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Summary 
The steady laminar incompressible boundary-layer problem in two dimensions has been posed as an integral 

equation in Crocco variables in the most general case and an algorithm developed for computing the similarity 
flows (Mills 1966). 1° The present report extends the algorithm to compute non-similar flows. Essentially it 
consists of replacing the x-derivative terms in the integral equation by finite differences so that the problem 
reduces to solving a non-linear integral equation across the boundary layer at successive x-stations starting 
from an initial solution at x = 0. To obtain convergence a double-field type of iteration with two relaxation 
factors has to be used. An analysis of the convergence of the process is given in the Appendix. The algorithm 
was found experimentally to be stable for every combination of step-sizes tried. A local matrix stability analysis 
of the algorithm is given in the Appendix. 

A large number of examples have been computed, particularly flows with discontinuous suction distributions, 
periodic flows and separating flows. For the standard problems the results are in agreement with the known 
accurate computations. Some new problems are computed. 

* Replaces A.R.C. 34 348. 
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1. Introduction 

In Ref. 10 Crocco's form of the steady two-dimensional laminar boundary-layer equation was converted 
into an integral equation in the most general case of arbitrary mainstream pressure distribution and arbitrary 
suction or blowing distributions at the wall. This is a generalisation of a well-known result for constant-pressure 
flow. In fact, it is the application of the Picard method for integrating ordinary differential equations to the 
non-linear parabolic partial differential equation of boundary-layer theory. Crocco's formulation of the 
boundary-layer problem is very well suited to this kind of conversion, though it can also be applied to other 
formulations. 

The practical consequence of this work is the provision of an algorithm for numerical computation, as the 
integral equation can readily be solved on a digital computer by the method of successive approximation. 
The algorithm has been investigated for the similarity flows by the present author and extensive tables of the 
characteristics of these flows are given in Ref. 10. Cohen and Reshotko 2 had, unknown to the present author, 
used this algorithm for computing similarity solutions in compressible boundary-layer flow. The algorithm 
has also been successfully applied to the problem of the compressible and incompressible mixing of two parallel 
streams (see Ref. 12). This same idea had been used by Wey125 for computing some of the incompressible 
similarity flows. Weyl, however, used the Falkner-Skan form of the boundary-layer equation and this leads to 
an integral equation with exponential terms in its kernel, which is not so attractive computationally as the 
present formulation. Thus it seemed to the present author to be worth while to try to extend the algorithm to 
the general boundary-layer problem in view of its effectiveness for computing the similarity flows. Also, in a 
more general context, it would be an attempt to apply Picard's method for integrating ordinary differential 
equations to a well-known partial differential equation. 

In the Picard algorithm the boundary conditions on either side of the boundary layer do not have to be 
satisfied explicitly; they are 'built-in' to the integral equation itself. This feature avoids the difficulties of solving 
a non-linear differential equation with 'two-point' boundary conditions, a problem usually overcome either 
by the so-called 'shooting' method (see, for example, Smith and Clutter 2°) or by solving iteratively a set of 
non-linear difference equations, often having an associated tridiagonal matrix of coefficients (see, for example, 
Fox, 3, p. 86). For the similarity flows, the Picard method leads to a non-linear integral equation for the shear 
stress as a function of the transverse velocity-ratio u* = u/U(x). For non-similar flows the method gives a 
non-linear integral equation for the shear stress as a function of u* and x when the x-derivative terms are 
replaced by finite differences. This equation is then solved by iteration at successive x-stations from an initial 
solution at x0. A preliminary Falkner-Skan-type transformation is used so that no special starting procedure 
is necessary when x o = 0, which can then correspond to a sharp leading edge or a stagnation point. 

This plan for computing the boundary-layer equation seems straightforward and attractive. Several practical 
difficulties arise, however, in the numerical work. First, the Crocco boundary-layer equation possesses a 
singularity of the type (1 - u*)[log {(1 - u*)-l}] ~ at the outer edge of the boundary layer where u* = 1. 
This difficulty is met by using a transformation of the independent variable which weakens the singularity 
(see Ref. 10). Secondly, there is the problem of the singularity at separation. The iteration process was found to 
converge" extremely slowly if the separation point is approached by small x-steps. Consequently a special 
representation of the x-derivative terms was used to allow larger steps to be taken near separation. Also, in 
order to get very close to the separation point, it was found necessary to use a very small step-size across the 
boundary layer. 

Thirdly, there is the problem of achieving convergence, and at a satisfactory rate, in the iterative process 
used to solve the integral equation. This problem was considered only superficially in Ref. 10 where it was 
found experimentally that 'under-relaxation' had to be used. As 'separation' conditions are approached the 
degree of under-relaxation has to be increased considerably to maintain convergence and ultimately the 
process fails, the same being true for large blowing rates. Generally, however, the iterative process can be 
made to converge by the use of a single relaxation factor og.t Unfortunately for the non-similar flows, where a 
'marching' procedure is now involved, a single-relaxation-factor process works only for one or two steps in 
the x-direction and then fails no matter how much 0 is reduced. The author tried many artifices to overcome 
this problem, but without success. He eventually discovered a successful scheme which involves splitting the 
simple iteration process into two simultaneous processes with two relaxation factors o9 and o9'. The author 
was led to this idea through working on the full Navier-Stokes equations (Ref. 13) and using the 'two-field' 
iteration technique of Thom.2 2 Reasons for the failure of the simple scheme and the success of the double-field 
scheme are advanced in the Appendix, though they were not understood by the author when he first succeeded 

t The relaxation factor is denoted by o9 in this report to conform with the usual notation for such factors. 



in getting the method to work. The basic iterative scheme was accelerated by the well-known Aitken technique 
and this frequently results in savings of over 25 per cent in the number of iterations. Another benefit of the 
accelerated scheme is that one can obtain convergence closer to the separation point than with the unaccelerated 
scheme. 

Lastly, there is the problem of the stability of the marching process in the x-direction. It is well known that 
implicit difference methods for linear parabolic partial differential equations are unconditionally stable while 
explicit methods are conditionally stable. For non-linear problems it is necessary to consider local stability 
whereby the non-linear problem is linearized and the stability of the linearized problem taken to be representa- 
tive locally of the stability of the full non-linear problem. The present difference representation of the boundary- 
layer problem is of implicit type and one would expect unconditional stability. The method was found experi- 
mentally to be stable for all the combinations of step-sizes in the streamwise and transverse directions that 
were tried. A local matrix stability analysis is given in the Appendix in support of this experimental evidence. 
In addition, a simple explicit-type scheme was tried and found to become rapidly unstable for every combination 
of step sizes used. A stability analysis of this scheme shows that instability will occur as x increases for any fixed 
combination of step sizes. This result is unfortunate since the explicit scheme avoids to a large extent the con- 
vergency difficulties of the implicit scheme. 

2. Integral Equation Formulation of the Boundary-Layer Problem 

Crocco's form of the laminar boundary-layer equation for steady incompressible two-dimensional flow is 
(see, for example, Ref. 18) 

Ou 2 - up'(x) - Up~x  ~ (1) 

with boundary conditions 

and 

& p'(x) 
--Ou = #  3 - p w ,  a t u = O  (2) 

z = 0 at u = U(x), (3) 

where z is the shear stress, u the velocity component in the x-direction, # and p the coefficient of viscosity and 
the density of the fluid, w s the velocity normal to the wall at u = 0 and p'(x) = - pUdU/dx the pressure gradient 
corresponding to the external velocity U(x). By two successive integrations which incorporate the boundary 
conditions, the boundary-value problem equations (1) to (3) can be converted into the integral equation (see 
Ref. 10) 

(4)t 

This equation is a generalisation of Crocco's result for constant pressure. In a wider sense it is an application 
of Picard's idea to a partial differential equation. 

The shear stress ~ is now given the form 

- I~U~(X)-G'u*, x), (5) 

? Strictly speaking, (4) should be termed an integro-differential equation. However, as it reduces to an integral 
equation for the similarity flows and also when the ~3/Ox terms are replaced by differences in the present treatment 
of the non-similar flows, the term integral equation will be retained. 
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where 

u* = u/U(x) (6) 

and v = #/p is the kinematic viscosity coefficient of the fluid. This preliminary Falkner-Skan-type trans- 
formation removes the awkward leading-edge singularity from the formulation of the problem. (Note that the 
normalisation with respect to x has been altered from the more general type used in Ref. 10 as the latter is 
not so convenient for non-similar problems. In fact, if the length g(x) in Ref. I0 is replaced by ( x / ~ / U )  then 
the shear stress function F(u*) of Ref. 10 becomes identical with the above (G(u*)). The class of 'similarity' 
flows has external velocity distributions U(x) and suction or blowing velocity distributions %(x) such that G 
becomes a function of u* only. 

Substitution of (5) and (6) into (4) leads to the following integral equation for G(x, u*): 

2P + (1 + P)u* - (1 + 3P)u .2 
G(u*, X) 

, G 

where 

foe + (1 - u*) (1 + P)u* 
G + 2u*x du* ÷ W(x)(1 - u*), (7) 

P(x) - U dx and W(x) = Ws(X ) ~ . (8) 

2 .1 .  W e a k e n i n g  t h e  S i n g u l a r i t i e s  

It was shown in Ref. 10 that improved numerical results can be obtained for the similarity flows if we make 
the change of independent variable u* to s where 

1 - u* = s 2. (9) 

The reason is simply that the function G(s) is less singular than G(u*) at the outer edge of the boundary layer. 
A similar improvement can generally be anticipated for non-similar flows when the integral equation (7) is 
transformed to 

+ s 2 + 4(s - s3)x ds + W(x)s 2 (10) 
G 

with the aid of (9). The numerical solution of this equation is the main concern of this report. 
Near the separation point xs the shear stress r is reckoned to behave like (Xs - x) ~ and so the usual finite- 

difference formulae for a(1/z)/Ox become increasingly inaccurate as x ~ x~. This difficulty can be mitigated 
by using differences based on z 2 (or equivalently on G 2 in equation (10)) rather than on (l/z). Thus we write 
the x-derivative term in (10) as 

0 ( 1 )  0.5OG z (11) 
7x -G = G 3 Ox 

and base our differences o n  G 2 which is less singular in the neighbourhood of x = xs. Greater accuracy is 
then obtainable near separation for a given step-size 6x (see Table 1). This is particularly important in the 
present work, for the iterative process is very slow to converge if very small values of 6x are used in approaching 
the separation point. Furthermore, it is expected that by the use of (11) some improvement in accuracy should 
result in the neighbourhood of step discontinuities of suction, for an algebraic singularity is known to occur 
in z at these discontinuities (see Refs. 17 and 14). The papers of Gadd 4 and Schdnauer 19 should be consulted 
for other methods of treating these singularities. 



Finally, it should be observed that for computational purposes the above formulation of the boundary-layer 
problem has the valuable property which is independent of the external velocity distribution U(x): the domain 
of the solution is the rectangular region 0 ~< s ~< 1, x >/0 (Fig. 1), so that it is not necessary to adjust the step- 
size across the boundary layer when the latter changes appreciably in thickness. Also, no special starting 
procedure is necessary ; one simply sets x = 0 in equation (10) and solves the resulting integral equation. This 
step is built in naturally as the first step in the complete computation. 

2.2. Boundary-Layer Characteristics 

In the present formulation of the boundary-layer problem the local coefficient of skin friction cy = 2zw/pU 2 
is given by the relation 

[ Uxl ½ 
cy[~V-v ] = G(1,x), (12) 

while the coordinate z normal to the wall is given by 

z = s ~ d s  (13) 

and the displacement thickness 61 , momentum thickness 6 2 and energy thickness 6 3 of the boundary layer 
take the forms 

f; 61 = G--~,x~ dS, (14) 

62 = o G(s,x) ds, (15) 

and 

( u )~ = j ' 1 2 ( 1 -  s2)(2s3 - sS) 
63 ~VX o G(s, x) ds (16) 

respectively. 

3. Method of Solution of the Integral Equation 

The basic idea of the present method is to replace the x-derivative terms by finite differences and solve the 
resulting integral equation in s across the boundary layer by the method of successive approximation. Once 
the solution is obtained at an initial station x = Xo (usually 0) it is advanced by a marching procedure to 
x o + 6x, x o + 26x and so on. This idea is related to the method of Hartree and Womersley s and applied by 
Smith and his co-workers 2° to boundary-layer problems. Whereas these authors solve a differential equation 
across the boundary layer, the present author solves an integral equation. 

The x-derivative terms in equation (10) are transformed to the form (11) and the following Lagrangian three- 
point formula used 

where fix is the step-length in the x-direction. As remarked earlier the initial solution presents no special 
difficulty, for (10) reduces to an 'ordinary' integral equation when x = 0. At the first x-station it is necessary 
to use the two-point formula 



since the solution is known at only one preceding x-station. Thereafter, equation (17) is used. These formulae 
have truncation errors of order 6x for the first step and (6x) 2 for every subsequent step. (It would be possible to 
have an error of order (6x) 2 throughout by using the difference formula 

OG-~2(S'X)ox = 2 (a2( s , x  ) _ a2(s,x - (~x)) - oa2('s,x 6x) + 0((6x)2) ,  (19) 

for the first step, since it can then be taken with an error of order (6x) 2 after setting up and solving the appro- 
priate integral equation for 8G(s, O)/Ox. Gadd's 4 paper illustrates the application of this idea to the differential 
form of the boundary-layer problem.) 

3.1. Solution Technique 

The following simple functional iteration scheme was found to converge satisfactorily for the similarity 
flows (see Ref. 10): 

G ~"+ l~(s) -~ og~(G~")(s)) q- (1 - og)G~")(s), (20) 

where 09 is a suitably chosen relaxation factor, q~ is the right hand side of equation (10) and n is the iteration 
index. The scheme is actually used in a discretized form on replacing the integrals in 4) by some quadrature 
formula. In fact, the integrals were computed using Simpson's rule. This requires the use of interpolation after 
each cycle of iteration to give the solution at the intermediate nodes. The technique is as described in detail 
in Ref. 10, with the following slight modification. Instead of 'stopping short '  of the singularity, say at s = 10- ~o, 
s was taken as exactly zero and the integrands at s = 0 in equation (10) were both set to zero. The first integrand 
is in fact zero and though the second is infinite the integral at s = 0 is multiplied by s 2 and the limiting value 
is zero by the boundary condition. To check this procedure the integration from s = 0 to s = 26s was per- 
formed by a Radau-type quadrature formula (Ref. 7, p. 338) which avoids using the values of the integrands at 
s = 0. In the cases tested, the results for a given value of 6s were no better than those obtained by the present 
technique. The latter was thus preferred, not only for this reason, but also because using a second quadrature 
formula of the Radau type requires further interpolation and all this involves many extra programming in- 
structions in the inner loop of the program. 

When applied to the (non-similar) equation (10) the iterative scheme equation (20) converges at the initial 
station x = 0. For  x > 0, equation (20) converges only for one or two steps and then only after many iterations 
with very small value of o9; thereafter it always fails to converge. The explanation for this failure is given in the 
Appendix. The following iterative scheme, involving two suitably chosen relaxation factors o9 and o9', was 
found to produce convergence: 

Ft°)(s, x) = 0 ] 

G ("+ 1)(s, x) = og¢o(G(")(s, x),F~")(s, x)) + (1 - co)G~")(s, x ) l  ' 

F c"+ L)(s, x) O9'z(G ("+ 1)(s, x)) --[- (1 - O9')F~")(s, x) 

(21) 

where ~ is the right hand side of equation (10) and X is given by 

Z = 8x~G(s, x)]" (22) 

The 'single-field' process for G has in effect been replaced by a 'double-field' process for G and the x-derivative 
term F. This scheme is again actually implemented in the discretized form obtained by replacing the integrals 
in • by Simpson's rule and the derivative in equation (22) by the difference equations (17) or (18). 

To start with, 09 and co' are given relatively high values, usually ~o = co' ,~ 0.3 to 0.5. At x = 0 the initial 
approximation to the solution was taken simply as Gt°)(s, 0) = s 2. For succeeding steps in the x-direction, 
the initial approximation G~°~(s, x) was taken as the final (fully-iterated) solution G(s, x - fix) at the previous 
x-station. This is generally a very good initial approximation except in regions where the solution changes 
very rapidly with x. The convergence criterion was based on the sum of the absolute values of the differences 
of the elements of two successive vectors of iterates being less than a prescribed value, usually 10 -6. If as x is 
increased convergence does not take place at all (as indicated by a rapid increase in the wall shear stress as 



the iterations proceed) then co and co' are both reduced, usually by about 10 per cent, and the process started 
afresh. When making changes in the step-size f x ,  a good working rule for the determination of new values of 
co and co' was found to be 

X 
cocO'~x x = const. ~ 3 to 5 (23) 

(this parameter arises in the double-field iteration matrix, see Appendix). 
This algorithm was tested for a very wide range of mesh sizes fix and fs. In every case convergence was 

obtained with appropriate positive values of co and e)' (except very near to separation, see Appendix) and the 
algorithm was stable on marching in the x-direction. 

The iteration process described above was accelerated by the well-known Aitken technique. A new sequence 
of iterates {G'(")(s, x)} is formed from 

G,~.~ = G ( . ) _  (G ~"+1) - G(")) 2 
G~n+2) __ 2G(,+ 1) + G~,) , 

(24) 

where G ~"), G ~"+ 1) and G ~n+2) a r e  three successive iterates of the 'old' sequence {G~")(s, x)}. Note that this is 
simply the Aitken process applied to each individual component of the vector G(x), and not the generalised 
Aitken process involving a vector acceleration as described for example in Ref. 6, p. 115. The latter process 
could well give more rapid convergence per acceleration but this must be weighed against the time required 
to effect the matrix inversion needed at each acceleration. The former technique gives a worthwhile saving 
in computer time, for the number of iterations required to give a prescribed degree of convergence can be 
reduced by more than 25 per cent particularly near separation. The accelerated process also has the advantage 
that on approaching separation it usually converges at a few x-stations beyond the point where the unaccelerated 
process fails. 

The accuracy of the computation across the boundary layer has been investigated in detail in Ref. 10 for 
the similarity flows. These results can be expected to give a guide as to what accuracy can be expected for a 
given subdivision 6s across the boundary layer in the non-similar flows, but clearly the accuracy depends 
also on the subdivision fx  in the x-direction. In regions of gradual change in pressure gradient, or suction at 
the wall, it is possible to use relatively large values of fx .  In regions of rapid or discontinuous change it is 
necessary to use small values of fx .  In the case of flows with separation, it was found that for fixed f x  the 
smaller the value of fs,  the closer one can get to, and compute accurately the position of, the separation point. 
The reason for this phenomenon is given in the Appendix. 

4. E x a m p l e s  

4.1.  D i scont inuous  Boundary-Layer  Flows 

The method was first applied to flows having discontinuous suction or blowing at the wall. Fig. 2 shows the 
variation of the wall skin friction for a fiat plate having uniform suction S = - (wo/U~)(U~l /v )~  = 1-5 applied 
downstream of an initial impermeable portion. Small values of 6x were used in the immediate vicinity of the 
step change. The results agree with those of Refs. 17 and 20. The suction 'pulse' considered by Rheinboldt 
was also computed and the results are contained in Fig. 2. Just downstream of the pulse the present results 
differ slightly from Rheinboldt's. Smith and Clutter found the same deviation and believed their results to be 
in error in this region. It would thus seem that in reality Rheinboldt's solution is slightly in error just aft of 
the pulse. Fig. 2 also contains for comparison an approximate analytical solution given in a paper 14 by the 
present author. In addition, this paper contains a comparison between the analytical and numerical solutions 
for a pulse with S = 0-5. 

Fig. 3 depicts the effect of concentrating the same total quantity of suction into a narrower and narrower 
slot. Each pulse width was divided into 20 steps and the appropriate value of 3x retained for about one pulse 
width downstream. In these three cases the disturbance introduced dies out in a distance that is relatively 
independent of how the suction is applied. The case of two spaced suction pulses with the same total suction 
quantity is shown in Fig. 4. This configuration appears to perturb the flow rather more than a single suction 
pulse with the same total suction quantity. Also shown in Fig. 4 are results for a single suction pulse followed 
by an equal blowing pulse, this arrangement giving zero net mass transfer at the wall. Fig. 5 gives the results for 



a suction pulse starting at x = 1.0 of width 0.15 and S = 1.5 applied to three similarity flows. These correspond 
to the flat plate (P = 0), a wedge of 45 degrees semi-angle (P = 1) and a forward stagnation point (P = 1). The 
results are all qualitatively similar but the thinning effect is less pronounced the larger the pressure gradient. 

The effect on the wall shear stress of a step-change in the applied pressure gradient is shown in Fig. 6. It 
is important to know the response to such changes in assessing the merits of calculating boundary-layer flows by 
piece-wise joining of similarity solutions. The response is in fact relatively slow in the cases considered. These 
results agree with those of Smith and Clutter. z° 

It has been shown that though abrupt the changes in shear stress at the discontinuities are in reality continuous 
(Refs. 17, 10 and 14). Consequently, in all the above cases the following method of treating the discontinuities 
numerically was adopted. The discontinuity was not 'straddled' but was retained as a nodal point in the mesh. 
The step-size 3x was reduced immediately on proceeding downstream from the discontinuity and the two-point 
formula, equation (18), was used for the first step. This procedure is necessary in any case if 6x is changed at 
the step. If6x were not changed the three-point formula would give a doubtful estimate of the derivative because 
of the discontinuous change in slope at its 'middle' node. 

4.2. Periodic Boundary-Layer Flows 

Fig. 7 shows the effect of a periodic normal velocity at the surface of a fiat plate. The flow quickly responds, 
with the displacement thickness lagging very slightly in phase behind the applied fluctuating velocity, while 
the wall shear stress remains almost exactly out of phase with the displacement thickness. 

The effects on the fiat plate flow of a periodic component t sin (5nx/l) in the mainstream are shown in Fig. 6 
for ~ = 0.01 and 0.02. In the first case the flow is non-separating, at least as far as x = 2.0, having settled down 
with the shear stress taking a very slight phase lead over the fluctuating mainstream velocity and the dis- 
placement thickness remaining almost exactly out of phase with the wall shear stress. It is interesting to compare 
this phenomenon with the phase lead that occurs in time-fluctuating boundary layers and which is attributed 
physically to the relatively greater effect of the fluctuating pressure gradient on the slowly-moving fluid near 
the wall than on the faster-moving fluid at the outer edge of the boundary layer. When ~ = 0.02, separation 
occurs just short of 2½ cycles at x = 0.996. The tendency of the flow to separate at the given 'frequency' is 
rather marked considering the very small amplitude of the fluctuating component ; this again resembles the 
time-periodic phenomenon. 

4.3. Flows with Separation 

The boundary layer corresponding to the potential flow U = 2U~. sin (x/a) about a circular cylinder of 
radius a in a stream of velocity U~ at infinity was next computed. Numerical details of the solution are given 
in Table 1 alongside the results obtained by Terrill. z 1 As noted earlier it is difficult to approach separation by 
very small steps in x. However, the separation point x s can be located accurately by extrapolation. Accepting 
Terrill's value of xJa = 1-8230, we observe the marked improvement in the results near separation and in the 
predicted separation point (obtained with the same step sizes) when the x-derivative terms are discretized 
by means of differences based on G z rather than on 1/G. 

Computations were also made for the circular cylinder with homogeneous suction. When the suction para- 
meter S has the value x//2/2, this is the case first considered by Bussman and Ulrich 1 and calculated accurately 
by Terrill. 21 The separation point was computed accurately by the present method and found to be x j a  = 2.0016 
in agreement with Terrill's result. When S = 5 this is the non-separating flow computed by Watson 24 by an 
asymptotic method. For  this flow the present iterative process always fails as the rear stagnation point is 
approached closely. This experimental observation agrees with the demonstration given in Ref. 18, p. 340 
that no solution in the form of equation (5) seems to exist at a rear stagnation point. Also computed accurately 
was the separating flow for a cylinder with an initial impermeable part, followed by homogeneous suction 
with S = 1-0 applied from x/a = 1. Separation is predicted to occur at x j a  = 2.079. The results of all these 
computations for the cylinder are shown graphically in Figs. 9 and 10. 

Howarth's  linearly retarded flow U = 1 - x was finally computed. This problem affords probably the most 
stringent test of any numerical method. Numerical details are given in Table 2 with results obtained by others. 
The extrapolated value of x s was found to be 0.1197 compared with the accepted value 0.1198 (Leigh9). It 
was, however, necessary to use a very small value of 6s to get close enough to separation to predict xs to this 
accuracy. It is interesting that we get precisely Leigh's value if we apply hZ-extrapolation to the predicted 
values ofx~ for 6s = 1/512 (0.1194) and 6s = 1/1024 (0.1197). 



5. Concluding Remarks 

The steady two-dimensional incompressible laminar boundary-layer problem has been posed as an integral 
equation in Crocco variables and a numerical method of solution of this problem has been developed. Several 
non-separating flows have been computed by the method, particularly flows with discontinuous suction dis- 
tributions and periodic flows. Some problems involving separation have also been computed. 

Viewed as a marching procedure for solving a parabolic partial differential equation, the method is implicit 
and was found experimentally to be stable for all the combinations of step-sizes tried. This result is made 
plausible by the local stability analysis given in the Appendix. The stability of an explicit-type scheme is also 
examined. The crucial device required to make the method work is the double-field type of iteration for solving 
the integral equation. An analysis of the convergence of this process is given in the Appendix. 

The method is quite simple conceptually. It is easy to program and the storage requirements are relatively 
small. The method was programmed throughout by the author, originally in Autocode and run on the Cam- 
bridge University Atlas (Titan) computer and latterly in FORTRAN and run on the Glasgow University 
KDF9 computer and on the Univac 1108 computer at the National Engineering Laboratory. To give an 
indication of computing times, it was found that with a step-size Js = 1/64 across the boundary layer the time 
to compute and print at each of 22 x-stations the velocity profiles, the boundary-layer characteristics c f,  
J l ,  ~2 and 33 and to predict the separation point to about 0.5 per cent for the circular cylinder was about 
30 seconds on the Univac, an average of about 1-4 seconds per station. 
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A P P E N D I X  

A1 Convergence of the Iterative Processes 

A.I.1. Simplified problem. Insight into the difficulty of obta ining convergence in the full boundary- layer  
p rob lem can best be gained by first considering a simplified problem.  The  essential character  of  the boundary-  
layer p rob lem and the essential numerical  difficulties are contained in the equat ion 

G =  ~ + X ~ G(x - 6x) = (o(G,X), (A-l) 

where P(x) is analogous to the pressure-gradient  pa rame te r  and X is x/6x. For  typical boundary- layer- l ike  
si tuations this equat ion has two solutions, one negative and one positive, the latter being the desired physical 
solution. For  instance, if P(x) = const. = 1 these two solutions are G = - 1 and G = t for all X, the latter 
being the desired solution. 

I t  is clear that  any a t tempt  to find the desired solution by simple i teration 

G(,+ 1) = q~(G(,), X) (A-2) 

will be bedevilled by the presence of the (large) factor X, for if we define 

the condi t ion for convergence is 

r(")=P(x)/{G(")} z and t ( . )=  1/{G(")} 2 (A-3) 

(?q~,~(.),L I j:(") x[(") I < < < G, ~--~¢o )1 = I~'<")1 = + 1, G (") (7") (A-4) 

for all iterates G (") in a ne ighbourhood  of the solution G. This condi t ion is generally violated for all X >/0. 
For  instance, with P(x) = 1 we find the condi t ion is asymptotically [1 + XI < 1. 

Suppose now we introduce a single relaxat ion factor co so that  the i terative process is 

The  condit ion for convergence is now 

G(.+ l) = co~b(G(.)) + (1 - co)G ("). (A-5) 

K(co) = Ico~ '(") + 1 - col < 1. (A-6) 

As q~'(') is generally less than unity in most  boundary- layer- l ike  si tuations co must  lie in the range 

0 < co < 2/(1 - ~'(")) (A-7) 

(if q5 '(") > 1 it is necessary to use negative values of co, see Isaacson and Keller, 8, p. 120). For  o p t i m u m  (Newton-  
like) convergence 

coopt-- t/(1 - qS'(")). (A-8) 

Using the solution value for G we find these condit ions are asymptot ica l ly  

0 < co < 2/(1 + r + Xt) (A-9) 

and 

coop ' = 1/(1 + r + Xt). 

The range of convergence is shown for P = 1 in Fig. 11. 

(A-10) 
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The relaxation factor must  clearly be decreased as X increases and the rate of convergence becomes in- 
creasingly sensitive to very slight changes in o .  Without  a knowledge of the derivative 4) '(") at each stage of the 
i teration it would be difficult to get good convergence.  This difficulty is further compl ica ted  by the fact that  
~b' should be evaluated at some unknown value (~(") between G (") and G, though when G (") is close to G then 
,~'(") ~ 5 ' (" '  ~ 4,'. 

In this simplified p rob lem we could of course c i rcumvent  the difficulty of  the large factor X by iterating with 
equat ion (A-l)  in a different form. In the full integral-equat ion boundary- layer  p rob lem it is also possible to 
rearrange the equat ions to avoid this difficulty, but this would require the inversion of a 'full '  matr ix  at each 
cycle of iteration. Thus  if we are to succeed with our plan of using only simple iteration, it becomes  necessary to 
face up to the p rob lem of achieving convergence with the equat ions in the form of equat ion (A-l). 

Suppose we re-write equat ion (A-l) as the two s imul taneous equat ions 

P(x) 
G = --G- + F = (NG, F) 

and (A-11) 

l 1 )) = z(G). 
F = X G G(x 6x 

N o w  consider the following iterative scheme with two relaxation factors ~o and w' :  

F (°) = O, 

G(n+ 1) = oo(1)(G("), F ('°) + (1 - ~ )G (") (A-12) 

and 

F(.+ 1) = co,z(G(.+ 1)) + (1 - ~n')F ("). 

Defining the ' e r rors '  d ") = G (") - G and 6 (') = F (") - F, we find 

e(.+ l) = I - ~o + ~ o ~ - - ;  e (") + o 3  (") = ae (") + b5 (') 

and 
(A-13) 

(~(n+ 1) .= {(o d~(~+ 1)~ r. ("+ a) 
dG J + (1 - o ' )5  (") = ce ("+1) + d6(,), 

which is in a Gauss-Seidel or Liebmann form. It is not difficult to show that  the matrix equat ion governing 
the p ropaga t ion  of errors  is 

r ( n +  1) : M(.¥(.)  (A-14) 

where the iteration matrix is given by 

M(') = I a b 1 ca cb + d (A-15) 

and ~ = {~., 31 is the vector  of  errors. 
For  the iterative process (A-12) to converge the spectral radius of this matrix must  be less than unity for 

all iterates in the ne ighbourhood  of the solution (G, F). At solution, M ~"J has the form 

[- l - .,(1 + r) ] 
M =  / - o ~ X t { 1  - c o ( l  + r ) }  t - o ' ( 1  ÷ eoXt) " 

(A-16) 
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The eigenvalues of this matrix are the same as those of the matrix 

M, = [11 - e)(1 + r) -coco'Xt 1 
o9(1 + r) 1 - co'(1 + coXt)_] 

(A-17) 

since the multiplication of the qth row of a matrix by a constant y and the qth column by 1/y leaves the eigen- 
values unchanged. This form of the iteration matrix shows how the large factor X is offset by the quadratically 
small term coco' when co and co' are both small. 

The usual sufficient conditions for convergence (viz. row and column absolute sums < 1) do not provide 
any information how to prescribe co and co' for convergence. In fact, these conditions are usually violated when 
co and co' have values which do give convergence, This is unfortunately true also of the full-scale problem. 

In the present simplified problem we can, however, readily evaluate the eigenvalues of the matrix M' and 
determine that region of the (co, e)')-plane which gives convergence. Figs. 12 and 13 show the region of con- 
vergence in the positive quarter-plane for two x-stations in a 'separating' type of flow. The latter was obtained 
by using the value of P(x) for a circular cylinder, viz. x cot x, in equation (A-I). Solution values for G were 
obtained by performing a step-by-step integration of the differential form of equation (A-l) by the Runge- 
Kutta method. 

As X increases the outer curved boundary moves inwards towards the origin as shown in Fig. 12, and so it 
is necessary to reduce co and co' to maintain convergence. The points labelled N and N' with coordinates as 
shown in the figure correspond to conditions of optimum (Newton-like) convergence. The simple iterative 
scheme (A-5) with a single relaxation factor corresponds to the line co' = 1 in this figure. The 'narrow' region for 
convergence is clearly evident (compare Fig. 11). Thus we see that the rather sensitive requirement for con- 
vergence on a single factor co has been replaced by a much less sensitive requirement on two factors co and co'. 

The difficulties associated with separation can be appreciated by noting (see equation (A-3)), that as r passes 
below - 1  and separation conditions begin to be approached, the region of convergence becomes squeezed 
in between two curves moving as shown in Fig. 13. As x increases beyond 2.0 to 'separation' (at ,~ 3.0) this 
region becomes very small indeed. Thus if we put co' = co and maintain convergence by moving towards the 
origin along the line o) = co' we will soon 'miss' the convergence zone. However, we can still obtain convergence 
by using positive values of co and co' if we can find the appropriate region. This does not appear to be true of 
the full-scale problem. 

A.1.2. Integral-equation problem. There is evidently some qualitative resemblance between the convergence 
of the iterative schemes equations (A-5) and (A-12) for the simplified problem and the corresponding schemes 
equations (20) and (21) for the full boundary-layer problem. In discussing the convergence of iterative methods 
for integral equations it is usual to try to determine a Lipschitz constant for the kernel and to examine whether 
this is less than unity (e.g. see Phillips16). This approach does not seem to lead to a natural extension of the 
analysis just presented for the simplified problem. Consequently, convergence was examined from the matrix 
point of view of the discretized problems (i = i . . . . .  N) 

G (~+ l)(s i, x) = coq~/(G(~)(x)) + (1 - co)G~n)(si, x) (A-18) 

and 

F(°)(si, x) = O, 

G ~+ 1)(s i, x) = CO~i(G(~)(x), F~)(x)) + (1 - co)G~')(si, x), (A- 19) 

F (~+ 1)(s i, x) = co'xi(G ("+ X)(x)) + (1 - co')F(")(si, x), 

where 

= X  1 1 z'(G'~+~'(x)) (c~o+~(~,x) G(s,,x - 6x)) (A-20) 

These are the scalar forms of the ith equations in equations (20) and (21) respectively, with G~")(0, x) = 0 from 
the boundary condition at the outer edge of the boundary layer. For simplicity of analysis the x-derivative 
terms are approximated by the usual two-point Lagrangian formula and the integrals by the Trapezium rule. 
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We are now discussing the convergence of the iterativ, solution of  a set of non-linear algebraic equat ions (see, 
for example, Isaacson and Keller, 8, p. 109). 

By an obvious generalisation of  the analysis of the simplified problem (A.I.1) we find for simple iteration, 
using a single relaxation factor ~, that the matrix governing the growth of the vector of errors ~(x) = 
{ E l ,  F, 2 . . . . .  EN} , where 

e,i~")(x) = Gt"~(si, x) - G(s~, x) = G~")(x) - Gi(x), (A-21) 

is 

8(n+ 1) = M~.)e~.~ (A-22) 

where 

M t" )=  I - c o ( l  

T(s [ /Jt =as  

+ R oo + XTt")), 

- l ( / 1  -~- Sl2nl)  S2H2 

l, ½(12 + s2n2) 
G 2 G~ 

. . 0  

. . 0  

. . . . . . . . .  

tl 12 ½IN 
G 2 G 2 ' " G  2 

½(ml + S2ql) s2q2 
621 

m, ½(m2 + s2q2) 
GL z G2 z 

ml m 2 
G 2 

. . . 0  

(A-23) 

(A-24) 

(A-25) 

l,(x) = 2(1 + 5P)s~ - 2(1 + 3P)s~, mi = 4(s~ - siS), 

ni(x) = 2(1 + P)(s, - s~), qi 4(si s 3 - -  , i ) ,  (A-26) 

G i ( x ) =  G(s i ,x) ,  s i =  i fs  f o r i =  1 . . . . .  N 

and l is the N × N unit matrix. 
For  convergence the spectral radius of the matrix M ~"1 must be less than unity for all iterates in a neighbour- 

hood  of the solution, though for convenience we will omit the iteration index n in most  of  the following. Let 
the eigenvalues of the matrix R + X T  be denoted by v and those of M by 2; then they are connected by the 
linear t ransformation 

)~ = 1 - ~o(1 + v) (A-27) 

in the complex plane (lsaacson and Keller, 8, p. 73). The unit circle in the 2-plane maps into the circle C, centre 
((1 - ~o)/~o, 0) and radius 1/¢o, in the v-plane. Hence for convergence the parameter  c0 must be chosen so that the 
circle C covers all the eigenvalues v k of R + X T. This circle always passes through the point ( -  1,0) and so 
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with positive values of co it is always necessary that 

Re(v) > - 1 (A-28) 

for convergence (for negative co, Re(v) < 1 - ) .  A sufficient condition for convergence is that C covers the union 
of all the row Gerschgorin discs of R + XT. (see Wilkinson z6 for the definition of the Gerschgorin discs of a 

matrix). 
Now it is clear from the last row of the matrix R + X T a n d  equations (A-24) to (A-26) that there exists a 

row Gerschgorin disc of radius ~ - 1  ~Ss[l~ + X m y G  2 centred at the point (2 6sP(x)/G~, 0). Since X increases 
rapidly on marching in the x-direction, this disc will quickly expand and pass through the left of the circle C, 
no matter  how much co is reduced and no matter the nature of P(x). Hence (A-28) will soon become violated 
and the single-relaxation-factor process will fail after only a few steps in the x-direction, as was observed 

experimentally. 
We can now give an explanation of the difficulties encountered on approaching 'separat ion '  conditions in 

the computat ion of the similarity flows (see Ref. I0). For these flows only the R matrix is involved and we will 
set v = # in this special case. First, assume all the eigenvalues of R are real and arranged in descending order 
#1 > #2 > . . .  > #N. The conditions for convergence are 

0 < co < 2/(1 + #1) (A-29) 

and 

#N > - 1, (A-30) 

with opt imum convergence when 

1 (A-31) 
co = coop, = 1 + ½(#x + #~) 

given by 

#1 - #N (A-32) 
" ~ m i n  - -  2 + #1 + #N" 

Hence the range of co for convergence depends on the magnitude of the largest positive eigenvalue #1, while 
the rate of convergence diminishes to zero as the smallest eigenvalue #N ~ - 1 from above, whatever the value 

of/z,~. 
It  is clear from (A-24) and (A-26) that 

I~,. = 2P6s/G2 (A-33) 

is an eigenvalue of R, though not necessarily the smallest. Near 'separat ion '  conditions P becomes negative 
and the wall shear stress term GN tends to zero. Hence #,, will soon approach and pass below - 1 and so the 
number  of iterations to convergence will increase but ultimately the process will fail no matter how small 
co is made. This was precisely what was found by numerical experiment in I. In general all the eigenvalues of 
R may not be real and we cannot make simple statements like (A-31) and (A-32) about opt imum convergence. 
However, #,, is always an eigenvalue of R and the necessary condition (A-28) or (A-30) will eventually become 
violated by #m when separation conditions are approached closely. 

It also becomes clear why large positive values of the suction parameter W lead to strengthened conver- 
gence, lo Though Wdoes not enter explicitly into the convergence analysis, it enters implicitly by giving increased 
values of the wall shear stress term GN (and the other Gi generally). Hence in particular #,, will diminish in 
absolute value, as will the other #k, as W is increased. Thus the covering circle C can be reduced in size, that is, 
co can be increased for convergence. The converse effect will occur for large blowing rates. 

By a straightforward generalisati0n of the two-relaxation-factor convergence analysis for the simplified 
problem, we find the equation governing the propagation of the 2N x 1 vector of errors e = {~, 8), where 

~I n~ = Gl  n~ - Gi ,  61 "I = F!  ~ - F i ,  
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is now 

e (n+  t) = M~zn)eln), 

where M 2 is now the 2N x 2N parti t ioned matrix 

(A-34) 

m 2 .~ 
CA CB + D (A-35) 

A, B, C and D are the N x N matrices 

A = I - c o ( l  + R), 

C = - ( o ' X  diag (1/G 2 . . . . .  I/G2), 

B = coQ~ 

D = (1 - ~o')I, (A-36) 

with R as defined in (A-24) and Q = (fli~) (see (A-25)). 

Now a similarity transform of the form S M S -  ~ where S is a non-singular matrix leaves the eigenvalues of 
M unchanged (see, for example, Wilkinson, 26, p. 6). Choos ing  

[; o] [; o] 
S =  C - l  ' i . e .S - I  = , (A-37) 

we find that under this t ransformation the matrix M 2 becomes 

M ; - -  = 
BC + D co(l + R) I -  co'(l + coXT)J" (A-38) 

The point of this t ransformation (as in the simplified problem) is to show how the factors co and co' come to- 
gether and offset the growth of the factor X. 

It is usual in discussing the convergence of linear systems to try to establish a relation between the eigenvalues 
of the iteration matrix M'2(co, co') and those of a related simpler matrix which is independent of the relaxation 
factors. This is the underlying idea of the classical S.O.R. methods. Such relations can usually be found only 
for very restricted classes of matrices (see Young, 27 p. 140). In the present case, the author  has not been able 
to establish any such connect ion on account  of the very general nature of the matrices R and T. The most 
that can be deduced in this direction seems to be the following particular relations : 

3 .=  1 - c o ( I  + v) c o ' =  1, 

and 
(1 -- co' -- ;t)N(l -- ~l) N = 0 (2) = 0, (A-39) 

R -  ( 1 - c o - ~ ) I ( l c o  - - , ; t ) N = 0  ~O = 0 , '  

where the 2. are the non-zero eigenvalues of  M) and the v are the eigenvalues of R + XT. The first of these 
results tells us nothing we do not already know from the single-relaxation-factor process;  the last two tell 
simply that convergence will not occur when either co or co' is zero, 2 = 1 then being a root  of multiplicity N. 
As the iterative process does in fact converge for small positive values of  co and co', the matrix M~ must be 
a convergent matrix for some region of the positive (co, co')-quarter-plane. It may be that there is some qualitative 
resemblance between this region and the region shown in Figs. 12 and 13 for the simplified problem. 

We can, however, easily deduce a relation which determines how closely the separation point can be ap- 
proached before our  iterative process fails to converge. By expanding the determinant  [M~ - ,,t12] along the 
2Nth column and then the determinant so obtained along its Nth column, we easily see that 

2~,, = 1 -co ' ,  

2m= 1 -co( l  + Vm)= l --CO {l + 2 P ( x ) ~ }  

(A-40) 

(A-41 ) 
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are always eigenvalues of M~. Clearly, co' must always be positive and <2  from (A-40). Also, by (A-41) the 
necessary condition (A-28) puts the restriction 

P(x,) > - ½G~v/6s (A-42) 

on the distance x, one can approach the separation point when using positive values of co. For a given flow, 
the smaller as is made the nearer one can get to separation and this indeed was found to be the case experi- 
mentally. As noted earlier, the Aitken process enables one to get even closer. It is sometimes possible after 
(A-42) becomes violated to get a little nearer still by reversing the sign of the relaxation factor for GN (i.e. putting 
co N = --CON in (A-43) below) for then 12,,I becomes less than unity. This does not constrain all the other eigen- 
values of M~ to lie inside the unit circle however, and so the device is likely to be of limited usefulness. 

We have considered throughout only two scalar relaxation factors co and co'. The analysis generalises readily 
to case when they are replaced by the matrices 

= diag(col . . . . .  coN) and f~' = diag(co'l . . . . .  co~v), (A-43) 

though we lack afortiori some means of prescribing the co, and co', for convergence. 
For  the circle flow, the matrices R and T and the various derived matrices were computed using solution 

values for G(s,, x) on a coarse mesh across the boundary layer. With the aid of a subroutine to compute the 
spectral radius of a general matrix it was verified that the simple iteration scheme (A-18) fails after a few steps 
in the x-direction. Furthermore, it was verified at several x-stations that the matrix M~(co, co') was convergent 
for those values of co and co' which had given convergence in the two-field scheme (A-19). 

A2. Stability 
A.2.1. An explicit-type scheme. Suppose we replace the t?(1/G)/Ox terms by the following difference formula 

involving function values at two previous x-stations, 

x, 1( , 1 ) , ( 1  1)  , 44, 
j, = - ax )  G ( s , , x j -  2ax) = G,;_2 

This means when we iterate equation (10) the terms involving the factor X = x/6x are not included in the 
iteration. This would seem to be a very convenient way of avoiding the difficulties of the large factor X inside 
the iteration. However, it was found experimentally that this process was unstable for all the (ax, &)-pairs 
that were tried. We shall see why this is the case from the following local matrix stability analysis. 

As the equations are non-linear we first have to linearise them by setting G = G + g where g(s, x) is a 
small perturbation. We shall again simplify the problem by using the Trapezium rule for the integrals. The set 
of linear equations which have to be solved to advance the perturbation solution g from the (j  - 2)th and 
( j  - 1)th x-stations to the jth x-station may be written in matrix form as, 

gj = - X ( I  + Rj)-lTj_lgj_t + X(I + R j ) - l r j _ 2 g j _ 2 ,  (A-45) 

where the matrices R and T are again given by (A-24) and (A-25). This is a three-level formula which can be 
reduced to a two-level formula by setting 

I g J ] =  HFgJ - ' - ] ,  (A-46, 
hj khj_ 1 J 

where 

I - X ( I + R ) - I T J - 1  X(I+R;)-IT~-21 (A-47) 
H =  I 

is the 2N x 2N amplification matrix (for example, see Mitchell, 15, p. 87). The eigenvalues of H are given 

by the roots of the determinantal equation 

[/~2(i -t- R j )  - ~ x r j -  1 - x r j - 2 [  -- 0. (A-48) 
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Stability depends on the spectral radius of H being less than unity. It is clear that for fixed 3x and 6s this 
spectral radius must increase as x increases. In fact, it will soon become greater than unity and render the 
scheme useless. It is interesting to note that for a fixed value of the step-size 3s, the tendency to instability 
becomes greater the smaller the step-size 3x in the marching direction--which is the opposite tendency of the 
standard explicit methods for parabolic equations. It may be that the scheme is stable at any x-station for large 
enough 6x and/or small enough 6s--i.e. conditionally stable. The appropriate stability criterion is not readily 
deducible however, from the above analysis. The author is of the opinion that even if it exists it would make 
rather too stringent demands on the values of 6x and 6s for the scheme to be practicable. In any case, difference 
formulae of the type (A-44) are not very accurate. 

A.2.2. lmplicit scheme. We first replace the O(l/G)/~x-terms by the usual two-point formula: 

~x ~si' 6x G(s~ xj) G(s i, xj - bx) = ~x ,j Gi,~- l " (A-49) 

On linearising and using the Trapezium rule for the integrals we find the equations that have to be solved 
to advance the perturbation solution from the (j - 1)th x-station to the jth x-station are 

gj = Hgj_ 1, 

where the amplification matrix is now the N × N matrix 

(A-50) 

H = (I + Rj + XTj)-1XTj_I (A-51) 

which is clearly of implicit type. One feels intuitively that the spectral radius of H should be less than unity 
for all X and 6s when Rj + X ~  and XT~ 1 are non-negative matrices--which they are in all the cases con- 
sidered in this report. Unfortunately, these matrices seem to be of too general a character for the well-known 
Perron-Frobenius theory to provide a proof that H is a convergent matrix (see Varga, 23, p. 30). 

When we use the three-point formula for the x-derivative terms, the amplification matrix becomes 

H =  [2(I + Rj + ~XTj) - IXTj-1  - ½(I + R~ + ~XTj) - IXTj_2]  

1 0 " (A-52) 

The crucial implicit nature of the scheme remains in evidence, however. Experimentally, the author found the 
scheme to be stable for every flow considered and every combination of step sizes. 

The discussion of convergence and stability is a little more complicated when we use Simpson's rule and 
equations (17) and (18) for the x-derivative terms (i.e. differences on G2). However, the general convergence 
and stability characteristics of the algorithm remain as described above. The author has verified directly the 
stability characteristics of schemes A.2.1 and A.2.2 for the circle flow by computing the spectral radii of the 
appropriate amplification matrices at solution using a coarse mesh across the boundary layer. 
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TABLE 1 

IV ap 
or21 v I 

~1 'Foo d 
a v 

L i 
a ~ v l  

x/a I II Terrill I II Terrill I II Terrill 

0.45289 0.45289 0.4583 
0.46044 0.46045 0.4605 
0-52379 0.52376 0-5238 
0.5698 0.5697 0.5697 
0.9368 0.9360 0.9363 
1.2654 1.2600 1.2624 
1.4461 1 - 4 2 9 9  1-4373 
1.515 1.497 
1.562 1.541 - -  
1-617 1-586 1-5985 
1-642 1-600 

1.618 1.631 

0.13936 0.13936 0.1394 
0-55222 0.55222 0.5221 
2.1355 2.1355 2.1355 
2.2569 2.2570 2-2568 
1.2422 1 .2441  1.2434 
0-5480 0.5569 0.5538 
0.2833 0.3054 0.2967 
0.1998 0.2203 
0.1464 0.1691 
0.0881 0.1188 0.1066 
0.0632 0.1032 

* 0.0849 0.0724 

0.20678 0.20678 0.2068 
0.20768 0.20768 0.2077 
0-23356 0.23355 0.2336 
0.2517 0.2517 0.2517 
0.3735 0.3733 0.3734 
0-4452 0.4446 0.4451 
0.4690 0.4680 0.4687 
0.4754 0.4744 
0.4787 0.4777 
0.4814 0.4803 0.4812 
0.4821 0.4810 

0.4817 0.4825 

3.04 
3.16 
D.80 
1.00 
1.60 
1.76 
1.80 
1.81 
1.815 
1-819 
1.820 
1.821 

Boundary-layer characteristics as functions of x for flow with external velocity U = 2U~o 
sin (x/a). The present computations were made with 6s = 1/512, 3(x/a) = 0.04 to x/a = 1.80, 
6(x/a) = 0.0025 to x/a = 1.815, 6(x/a) = 0-001 to x/a = 1.820 and 6(x/a) = 0-0005 thereafter. 
I and II denote results using finite differences in x-direction on (l/G) and G 2 respectively. In case I 
extrapolated value of x~ is 1.8210, in case II 1.8230, compared with Terrill's value 1.8230. 
* denotes extrapolated to zero. 

TABLE 2 

0.000 
0-025 
0.050 
0.075 
O.lO0 
0.110 
)-115 
3.117 
0.1175 
~.118 
0.1185 
0.11875 
0.11900 
0-11925 
0.11950 

[Uxl i 

Smith, 
Present Clutter Leigh Hartree 

0.469600 
0.41162 
0-34518 
0.26629 
0.1645 
0.1091 
0-0725 
0.0535 
0.0480 
0.0419 
0.0350 
0.0310 
0.0265 
0.0207 
0.0133 

0.469600 - -  

0.34496 - -  0.34515 

0-1652 
0.1100 0.1093 
0-0737 - -  0.0718 

0.0494 

0-0373 0.0352 
0.0317 

0.0223 
0-0202 0.0163 0.0161 

Present 

1.21678 
1-2878 
1-3776 
1-4988 
1.6872 
1-8114 
1-906 
1.959 
1.976 
1.994 
2.016 
2.028 
2.043 
2.O63 
2.10 

Present 

0.46960 
0.48417 
0.50042 
0.5187 
0.5396 
0.5489 
0.5537 
0-5557 
0-5562 
0.5567 
0-5572 
0.5575 
0.5577 
0.558O 
0-5583 

12vx] 

Present 

0-73848 
0-75833 
0.78003 
0.8038 
0.8301 
0-8414 
0.8472 
0.8496 
0.8502 
0-8508 
0.8514 
0.8517 
0-8520 
0-8523 
0.8526 

Boundary-layer characteristics as functions of x for flow with external velocity U = 1 - x. 
The present computations were made with 6s = 1/1024, fix = 0.005 to 0.110, fix = 0.001 to 0.116, 
6x = 0.0005 to 0-118, fix = 0.00025 thereafter. Extrapolated x s = 0.1197, compared with Leigh's 
value 0.1198. 
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