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Summary 

Analytical solutions are derived for a class of axisymmetric base flows with heat addition. The assumed 
upstream conditions are non-uniform in velocity and temperature, which vary with r in spherical polar co- 
ordinates (i", 0, ~b) in a prescribed manner such that pressure and Mach number are independent of r. The 
turning flow expands about the base axisymmetrically and without change in r-dependence, so that the flow 
is self-similar with respect to conical surfaces of constant 0. The magnitude and distribution of heat addition 
is then calculated and results are given for a few examples. 

* Replaces R.A.E. Technical Report 73094--A.R.C. 34 954. 
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1. Introduction 
Isentropic expansion flows of a supersonic stream are accompanied by a rapid fall in pressure, which can, 

however, be alleviated, or even turned into a pressure rise, by the addition of heat. Some two-dimensional 
flows of this type have been discussed by Steffen, 1 Foster and Clarke, 2 Broadbent and Townend. 3 For axi- 
symmetric flows Marsh and Horlock 4 obtained some solutions for duct flow with a specified mode of heat 
addition, and Bartlm~i 5 considered base flow through an expansion corner followed by heat addition. 

The present report was preceded by a theoretical consideration of axisymmetric flow in spherical polar 
coordinates (r, 0, qS) with variation only in the 0 direction, 6 such that the flow was self similar over conical 
surfaces of constant 0. Solutions were derived both for internal duct flow and external base flow, but the latter 
were incomplete because of a singularity on the axis which meant terminating the solution for some value of 
0 > 0. It was noticed that the singularity disappeared for flows with a certain type of r-dependence, and a 
class of such flows is analysed in the present report. The r-dependence is such that although the velocity and 
density must vary with r, it is possible for the pressure and Mach number to be independent of r, and these 
conditions are in fact imposed. It follows that the upstream flow is cylindrically stratified in temperature and 
velocity, but uniform in pressure and Mach number. 

Again the flow fields are self similar in the variable 0 but they can now be completed as far as the axis 0 = 0. 
The streamlines are still converging at this point, but provided the flow remains supersonic the self-similar 
region could be terminated by a shock, in principle, without upstream influence. The shock would then define 
a surface marking the downstream boundary of the self-similar flow. 

Some examples are given for a few body shapes and upstream Mach numbers, but it is concluded that heated 
base flows of this type are probably less practical than those involving a flow separation. 

2. Analysis 

The equations of motion in spherical polar coordinates (r, 0, ~b) may be written as follows for axisymmetric 
flow i.e. no variation in the ~b direction--see Fig. 1. 

Continuity: 

r component of momentum" 

0 component of momentum : 

Opu Opv . 
r-~r + 2pu sin O + p v c o s O + ~ - s l n O = O ,  (1) 

1 Op au v[Ou ) 
p O--r + u~-r + rlO-O - v = O, (2) 

3v c3v 1 Op 
r u ~  + v ~  + uv + p = O, 13) 

energy : 

where 

P 
b/, /1 

P 
h 

and 
q 

u~r +-r  {h +½(u z + vZ)} = q, (4) 

is density, 
are velocity components in the r and 0 directions respectively (Fig. 1), 
is pressure, 
is specific enthalpy 

is rate of heat addition per unit mass. 
In a previous report, 6 the above equations were restricted by the condition that the physical parameters 

should be invariant with r, so that those terms involving derivatives with respect to r dropped out of the 
equations. Some solutions were found in which the streamlines either converged (appropriate to base flow) 
or diverged (appropriate to internal duct flow, e.g. for a ramjet), but the base-flow solutions were incomplete 
on account of a singularity on the axis 0 --, O. This meant that although they might apply to the outer part of a 
base the solution could not be carried through to the axis. 



What had been hoped for were solutions that could be completed down to 0 = 0, and although the flow. 
would be converging there, it could in principle be terminated by a shock provided the Mach number at the 
axis was supersonic. The present analysis continues the search for flows of this type, with some degree of 
success, albeit for non-uniform conditions upstream of the base. If the r-derivatives are assumed to vanish in 
equations (1) to (4), the singularity arises from the explicit appearance of 0 in equation (1), together with the 
fact that u and v are linked by the relation v = du/dO from equation (2). By introducing the variation with r, 
however, it is possible to find solutions belonging to a certain class in which the singularity is no longer present. 

We consider a type of flow in which the physical parameters u, v, p and p vary with r in a specified way : 

and 

u(r, O) = ~(0) , 

v(r, O) = ~(0) , 

I r \ "  
, (r ,O) = 

[ r ~m+2n 
,,(r,O) = I 

(5) 

where m and n are constants, r 1 is some reference length, and the relations (5) are chosen to satisfy equations 
(l) to (4). The solutions given later will be such that n is negative and m positive, so that we are considering 
a flow in which the velocity is decreasing and the density increasing as one moves away from the axis, and 
those conditions must also apply upstream. However, the Mach number, M, is constant along a ray, since 

M2(r) _ u2(r) + vZ(r) fi2 q_ 02 
? p ( r ) / p ( r ) -  7/3/P (6) 

In fact the solutions given will be restricted to the condition 

i.e. 
p(r) = ~onstant } 

m + 2 n  . 
(7) 

It is clearly unlikely that upstream flow, satisfying equations (5), (6) and (7) exactly, would be found in aero- 
nautical engineering applications, but the conditions may be satisfied approximately in some circumstances, 
e.g. where hot exhaust gases flow over a base or centre-body. Moreover, in some examples the radial gradients 
are quite small. A type of flow in which the postulated conditions do arise has been discussed by Horlock 7 
following Vazsonyi 8 who attributed the suggestion to Emmons. 

If the relations (5) are substituted in equations (1) to (4), a new set of equations in fi, ~, ~ and/3 is obtained, 
and in which r only appears in the heat addition term. For convenience the accents are dropped, and the 
equations become, 

dpv . 
(m + n)pu + 2pu sin O + pv cos O + ~ sm O = O, (8) 

(du ) (m + 2n) p- + rtu 2 + V - -  v = 0, (9) p a-6 

dv 1 dp 
n,. ,  + Z.~o + u~, + 7' Yo = o (lo) 

and 

2.u + ~ ~ ,~ - f  p (r/r,) ~'' (11) 



where the perfect gas re la t ion has been assumed for the enthalpy,  and  y is the rat io  of specific heats. 
In o rde r  that  there  shall  be no s ingular i ty  as 0 ---* 0, it follows from equa t ion  (8) that  

(m + n)u(O) + v(O) = 0 

o r  

u(O) 1 
- ( 1 2 )  

v(0) m + n" 

A fairly general  poss ibi l i ty  would  be 

U 
- -  = - - C  1 ...1- C 2 0 s ,  
V 

1 
C 1 - -  - - ,  C 2 = const ,  

m + n  

(13) 

but  the solut ions  given here will be res t r ic ted to c 2 = 0. The ups t r eam flow is assumed to be paral le l  for 0 ~> 01, 
so that  if the subscr ipt  1 a t t ached  to a var iable  refers to the value at 0 = 01 , there follows 

u u l  1 1 
- = cot  01 = cl - - , (14) 

V 1;1 m q - n  n 

where  the final re la t ion in equa t ion  (14) follows under  the condi t ion  (7). These results can be used in (8) to give 
a differential  equa t ion  for pv, 

dpv  (1 - cos 0) 
dO - 2 p v c l  + pv  sin 0 ' (15) 

which has the so lu t ion  

pv  = poVo e zc'° sec2½0, (16) 

where the subscr ipt  0 refers to values at 0 = 0. A solut ion for v follows from equa t ion  (9) with m + 2n = 0 and 
u = - C l V ,  which gives 

or, by (14) 

(1-nc~)o} 
v = Vo exp c~ (17) 

v = Vo e ("- 1)0 (18) 

The  form (17) appl ies  more  general ly than (18) and does not  depend  on the a s sumpt ion  m + 2n = 0, as may  
be seen by  e l iminat ing  p from (9) and  (10) and subst i tu t ing for p, u and v by means  of (16) and (17) with u = - c, v. 

F r o m  (16) and (18) 

2p0 exp{0(1 - n - 2/n)} 
p = (19) 

1 + cos 0 

The co r re spond ing  express ion for the pressure gradient  from equa t ion  (10) becomes 

dp 2(1 + n 2) po v2 exp{0(n + 1)(n - 2)/n} 

dO n 1 + cos 0 ' 
(20) 



from which p(O) is obtained by numerical integration. Since it is convenient to integrate in the streamwise 
direction, a change of variables was made by the substitution 

0 = 01(1 -- ~) (21) 

so that c~ increases from 0 to 1 as 0 falls from 01 to zero. The pressure is then given by 

. 211-t- r t  2' ~exp{--01c~(n + 1)(n~)~)/n} 
P-(~)P1 = 1 + 3 , 1 V 1 ~ I - ~ ) 0 1 ( 1  + cos 0x)sin201j ° i + c~os{~(1 ~ dc~. (22) 

The flow parameters are now completely specified by equations (14), (18), (19) and (22). It remains to derive 
an expression from equation (11) for the mode of heat addition that satisfies these relations, which is found by 
substitution to be 

\ r  I u~ 
_ 2 n U /  ~, p p~ 1 ) 

u~oD' 1 p~ p ?M 2 + lexp{2(1 - n)c~0l} - 

u ~ I i  7 1 p {  ( ! ) (  )}  , - -  1 7M 2 sin(01(1 - - c 0 ) +  1 - - n  1 +cos(01(1--c0)  

exp{~01[l - ,2 - (2/n)?} + "/ pl(1 + n21(1 + cos 01) sin201 

1 + cos 01 - - p - / ~ l  1 + 00) ? -  1 cos(01(1 _ x 
X 

× e x p { - 0 t e ( n  + 1)(n - 2)/n) + (1 - n)exp{2(1 - n)~011 = B(c0, say, (23) 

where u,, is t ~ s t r e a m  flow speed given by u 2 = u~ + v { and M s is the corresponding Mach number 
M ,  = u., w,/-ppl/Tpl, and it should be remembered that on returning to the original form (5), u s depends on r 
whereas M~, does not. A non-dimensional parameter, Q, defining the heat addition per unit volume is intro- 
duced in the form 

so that (24) 

p(r/3,,-, 
- -  - -  B ( ~ )  Q(r,o:) = PlUral 

where P/Pl is a function of c~ defined by (19) and (21). 
The shape of the streamlines is given by 

1 dr  u 1 

r dO v n (25) 

whence 

r = roe °/". (26) 

If we suppose the flow to be that past a uniform cylinder for 0 > 01 , then the shape of the base for 0 ~< 01 is 
given by 

r e - (o~  - O ) / n  

ra sin 01 
(27) 

where r, = r~ sin 01 is the radius of the cylinder. 



The shape of the base rnay also be given in rectangular coordinates (x, y) where y is measured radially from 
the axis, and x is measured axially from the downstream end of the cylindrical part, i.e. x = 0 corresponds with 
0 = 01. I f x  and y are made non-dimensional by ra, the expressions may be written, by (14), 

1 ( 1 ) t  x = -  + e -~°'/" sin e01 - - c o s  :~01 
n 

and (28) 

It follows that for small - n ,  i.e. small 01, that the length to diameter of the base increases like - 1In or 1/01 , 
since -e01/n ~ 1 with e = 1 and 01 -~ 0. 

It may be remarked that by use of the more general form (13) for u/v it is possible to find solutions that 
avoid the necessity of terminating the flow in a shock by deriving body shapes that end in a cusp. This happens, 
for example, with s = - 1  when the equations can be integrated, but the solutions are unrealistic in that the 
spike is infinitely long. Solutions with other values of s are unsatisfactory in other respects. 

3. Results 

Results are presented in Figs. 2 to 4 for different values of 01 (i.e. different values of n) and for a range of 
upstream Mach number. The shape of the body is illustrated at the top of each figure, and it can be seen that 
the bodies become shorter and blunter with increasing 01 as expected. Two other features restrict the practical 
range of parameters. For a given 0i the heat addition is positive for flows with a low upstream Mach number, 
but becomes negative for a sufficiently high upstream Mach number. The Mach number range for positive 
heat addition becomes smaller as 01 is increased, which is why the curve for M 1 = 4 is omitted from Figs. 3 
and 4 since the corresponding heat addition would be negative. The other restrictive condition is that for the 
flow to be free of upstream influence the final Mach number at 0 = 0 should be supersonic, such that the sub- 
sequent turning of the flow can be through a shock. The results show that the Mach number falls in the down- 
stream direction, so that to meet this condition the upstream Mach number must be substantially greater 
than one. 

Figure 2 shows results for 01 = 15 °, n = -0.268,  and for four upstream values of Mach number, M 1 = 0-8, 
1.4, 2.0 and 4.0. For simplicity the results are presented as functions of x along the streamline illustrated at the 
top of the figure, which may be regarded either as the streamline along the body surface, or as one out in the 
free stream. It should, of course, be remembered that the self-similar behaviour is with respect to 0 whose 
origin is on the x axis not at x = 0 but at x = - c o t  01. 

As the flow proceeds downstream the pressure falls like it would in an unheated expansion but less rapidly, 
and meanwhile the temperature increases relatively quickly, which is why the Mach number falls despite an 
increase in velocity. The actual velocity increase is given by the same form as equation (18) since the two com- 
ponents vary in proportion to each other;  with n negative this shows an exponential fall with increasing 0, 
i.e. in the upstream direction. 

With regard to the fall in Mach number, even the flow starting from M 1 -- 2 becomes just subsonic (M = 0.98) 
at the axis, so for wholly supersonic flow the upstream Mach number must exceed 2. However, it is of interest 
to compare the results for all given values of M 1 since they establish tbe trend. The intensity of heat addition 
falls rapidly with increasing M1, although in absolute terms this is largely accounted for by the non-dimensional 

3 in the denominator. The temperature rise is large for the smaller values of M I ,  and form of Q which has u~ 
in some sense this must mean that the corresponding efficiency is low since a lot of energy is being wasted in 
heat with comparatively little return in terms of pressure. This point will be discussed further in the next section. 

The results shown in Figs. 3 and 4 for 01 = 20 and 25 degrees respectively are qualitatively similar to those of 
Fig. 2. The trends are, that as the body becomes shorter and blunter the fall in Mach number is reduced, but 
the pressure drop is increased. The distribution of heat addition remains much the same, but there is some 
reduction in the magnitude, although the temperature increase remains about  the same, partly because less 
heat per unit volume is needed to produce a given temperature rise as the pressure is reduced. In addition to 
these trends, there is the effect mentioned earlier that the upper limit of M 1 for positive heat addition is reduced 
as the body becomes blunter. 

The physical reason why the heat addition goes negative at sufficiently high M 1 follows from the forms of 
the density and pressure gradients given by (19) and (20). It can be seen that whereas the density gradient 
(1/Po)(dp/dO) is independent of Mach number, the corresponding pressure gradient (l/po)(dp/d0) is proportional 



to M 2, i.e. for given 01 to M~ z. Moreover dp/dO is positive so that the pressure falls in the flow direction at a 
rate that increases rapidly with M 1 , and eventually exceeds the rate appropriate to isentropic flow, thus leading 
to negative heat addition. 

4. Discussion and Conclusions 

Some examples have been given of exact solutions for shock-free flow with heat addition past axisymmetric 
base shapes. Such solutions are always of interest for comparative purposes, but those of the present report 
cannot be considered very suitable for practical applications in aeronautics where it is desired to reduce the 
base drag as cheaply as possible. 

One difficulty is that of obtaining satisfactory combustion. A stable flame is usually produced by forcing a 
flow separation and using the recirculating flow to carry some of the hot burning gases back to the separation 
point where they can maintain ignition. No such mechanism exists in the continuous flows of the present report. 

In addition, the efficiency in terms of reduction in drag for unit heat addition cannot be expected to be high. 
This tends to be true of all non-ductcd flows since there is no wall present to sustain a high pressure on one 
side of the flow (see Ref. 9 for example) and the flows of the present report are effectively non-ducted in that 
the pressure is constant with respect to r and falling with respect to c~. In thermodynamic terms the cycle has 
a very poor compression ratio. The same is generally true of base-burning involving separated flow, but there 
it may be possible to obtain some compensation in other respects. In separated base flow without heat addition 
there is an instantaneous pressure drop around the base corner for a supersonic free stream as the flow turns 
through a centred expansion, and the reduced pressure is roughly constant across the recirculating flow in the 
base region. Further downstream, there is a pressure rise as the converging flow is turned parallel to the axis 
to close the base region, so that the recirculating flow is subject to strong pressure gradients. Base-burning 
works by filling out the stream-tubes through heat addition, in which the recirculating flow is also hot, and 
the sudden expansion is reduced or prevented. It seems possible that if the heat can be added to relatively 
low-velocity air but at free-stream pressure, then the quantity of heat required (which depends on the mass 
flow of heated air) may be relatively small, l0 This may account for the experimental result that small quantities 
of heat added have a relatively large effect, but that further improvements in base pressure become increasingly 
expensive in fuel consumption. A similar result for the unseparated flows of the present report may also hold 
if'the boundary layer is sufficiently thick, but this is not easy to demonstrate analytically since there is no 
combination of m and n in equation (5) that closely resembles a boundary-layer flow. Base-burning with 
separated flow may also be efficient at sufficiently high Mach numbers if it takes place downstream of a strong 
shock, so that there is a large pressure ratio relative to free stream.11'12 Alternatively a high pressure ratio 
can be achieved through a shock without separation, 2,5 but again the efficiency may not be good since the 
flow field is not contained. 

In view of these arguments, it seems that heat addition is best used either in a duct or a separated flow region, 
where the flow is contained in some way. However, the results of the present report may possibly have some 
practical application to afterbodies which are intended for use without heat addition, except for occasional 
bursts of heat to reduce the drag for a short time. 
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