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Summary

A lifting surface theory method is described, capable of calculating the loading distribution on swept or
slender planforms in attached, subsonic flow. Preliminary numerical results are presented which demonstrate
that the method produces accurate, convergent loading solutions.
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1. Introduction

In the subsonic design of lifting wings, three-dimensional linearised theory makes a significant contribution.
Within the framework of linearised theory, a major problem is the accurate solution of the integral equation
for the loading on a thin lifting wing, i.c. the classical problem of lifting surface theory. In the classical lifting
surface problem, the downwash at any point in the plane of the wing is given as an integral involving the
(unknown) loading over the wing planform. There are two major problems involved in the solution of this
equation,

(a) the choice of a suitable representation for the loading distribution, and

(b) the accurate evaluation of the integral involving the loading representation.

For planforms with smooth edge shapes, ie. without slope discontinuities of leading or trailing edges,
suitable loading representations are well defined (except in the neighbourhood of tip corners), and numerous
lifting surface methods exist based on the pioneer method of Multhopp.! The method due to Garner? and the
N.L.R. method® in particular, show considerable improvement over the basic Multhopp method but both
these methods suffer from a loss of accuracy in evaluating the integral of the loading representation for down-
wash points in the neighbourhood of the leading edge.

The B.A.C. method* incorporates basically the same form of loading representation as used in the methods
due to Multhopp,', Garner,> N.L.R.,? etc. . .. but achieves superior accuracy, particularly for downwash points
in the neighbourhood of the leading edge, through the use of an integration technique in which the spanwise
integration (along local chordwise coordinate lines) is performed before the chordwise integration. The
accuracy that is achieved through this integration technique has been demonstrated in several documents, see
e.g. Refs. 4, 5 and 6 for results from the B.A.C. method. Also, the datum method for rectangular planforms due
to Ray and Miller” and the accurate method due to Sells® both employ this integration technique. However,
the methods of Ray and Miller” and Sells® are confined to the evaluation of the downwash for a known load-
ing; although recently Sells®'° has shown that his method can be combined with a lifting surface method of
moderate accuracy to iterate to an accurate solution of the lifting-surface equation for a restricted class of
wing geometries.

The lifting-surface theory methods developed for planforms with smooth edge shapes may be applied to
planforms with edge slope discontinuities, i.e. cranked planforms, if the discontinuities are first removed by a
suitable smoothing (or rounding) procedure. In fact, the B.A.C. method incorporating a rounding procedure
is in regular use in wing design and loading calculations on current aircraft projects.'! Although the use of a
rounding procedure is a satisfactory compromise in the treatment of swept wings, i.e. wings of moderate aspect
ratio, it is inappropriate to the treatment of slender wings, i.e. wings of small aspect ratio with pointed apexes.

These slender wings are relevant to the design of supersonic transport aircraft, quiet airbuses for high sub-
sonic speeds, and possibly strike/fighter aircraft with supersonic capability, and would operate normally with
wing flow which separates along the whole or part of the leading edge. Thus any theoretical technique for
treating the wing flow must take account of the formation of detached vortex sheets. However, a lifting-surface
theory method for treating the subsonic attached-flow problem would form an important stepping stone
towards a more involved theory incorporating the modelling of free leading-edge vortex sheets and their
interaction with the wing-loading distribution. Furthermore, if the flow is attached at some particular incidence,
as current design philosophy?® postulates it should be, the attached flow theory gives the lift slope and aero-
dynamic centre at this incidence.

The integration technique introduced in the B.A.C. method* for planforms with smooth edge shapes can be
applied equally well for planforms with edge slope discontinuities; however, the choice of a suitable loading
representation is a major problem. Although recent work by Brown and Stewartson,'? Taylor,'® Rossiter, 4
and Davies'® (nee Rossiter), which followed the -pioneer work of Germain'® and Legendre,!” succeeded in
accurately defining the local loading behaviour in the neighbourhood of a leading or trailing-edge crank, the
incorporation of the local behaviour into a suitable overall loading representation remained a major problem.

A lifting-surface theory method that incorporates the correct loading behaviour at the leading-edge centre-
line (apex) crank was developed at B.A.C. and is described in Ref. 18. The method was developed initially to
assess the feasibility of incorporating the correct apex loading behaviour into the lifting-surface integral equa-
tion. In order to obtain results within a reasonable time scale the class of planforms originally treated was
restricted to the cropped-delta type, and for a cropped-delta of aspect ratio 3 with 45 degrees leading edge
sweep, covergent loading solutions are presented in Ref. 18. The successful treatment of the cropped-delta
planform provided encouragement to extend the method to treat a wider class of planforms, and this extension
is described in the present report.

Section 2 presents the classical integral equation of subsonic lifting-surface theory and discusses in general
terms the method of solution. Section 3 discusses the derivation of a suitable loading representation and



highlights some inadequacies in the representation used in Ref. 18 which necessitated a change of coordinate
system in the present work. Section 4 describes in some detail the integration techniques employed and Section 5
presents results for a range of planforms.

The results presented in Section 5 were obtained using a suite of computer programs written in standard
FORTRAN and run on an IBM 360/65 computer. The programs are capable of treating symmetric pointed
planforms of general apex angle, with curved leading edges and smooth trailing edges, with or without a finite
tip chord. The leading and trailing edge geometry is defined through user-supplied subroutines, so that quite
general planforms (within the restrictions of the last sentence) can be treated. However, the results presented
in Section 5 are all for slender planforms, i.e. with the trailing edge normal to the free-stream direction; results
for swept planforms will be presented in a future report.

The work described in this report was carried out at B.A.C. Military Aircraft Division, Preston, under
research contract K5A/82 for the Procurement Executive, Ministry of Defence, and was monitored by
Mr. J. H. B. Smith of the Aerodynamics Department, Royal Aircraft Establishment, Farnborough.

2. The Basic Integral Equation

The basic integral equation of subsonic lifting-surface theory relates the normal velocity distribution (down-
wash) to the pressure difference distribution on a thin wing and may be written in the form,

1
%(Xn Vy) = —S—ifszCp(x, y).K(X, Y; M)dxdy. (1)

The coordinate system is defined in Fig. 1, w(x,, y,) is the normal velocity distribution (downwash), ACp(x, y)
is the distribution of pressure difference coefficient, (or loading), ACp = (Pigwer — Pupper)/GPU?),

S is the projected wing planform in the plane z = 0,

U is the free stream velocity

and

M is the free stream Mach no.

The kernel function, K, is defined by,
1 X
KX, Y:M)=—{1 — =],
(X.Y: M) Yz(l R) )

with

X = (X - xr)a

Y= (y - ys),

R = /X? + pY?

and where 2 = (1 — M?).

The classical lifting-surface problem is the evaluation of the loading from equation (1) for a prescribed
downwash distribution. Analytic solutions exist only for circular or elliptic planforms,'® so that for arbitrary
planforms numerical solutions must be sought. Only numerical solutions of the collocation type are con-
sidered here.

2.1. Collocation Solution

In the collocation solution of the basic integral equation, the loading distribution is represented by the sum
of a finite number of known functions with unknown coefficients, i.c.,

n—1m—1

ACp = Z Z aijCij(x7Y)' (3

i=0 j=0



Substituting the loading representation into equation (1) there results,

w 1 n—1m—1
U(xra ys) = ——8_775,;) j;o aijW/Ej(xr’ ys) (4)
where
Wiix,, y) = f ICij(x, y). K(X, Y; M) dx dy, (3
s

The functions C;j(x, y) will be termed ‘loading modes’ and the corresponding integrals defined by equation
(5) will be termed ‘downwash modes’. The problem has been reduced to solving for the unknown coefficients
a;; by satisfying equation (4) at mn suitably chosen collocation points, (x,, y,). The two major problems that
remain are:

(a) the choice of the loading modes, C;(x, y), and

(b) the numerical evaluation of the downwash modes, Wii(x,, ).

2.2. Loading Modes

In general, the downwash distribution on the planform is regular, i.c. it does not exhibit discontinuities or
infinities in value or derivatives. (Wings with deflected control surfaces are excluded here.) Thus, referring to
equation (4), either the downwash modes W, (x,, y,) must be regular; or else the sum of the modes must be
regular, ie. if discontinuities or infinities are contained in the modes then the coefficients a;; must be chosen
such that the overall coefficients of the irregularities are identically zero. An approach involving the latter
alternative was proposed in Ref. 20 but was found to be impractical to implement.

The first alternative, ie. that the individual downwash modes W, (., ys) are regular, is naturally preferable.
Thus the loading modes C; (x, y) must be chosen such that the downwash modes, defined through equation (5),
are regular.

For planforms with smooth edge shapes, (i.e. without slope discontinuities of leading or trailing edges), with
finite tip chord, suitable loading modes are readily defined. If x = x,(y), x = x(y) are the equations of the lead-
ing and trailing edge respectively, and y = s is the wing semispan (it is assumed that the planform is symmetric
about y = 0), then to ensure that the downwash modes are regular, the following conditions must be satisfied :

1

VX = x(y)

near x = x(y), Cijlx, y) ~ /xy) —x (6b)
near y = ts, Cifx.y) ~ /s =l (6¢)

near x = x\y), Cifx, y) ~ (62)

and for
- O0C,(x, . .
—sK<y<s, _%yy} is continuous. (6d)

Equations (6a) and (6b) may be inferred from two-dimensional thin aerofoil theory and (6¢c) from lifting-line
theory. Recently equations (6a), (6b) and (6¢c) have been verified three-dimensionally by matched asymptotic
expansion techniques.*'-> Equation (6d) expresses the physical requirement that kinked isobars cannot exist.
Defining the variables,

&= {f_lﬁ@_.} =
x(y) — x(»§° 1

then suitable loading modes may be defined as,

l —
Cxy) =/ —é—’é JT= A POO), ®

Z, )



where P(&), Q{n®) represent polynomials; e.g. in the B.A.C. regular planform method,*
P& =T2¢ - 1), Qfn’) = T,

where T,(x), —1 < x < 1, is the Chebyshev polynomial of the first kind.

For regular planforms, the downwash modes defined by equation (5) for the loading modes in equation (8)
are regular almost everywhere on the wing planform. However, Ref. 4 (and more recently Ref. 22) has shown
that the downwash modes exhibit a radial logarithmic singularity at the leading-edge-tip corners. To remove
this singularity, it is necessary to modify the definition of the loading modes in the neighbourhood of the
leading-edge-tip corners. The required behaviour of the loading modes in the leading-edge-tip corner-region
has been analytically inferred in Ref. 5 and verified by numerical experimentation in Ref. 23. However, the
wealth of results obtained by lifting-surface methods using loading modes of the form in equation (8) (see e.g.
Refs. 2, 3 and 4) indicates that the implicit local singularity in the downwash modes at the tip corners can
exist without serious detriment to the prediction of the loading elsewhere on the planform.

For planforms with slope discontinuities of leading or trailing edges inboard of the tip, the conditions on
the loading modes defined by equations (6a) to (6d) must still be satisfied. The variable ¢ defined in equation (7)
cannot be used in the definition of loading modes, since if x,(y) or x,(y) have slope discontinuities then so have
(0¢/¢y), and @C;(x, y)/@y. Thus the condition given by equation (6d) is not satisfied and hence the downwash
modes defined through equation (5) have implicit logarithmic singularities along the spanwise locations of
the edge slope discontinuities. Thus either the planform edges must be artificially rounded to remove the slope
discontinuities or else an alternative chordwise loading variable must be sought.

If the planform edges are not to be rounded, then it is prudent to analyse the loading variation in the
neighbourhood of the edge cranks. Through the concept of matched asymptotic expansions, the ‘inner’
problem of finding the linearised theory cross-flow potential in the neighbourhood of a centreline crank
can be reduced to an eigenvalue problem for the incompressible cross-flow around an infinite sector. This
latter problem was initially investigated by Germain'® who showed that the equation for the velocity potential
has eigensolutions of the form

G = 1ful 0, ),

with v,, > 0, where r is the distance from the apex of the sector, f,, is a function of the polar angles # and w, and
v,, depends only on the apex angle of the sector. The flow at the apex of a wing is dominated by the eigensolution
with smallest exponent, vy .

Several authors!%®!3'%!5 have studied the problem of calculating the values v,, for various apex angles.
The most comprehensive set of results is given by Davies.'®

Thus for a centreline apex crank, the loading, which is proportional to the streamwise derivative of the
potential, exhibits a variation of the form ACp ~ r™~ 'Fy(6, w, r) and this special functional behaviour must be
incorporated into the loading modes to ensure the regular behaviour of the downwash modes in the neighbour-
hood of the crank. For a centreline trailing edge crank and for cranks situated between the centreline and the
tips of a planform, the necessity for the incorporation of other special functional behaviours can be inferred.

To correctly treat planforms with leading and/or trailing edge cranks, the definition of the loading modes
thus requires the introduction of an alternative chordwise variable and the introduction of local functional
behaviours at the crank stations. For complex planforms with several cranks, it is difficult to envisage loading
modes of the global type, (i.e. each mode extends over the whole planform area), as being suitable to define
the loading distribution. Rather, loading modes of the local type would be better suited. Local modes extend
over limited areas of the planform and hence can represent local behaviours accurately without affecting the
loading behaviour in remote areas. Example of local modes are the fundamental cubic spline or B spline modes.
Roberts?* has successfully used these spline modes to represent both surface shape and surface source distri-
butions in the Neumann problem, and has demonstrated how to incorporate required singular edge behaviours
into the modes. However, for the limited class of planforms considered in the present lifting-surface-theory
method, global modes will be adequate.

2.3. Downwash Miodes

The downwash modes are defined by equation (5), for a particular choice of loading modes. Referring to
equation (4), the downwash distribution on the planform for a particular collocation order is represented by
a sum of downwash modes. In general (ignoring local singularities) the form of the downwash modes is similar



to the form of the loading modes, i.e. if the loading modes are based on global polynomials then the downwash
modes exhibit a similar behaviour. Since the downwash distribution is, by definition, the local incidence
distribution on the planform, then for wings with complex twist or camber distributions a large number of
downwash modes, (i.e. a high order of collocation solution) may be necessary to represent the downwash
distribution. If the twist or camber distribution exhibits rapid variations in local regions, then global modes
may be unsuitable and local modes, as mentioned in the last section, may be necessary to represent the loading
distribution.

It is required that the double integral in equation (5) is evaluated at the collocation point (x,, y;). To obtain
accurate solutions of the lifting-surface problem, high orders of collocation may be required (especially for
complex downwash distributions). In general, as the order of collocation is increased, the collocation points
approach the edges of the planform so that to obtain accurate solutions it is essential that the accuracy of
evaluation of equation (5) is unimpaired for collocation points in the vicinity of the planform edges. To maintain
accuracy for collocation points in the vicinity of the leading and trailing edges, it is essential that the first
integration in evaluating equation (5) be performed along coordinate lines that do not intersect these edges.
This integration technique was introduced in the B.A.C. method for regular planforms,* and is the fundamental
reason for the success of that method. The technique has since been successfully applied by Ray and Miller’
and Sells® to evaluate the downwash integral for a given loading. The accuracy that is achieved with the B.A.C.
method is well illustrated in Ref. 6, whilst Refs. 22 and 25 illustrate the inadequacies of conventional lifting-
surface-theory methods that do not incorporate this necessary integration technique.

3. The Loading Representation for a Particular Class of Planform

Section 2.2 above highlighted the problems associated with the definition of loading modes capable of
correctly representing the loading distribution for planforms with leading and/or trailing-edge cranks. For
complex planforms with several cranks the definition of the loading modes presents a formidable task. However,
if a restricted class of planforms is considered then the definition of the loading modes can be a practical
proposition.

The lifting-surface-theory method described in the current report is restricted to treating symmetric pointed
planforms of general apex angle, with curved leading edges and smooth trailing edges, with or without a
finite tip-chord. Thus a centreline apex crank is treated, but leading edge cranks outboard of the centreline
and trailing-edge cranks are not treated. These latter cranks can of course be approximately treated by the
incorporation of an artificial rounding.

Mathematically, the class of planforms is defined by,

x(y) = W), (9a)
and
xy) = gy*), (9b)

where f(y?), g(y*) denote even functions of the spanwise coordinate, y. In practice, the requirement in equation
(9a) can be relaxed, and leading edges of the form x,(y) = |y|f(|y|) have been treated.

The class of planforms includes most slender wings, e.g. gothics, mild gothics, cropped deltas, etc. . . . Swept
wings are included in the class if trailing-edge cranks are artificially rounded.

3.1. The Chordwise Loading Variable

Referring to equation (7), for regular planforms a suitable chordwise loading variable is given by,

é = X — xl(.V)
x{y) = x(y)’

so that lines of constant £ are defined by,
x = &x(y) + (1 = Ox(y). (10

It was pointed out in Section 2.2 above that this chordwise coordinate is unsuitable for cranked planforms
since for such planforms the lines of constant ¢ have discontinuous derivative with respect to y at the spanwise



locations of the cranks. For the class of planforms defined by equation (9), a suitable £ coordinate analogous
to the & coordinate above may be defined as

x* — x}(y)

$= 20 = 20y

(11)

From equation (9a), x?(y) = y*f %(»?), and is an even function of y, hence the lines of constant ¢ defined by,
x = {&x(y) + (1 — HxP(}* (12)

have continuous derivative across the centreline crank-station, unless & = 0. The line £ = 0 corresponds to
x = x,(y) and defines the planform leading-edge.

The chordwise coordinate defined by equation (11) for the class of planforms defined by equation (9) was
successfully employed in the B.A.C. lifting-surface-theory method for cropped delta planforms.!® A comparison
of the & coordinates defined by equations (7), (10) and (11), (12) for the cropped delta of aspect ratio 3 with
45 degrees leading-edge sweep is given in Fig. 2.

The results presented in Ref. 18 proved that the method of solution of the lifting-surface-theory problem
was successful, but certain inadequacies were apparent in the results. In particular, the downwash distribution,
obtained by substituting the loading solutions into the integral for the downwash equation (1), exhibited
relatively large discrepancies (compared with the defined incidence distribution) at the leading edge of the
planform near the centreline. Also, an apparent infinity in the downwash distribution was observed along the
centreline of the planform. This apparent centreline infinity (which is not of the logarithmic type associated with
kinked isobars) has been analytically isolated and is associated with the special local functional behaviour
assumed for the loading in the apex region. It is discussed in Section 3.2 below.

The loading solutions presented for the cropped delta in Ref. 18 were obtained using the standard Multhopp
chordwise distribution of collocation stations, i.e.

1 2rn
ér:i{l_cos(hp}—l)}’ r"l’zy""n (13)

where n is the number of chordwise terms in the loading representation, and ¢ is the coordinate defined by
equation (11). For n = 5, Fig. 2 compares these collocation stations with the usual Multhopp stations with 4
defined by equation (7). It is seen that near the centreline, the first chordwise collocation station defined by
equations (11) and (13) is relatively a considerable distance from the leading edge and hence the downwash
representation may be expected to be poor in that region. Several alternative collocation distributions have been
investigated subsequent to the work reported in Ref. 18, but the downwash discrepancy could not be improved
at the leading edge without introducing large downwash discrepancies elsewhere.

The fundamental reason for the leading-edge-downwash discrepancy is the choice of the ¢ variable in
equation (11). The chordwise loading variation is represented by polynomial modes in this ¢ variable (factored
by the appropriate singular edge variations) and hence, as discussed in Section 2.3 above, the downwash
distribution is represented by similar modes. At the centreline, from equation (11),

X2

°= xH0)’

and thus the loading (and hence the downwash) is represented by polynomial-type modes in the variable x2,
i.e. odd powers of x do not appear. These modes are clearly -unsuitable for representing general downwash
distributions.

Since the & variable defined in equations (7) and (10) is known to be perfectly suitable for defining the loading
modes for regular planforms, then for cranked planforms it is prudent to seek a chordwise variable that does not
diverge greatly from the regular planform £ variable but which satisfies the criterion of continuous y derivative.
For the class of planforms defined by equation (9), a suitable ¢ variable may be derived by analogy with
equation (10), through the definition of lines of constant ¢ as,

x = &x) + (1 = O{F0) + Eh&y*)i? (14a)

where h(¢, y?) is an even function of y (as yet arbitrary). It is readily seen that the lines £ =0, & =1 define



the planform leading and trailing edges respectively, and that the constant ¢ lines (apart from ¢ = 0) have
continuous derivative across the centreline crank station. It should be noted that, in general, the £ in equation
(14) cannot be defined explicitly as a function of x and y.

It is reasonable to require that dx/0¢ is finite at £ = 0, and it may be shown that this implies that h( y?) =
Eh*(&, y?), where h*(&, y?) is finite at & = 0. Thus the lines of constant ¢ are defined by,

x =&+ (1 = P + Er¥E yI)H (14b)

or

20 - P&y (149
() + /%0) + EHEYD

In equation (14c) the term in square brackets defines the constant £ lines as used for regular planforms (see
(10) above), hence the second term may be regarded as a perturbation on those lines and through the choice
of the function h*(&, y2), the form of perturbation can be controlled.

The present lifting-surface method employs a chordwise loading variable of the form defined implicitly in
equations (14b) or (14c), for |y| < 7, where j is a station in the range 0 < J < s. For |y| > J, the chordwise
loading variable of the form defined explicitly in equation (7) and implicitly in equation (10) is used. The
function h*(&, y?) is chosen so that at y = 7 the two sets of lines of constant ¢ are continuous in value and
derivative up to any required order. Thus the lines of constant ¢ are defined by, for |y| > y

x = [&x(y) + (1 — Ox,(0] +

x = [Ex,(0) + (1 — Ox(y)] (15a)

andfor jy| <y

x = &x(y) + (1 — O/ xFy) + E2AG* — y2) (15b)
or

20 - 946" -y
X(y) + /) + EAG? — ¥

x = [Exy) + (1 = Ox(] + (15¢)

At |y| = 7, the lines of constant ¢ are continuous in value and derivatives up to order (k — 1). The maximum
displacement of the lines defined by equations (15b) or (15c) from the usual percentage chord lines of equation
(15a) occurs at the centreline y = 0, for & = 4, and is given by,

A ok
Ax = \/;-y .
Thus the value of the constant 4 regulates the maximum displacement. A comparison of the ¢ coordinates
defined by equation (15), with 4 = 160, § = 0-6s and k = 4, and by (7), for the cropped delta of aspect ratio 3
with 45 degree leading edge sweep, is given in Fig. 3.

3.2. The Loading Representation

It is convenient to non-dimensionalise all coordinates by dividing by the semispan, s, and henceforth
X, X;, X, etc. . .. will refer to the non-dimensional values, (i.e. x/s, x,/s, x,/s etc. .. .).

The variable 5 = y/s will denote the non-dimensional spanwise coordinate, and x = x(x), x = x,(n) will
define the leading and trailing edges of the planform.

The loading representation is constructed from polynomial modes in the variables &, 5 (£ defined by equation
(15)) factored by appropriate singular functions to give the required functional behaviour at the edges of
the planform. At the leading edge (away from the apex) and at the trailing edge, the required behaviour is
given by,

1
near x = x(y), ACp~ —F—e—, (16a)

x = xi(n)



and

near x = x,(n), ACp ~ /x{n) — x, (16b)

respectively. However, the functional form given in equation (16a) cannot be incorporated directly because
x(n) is not an even function and thus 8/dn{1/,/x — x,(n)} is discontinuous across the centreline. Since, by
definition, x,() = |n|f(n?), then the alternative form,

1
near x = x(y), ACp~-——o—, (16¢)

x* — xf(n)

may be incorporated.
For planforms with finite tip chord, the required loading behaviour at the tips is given by

near |q] = 1, ACp ~ /T = 4% (16d)

However, for planforms with zero tip chord, the required loading behaviour at the tips has not been
analytically defined at the present time. The planforms with zero tip chord treated in the current report have
streamwise tips, i.e.

near |y =1, xn =Xy —a/l — 4%

where (x,7) = (X, 1) are the coordinates of the tips. For these planforms, the constant ¢ lines, defined
by equation (15a), (excepting the trailing-edge line, & = 1), have infinite streamwise derivative at the tips.
Numerical experimentation, reported in Ref. 23, implies that the loading varies in a regular manner as the
tips are approached along such ¢ lines. In the current method therefore, no special functional behaviour for
the loading representation in the tip regions is incorporated for planforms with streamwise tips and zero tip
chord.

The required special functional behaviour of the loading in the apex region was briefly discussed in Section 2.2
above. Using Legendre’s'” formulation of the basic cross flow solution given by Germain,'® Hewitt2® has shown
that the required local loading behaviour associated with the first eigensolution may be expressed in the form,

ACp ~ yo~ 1, ,1. , (17)

where

u=<c059—cosy , (18)

1 —cos@cosy

v is the semi-apex angle of the infinite sector, with cos 6 = x/r, and where Fy(u; y) is a regular function of u.
The coordinate u varies in value from zero at the leading edge to unity at the centreline; the factor u™* is
the familiar square root singularity in the loading at the leading edge.

Davies'” gives tables of values of v, and also of the coefficients of a cubic polynomial approximation to
Fo(u; y) for a range of semi-apex angle, y. Also given in Davies' are polynomial approximations to the variations
with y of vy and the coefficients of the polynomial approximation to Fy(u;7), so that these approximations,
vo and Fy(u; y) may be computed for arbitrary apex angle.

Since Fy(u; y) is a regular function of u, it would appear that it need not be explicitly included in a representa-
tion for the loading. In the lifting-surface-theory method for cropped delta planforms,'® alternative loading
representations including and excluding Fy(u ; y) were investigated, and it was shown that the loading representa-
tion excluding Fo(u: y) is unsatisfactory. In Appendix A of the current report it is shown that a local loading
behaviour in the apex region of the form,

ACp ~ r”“‘lﬂli)
uz

10



results in an algebraic infinity in the downwash on the centreline of the form,

W~ nvo— 1’

unless G(u) is identically the function Fy(u;7). Thus, the function Fy(u;y) must be included explicitly in the
loading representation. In practice, it is impossible to represent the function Fy(u;y) exactly in a numerical
method using a computer of finite word length, so that the singularities in downwash of the form w ~ "~
cannot be avoided in the current numerical method. However, by including the representation for Fy(u;y)
from Ref. 15 the singular effect in the downwash is so localised that it can effectively be ignored in collocation
solutions, provided that no collocation point is placed on the planform centreline.

The loading form in equation (17) was derived for an infinite sector in incompressible flow and represents
the local loading behaviour at the apex of a planform with linear edges. In order to generalise the form of
equation (17) for use with planforms with curved edges in compressible flow, the Prandtl-Glauert factor is
introduced into the definition of », and the coordinate u is generalised as follows: redefine,

X X
sl = — = ———,
r /X2 + B
cosy = x(n) x,(1)

nn /xEm) + Bt

then, after manipulation,

u ____{ x* — x;(n) } (19)
rx + x M/ Xt ) + Bn*

The definition of u in equation (19) is used in the current method, it reduces to the definition in equation (18)
for a planform with linear edges, in incompressible flow.

It will be noted that the leading-edge singularity of the form u~* includes the required leading-edge behaviour
expressed in equation (16¢), so that the latter is automatically included if the special apex form is incorporated
in the loading representation.

The loading representation in the current method is finally defined as,

ACp(x, ) = r*o™ ! ful ’y)\/ x{n) — x { }ACP*(X, "), (20)

with

(n—1) Gn—1)

ACp*(x,n) = Z Z a,; (28 — DT, ), (21)

where T,(z), — 1 < z < 1, is the Chebyshev polynomial of the first kind. The variable u is defined by equation (19),
and the variable ¢ through equation (15). The value vy, and the function Fy(u; y) are defined by the polynomial
equations (26) of Ref. 15; y the semi-apex angle is defined as arc cotangent {dx,(n)/dn} at n = 0. The \/1 — n?
term is included only for planforms with finite tip chord. It should be noted that for such planforms, no local
functional behaviour is included to cater for the leading-edge tip corner and thus a radial logarithmic singularity
exists in the downwash calculated for the loading in equation (20). However, as mentioned in Section 2.2 above,
this local singular effect can exist without serious detriment to the convergence of the loading solution.

4. Numerical Evaluation of the Downwash Modes

For convenience, relevant formulae are repeated here.
With all dimensions based in semispan, the basic integral equation is,

x¢(n) 1
(x,,ns f J ACp(x,n). P—— |_1 - ]dxdn (22)

xi{n) (
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with

R = \/(x - xr)z + ﬂz(’? - ’1s)2,

and where n = y/s.
The variable ¢ is defined implicitly through the definition of lines of constant ¢ as, for 7l > 7,

x = [&xn) + (1 — Ox(n)] (23a)

and for || < 7

x = {&xm + (1 = O/ xEm) + EAF* — n?} (23b)

or

(23¢)

211 - RN
= {[éx,(n) + (1 — Oxn)] + ¢ — QA@* — n*) }

x(m) + /xHn) + EAGE — n7)

Introducing the ¢ variable into (22), the basic integral equation becomes,

w 1 (x—x,)|[ox
o= - [ f A, e L () ane e

with (0x/0&) defined as follows, for || > 7

ox
( 3 é) [xe(n) — x(m)] (25a)

and for |y| < 7

dx -~ > &1 = &f(n }
Z) =<x(n) - + ¢ ST A L 25b
( Py {x (n) — /xi(n) f () 20T 0 (25b)

or
ox
( aé) {[x,(n) x(n)] +
LTI — Oxtn) + (1 = 28/xi () + ézf(n)]} 250)
xtm) + Ef ) xn) + /x¢m) + Ef )]
where
f) = A — n?. (25d)

It should be noted that the spanwise () integral in the basic integral equation is a finite part integral. In
equation (24) this finite part integration is to be performed first along the constant ¢ lines, which do not inter-
sect the leading or trailing edges of the planform. This integration technique was mentioned in Section 2.3
above and is essential if the double integral is to be evaluated accurately for collocation points in the vicinity
of the leading or trailing edges.

The loading is represented by a sum of loading modes in the form,

(n=1)(@m—1)

ACp(x, n) Z Z Cifx, 1), (26a)

12



with

Fylu:9) S\
Cifxm) = 1o =) — x g or - (TQE = D), (26b)
1
where
= /x4 Bz 2
and

X "xz(ﬂ) }
= . @7)
* {rx+x1(n)\/z 0 + B

The term /1 — #? is included only for planforms with finite tip chord.
Substituting the representation (26a) into equation (24), the basic integral equation may be written as,

w 1 n—1)(m-1)
ﬁ(xra ns) o Z Z au z](xr’ ns (283—)
with
_ 1 (x — x,)
Wixon) = [ e m)z[l S }( aé)d at (2sb)

The accurate numerical evaluation of the downwash modes W{(x,,#,) is a difficult task. The techniques
employed in the current method are described in this Section.
From equations (23a), (23c) the following relationships are defined,

{x — x(n)} = Ex(&n) (29a)
and
{xdm) — x} = (1 — Ox¥(&, n), (29b)
where, for |7} > 7,
Xt (&, m) = [x{m — x(n)] (29¢)
and
xHE ) = [xm — x/n) (29d)

and, for | < 7,

(29)

xHEn) = {[x,(m — )] + — =@ }

xi(n) + /i) + &f ()

and

(29f)

2
X&) = { D) — )] — £/ }

x(n) + /x}) + Ef )
with f(n) defiried by equation (25d).
13



Thus from equation (27),

pe { XHEMx + x(n)] } (30)

rx + x(n/x¢m) + Bon?)’

and hence from equation (26b), the loading modes are written in the form,

Ciflx,n) = ,/ \/1 — n*T(2¢ — DT ), (31a)

where,

Hixop) = 1 Folu: P/rx + () (/X + B 2\/)@*(6 ) (31b)

x + x,(1) xH&n)

Thus the downwash modes are written in the form,

W%,y f ,/—*T D)L, (&) . (32a)

with L, (¢), the spanwise integral, defined by,

r51 J( \/I*WTZJ H(X?’]

1 —
5) - n)z[l -° er)] an (320)

N.B. In equations (31a) and (32b) and in any expressions that follow, the term /1 — n?* is to be omitted
for planforms with zero tip chord.

The integrals defined in equations (32a) and (32b) are analogous to the integrals that occur in the lifting-
surface-theory treatment of regular planforms and which are extensively analysed in Ref. 4. Thus many of
the techniques employed in treating the regular planform problem may be applied to the current problem.
The main extra complication is due to the presence of the term H(x, ) .(dx/3¢) which precludes an analytic
-extraction of the finite part contribution to the spanwise integral.

4.1. The Spanwise Integration

It is convenient to divide the range of the spanwise integral into three parts. Thus write,

Lrs.j(é) = lLrs,j(é) + 2Lrs,j(é) + 3Lrs,j(6)’ (333)
where
1 a 1 m
ot = [ T3 ool - S (33b)
' d 1 -
2L f8) = f V1= Ty mH(x, n)(é) Y )2[1 _(x er)] dn (330
and

0 1 -
rsj f \Y% 1_ TZJ (az) (’1 -1 )2|:1 - (x R x"] d?], (33d)

and where 0 <5, <n, <n, < 1. (If y, = 1, then the integral,L,, ; does not exist.)
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In the integrals L, ;, 5L, j, the term (7 — 1,)* is non-zero and hence straightforward numerical quadrature
techniques may be applied. However, the term H(x, #)(0x/0%) exhibits rapid variations across # = 0 for £ small,
so that to economise on order of quadrature it is necessary to further subdivide the integral , L, ;.

Let,

Lo ) = j " G &) dn,
-1

where
i) 1 -
Gyo f&m) = /T — 12Ty mH(x, '1)(5%) S )2[1 b - xr)],
then write
lLrs,j(rE) = 11Lrs,j('£) + 12Lrs,j(£)7 (343)
where
-m
wLofd) = [ G fmdn (34b)
-1
and

mn
Laf® = [ GuEnds

m

= f {Grs,j(éa 11) + Grs,j(éa _'1)} d"

o

In ,L, (&), the transformation # = p? stretches the variable of integration in the region of # = 0 and
renders the expression more amenable to numerical quadrature.
Thus

NeTS
oL A8) = f 29{Gon (& 1) + G & — 1)} dp, (34¢)
¢

where n = p2.

The integrals ;,L,q ;, 12Lys > 2L4s,; are evaluated from the expressions (34b), (34c), (33c) respectively using
8 point Gauss-Legendre quadrature, with subdivision of the range if necessary. In the intervals adjacent to
n = +1, the transformations n = +(1 — p?) are first applied to remove the infinite derivative due to the
term /1 — #? (if present).

Consider the remaining spanwise integral, ;L,, ;, defined in expression (33d). Let {¢ = £,, 5 = n,} correspond
to the point {x = x,, n = 7}, then the term (x — x,)/R is written in the form,

LR R = e
Therefore
1 [1 = xr):| _{1—sen(€— <) + i ’
(n — 1y R (- ny)? R[(x — x,) + Rsgn (¢ — &)]
and thus L, is written in the form,
sLys; = {1 = sgn (& — &)}31Ls (€) + 3L (O (36a)
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where

n2 a d
3L £9) =£ JT= P TmH(x, ﬂ)(gg) TR (36b)

and

N2 a 2 d
32Les £8) = f V1= P TmH(x,n) (—x B dn (36¢)

66) R[(x — x,) + Rsgn (& — &)
The finite part integral is isolated in the integral ;,L; j- The integrand of the integral 3,L,, ; is regular but

exhibits rapid variations across n = 5, for |& — &,| small.
In the integral 5, L, ;, let

0
&, = T = PH(x, n)(ég).

Expanding G(&, #) in a Taylor series about 4 = #,,

0
G(&n) =G n) + (n— m){aG(é, n)} + (1 — 7)*R(E ;5 1,)

Ns

where

[G(&, n) — GG, 1)) — (7 — 1 ){(8/om)G(E, m)},,]

> (37a)

is a regular function of #, amenable to numerical quadrature. Thus the integral , 1Ly ; 1s written as,

Lp d 6
31L; (6) = G(¢, ns)J[ Tz,-(n)—"— + {%G(é n)}

n2 d "2
m (n —n)’ jg T, ) ! +f T{mR(¢, n;n,)dn. (37b)

s Y1 ('7 - '73) m

The first two integrals in equation (37b) are evaluated by recurrence formulae, given in Appendix B, which
also contains an expression for (8/dn)G(¢&, n).

The last integral in equation (37b) is evaluated using 8 point Gauss-Legendre quadrature, with subdivision
of the range if necessary. To ensure at least single length accuracy in the numerical quadrature, the expression
for R(¢,n;n,) in expression (37a) is evaluated using double length arithmetic throughout, and the integration
range is split at # = #, to ensure that |7 — #,| does not become indefinitely small. If an interval extends to
n = 1, the transformation (1 — #) = p? is first applied to remove the infinite derivative due to the term . /1 — n?
(if present).

It may be shown that the function ,,L, {¢) contains terms of the form, 1/ — ) and
(& —&)log|é — &, p = 0. Thus in evaluating 32L,5 (&) from equation (36¢) it is convenient to consider the
integral,

02 205
(€= ELnf®= [ TG n){ LA ) }dn, (38)

Rl(x — x,) + Rsgn (¢ — &)]

where

0
G(& ) = /1 - PH(x, n)(é :

The function (¢ — &)/R[(x — x,) + Rsgn (¢ — &)] occurring in the integrand of equation (38) is exten-
sively analysed in Ref. 4. It is shown in Ref. 4 that to achieve an accurate numerical integration of an integrand
including this function, then a stretching transformation of a particular type must first be applied if the order
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of numerical quadrature is not to be prohibitively high. An analogous transformation is applied in the current
problem, details of which are given in Appendix C. The transformed integral is in the form,

(€ — )3zl () = J 2 LG, nP(&, 1) dt (39)

where

(’7 - ns) = Ers(&) sinht — Drs(é)a

and where P&, 1), E, (), D,(£) are defined in Appendix C. The values t,, t, correspond to 4, 5, respectively.
The integral in equation (39) is evaluated using 8 point Gauss-Legendre quadrature, with subdivision of the
range if necessary. Since the function P, (¢, t) includes certain divided differences, the range of integration is
split at the ¢ point corresponding to n = #,, so that |y — n,| does not become indefinitely small. If the upper 5
limit corresponds to the tip, i.e. #, = 1, then the transformation (¢, — t) = p? is applied to remove the infinite
derivative due to the term ./1 — n? (if present).

4.2. The Chordwise Integration
The chordwise integral is defined by equation (32a), i.e.

1 ——
Wk, 1)) = f ,/%T,{zé 1)Ly (8) dE,
0

and L, (¢) is defined from equations (33a), (34a), and (36a) in the form,

{(€ = &)32Lrs ()}
€—2) ’

Lrs,j(é) = 11Lrs,j(€) + 12Lrs,j(é) + 2Lrs.j(é) + {1 ~— Sgn (6 - ér)}l&lLs,j(é) + (40)

the integrals ;;L,s;, 12Llssjs 2Losj» 31Ls,j> (€ — &)32L,s; being evaluated from the expressions (34b), (34c),
(33c¢), (37b), and (39) respectively.

As was noted in Section 4.1 above, the function ;,L, {(¢) contains terms of the form 1/(¢ — &) and
(€ — &)loglé — &, p = 0. Thus (§ — &)azLy f£) is of the form,

(€ = &)a2Les O = 32l j + Ssj- (€ = &) log|E — &) + O{( — &) log | — &I}

where 3,L,,; = lim,_ . {(£ — £)32L,;(9)}, and S, ; are given in Appendix C.
Thus L, (&) is written in the form,

L
ST+ 8, loglE — &, (41a)

Lrs,;(é) = L:l;,)(é) + = (5 6)

where L% () is evaluated from,

L:’;,](f) = 11Lrs,j(€) + 12Lrs,1(€) + ZLrs,j(é) + {1 — §gn (é - ér)}3 lLs,j(é) +

+[{(€ - ér)BZLrs,J(é)} - 32I:rs,j]
(€—¢&)

- Srs,j IOg |6 - érl (41b)

The chordwise integral (32a) is written as,

_ L1 — ¢ dé
Wi, m,) = f JrEomes - DEEADAE + saLuyf /508 = D= +
+S,s,,~f JEmeE - ioglé - &1de @
1]

The last two integrals in (42) are evaluated analytically using the formulae in Appendix D. In the first integral
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in equation (42), the function L% /) contains a term of the form ( — ¢,)log| — £/, and also because of th:
limiting form in equation (41b) cannot be evaluated for |£ — & arbitrarily small. However, if the range o
integration is splitat £ = £, then ‘open ended’ quadrature formulae (i.e. formulae that do not require integratior
points at the ends of the range), may be applied to the intervals 0 < £ < §, and &, < £ < 1.

The integrals
& 1 — 1 .
f S o - yLx ©de and f 1= Coe - Ly (o as
oV E Riir:

are evaluated using 8 point Gauss—-Legendre quadrature, with subdivision of the range if necessary. In the
interval with lower limit ¢ = 0, the transformation ¢ = p? is first applied to remove the singular term 1/\/2.
In the interval with upper limit £ = 1, the transformation (1 — &) = p? isapplied to remove the infinite deriva-
tive due to the term /1 — &

5. Solution of the Integral Equation and a Discussion of the Results
The solution of the basic integral equation has been reduced to the evaluation of the n coefficients a;; that
define the loading representation, by satisfying equation (28a) at suitably chosen collocation points. For the
loading solutions presented here, the collocation points (x,, ) are chosen as,

(x,, 1) = {H&,, 15 1) r=12,...,n; s=1,2,...,m, (43a)
where
1 2rm
=<1 — 4
g, 2{1 cos (Zn " 1)} (43b)
and
ST
= P 43
n, = COS (2'71 n 1) (43c)
are the standard Multhopp distributions, and where x(£, #) is defined by definition (23). The spanwise colloca-
tion stations (, s = 1, 2,...,m) all lie on the half planform # > 0 and do not include the centreline, n = 0.

With the collocation points defined by expressions (43) the coefficients q;; are evaluated from the integral
equation (28a) using a Gaussian elimination technique for the solution of simultaneous linear equations. To
facilitate comparison with previous solutions of the lifting surface problem, the loading solutions for particular
values of m, n will be identified by the values (m, n) where m = 2m.

Results are presented below for the following planforms, all at zero Mach number.

1. A cropped delta planform aspect ratio 3, 45 degree leading edge sweep, with unit downwash distribution.
Extensive results for this planform are presented in Ref. 18. Comparison of the results from the present
method with the results from Ref. 18 demonstrates that the present method gives correct results, and also
that it is an improvement over the method of Ref. 18.

2. Gothic planforms, aspect ratio 3, 1, 2, 3, with unit downwash distribution. Extensive results are presented
for the planform of aspect ratio 1 to demonstrate the convergence of the present method with increasing
number of chordwise and spanwise terms. Results are compared with the results of slender-wing theory for
the four aspect ratios.

3. A cambered wing of mild gothic planform. This is the wing denoted ‘wing 1” in Ref. 28. Its camber surface
is designed to support a given loading distribution at the attachment condition, when the load vanishes
along the leading edge. Results from the present method are compared with the design loading-distribu-
tion.

5.1. The Cropped Delta Planform

Figs. S to 10 compare the chordwise loading-distributions calculated by the present method and by the
method of Ref. 18 with (m, n) = (14, 4). Also included is the loading distribution calculated by the method of
Ref. 18 with (m, n) = (14, 9), which is a ‘converged solution’ in the chordwise sense for m = 14 spanwise terms.
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Outboard of # = 0-2, the results from the two methods are virtually identical. Inboard of # = 0-2, the (14, 4)
results from the present method are closer to the converged solution than the corresponding results from Ref. 18.

The superiority of the present method is due to the improved loading and downwash representations through
the choice of chordwise loading variable. Fig. 11 compares the chordwise downwash variation, along the first
spanwise collocation station (n, = 0-1045), calculated from loading solutions with (m, n) = (14, 5). Fig. 12
compares the spanwise downwash variation, along the first chordwise collocation station (£, = 0-0794),
calculated from loading solutions with (m, n) = (16, 5). The distributions of collocation points are compared
in Figs. 13 and 14 respectively. The spanwise downwash variations from the two methods are very similar and
are dominated by the effect of the singularity in the downwash at the leading-edge tip corner.

However, in the chordwise sense the present method shows a considerable improvement over the method
of Ref. 18 in that the downwash discrepancy at the leading edge is greatly reduced.

5.2. The Gothic Planforms
The family of gothic planforms are defined by the leading and trailing edge equations,

x{n) = CR{I RV 1 — ’?2}, (44a)

and
x{1) = cg, (44b)

respectively, where cp, is the root chord. The leading edge may be expressed in the alternative form,

1= n(x) = (f—){ 2- (E’i)} (440)

The geometric mean chord and aspect ratio are,

2 3
C = =Cg, AR = —.
3 Cr

The planforms of aspect ratio 3, 1, 2, 3 are illustrated in Fig. 15.

(a) Convergence Demonstration for AR = I, planform

Loading solutions have been calculated with m = 8, 12, 16 to demonstrate the convergence with increas-
ing spanwise terms, and with n = 5,8,9 to demonstrate the convergence with increasing chordwise terms.
Table 1 presents a summary of the overall lift coefficients, C,, chordwise centre of pressure, Xac/¢, and span-
wise centre of pressure, #, calculated from the loading solutions. For a fixed value of m, chordwise convergence
to within 0-03 per cent is achieved with n = 5. For a fixed value of n, the spanwise convergence is slower, but
convergence to within 1 per cent is achieved by m = 16.

Figs. 16 and 17 illustrate the spanwise loading variation and the cross loading variation respectively, calcu-
lated from the loading solutions. The spanwise loading and cross loading are defined as,

c(m)Cprln) _ __1‘ w(

— - ACp(x,n) dx 45
cC, cC, ) U (43)
and
1 ni{x)
DH(x) = f ACp(x, 1) dn, (46)
2 = ni{x)

respectively, where c(y) is the local chord. For a fixed value of m the results for different values of n are virtually
indistinguishable and are plotted with the same symbol. For increasing m the results show a stable convergence
trend.
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Figs. 18 to 21 illustrate the chordwise convergence of the loading distribution at four spanwise stations with
m = 8, and Figs. 22 to 25 illustrate the chordwise convergence with m = 16. The loading distributions with
n=9and m = 8,12,16 are compared in Figs. 26 to 29.

Fig. 30 illustrates the spanwise convergence of the loading distribution at three chordwise stations with
n = 5,and Fig. 31 illustrates the spanwise convergence with n = 9. The results are plotted against the variable n*
defined as,

n*=— (47)

for constant values of x. The loading distributions with m = 16 and n = 5, 8, 9 are compared in Fig. 32.

The results presented in Figs. 18 to 32 demonstrate the excellent convergence characteristics of the method.
As is the case with regular planform solutions (see e.g. Refs. 4, 5), spanwise convergence trends are slower than
chordwise convergence trends, but the results presented show a stable trend towards full convergence.

(b)y Comparison with Slender Wing Theory

According to Slender Wing Theory, the loading distribution on a slender planform at uniform incidence, a,
in incompressible flow is given by,

ACp _ 4nx) dnfdx
« i) -

where n = n,(x) is the leading-edge equation. From the loading distribution given in equation (48), the lift
coefficient and spanwise centre of pressure can be derived, independent of planform shape, as

(48)

C, = gAR, 7= (49)

For the gothic planforms, with #, defined by equation (44c), the chordwise centre of pressure can be derived as

X
29 _ o7, (50)

C

From equation (48), the cross loading can be derived as,
D¥(x) = —nlx)——. (51)

The slender-wing results equations (48) to (51) are compared below with the results calculated by the present
method for the gothic planforms of aspect ratio £, 1, 2, 3. The results from the present method may be considered
as exact results if the collocation order is sufficiently large. From the convergence results on the aspect ratio 1
planform, the collocation order (m, n) = (16, 5) is sufficient. This order should be sufficient also for the higher
aspect ratios. For the aspect ratio , less spanwise terms and more chordwise terms should be required to
obtain a reasonable degree of convergence, since for equal semispans the planform is twice the length of the
aspect ratio 1 planform. To ensure a reasonable degree of convergence, the collocation order (m, n) = (12, 16)
has been chosen. Thus the collocation orders of the solutions presented are as follows:

Aspect Ratio Collocation Order (m, n)
3 (12, 16)
1 (16, 5)
2 (16, 3)
3 (16,5)
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Table 2 compares the values of lift coefficient, chordwise centre of pressure, and spanwise centre of pressure.
The variation of lift coefficient with aspect ratio is illustrated in Fig. 33. The total lift is overestimated by slender-
wing theory but the results indicate that the spanwise distribution of lift is estimated quite accurately, the
chordwise distribution not so accurately.

The chordwise distributions of lift (cross loading) are compared for the four aspect ratios in Fig. 34. The
quantity compared is ¢2D*(x), which according to slender-wing theory is independent of aspect ratio.

Finally, Figs. 35 and 36 compare the slender-wing loading-distributions with the lifting-surface results at
three chordwise stations for the two smallest aspect ratios.

Clearly, the smaller the aspect ratio, the more accurate are the slender-wing-theory results, so that the
results presented can be taken as illustrating both the limitations of slender-wing theory with increasing aspect
ratio and the accuracy of the present method for small aspect ratios.

5.3. The Cambered Mild Gothic
The mild gothic planform is defined by the leading and trailing-edge equations,

o =55(2) - (2] (52)

X, () = cg, (52b)

respectively, where cy is the root chord. The particular planform treated here has cp = 2-476167, which
corresponds to an aspect ratio of 1-385, and is shown in Fig. 37. A curve fit to express the leading-edge equation
in the form x = x;(n) is incorporated in the method since (52a) cannot be inverted in closed form.

For this planform, warped (i.c. cambered and twisted), mean surfaces have been derived for specified loading
distributions, using the method of Ref. 29, and are described in Ref. 28. The loading (c) of Ref. 28 is chosen
as a datum here and loading solutions have been calculated for the corresponding warp distribution. The
downwash values ( — 0z/dx) were taken from Ref. 30.

Table 3 compares the overall lift coefficient, chordwise centre of pressure and spanwise centre of pressure
for the datum loading distribution and for the loading solutions obtained from the present method with
m = 8,16 and n = 8, 9. Figures 38 and 39 compare the spanwise loadings and cross loadings respectively.
For a fixed value of m, the results indicate a reasonable trend towards chordwise convergence. However,
large differences are apparent between the results with m = 8 and m = 16, and between those results and
the datum.

Figures 40 to 43 compare the datum loading distribution with the (16, 9) loading distribution at four
spanwise stations, and Figs. 44 to 48 compare the distributions at five chordwise stations. The results indicate
that the present method cannot reproduce the datum loading distribution in the neighbourhood of the centre-
line or apex, although the results in other regions are quite good. (It should be noted that the datum loading
distribution vanishes along the edges of the planform and that the present method assumes an explicit infinity
along the leading edge.)

Results obtained for this planform with unit downwash distribution have shown that with (m, n) = (16, 9)
the loading solution obtained is very close to full convergence. Thus, in the present case, the poor convergence
is due to the form of downwash distribution.

The downwash values from Ref. 30 are plotted in Fig. 49 against x/cg along lines of constant n*, defined
by equation (47). The variable #* is an angular coordinate in the apex region, with the apex corresponding to
x/cg = 0and —1 < n* < 1. Thus Fig. 49 shows that the warp surface has conical form in the apex region.

In the present method the downwash distribution is represented by polynomial-like modes in the variables
¢, . The variations along lines of constant » are shown superimposed on the downwash plots in Fig. 49.
Along these lines the downwash distribution exhibits increasingly rapid chordwise variations in the leading-edge
region as  becomes progressively smaller. The form of these chordwise variations is not amenable to representa-
tion by the downwash modes employed in the present method. To illustrate this point, Fig. 50 compares the
datum downwash distribution and the downwash calculated from the (16,9) loading solution, along the
most inboard spanwise collocation station for m = 16. If the order of spanwise collocation is increased, so that
the most inboard spanwise collocation station is closer to the centreline, then the downwash representation
will deteriorate further.

In order to treat downwash distributions due to conically cambered surfaces, it would be necessary to
explicitly couch the loading representation (and hence implicitly the downwash representation) in terms of
modes which are functions of conical-type variables. Although such an approach is possible, it would of course
require a considerable revision of the present method.
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6. Concluding Remarks

The lifting-surface-theory method described above has been shown to produce accurate, convergent loading
solutions for plane wings with pointed apices, curved leading edges and smooth trailing edges. The method is
less successful for wings with conical camber. The problems described in defining a suitable loading representa-
tion inhibit the extension of the method to treat more general planforms, e.g. with trailing-edge cranks or with
more than one leading-edge crank, although such an extension is theoretically possible following the guidelines
described above.

Numerical results have been presented for a limited range of planforms of the slender type, sufficient to
demonstrate the accuracy of the method. Further results and applications of the method, including results for
swept wings will be presented in a future report.
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A

A, (&)
AR
Qij
as(&)
By(¢&.n)
C; J{xa 1)
Clx,n)

CL
Cri(n)
c(n)

C

Cr
D*(x)
D<)
E. (%)
Fo(us y)
F. (&)
fn)

fo%

Jo(6)
Jul0, @)

G(&,n)

Grs,j(é’ ’7)

H(x,n)

h(¢, y*)
h*(&, y?)
K(X,Y; M)
k

L, ()

LIST OF SYMBOLS

Parameter in definition of ¢ coordinate, see equations (15), (23).
{x(& 1) — x(&, nI}AE — &), see Appendix C.
Aspect ratio.
Unknown coefficients in loading representation
{BX(&, 1) + B}, see Appendix C.
{x(¢, ) — x(&,n)}/(n — ny), see Appendix C.
Loading mode.
Pressure coefficient. The loading,
AC, = {Cp 1pper suraee — C upper surface )
Lift coeflicient.
Local lift coeflicient, see equation (45).
Chord function.
Geometric mean chord

Root chord.

Cross loading coefficient, see equation (46).

‘See equation (C10).

See equation (C11).
Regular part of loading behaviour in apex region, see equation (17).
See equation (C12).
Function in definition of ¢ coordinate.

f ) = A@G* — n?), see equation (25).
Function defining leading edge.

x(y) = |y1f(»*), see equation (9).

Function defining velocity potential behaviour in apex region, see equation (A-7).

Eigenfunctions of cross flow solution.
ax

1 — p?H(x,p)| =]
V1 —n"H(x n)( Y

Integrand of spanwise integral.

TZ (’7) (X - xr)
G, A& 1) = A .
rs,j(éa ’7) G(ia ’7) (1’] — ns)z[ R ]

Function in definition of loading modes, see equation (31).
General function in definition of £ coordinate, see equation (14).
h(E, y?) = Lh¥(& ).

Kernel function in basic integral equation.

Parameter in definition of £ coordinate, see equations (15), (23).
The spanwise integral, see equation (32).

Prefixes, e.g. | L, (&), denote splitting of range of integration into sub regions.
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L A9
32l
M
m

in

P.(¢.1)

R
R(&,n;ny)

r

iy

N

rs,j

T(x)

WX, 1)
w

X, ¥, 2z

(%, y3)

X

xi(y), x:(n)
xAy), x{n)
X (), x*(n)
Xac

LIST OF SYMBOLS (continued)
Regular part of spanwise integration, see equation (41).
Coefficient of 1/(£ — &) arising from spanwise integration, see equation (41).
Mach number.
Number of spanwise collocation stations on the full planform.

Number of spanwise terms in loading representation. Number of spanwise collocation
stations on the half planform.

Number of chordwise terms in loading representation. Number of chordwise collocation
stations.

Function arising from stretching transformation of spanwise integration variable, see
Appendix C.

VX% + BrYR
Regular part of integrand of finite part integral, see equation (37).
Radial distance from apex in incompressible flow. ,/x? + 21? in compressible flow.

Projected wing planform area in plane z = 0.
Coefficient of log |£ — ¢,| arising from spanwise integration, see equation (41).
Wing semispan.
Chebyshev polynomial of first kind, -1 < x < 1.
Variable of integration of transformed spanwise integral.
(n — 1) = E(§sinht — D.(&).
Integration range of transformed spanwise integral, see equations (39), (C-18), (C-19).
Value of ¢ corresponding to n = #,.
Free stream velocity.
Angular variable used in definition of apex loading behaviour, see equations (18), (19).
Downwash mode.
Downwash.
Right handed set of cartesian coordinates, with origin at the wing apex.
Collocation point.
(x = x,).
Leading edge coordinate.
Trailing edge coordinate.
See equation (29).
Chordwise centre of pressure.
A
Parameter in definition of £ coordinate, see equation (15).

Wing incidence.

V1 - M2
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LIST OF SYMBOLS (continued)

Semi-apex angle in incompressible flow.

cos™! {x,(n)/\/W} in compressible flow.
Non-dimensional spanwise coordinate, = y/s.
Spanwise collocation station.
Parameters defining split of spanwise integration range, see equation (33).
Leading-edge coordinate.
/).
Parameter in definition of £ coordinate, see equation (23).
Spanwise centre of pressure.
Angular variable, cos & = x/r.
Eigenvalues associated with the infinite sector problem.
Smallest v,, which gives dominant term of loading in apex region, see equation {17).

Non-dimensional chordwise variable. £ = 0, ¢ = 1 define the wing leading- and trailing-
edges respectively. Several alternative definitions are given in the text. The definition
incorporated in the current method is defined by equation (23).

Chordwise collocation station.
Free stream density.
Velocity potential.

Eigensolutions for velocity potential in cross flow.
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APPENDIX A

The Downwash on the Centreline due to the Loading at the Apex

For a planform with straight leading edges and pointed apex, let the loading in the apex region be defined by,

ACp:rm—IE%l (A-1)
u

where

r=./x*+ 7%

cos @ — cosy
U= ———>,
1 — cosfcosy
y is the semi-apex angle and cos 8 = x/r.

v, depends on y, and G(u) is an arbitrary function of the variable u. (The zero Mach number case is considered

here.)
The downwash due to the loading (A-1) is, from equation (1),

w 1 1 X
—(x t’: vo~ — — Sdx dn. A-2
D( r’ns) 875 J‘ Lf"L 1’] - 1’]5)2{ R} d"’ ( )

It may be shown that the contribution to the downwash from X/R term in equation (A-2) is regular, so this
term is ignored in the present analysis. Consider the integral,

,Gw) dxd
Wi(x,,n9 j’: J u(%) (1 — '171

which by definition is,

Wix,,n) = — lwm—mwm (A-3)

Let S be limited to a region symmetric about the centreline, including the station n = 5, (> 0), bounded by
the value x = B;ie. S is defined by,
xmM<x<B —-A<n<A

The region S is illustrated in Fig. 4. Since r, « are symmetric about # = 0, then from equation (A-3),

W(x, 1) = f f S 1og In — 2l dx dn, (A-4)
xi(n)

o2

and transforming to (r, §) coordinates, (see Fig. 4),

62 G(u) R(8)
W , - St va 2 12 — 2 -
(x,, 715 p L _s J; rolog |r? sin® 8 — n7| dr d6, (A-5)
where, for
A B
0<fO<tan™'|Z), RO =—7,
an (B) ©) cos @
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and for

A A
SRS =
tan (B) 6<vy R(6) Sn®

Expanding the term log |r* sin® @ — 2| appropriately for r sin § < 7, and r sin 8 > 1, it may be shown from
equation (A-5) that,

Y Glud
vo+ 1 f (w) d§ + (Regular terms),

52
W(X,,ﬂs) = Cla—nzm 0 u% Sinvo+1 0

;
=C zainsns”” L % + (Regular terms), (A-6)
where 0, = tan™ '(y,/B), and C,, C, are constants.

Thus for arbitrary G(u) the function W(x,, ,) contains a singularity of the form =1, (v, <1), for 1, = 0.
This singularity may be observed in the downwash modes given in Ref. 18 for the loading modes that exclude
the function Fy(u: y). It is not apparent in the downwash modes given in Ref. 18 for the loading modes that
include the function Fy(u;y), but further numerical results obtained since the publication of Ref. 18 indicate
that the singularity is present although its effect is noticeable only in a very small region surrounding 5, = 0.

The load in the apex region is related to the potential on the upper surface by,

0
ACp = 4.

Davies'* shows that for the potential corresponding to the first eigensolution of the infinite sector problem,
which is of the form,

¢ = rfo(®), (A-7)
if the loading is written in the form,
ACP - rVo— ! FO(MA_; y)v
uz
then,
Folusy) _ fr o0 | x
S5 ={; 2 +;A@}. (A-8)
(]
Now,
o) _ _sin 6 dfy(0)
ox rde
Therefore
Fo(lii 7) _ {fo(e) cos ) — sin dfo(g)} _
u* ve dO

If G(u) in equation (A-6) is replaced by F,(u;y), then

a ¥
Wi(x,,n) = C2—~;1:°f { Jo(9) cos § l dfow)} df + (Regular terms),
05

on, sin** 19 ysin™@ 4

0 vood| fol®)
—c, L[ -4 0 + (Regular term
25115’15 L dG(v sin* 0 d6 + (Regular terms)
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0 ol So® T
= —ngn—sn;[ﬁv—o—ﬁ . + (Regular terms),

d { n:(JfO(as)

27 LY
ons {vsin™ 6,

} + (Regular terms),

since fy(y) = 0.
Therefore

C,cos? 0, & (B tan 0, fy,(0,

= = Regul
W(x,,ny) B ags{ Vo s 6, + (Regular terms)

CoB™ | 1 dfo(8) | vofolf)sin8

= > = : Regul . -
Vo {cos”" 0, do, cos™ 16, + (Regular terms) (A-9)
Now from Ref. 14,
df;
fo0) =1, and d—g =0 for =0

Hence for 8; = 0, i.e. on the centreline 7, = 0, the first term in equation (A-7) vanishes and thus W(x,, ,) is
regular at 5, = 0.

Thus if the loading in the apex region is chosen to be of the form in equation (A-1) then the function G(u) must
be identically the function Fy(u; y), which has the special form defined in equation (A-8), if the inferred downwash
distribution is to be regular at the centreline. Since in the method of Ref. 18, and in the current method, a
numerical approximation for Fy(u; y) is incorporated, it is impossible to ensure that the relationship defined in
equation (A-8) is exactly satisfied and hence to ensure that the first term in equation (A-6) vanishes. Thus in
the method of Ref. 18 and the current method, a singularity of the form 5~ ! is predicted in the downwash at
the centreline. However, as noted above, if the term Fy(u; 7) is included in the loading representation then the
effect of the singularity is noticeable only over a very small region surrounding 5, = 0. The effect on colloca-
tion solutions is negligible, provided that no collocation point is positioned on the centreline.
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APPENDIX B
Expressions Required in the Evaluation of the Finite Part Integral

From equation (37b), the evaluation of the finite part integral requires the evaluation of the integrals,

I N )
RMJ‘if&Wm—nf’ (B-1)
n2 dﬂ
/ = T. L E— B-2
0,1 izM%_m’ (B-2)

and of the function,

0
57; G(é’ 1”),
where
0
aam=d1—%m&m&3,
with

H(x,n) = ro” Fo(u; }’)\/rx + xz(ﬂ)\/xlz(n) + B2’?2/X,*(f, i

Jx + x(n) X&)’

r=./x*+ B*n? Fou;v) is defined as a cubic in the variable

y ={ x* — xi(n) }
rx + x(n/xZ) + BPn* |

and x, x;* are defined in equations (29). For planforms with zero tip chord, the term /1 — #? is omitted.

B.1. Evaluation ef Pi(n,), Q{n,)
Using the recurrence relation for the Chebyshev polynomials,

sz(") = 2(2712 - 1)T2(j— 1)(’1) - Tz(j—Z)(’?)a (B-3)

the following recurrence relations may be derived,

Pj(ﬂs) = 2(2’73 - I)Pj— 1ng) — Pj-z(ﬂs) + 8’1st— 1(ng) + 4Rj—1> (B-4)
Qiny) = 220 — DQ;_,(ny) — Q;-,(n,) + 45, ,(ny), (B-5)
where
02
R,= [ Tfman, (B-6)
m
and
Sn) = |+ )Ty o dn (B-7)

m
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The expressions (B-4), (B-5) are valid for j = 2, with initial values,

"y 1 1
P = = — , B-8
ol w1 — 1) {(772 ) n - m)} (B8)

" dp N2 — s
s P 1 —|» B"g
QO(nS) m (77 - 7]5) o8 Ns — My | ( )
P(ny) = 2n2 — DPo(n) + 4n,Q0(n) + 2(n, — 1)), (B-10)
and

0,(n) = 2nZ — DQylny) + 2ndn, — 1)) + (13 — n3). (B-11)

The integrals in definitions (B-6), (B-7) are readily derived using the properties of Chebyshev polynomials
(see e.g. Ref. 27).

1 T2j+1(’1) sz— W |™ .
P =5 - fi z 1, B-12
i 2|:2j+1 =1, izt (B-122)
with
Ro =y — my). (B-12b)
U T Th-on) ™ .
S- — R - 2j+2 _ 2j—-2 f 2 _
n) =nR; + 4[ 2+ 2 2-2], or j=2, (B-13a)
with
Solng) = nRo + Hn3 — ni), (B-13b)
and
Si(ng) = 1Ry + 16l Tam)]i2. (B-13c)
B.2. Evaluation of d/dy G(&, )
To evaluate (8/04)G(&, 1), it is convenient to write,
G(&, n) = g,(Mg(mg3(mga(mgs(nge(n) (B-14)
where,
g.(n = /1 —n*> (or 1 for zero tip chord), (B-15)
galn) =71, (B-16)
ga(n) = Fou; 7), (B-17)
rx + x(n)/xi(n) + Bn?
= ) B-1
g4(n) \/ a— (B-18)
X (&, m)
= B-19
80 = \sren (B-19)
and
ox
g6(n) = 3| (B-20)
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Then, if g,() and dg,(n)/8n have been evaluated, G(&, ) and (8/8n)G(¢, 1) are defined by the followin g algorithm:
(a) Set G, =1, Set G, =0.
(b) Fori=1,2,...,6

gi(n)
Set Gy =Gomg "+ Gigfn),  Set Go = Gogifn).
0G(¢,
© GEn =6, CmP_g,
7
Expressions for dg,(n)/dn are given below.
d _
g =T-n or 1, T o o (B-21)
am L J1—n
- 0g(n) _,0r
— p¥O 1’ — — 1o 1__’ -
g =r o (vo — Dr P (B-22)
where
o 1{ ox N
%—;x%+ﬁn). (B-23)
x is defined by equation (23), from which, for || > 7,
0x dx,(n) dx(n)
hadga 1 — _
an [é dn +(1-9 an (B-24a)
and for |y < 7,
d — &1 —
ox _ {[é X g é)dxz(n):l L -8-9
on dn dn | 2/x}w) + &f )
) [ Yoldsinyan __ df(n)}}’ (B.24b)
{xfm) + /xim) + Ef )} dn
where
fn) = A — n?), (B-25a)
and
dfd—:?) = —2kAn(i{? — p3) L. (B-25b)
0gs(m) _ dFo(u;y) Ou
= M = . — _2
g3(n) = Folu;y), dn a an (B-26)
The expression used for Fy(u;y) is of the form,
Fou;y) = ag(y) + a,(nu + a,(Du? + az(yw’, (B-27a)
where the afy) are taken from Ref. 15.
Therefore
dFy(u;
0‘3—”” = a,(y) + 2a,(y)u + 3as(y)u’. (B-28a)
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It is convenient to introduce

rim) = /%) + B, (B-29a)
with
drn) _ 1 [ @50 g } B-29b
an {"“’” B (B-29b)
then
x* — xi(n)
= WY & B"30
“ {" X + rl(r’)xl(")} ( a)
and,

ou _ [{2x(9x/0n) — 2x,(n)[dx(n)/dn]} — u{r(@x/dn) + x(@r/0n) + ri{n) [dx(n)/dn] + xi(m)ldr(n)/dn]}]

B-30b
o {rx + rdn)x(n)} ( )
() = rx + r{mxn)
st X + x(n)
[{r(ax/an) + x(8r/on) + rfm)[dx(n)/dn] + x(n)[dr(n)/dnl} — g (,1){5X/5n + dxz(n)/dﬂ}i‘
oaln) _ rx + () Ut x) "
on 2\/x + x(n) (B-3D)
I EA ()
gS(r’) - \/x*(é 7]),
0gsm) _ 1 {x(& m[0xH(E, m)/om] — x(& m)[oxi(e, n)/on} (B-32)
on 2 X X )}
x*(&, 1), xX(&, n) are defined by equation (29), from which, for || > 7,
oxF(&n) _ 0x(Gm) _ | dxdn) _ dxn)
an on dn dy
therefore
0
gs(m = 1, -ga—"‘"(i) =0, (B-33a)
and for |g| < 7]
axHE ) [dx,(n) dx;(ﬂ):| . a-9 { n)[dx,(n )/dn] _df (11)} (B-33b
= - -33b)
n dn dn ) + ézf (1) SXHm + Ef o)
oxFE,n) _ [dx,(n) _ dx,(n)} { 2f () [dx,(n)/dn) _df (11)} (B-33
= -33¢c)
on dp dy (n) JxH) + EF () SxE) + Ef )y dn
ox ogsln) _ 32
g6lh) = (a é) o ( 37 6”). (B-34)

(6x/0&) is defined by equation (25), from which, for || > 7,

’?x dx(n) _ dx(n)
(65 011) [ dn dn } (B-35a)

35



and for |n| < 7

( 9x ) _ [dx,(m _ dx,(n)] N ¢ x
ekanl | dy dn 2/ x¢m) + Ef ()

: - df ()
df (n) 2 fdxydn) (L= 9ft) [zx(n)""’(”)w?—]} (B-35b)
X{(z_w dn " (et + /i + e L) + EFn T an o
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APPENDIX C

The Transformation of the Spanwise Integral, and the Singular Terms Arising from the Spanwise Integral
C.1. The Transformation of the Spanwise Integral
The integral considered here is defined in equation (38),

_[" &~ &)
@—amu%a-L mwa@ﬁMu_m+R%M5_Qﬁw. (1)
Let x, as defined by equation (23), be denoted as x(&, #), so that x, = x(£,, ,). Define,
_ X(f, ﬂs) - x(ér’ ﬂs)
A8 = =) , (C-2)
and
B (é 7]) — x(é’ 7’) - x(é’ ’15) (C-3)

(7 — )

A,(8, B(&, n) are regular functions and explicit formulae may be derived for their evaluation using the
analytic definition of x(&, #) from equation (23). However, for [£ — £ |, |y — #,| not extremely small the functions
may be evaluated to single length accuracy if x(&, ), x(&, %,), x(&,, 5,) are evaluated to double length accuracy.
For | — ] =0, and | — g, = 0, the limiting values are,

ox(<, n,
Aty = {2} (-4
E=4r
and
0
m¢m={i%@}_. (C-5)

Incorporating equations (C-2) and (C-3), (x — x,) may be written in the form,
(x — x,) = (1 — nIBLE, M) + (& — {)A(8),
and writing.
By(&,n) = B{& 1) + (n — n)CL&, ),
then
(x — x) = {1 — n)BL& 1) + (& = E)ALE)} + (n — n)*C(&E ), (C-6)

with C(¢&, n) by definition,

Bs(éa ’7) - Bs(éa ns)

C&m = —

Incorporating equation (C-6), R may be rewritten,
R = {(x — x)* + Ay — n)*}?
_ 1 [(’1 - r’s) + (6 - ér)Bs(éa ns)Ars(é)]z ﬁ'g — ilA (é) 2
—_ B_? é, A _I__ 214 ri<trs
{(”)ﬂ}{ B, + P +[w@m+w}

n = 0 CLE mMUx = x,) + (1 — n)B(& n) + (& - fr)Ars(f)}}%
B¢, n) + ’

L




or

R = /a(&{l(n = n) + DO + ELQ) + (n — n)*F. (& m)}?, (C-8)

where
as(é) = Bsz(é’ ’13) + Bza (C'g)
D,.s(é) — (é - ér)Bs(év r’s)Ars(é)’ (C-IO)
al%)
1€ = &1BA, () i
E. (&)= YT (C-11)
and
- - — E)A
F e = CLEMI = %) + (1 = n)BE ) + (€ = EMALE] 12

ay¢)

With (x — x,), and R expressed in the form of equations (C-6), (C-8), respectively, a stretching transformation
for the integral (C-1) is defined by direct comparison with the corresponding transformation used in Ref. 4.
Thus the transformation is,

(n — n) = E, (&) sinht — D, (&), (C-13)
and the integral becomes,
(€ = Ghralnfd) = [ T mGEMPAE D (C-14)
with
e il —1 (711 - r’s) + Drs(é)
t; = sinh { E9 }, (C-15)
. -1 (712 - r’s) + Drs(é)
t, = sinh { E(9 } (C-16)
and where,
2
Pt = o P Bl cosh (€-17)

R[(x — x,) + Rsgn (& — &)]

The expressions for t,, t, can be written in the following forms which are better for numerical evaluation.
1 a,(&)
= —tog] 2t o - 0 20— - cmenof +
g{ﬁlé = «:AH LRy "

4@ R
= mfoh — €= GBI, + FE- & 19
og{ﬁlé__ 5|H + (€ - EIBYE ns)}

as(é) 2 2 2
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In evaluating the integral in equation (C-14) the range is split at the t point corresponding to# = #,. Denoting
this point by t = t,, from the transformation (C-13),

11 D(d)
t, = sinh™! {E——,s(ﬁ)}

tog [sgn €= iGnd + \/as(é)} | ©20)

The function P.(&, ) can be written in the following form which is better for numerical evaluation,

Ba(&){B3(&, n) + B>} cosht

e = ORI BE + B+ R 20
where,
X* = pB& n)sen (& — &)sinht + &) — BAE MBLE 1), (c-22)
and

R* = {[{BX& ) + 3 Bsinh ¢ + {B(& ma(® — BEn)BAE n) + B} sgn (€ — &) + frag(O}. (C-23)

C.2. The Singular Terms Arising from the Spanwise Integral

To isolate the singular terms arising from the spanwise integral, it is more convenient to consider the integral
defined by equation (33d), i.e.

Y ax 1 r (x — x,)
Lo =1 i —nZTZ,.(n)H(x,n)(EE). ool TR ]dn. (C-24

The integral 5L, {£) is evaluated in the form,

{(é - 6r)32Lrs,j(é)}
&-4) |

sLps 8 = {1 —sgn (€ — &3 L () +

where (& — &)3,L,; (&) is defined in (C-1) above. It may be shown that no singular terms arise from the integral
31l (), so that the singular content of 3L, A& and ;,L,; (&) are identical. Introducing the functions 4,(¢),
B¢, 1), CA&, 1) defined by expressions (C-2), (C-3), (C-7), then by direct comparison with the corresponding
expressions in Ref. 4, it may be shown that,

n2 —3 6_x) _—i—[ _(x*x’)]d
j’m \/'1—,7— T, {(mH(x, n)( &l "(n — ny)? : R !

ox\ 1
=2/1— n?Tz,(ns)H(x,,ns)(gg) vale)

Ars(ér) ’ (é - ér)

ox\  BCd& 1)

+_2__[J1——71§T2,ms)H(x,,ns) 32| all)

Jvad&)
g
+Bs(€r,ns){a—n[\/l — n*T,{mH(x, n)(g%)]} ]10g|<f =&l

r,S

+0{(& — &) log|é — &I} + {Regular terms}, (n > 1). (C-25)
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In equation (C-25), (9x/0¢), ; and {d/on[\/1 — n* T, (nH(x, n)(3x/3&)]},, indicate that the appropriate
expressions are evaluated at (£ = &, = ).
Thus the singular content of 3,L,, () is given by equation (C-25), and rearranging,

(€ = &Da2liu f) = 2Ly + Sp A& — E)loglé — &) + O{(& — &) log|¢ — &)} + {Regular terms},  (C-26)

where,
T ax \Y as(ér)
32l = 23/1 = nszH(xrans)(a—)rsA_m(aTZj(n)v (C-27)
and

- 2 g ) GG )
Srs.j - Fas(ér)[{ 1 s H(xw ”h)(aé )r,s . ﬁ as(é,.) +

&) )
+Bs(ér,ﬂs)a—”(\/l — *Hx, 17)5%) }Tz;(ns) +
+ {Bs(ér»m)\/l - an(xr,ﬂs)(a‘z) }T'zj(m)J (C-28)

with T (n) = (d/dn) T (n).
Expressions for evaluating the quantities

0
\ 1 - nZH(xr’ ’73)(*6‘5) ’

and

) G,
%{ 1 — nzH(xN r’s)(a_x)}

are given in Appendix B. 4,(¢,) and B(¢, n,) are defined by equations (C-4), (C-5) above. From equations (C-7)
and (C-3),

é 1 (@2
C¢.ny) = {a—/ﬁBs(ér,n)} =5{Wx(é”")} : (C-29)

Explicit expressions for 32x/dn? may be derived from the formulae for ¢x/dn, equation (B-24) in Appendix B.
However, since the expressions for dx/?n are evaluated using double length arithmetic in the evaluation of the
finite part integral 5, L, (&), then the double length procedure for dx/dn may be used to provide single length
accurate values for 9%x/0n? defined as,

Px(&m\ 1 ffex ox
( (3)12 )"‘ - }{(%) Enste B %)C’ﬂs} ’ (C-30)

where ¢ is suitably small (typically 10~ 8 with 16 decimal place accuracy in double length working). The use of
the expression (C-30) obviates the need for geometry routines incorporating the second derivatives of the
leading and trailing edges.

40



APPENDIX D

The Analytic Integrais in the Chordwise Integration

From equation (42) the analytic integrals in the chordwise integration are,

1 1-¢ d¢
(£) = P TRE - 1) D-1
e = [FEmes- 1S5 (D-1)
1 -
5@ = [ [FFEmes - niogle - ¢l ae (D-2)

These integrals are readily evaluated on transforming to the variable 6, defined by

and

cosf =2 - 1)
so that T{2¢ — 1) = cos i6.
Thus,
4 . do
Ii(ér) "ﬁ) (1 - COS§ 6) GOS le(m, (D-3)
and

J(&) = %f (1 — cos 8) cos if log |3(cos 6 — cos 8,)| d6, (D-4)
1]

where cos 0, = (2&, — 1), and using the results,

OCOS k6 (cosf — cosh,) " sin 6,’

%" do __sin k|6,

j cos kflog|cos @ — cos 6,| dO = :;cos k8., for k#0
0
= —qlog2, for k=0,

fcosk0d0=0, for k#£0

o]

=7n for k=0,
then, from integrals (D-3), (D-4),
sin i6, ,
I(&)=nl —cosf)—=, for i=1, (D-5a)
sin 4,
= —m, for i=0, (D-5b)
and
—n|cosif, 1f{cos(i+ 1)8, cos(i— 1), . (D-6a)
J&) = — - f =2,
(&) 5 I: 7 2{ i1 + =D or iz2
= g [log2 + %cos 28, — cosh,], for i=1, (D-6b)
= —nflog2 — Lcosh)], for i=0. (D-6¢)
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The quantities cos k8,, sin k8, /sin 6, may be evaluated from the following recurrence relations.

Let

C, = coskd,, S, = s;Tnn%,
then

Co=1  C, =@ -1,

C,=202¢ - 1)C,_y — Cy_y, k=2
and

Se=0, S, =1,
S, =228 — DSy_y — Sppy k=2
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TABLE 1
Convergence of Overall Values for Gothic Planform, Aspect Ratio 1

m/n 5 8 9
C, 8 1-3969 1-3967 1-3967
12 1-4019 1-4015 1-4015
16 1-4048 1-4044 1-4044

m/n 5 8 9
Xac/c 8 0-6899 0-6899 0-6899
12 0-6892 0-6893 0-6893
16 0-6889 0-6889 0-6889

m/n 5 8 9
f 8 0-4258 0-4258 0-4258
12 0-4253 0-4253 0-4253
16 0-4250 0-4250 0-4250
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TABLE 2

Comparison of Overall Values for Gothic Planforms
Calculated by Slender Wing Theory and Lifting Surface

Theory (Present Method)
AR SWT LST
Cp 05 0-785 0-747
1-0 1-571 1-405
2.0 3142 2:426
3.0 4.712 3.148
AR SWT LST
Xac/c 0-5 0-700 0-697
1.0 0-700 0-689
2.0 0-700 0679
30 0-700 0-674
AR SWT LST
fl 0-5 0424 0-426
1-0 0-424 0-425
20 0-424 0424
30 0-424 0422

AR—Aspect Ratio
SWT—Slender Wing Theory
LST—Lifting Surface Theory
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TABLE 3
Comparison of Overall Values for a Cambered Mild Gothic Planform

Datum
m/n 8 9
C. 8 01078 0-1076 01
16 0-1054 0-1058
m/n 8 9
Xac/c 8 0-8822 0-8816 0-9138
16 0-8852 0-8831
m/n 8 9
i 8 0-3854 0-3854 0-3889
16 0-3875 0-3868
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56



45 {m.n) (8,5) (8,8) (8,9}

C_L 1353 1353 1-363
Symbol © 4 —

ACp

40

3-0

2'5

__._bn

2:0

1-0

0-5

0 0-2 04 0-6 08 10 X=

x-xpg
=)

F1G. 19. Chordwise convergence of ACp at n = 0-3 with m = 8 for a gothic planform AR = 1.

57



45 ' (m,n) {8,5)(8,8)(8,9)

ACp A CL 1505 1-505 1-505
T Symbol o A ——

&0

3-5

30

25

2:0

1-5

0-5

5 - (XX
0 02 04 06 08 o X (=5=14)

F1G. 20. Chordwise convergence of ACp at y = 0-6 with m = 8 for a gothic planform AR = 1.

58



(mn) (8,5)(8,8) (8,9)
I-644 1- 644 | b44

Coe

SYMBoL © 4 -

30

o -2 -4 6 ) Lo X =(.’€;_x_e>

F1G. 21.  Chordwise convergence of ACp at # = 0-9 with m = 8 for a gothic planform AR = 1.

59



45 {m,n) (16,5) (16,8) (16,9)
ACp c L 1-181 1180 1-180
Symbol 0 &4 —

40

3-5

3-0

=0
25| % n

20¢

1-0

8 <=

0-5

® x. x-x
0 0-2 04 06 0-8 1-0 3C-( < 2)

Fi1G. 22. Chordwise convergence of ACp at n = 0 with m = 16 for a gothic planform AR = 1.

60



45 (m,n) (16;5) {16,8) (16,9)

. -359 1-35

ACp CLL 1-360 1-359 9
Symbol © A

40

25 |9

30

2:5

2:0

1-0

0-5

0

r= (X-X
0 0-2 04 06 0-8 0 ®= (E2EL)

F1G. 23. Chordwise convergence of ACp at # = 0-3 with m = 16 for a gothic planform 4R = 1.

61



45 (m,n) (16,5) {(16,8) (16,9)
ACp T CLL !I'511 1-510 1-510

Symbol © s

40

35

3-0

2:5

2:0

1-5

1-0

0-5

N
0 0-2 0-4 0-6 0-8 10

0

8

(=20

Fic. 24. Chordwise convergence of ACp at n = 0-6 with m = 16 for a gothic planform AR = 1.

62



45 (m,n) (16,5) (16,8) (16,9)
CLL 1-648 1-648 1-648
Symbol 0 & @ —

4Cp

4-0

35

3-0

2'5 \ - ____’n

2:0

Nn=09
1-5

1-0

05

0 = (X=X
0 0-2 04 06 0-8 1.0 *= (“'g-e)

FiG. 25. Chordwise convergence of ACp at n = 0-9 with m = 16 for a gothic planform AR = 1.

63



45 (m,n) (8,9)(12,9)(16,9)
ACp CpL 1166 1-174 1-180
Symbol © A

4-0

35

3:0

2:5

-__.D‘n

2:0

1-0
v
xX
05
0 d F - (X—K
0 0-2 04 06 0-8 1o == (==*%)

FiG. 26. Comparison of ACp distributions at # = 0 with n = 9 for a gothic planform AR = 1.

64



45 {m.n) (8,9) (12,9} (16,9)
ACp CLL 1-353 1357 1-359
Symbol o A —_—
4-0

3:5

30

25 N

2:0

1-5

0-5

0 0-2 0-4 06 0-8 1-0 c

FiG. 27. Comparison of ACp distributions at # = 0-3 with n = 9 for a gothic planform AR = 1.
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F1G. 32.  Comparison of ACp distributions with m = 16 for a gothic planform AR = 1.
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FiG. 39. Cross loading for a mild gothic cambered planform.
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FI1G. 40. Chordwise distribution of ACp at # = 0 for a mild gothic cambered planform.
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F1G. 41. Chordwise distribution of ACp at # = 0.3 for a mild gothic cambered planform.
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Fi1G. 42.  Chordwise distribution of ACp at 7 = 0-6 for a mild gothic cambered planform.
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F1G. 43. ChordWis_e distgibution of ACp at n = 09 for a mild gothic cambered planform.
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F1G. 44.  Spanwise distribution of ACp at x/cp = 0-05 for a mild gothic cambered planform.
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FiG. 45. Spanwise distribution of ACp at x/cg = 0-2 for a mild gothic cambered planform.
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FiG. 46. Spanwise distribution of ACp at x/cg = 0-5 for a mild gothic cambered planform.
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F1G. 47. Spanwise distribution of ACp at x/cg == 0-7 for a mild gothic cambered planform.
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F1G. 48.  Spanwise distribution of ACp at x/cp = 0-95 for a mild gothic cambered planform.

86

= -



L8

0-05%

-0-05%

- 0-10

- 0-15

F1G.49. The downwash distribution on the mild gothic cambered planform.
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Fi6. 50. Comparison of downwash variations at the first spanwise collocation station for the cambered mild
gothic planform.
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