 
to the lower surface. This would then induce a larger increased spanwise outflow than the theory indicates on 
the lower surface, thus accounting for an increased shock curvature and a decreasing pressure towards the 
leading edge. What is not clear at this stage, however, is the range of angles of attack over which the upper 
surface flow becomes fully separated and the extent of the interaction between the two surfaces. This problem 
needs further investigation, possibly with the simpler ordinary delta wing. 

6. Conclusions 

Centreline and spanwise pressure distributions on two fiat wings of non-conical planforms are given at 
three supersonic Mach numbers. The changes in the flow due to the curved leading edge as compared to a wing 
with straight leading edges have been explained qualitatively based on local values of f~. Quantitatively, it 
has been possible to predict the pressures on the two wings at all the Mach numbers and over a certain range 
of incidence based on the 'equivalent delta wing' concept. An attempt has been made to justify the success of 
the concept and possible situations where it might fail are also indicated. 
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FIG. 11. Model carrier. 
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