

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

The Use of Multiple Diaphragms in Shock Tubes

By

B. D. Henshall, Ph.D.

The Use of Multiple Diaphragms in Shock Tubes

- By -
B. D. Henshull, Pho., of the Aerodynomes Division, N.P.I.
\qquad

3 rd Decernber, 1955

1. SUMMARY

Calculations are presented which illustrate the advantages of various types of multiple-diaphragm shock tubes over the sincle-diaphragm conventional shock tube. Shock tubes having a discontinuous change of cross-section at a diaphragm station or at any other position along the tube are also considered.
2. Notate 1 on
a velocity of sound
A cross-sectional area of shock tube
C_{p} specific heat at constant pressure
C_{v} specific heat at constant volume
if Mich number
n number of diaphrugnis in a multiple-diaphragm shock tube
p absolute pressure
R the gas constant
t that
I absolute temperature
u flow velocity
U shock velocity; subscript corresponds to flow region ahead of the shock
x distance measured along longitudinal axis of shock tube
$y \quad C_{p} / C_{v}$, the ratio of the specific hats
$i_{1} \phi_{2}$ functions of shock Mach number M_{S} (see equations (5.9), (5.10) and (5.12)).

$\begin{gathered} G \\ I H() \end{gathered}$	the gain factor (see Section 7.1) flow Mach number with respect to the local speed of sound (e.g., $\mathrm{H}_{\mathrm{a}}=\frac{\underline{u}_{2}}{\underline{a_{2}}}$)
$1 i_{S(}$)	shook wave propagation Nach number witi respect to the spced of sound in the flow ahead of the shock front (e.g., $M_{S_{1}}=U_{1} / a_{1}$)
${ }^{1} \mathrm{~S}$	pressure ratio across a shock wave (> 1)
$p_{I}\left(=P_{0}^{\frac{1}{n}}\right)$	the individual pressure ratio across each diaphragm of a multiple-diaphragn shock tube
P_{0}	overall pressure ratio across extreme ends of any type of shock tube
To	overell tcmperature ratio across cxtreme ends of any type of shock tube

Subscrıpts

```
\(1,2,3,2,5\) etc. Identify cuantities relatod to gas in corresponding region
    of shock tube flow (sce flyures)
```

Special Non-Dimensional Notation

$P_{m n}=\frac{p_{m}}{p_{n}}$	in pressure ratio
$T_{m n}=\frac{T_{m}}{T_{n}} \quad$ a temperature ratio	

3. Introduction

During tne past decade the shock tube has becrme accepted as a tool of atrodymmic research: the extrume versatiluty of snock tube anstallations has led to thear use for the invustigation of a variety of gas-dynamic probloms. Increasing interest in hypersonic research has stimulated the develonment of special 'hypersonic shock tubes'. These oifer a comparatively sumple method whoreby very high ifach number flows - with stagration temperatures approximating to those of full-scale flight - may be generitud. In order to operate hypersonic shock tubes satisfactorily, it is nucessary to preduce shock waves which are considerably stronger tian the strongest obtoınable fron a simple 'conventional' shock tube.

Ref. 1 contains a resumé of the aerodynamic princlples involved in the production of very strong shock waves and very high Mach number flowis in hypersonic shock tubes; in particular, the 'double-dıaphragm' technique, which increases the maximum attanable shock strength for a given overall pressure ratio aoross the extrome ends of the shock tube, is discussid in a prelimunary manner. In the present paper, the concept of a multiple-duaphragm shock tube is considered in greater detail; and several types of double- and multiple-diaphragm shock tubes are
discussed and their porformance evaluatod. For completeness, considaration is also given to shock tubos having discontinuous changes of cross-section. Generel formulae have been derived which are applicable to any gas combination in any type of shook tube. For simplicity, these formulae have been evaluated for the particular case when y, the ratio of the specific heats of the gases filling the shook tube, is constant and equal to 1.4 and when the initial temperature is oonstant throughout the shock tube; that is, $T_{0}=1$. In this manner the relative marits of the different types of multiple-diaphragm shock tubes are not confused by the effeots of the use of different gases.

3.1 The Simole Shook Tube

Fig. 1 is a timomistance ($t-x$) diagram of simple shock tube flow and it illustrates the notation defined above in Section 2 . The theory of the simple shook tube has been extensively treated, 3 and, in tise present paper, equations obtained direotly from such theory will be quoted without derivation. The initial pressure and temperature ratios, P_{0} and T_{0} respectively, across the diaphragn are related to the resultiant shock Maoh number $M_{s_{1}}$ by the equation
where

$$
p_{0}=p_{4} / p_{1}=p_{41}
$$

and

$$
T_{0}=T_{4} / T_{1}=T_{41} \quad \text { by definition. }
$$

Equation (3.1) shows that, as $\mathrm{P}_{0} \rightarrow \infty$, the shook Mach number $\mathrm{M}_{\mathrm{s}_{1}}$ approaches a limiting value, given by

$$
M_{S_{1}} \bumpeq \frac{y_{1}+1}{y_{4}-1} M_{0}^{\frac{1}{2}}=\left(\frac{y_{1}+1}{y_{4}-1}\right)^{\frac{a_{4}}{a_{1}} \sqrt{\frac{y_{1}}{y_{4}}} . \ldots \ldots(3.2) . \ldots\left({ }^{2}\right)}
$$

Fior large $M_{\text {S1 }}$, the gas in the chamber (region 4) mast have a low molecular weight, a low y_{4} and as high a temperature as practicable. Equation (3.2) illustrates the advantage of heating the chamber gas and of using different gas combinations in a simple shock tube. As previously stated, the performanoe of multiple-diaphragm shock tubes will be evaluated only on the assumptions that $y_{1}=y_{4}=1.4$ and $T_{0}=1$. For the simple shook tube, with arbitrany P_{0} and T_{0}, we have from (3.1), if $y_{1}=y_{4}=1.4$,

$$
\dot{P}_{0}=\left\{\frac{7 M_{g_{2}}^{2}-1}{6}\right\}\left\{1-\frac{T_{0}^{-\frac{1}{2}}}{6}\left(\frac{M_{B_{1}}^{2}-1}{M_{B_{1}}}\right)\right\}^{-7} \cdot \ldots \ldots(3.3)
$$

From equation (3.3), values of P_{0} ware oalculated for a range of values of $T_{0}(1+015$ in unit etepy) and an independent range of values of $\mathrm{M}_{\mathrm{g}} \quad(1$ to 8 in 0.1 steps). The genaral results are displayed in Table I ant Pritit Hote that, wivn P_{0} is Iarge (say $>10^{4}$), a smajl. indreate ditio increanot the attainable shook Kaoh number $M_{p_{1}}$ approoiably, whereas a large increase of P_{0} has only a small effect
on $M_{S_{4}}$. Thus one convencent way to increase the attainable ill for a given P_{0} and the given inıtial condition $T_{0}=1$ is to introduce a device which effectively sacrifices pressure ratio P_{0} in favour of ancreased tomperature ratio T_{0} : such a device is the multiple-diaphragm shock tube. [A detailed discussion of the flow processes occurring in these types of shock tubes is postponed to Section 4.1].

3.2 The Sinple. Shock Tube - A Special Case

Let us consider the simple shock tube flow pattern given in Fig. 1. With the exception of the acceleration region in tne expansion wave, all the gas particles in the shock tube are at rest or in uniform motion with velocity $u_{3}\left(=u_{3}\right)$ towards the end of the channel. Since the gas behind the shock has been sompressed, its tenperature T_{2} is higher than T_{1}; and sunce the gas behind the rarefaction wave has been expanded, its temperature T_{3} lis lower than T_{4}. Consequently, a discontinuity of termerature occurs at those conncident points in the uniform gas flow which were originally on either side of the diaphragm. This 'contact surface', or temperature discontinuity, causes the Mach number M_{2} of the flow between the shock and the contact surface to be different from the Mach number M_{a} of the flow botween the contact surface and the rarefaction wave.

Clearly it is possible to choose T_{4} and T_{1} such that $T_{2}=T_{3}$ and hence $L_{2}=M_{3}$ af gases having the same y were originally on either side of the diaphragm. Tharefore, in theory, no contact surface would be present and the duration of quasi-steady flow would be increased. It should be noted that the flow in region 3 would be turbulent since it has passed through the remnants of the shattered dlaphragm; however, in hypersonic shock tubes this 'steady' flow is expanded in a nozzle and hence fluctuations may be smoothed out to a satisfactory level. This possibility is worth experimental investigation sance the duration of stoady flow in a hypersonac shock tube is very limatea ${ }^{1}$.

The relations betwoen $\mathrm{P}_{0}, \mathrm{~T}_{0}$ and $\mathrm{Ni}_{\mathrm{S}_{1}}$ may be developed for the spocial case $M_{3}=M_{3}$ by using the following equations of simple shock tube theory:-

$$
\begin{align*}
& \frac{T_{4}}{T_{3}}=\left(1+\frac{\gamma_{4}-1}{2} M_{3}^{2}\right. \\
& \frac{T_{2}}{\mathrm{~T}_{1}}=\frac{\left\{\begin{array}{c}
y_{1}-1 \\
y_{1} s_{1}^{2}-\frac{y_{1}-1}{2}
\end{array}\right\}}{\left(\frac{y_{1}+1}{2}\right)^{2} \mathrm{M}_{\mathrm{s}}^{2}} \\
& M_{2}=\left(M_{S_{1}}^{2}-1\right)\left[\left\{y_{1} M_{S_{1}}^{2}-\frac{y_{1}-1}{2}\right\}\left\{\begin{array}{c}
y_{1}-1 \\
2
\end{array}\right]\right]_{(3.6)}^{-\frac{1}{2}} . \tag{3.6}
\end{align*}
$$

and

Now, put $H_{2}=M_{3}$ and $T_{2}=T_{3}$ (note that this implies $y_{4}=y_{1}$ because $u_{2}=u_{3}$ so that $a_{a}=a_{3}$) and combine the above equations (3.4) to (3.6) to obtain:-

$$
\begin{aligned}
& T_{0}=T_{41}=T_{43} \cdot T_{32} \cdot T_{31}
\end{aligned}
$$

$$
\begin{aligned}
& \text { which, using (3.1), roduces to }
\end{aligned}
$$

If $y_{4}=y_{1}=1.4,(3.7)$ and (3.8) become

$$
\begin{equation*}
T_{0}=\left[\frac{\sqrt{ }\left(T M_{S_{1}}^{2}-1\right)\left(u_{i}^{2}, j\right)+\left(\dot{N}_{1}^{2}-1\right)}{6 M_{B_{1}}}\right]^{2} \tag{3.9}
\end{equation*}
$$

and

$$
P_{0}=\left[\frac{7 S_{S_{1}}^{2}-1}{6}\right]\left[\begin{array}{l}
1+\frac{\left(i_{S_{1}}^{2}-1\right)}{2\left(7 \mathrm{~S}_{1}-1\right)\left(\mathrm{M}_{S_{1}}^{2}+5\right)} \tag{3.10}
\end{array}\right]^{7}
$$

Hence, using $M_{S_{1}}$ as a paramoter, a unzquo curve of P_{0} versus T_{0} can be dorived irom equations (3.7) and (3.10) for the Ponstant Mach number' shock tube. Calculatiod results are given in Table II and plotted 20 Fig. 2. It $2 s$ pertancnit to note thit in order to produce strung shock waver fio nasi be considerrbly largor thon the values normily umployed in simple shock rubes. Fortunately, tno multiple diaphragm tocsmaque reducus this dateficulty and rurther considoration of this 'constant hach number' shock tube as acourdingly deforrea to Suction E.1.

4. The Double Diaphragn Shock Tube - Foflootca Shock Typo

The reflected shock type of double-diaphragm shock tube is shom in Fig. 3; the primary shock $\mathrm{H}_{6}{ }^{*}$, which as produced by the rupture of diaphragm D_{1}, undergnes normal reflection at diaphragm D_{3} and loaves the gas in rogion 4 at rest at on incroased tomperature and pressure (with respect to its inctial state in region 6). After a predeterminod delay, diaphragm D_{2} is ruptured and the ensuing flow producos a shock $M_{S_{1}}$, where $M_{S_{1}}>M_{\mathrm{Si}_{6}}$. Let us compare thi shock Mach numbers produced in a double-diaphragn shock tube and in the equivalent single-diaphragn shock tube having the same overall temporature and pressurc ratios. In the double-diaphragm case, the prossure and temperaturo ratios across the second diaphragm D_{2} are P_{11} and T_{41} and in the equivalent singlo-diaphragn case tuose ratios are ins and T_{31} respuctively. Now the rescrucir upstream of diaphragm D_{2} has a
pressure/

* It is unveniunt, to labol a shock whth its corrosponding shock Mach number.
pressure $p_{4}\left(\left\langle p_{8}\right)\right.$ and a temperature $T_{4}\left(>T_{8}\right)$ due to the reflection of the primary shock $\mathrm{M}_{\mathrm{S}_{6}}{ }^{*}$, and since we have previously noted that a device which sacrifices pressure ratio for increased temperature ratio whil produce an increase of shock lwach number, it follows that $1 \mathrm{~A}_{\mathrm{S} 1}$ is greater than the corresponding value for a single-diaphragm shock tube.

4.1 The Reflection of a Normal Shock Wave from a Rigza Wall

Before complete calculations can be made of the periormance of the reflected shock type of double-diaphragm shock tube, tne relations between the sressure and temperature in the reservour (region 4 of Fig. 3) and the origanal conditıons in the double-diaphragn cnamber (region 6) must be determined. Now, trom shock wave theory

$$
\begin{aligned}
& \left.p_{46}=\left\{\frac{2 y_{6} M_{2}^{2}}{-y_{6}+1}-\frac{y_{6}-1}{y_{6}+1}\right\}\right\}\left\{\begin{array}{c}
\left(3 y_{6}-1\right) M_{s_{6}}^{2}-2\left(y_{6}-1\right) \\
\hdashline\left(y_{6}-1\right) M_{s_{6}}^{2}+2
\end{array}\right\} \\
& \text {.......(4.1) } \\
& \text { and } T_{4 c}=\frac{\left\{\left(3 y_{6}-1\right) \mathrm{M}_{S_{6}}^{2}-2\left(y_{6}-1\right)\right\}\left\{2\left(y_{6}-1\right) M_{S_{6}}^{3}+\left(3-y_{6}\right)\right\}}{\left(y_{6}+1\right)^{2} \sum_{S_{6}^{2}}^{2}} .
\end{aligned}
$$

When $y_{6}=1.4,(4.1)$ and (4.2) become

$$
p_{4 \epsilon}=\left[\begin{array}{c}
7 M_{S_{6}}^{2}-1 \tag{4.3}\\
\hdashline 6
\end{array}\right]\left[\begin{array}{c}
8 R_{S_{G}}^{2}-2 \\
\hdashline M_{S_{6}}^{2}+5
\end{array}\right]
$$

and

$$
T_{46}=\frac{\left(4 S_{S}^{2}-1\right)\left(M_{S_{6}}^{2}+2\right)}{9_{i} S_{6}^{2}} \quad . \quad \ldots \ldots(4.4)
$$

Trom (4.3) and (4.4) calculations of p_{46} and T_{46} were made for a range of $M_{3 \in}$ from 1 to 8 in 0.1 steps and the results are reprnduccd as liable III.

4.2 Effect of Variation of Intermediate Double-Diaphrarm Chamber Pressure (N - FIR. 3)

Let us refer to Fig. 3 and suppose the overall pressure ratio acress the extrenc ends of the tube $P_{0}=p_{81}=10^{4}$ and the initial temperature is constant throughout the tube, that is, $T_{0}=1$. From Table I we note that the shock Mach number $\mathrm{M}_{\mathrm{S}_{1}}$ corresponding to $P_{0}=10^{4}, T_{0}=1$ and a single diapnragm shock tube is 3.85 . Now consider the effect of the unsertion of the second diaphragm D_{2} and the variation of the intermediate pressure p_{6}. For example, Iet $p_{61}=10^{2}$. When p_{86} is know sance

$$
P_{0}=p_{86} \cdot p_{61}=10^{4}
$$

The corresponding shook Nach number $M_{s_{6}}(=2.370)$ is found from the general ($P_{0}-T_{0}$) Table I_{0} Then P_{4} and \mathbb{T}_{4} are found from the general reflectod shock Table III; the numerical values are
$\mathrm{P}_{46}=2 j_{0} 25$ and $\mathrm{T}_{46}=3.236$. Now $p_{41}=p_{46} \cdot p_{61}$ is determincd, and the final shock Mach number $\mathrm{M}_{\mathrm{S}_{1}}(=5.22)^{1}$ is obtained

> by/
*See equations (4.3), (4.4) and Table III.
by a further intorpolation* from Iable . Thes proceduro may be repeated for values of p_{6} rangin, fron p_{n} to $p_{1} ;$ sumilar calculations hay be made for other valucs ni P_{0}. Fig. 4 ruproduces the results of theso calculations and at is clear that a considerable incroine in the attaniable shock inach numbur is possable bu" a suitable cholce of the antarmodiato pressuro ratio p_{61}.

5. The Double-Ditahrarn Snock Zube - Unstuady Sxpansion Ityo

Instcad of rupturang the second diaphragm D_{2} by an external agency aftor the full reflected shoch pressuro D_{4} is reachod upstream of the dianiragm as in Fig. 3 ; it is possiulc to make the diaphrogr D_{2} so weak that it burits mmedzutoly then the chuali fis strakos it. A distance-tine diagran for thas wam ty 0 of double-diaphragm shock tube 4 flow is gaven in Fic. 5. Shook lisg :hatters diaphragn D_{2} on mpact, and the pressure ratio p_{4}, (related to p_{1} and $M_{S_{6}}$) across the rarefaction wave acceloratos the flow, in particular
 relevant equations, obtained fron thu thony of the simule shock tube, are:-

From the normal shock equations:-

$$
\begin{align*}
& \left.p_{46}=\left\{\frac{2 y_{6}}{y_{6}+1} \mathbb{N}_{s_{6}}^{2}-\frac{y_{0}-1}{\gamma_{6}+1}\right\}\right\} \tag{5.i}\\
& p_{31}=\left\{\begin{array}{cc}
2 y_{1} & v_{1}^{2}-1 \\
\hdashline y_{1}+i & y_{1}-1
\end{array}\right\} \tag{5.2}\\
& \frac{u_{3}}{a_{1}}=\frac{u_{2}}{a_{1}}=\frac{2}{\gamma_{1}+1}\left[\begin{array}{l}
M_{s_{1}}-\frac{1}{u_{s_{1}}}
\end{array}\right]
\end{align*}
$$

$$
\begin{aligned}
& \text {......(5.5) }
\end{aligned}
$$

and from the rarefaction wave equations:-

[Note that $y_{8}=y_{4}=y_{3}$ and $\left.y_{2}=y_{1}\right]$.

Now/

[^0]Now, since $p_{2}=p_{s}$,

$$
p_{2}=p_{5}, \quad\left[\begin{array}{c:c}
2 \gamma_{6} \\
1+p_{6}-1 & p_{61} \\
\hdashline 2 & p_{61} \\
\hdashline 2 & \\
\hdashline 1+v_{6}-1 \\
\hdashline 2 &
\end{array}\right.
$$

Hence, using (5.1), (5.2) and (5.5),

and $\quad \psi_{2}=\left[\begin{array}{c}2 y_{1} \\ -y_{1}+1\end{array} \mathrm{~S}_{1}-\frac{y_{1}-1}{y_{1}+1}\right]\left[\begin{array}{c}y_{6}-1 \\ 1+\frac{k_{3}}{2}\end{array}\right]^{-1}$

Also, from (5.3), (5.4) and (5.6), an'ter some reduction, it follows that

$$
1+\frac{y_{3}-1}{2} M_{3}=\left\{\begin{array}{cc}
1-y_{6}-1 y_{6}+1 a_{1} \\
2 & y_{1}+1 a_{6}
\end{array}\left[\begin{array}{ll}
1 & 1 \\
\mathbb{N}_{S_{1}} & -\mathbb{M}_{S_{1}}
\end{array}\right] \begin{array}{c}
1 \\
--1 \\
\phi_{3}
\end{array}\right\}^{-1} \ldots(5.11)
$$

How, from (5.5), M_{4} is known for a glven $\because_{S_{6}}$ and hence ϕ_{1} and ϕ_{3} are calculable for the glven value of \bar{x}_{5}. "Salues of ϕ_{1} and ϕ_{3} are presented in Table $I V$ for a range of ${ }^{5} I_{S_{6}}$ values from 1 to 8 in 0.1 steps. Then, from (5.10) and (5.11) it follows that

If (5.13) is compared with (3.1) It is scen that the equations are of the sane form and hence their solutions are simalar; in particular $M_{S_{1}}$ as the same as for a single-duaphragn shock tube in which

$$
\begin{equation*}
P_{0} \equiv \phi_{2} \tag{5.14}
\end{equation*}
$$

and/
and

$$
\left(\frac{y_{4}-1}{y_{1}+1}\right) \mathrm{T}_{0}^{-\frac{1}{2}} \Rightarrow \frac{\gamma_{0}-1 y_{6}+1 a_{1}}{2 y_{3} y_{1}+1 a_{6}} \quad \ldots \ldots(5.15)
$$

Although tile rief.s. of equation (5.15) enables the erfects of the use of difforent gases in regions 1 and 6 of fig. 5 to be evaluated, only the shimle caso when $y_{8}=y_{1}=1.4$ and $a_{3}=a_{1}$ is considered here.

Then T_{0} is equivalent to $-\frac{25}{36} \alpha_{3}^{2}$ and P_{0} is equivalent to ϕ_{2}. 36

Thus it is posirible to cilculate tho perfornance of the unsteady cxpansion type or doublu-d.aplirugm sheck tube and to investigate the en fiects of variation os the intermediate chamber pressure p_{8} for a givar overall prossure ratio P_{0}. is apecmen calculation tollows.

Rofer to Fig. 5, and suppose $\dot{P}_{0}=p_{1 / 1}=10^{4}$ and tlect $T_{0}=1$. Then, it' $P_{B_{1}}=10^{3}$ is assumed, it follows that p_{75} is known shnce $P_{0}=p_{76} P_{61}=10^{4}$. The corresponding shock liach number $\mathrm{N}_{\mathrm{S}_{\mathrm{E}}}\left(=2.370\right.$) is found from the generai ($P_{0}-T_{0}$) Table I and ϕ_{1} and h_{3} are deturmined, oorresponding to $M_{s_{6}}=2.370$, from Table IV, so that $\phi_{2}=\phi_{1} \mathrm{~F}_{61}$ is known and thus the equavalent $P_{0}=\phi_{2}=2702.2$ and the equavalent $T_{0}=\frac{25}{36} \phi_{3}^{2}=3.038$. The final shock Mach number $M_{S_{1}}(=5.14)$ is obtained by a further anterpolation from Table I.

This procedure was repeated for a range of values of p_{6} and for various values of P_{0} and the results are displayed as Fiz. 6 . A comparison of Fig. 6 with Fi_{i}. 4 demonstrates that this second type of doulle-diuphrazin shock tube as slightly less efficient than the reflected shoch type; for example, when $P_{0}=10^{4}, P_{61}=10^{2}$, the former type gives $i_{i i_{1}}=3.14$, the latter $M_{S_{1}}=10.22$, compared wath the single-diaphregrat value $N_{s_{1}}=3.05$.
6. Kultiple-D2apir gor Shock riupz

Insucotion of Figs. 4 and 6 shows tnat for maxumum gain of shook Macn number k_{s} the interinediate pressure must be approxiwately the geonetric mean of the pressures $p_{7 n}$ and p_{n} where $p_{\text {mn }}=P_{0}$. hence a multiplc-diaphragm shock tube may be postulated witli n diaphragns and an overali prosuure rutio P_{0} such that

$$
\begin{equation*}
P_{0}=p_{I}^{n} \tag{6.1}
\end{equation*}
$$

where p_{I} is the individual pressure ratio across each diaphragm of a multiple-diaphraga shock tubc.

6.1 Darect Calculations oi' Perforwance fruan Tables I and III

Consideration is next given to the roflected shock type of multiplo-djuphragn shock tube; the flow patterm which occurs in this typicul shock tube is shown in Tig. 7. The computation or the final shock Lach nuraber $i_{\mathrm{s}_{1}}$ is made 11 discrete steps; and eack step is identical with the procedure outlinea in Section 4.a. Fig. 8 presents cusves or shock Mach number $M_{S_{1}}$ against number of diaphragns n for various overall pressure ratios P_{0}. It may bo noted that these curves tend to msymptotic valuue as n ls uncroasod: the gain of shock Mach nuuber is most rarked for hugh P_{0}, vilues. In the next section a generalised anulyis is prusented wincil derives approzamate asymptotes for the $\left(\mathrm{m}_{\mathrm{s}_{1}}-\mathrm{n}\right)$ curves.

6.2 General Anelysus

Consider a diapuragm separating pressures p_{m} and p_{n} and let a shoc: ${ }^{2} \mathrm{~s}_{\mathrm{m}}$ strike the daphragm and be reflected. Subsequently, the diaphragm may be ruptured and so produces a further shock $M_{\mathrm{Sn}_{n}}$ (as in Fig. 3, where $m=6$ and $n=1$). Fram equations (3.1), (4.1) and (4.2) the followng general expression relating $M_{S_{n}}, M_{S_{m}}$ and $p_{\text {inn }}$ rayy be derived.

Ifow consider a shock tube having a very large number of diaphragms; that is, suppose

$$
p_{m}=p_{n}+d p_{n}
$$

and

$$
\begin{equation*}
\mathrm{M}_{\mathrm{S}_{\mathrm{n}}}=\mathrm{M}_{\mathrm{S}_{\mathrm{m}}}+d \mathrm{M}_{\mathrm{S}_{\mathrm{m}}} \tag{6.3}
\end{equation*}
$$

Equation (6.2) stall holds but must be put in the form

$$
p_{m n}=1+\frac{d p_{n}}{P_{n}}=\text { function of }\left(1+\frac{d M_{S_{n}}}{\sum_{S_{m}}}\right)
$$

In arder to shorton the tedious reduction of (6.2) it has been assumed that $\gamma_{m}=\gamma_{n}=1.4$.

Thon
and, in differential form, aftor considerable reduction (6.4) becomes

$$
1+\frac{a p_{n}}{g_{n}}=f_{1}\left(i_{s_{1 n}}\right)\left\{1+f_{2}\left(i_{S_{m}}\right) d M_{S_{m}}\right\}
$$

where

$$
f_{1}\left(N_{S_{m}}\right)=\left[\begin{array}{c}
M_{S_{M}^{2}}^{2}+2 \tag{6.6}\\
\hdashline 8 M_{S_{m}}^{2}-2
\end{array}\right]\left[\begin{array}{cc}
1 & \left(0_{S_{m}}^{2}-1\right) \\
1-7 & \sqrt{\left(4 M_{S_{m}}^{2}-1\right)\left(M_{S_{m}}^{2}+2\right)}
\end{array}\right]^{-7}
$$

ixamunation of the functions $\rho_{1}\left(\pi_{\mathrm{S}}\right)$ and $\mathrm{f}_{2}\left(\mathrm{It}_{\mathrm{S}}\right)$ led to thear renlaciment by

$$
\begin{align*}
& r_{1}\left(M_{0}\right) \simeq 1.0 \tag{6.8}\\
& f_{2}\left(L_{0}\right) \simeq \frac{1 t^{2}}{3 m_{0}} .
\end{align*}
$$

Caleulited values of tar functions, art ezvon in tiable V and the functions and thour approzumitions ire ociparci sr uhleally an F'ag. 9.

Then, austuxisu toly,
so that

$$
\begin{align*}
1-\frac{d_{1}}{p} & =1\left\langle 1+\frac{14}{2 \cdot t_{s}} \operatorname{ain}_{s}\right\} \\
\frac{d_{1}}{p} & =\frac{14}{3} \frac{d x_{3}}{3} . \tag{6.9}
\end{align*}
$$

On antogration, (0.9) becones

$$
\begin{equation*}
\operatorname{ram}_{\operatorname{mix}}=e_{0}^{\frac{3}{14}} \tag{6.10}
\end{equation*}
$$

(Note it nis boen assumed that M_{s} ancreases as p decreases),
$=n i$, iso,

If IU ls postulatud th.t thore ins an equal prossure ratio across each daphoracm oi the multzulu-diaphragn shock tubc.
ayution (6.10) shovs that, arruspective of the number of
 possibla sinck ifuch numbur is a function only of the overall pressure ratio across lio ends of a shock tube. Calculated valuos of $M_{s_{\text {max }}}$ for various E_{0} are:-

$$
\left\lvert\, \begin{array}{cccccc|}
F_{n} & 10 & 10^{2} & 10^{3} & 10^{4} & 10^{5} \\
M_{\mathrm{S}_{\max }} & 1.64 & 2.68 & 4.39 & 7.20 & 11.79
\end{array}\right.
$$

These maximun values of i_{s} aro plotted on $P_{1 . g} .8$ and the agrediont ath valucs calculated from the goneral Tables I and III is very sutzs. toctury.

Befor discussing the gencril rosults of the precedang suctions it is convenzut to omoidacr shork lubus navang a discontmuous

 attanable by tinese melnods.

7. Snock Tubcs with Area Discontinuities

Modifications to shook tubo geometry have been oonsidered in several roports ${ }^{2,5,6}$ and the general results are derivod herewith for completeness.

7.1 Area Discontinuity at the Diaphragm Station

To make the most economical use of the unitial pressure ratio across the diaphragm it is desurable to use a shock tube which has a steady f'low transition section from the chamber to the channel. The most efficient corvorsion of hoat erergy to kinetic energy is
du
requared and it $1 s$ know that the quantaty - (which is a measure da of this energy conversion) is, for Mach numbers less than unity, greater for a steady flow expansion than for an unsteady flow expansion. In matnematical terms, for a steady flow expansion the energy equation is

$$
\frac{2}{y-1} a^{2}+u^{2}=\text { constant }
$$

so that

For an unsteady flow expansion

$$
\frac{2}{y-1} a+u=\text { constant }
$$

and hence

$$
\begin{equation*}
\left(\frac{d u}{d a}\right)_{\text {unstoady }}=-\frac{2}{y-1} \tag{7.2}
\end{equation*}
$$

Hence it is desirable to use a shock tube where a steady flow expansion accelerabus the "driver gas" (originally in the chamber) to a Mach number of unity and then an unsteady flow expansion further accolerates the gas to the valocity necessary to satisfy the velocity boundary condition at the contact surface.

Consider the shock tube flow pattern given in Fig. 10(a). There is steady flow in the region (5) to (4) and unsteady flow in the other regions. If the overall prossure ratio P_{0} is such that $M_{3}>1$, the steady flow expansion from region (5, to region (4) cannot continue dfter $i_{4}^{4}=1$ at the diaphragm station; the tube is ef'fectively "choked" and a contoured throat would be necessary to accelorate the steady flow to $M_{3}(>1)$. Since no such throat is present, a socond rarefaction wave R_{2} mast be formed whzoh accelerates the flow from $M_{4}=1$ at the diaphragm station to M_{3} behind the contact surface. If $\mathrm{H}_{3}<1$, the unsteady expansion wave R_{2} is absent; furthermore if the area ratzo $A_{61} \rightarrow \infty, M_{5} \rightarrow 0$ and the first rarefaction wave R_{1} disappears.

Now, for a given shock Mach number $\mathrm{M}_{\mathrm{S}_{1}}$, let us compare a non-uniform shock tubo with the corresponding uniform shock tube. Consider Figs. $10(\mathrm{~b})$ and $10(\mathrm{c})$ where $A_{61}=\infty$ and unity respectively.
For/

[^1] analysis.

For any Nwoh number M_{3} bohind the contact surfince the diagrans of the flow in the channels of the two shook tubes are identical. Hence any advantage due to the use of a non-uniform tube arises from the flow in the chamber section.

Now, for the steady flow expansion, Fig. $10(b)$, since $M_{6}=0$, it follows that
and

$$
\begin{align*}
& \left(p_{64}\right)_{A_{61=} C_{2}}=\left[1+\frac{y-1}{2} M_{M_{4}^{2}}^{2}\right]^{\gamma-1} \tag{7.3}\\
& \left(T_{64}\right)_{A_{61=c 3}}=1+\frac{y-1}{2} M_{4}^{2} .
\end{align*}
$$

Further, for the unsteady flow expansion, Fig. 10(c)

$$
\begin{equation*}
\left(p_{64}\right)_{A_{61=1}}=\left[\left(1+\frac{y-1}{2} I_{4}\right)^{2}\right]^{\frac{y}{y-1}} \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(T_{64}\right)_{A_{E 1=1}}=\left(1+\frac{\gamma-1}{2} M_{4}\right)^{2} \tag{7.6}
\end{equation*}
$$

Note that, since T_{4} is independent of A_{81}, it follows from (7.4) and (7.6) that $\left(\mathrm{T}_{6}\right)_{A_{61=0}} \neq\left(T_{6}\right)_{A_{61=1}}$.

Now, sunce $M_{4} \leqslant 1$ and since p_{41} is independent of A_{61}, a gain factor $G(\geqslant 1)$ may be defined as

$$
G=\frac{\left[p_{61}\right]_{A_{B 1=1}}}{\left[p_{B 1}\right]_{A_{B 1=0}}}=\left[\begin{array}{c}
\left(1+\frac{y-1}{2} M_{4}\right)^{2} \tag{7.7}\\
\hdashline 1+\frac{y-1}{2} M_{4}^{2}
\end{array}\right]_{y}^{y-1}
$$

When $M_{4}=1, G$ has a maximam value - equal to $\left(\frac{\gamma+1}{2}\right)^{y-1}$ and if $y=1.4$

$$
\begin{equation*}
G_{\max }=(1.2)^{35}=1.893 \tag{7.8}
\end{equation*}
$$

Thus, to produce a given shock Mach number $\mathrm{M}_{\mathrm{S}_{1}}$ the ratio p_{61} for the non-uniform shook tube is smaller than that for a uniform shock tube: or, in other words, for tho same overell pressuro ratio P_{0} the non-uniform shock tube produces a stronger shook than the uniform shock tube. If the general oase (Fig. $10(a)$) where A_{81} is finjte and greater than unity is reconsicierod, a general expression for the gain factor G is obtained in terms of M_{5} and M_{4} where M_{5} is related to A_{61} by the steady flow expansion equation

$$
A_{61} /
$$

$$
\begin{gathered}
\frac{-14-}{A_{61}}=\frac{M_{4}}{M_{5}}\left[\frac{1+\frac{1}{2}(y-1) M_{5}^{2}}{1+\frac{1}{2}(\gamma-1) M_{4}^{2}}\right]^{\frac{y+1}{2(y-1)}} . \quad \ldots .(7.9)
\end{gathered}
$$

The effects of the rarofaction wave R_{1} may be incorporated an the proceding analysis by notang that
and hence it follows that

$$
G=\left[\begin{array}{l}
1+\frac{1}{2}(y-1) M_{5}^{2} \tag{7.11}\\
1+\frac{1}{2}(y-1) M_{1}^{2}
\end{array}\left\{\frac{1+\frac{1}{2}(y-1) M_{1}}{1+\frac{1}{2}(y-1) M_{5}}\right]_{-}^{2}\right]^{y-1} .
$$

To sum up, if $A_{61} \geqslant 1$ then $G \geqslant 1$ for a given $H_{S_{1}}$; further if $i_{3} \geqslant 1$ G is a function of H_{61} but indepondent of $p_{61},{ }^{\text {b }}$ but, if $i_{3}<1$, G is a function of p_{61} and A_{61}.

In the prescnt context the miximum advantage to be obtained from the use of non-uniform shock tubes is requared; it is therefore assumed that $M_{3}>1$ and hence $\mathrm{LE}_{\mathrm{i}}=1$. If $y=1.4$, the equations (7.9) and (7.11) becole
and

$$
\begin{align*}
& A_{61}=\frac{1}{i_{5}}\left[\frac{5+i_{5}^{2}}{6}\right]^{3} \\
& G=\left[6\left\{\frac{5+N_{5}^{2}}{\left(5+i_{5}\right)^{2}}\right\}\right]^{3,5} . \tag{7.13}
\end{align*}
$$

Equation (7.12) is plotted as Fig. 11 (a), equation (7.13) is plottod as Fig. 11 (b) and Fig. 11 (c) is a cross plot - from the previous two figures - gaving the varıation of G with A_{01}.

Finally, the performance of this type of shock tube may be computed. Given A_{61}, the gain factor G is known from the curve of Fig. 11 (c); this gain is achieved provided $\mathrm{li}_{3} \geqslant 1$. Tho problem then roduces to on equivalent uniform shook tube problen where the overall pressure ratio $2.3 G P_{0}$ and the overall tomporature ratio is
$y=1$
G $Y T_{0^{*}} *$ Hence the maxumun possible gain oi in for a given P_{0} and T_{0} will be obtainod when $\mathrm{in}_{\mathrm{S}_{1}}$ is calculated from equation (3.3) in the fors

$$
1.893 P_{0}=\left\{\frac{7 i i_{S_{2}}^{2}-1}{6}\right\}\left\{1-\frac{\left(1.2 T_{0}\right)^{-\frac{1}{2}}}{6}\left\{\begin{array}{c}
M_{S_{1}}^{a}-1 \\
\frac{i_{s_{1}}}{}
\end{array}\right\}\right\}^{-7} \ldots(7.14)
$$

${ }^{*}$ From (7.3) to (7.7) inclusive, $G_{\max }=1.893$, and

$$
\frac{y-1}{\max }=1.2
$$

A curve of $M_{S y}$ for a non-uniform shock tube was calculated from (7.14) for various \mathcal{P}_{0} and $T_{0}=1$. This curve is plotted on Fig. 12 for comparison with the double and multiple-diaphragm types of shock tube.

7.2. Area Discontinuity at a Point along the Shock Tube

Let us consider the shock tube illustrated in Fig. 10(d). Suppose the area ratio Λ_{61} is very large and let the shock $\mathrm{H}_{\mathrm{S}_{6}}$ hit the aroa discontinuity. Thus shock will be reflected, leaving region (4) at rest; subsequently a steady expansion occurs and the problem Is exactly the same as that troatod in Section 7.1 above - the gain in shock Mach number is thus rolated to the Gain Fastor G. If the arae ratio $A_{B 1}$ is not infinito the reflected shock is not so strong, in $\neq 0$ and tho possible gain is therofore reduced. 6

It may be notod that the delay roquired before the breakage of the second diaphragn of the reflected-shock type of dcuble-diaphragm shock tube (see Section 4) may be reduced to zero (that is, breakuge of diaphragn by shock impact if there is a considerable area decreaco at the second duaphragm station. In thas manner the analysis of Soction 4 may be applied to a minltiple-diaphragn shock tube if there is a largo area decrease at a diaphragm whioh is broken by shock mapact, but without suck area decrease the analysis of section 5 must be used.

8. Special Types of Shock Tube

8.1. The Constant Mach Nunber Shock Tube

In Section 3.2 consideration was givon to a special type of simple shock tube in which the Nach nurabor of the flow between the shock and the contact surface is the same as the Mach number of the flow between the contact surfaoo and the rarafaction wave. Such a shook tube possesses the important advantage that tho available testing time is ancreased by a factor of about 7 for the very strong shock wave casc; in particular, this improvement in testung tine would ease oonszderably the formidable instrumentation problems oncounterod with hypersonic shock tubes.

It has been noted that to produce strong shock wavos in a simple shock tube, tho initial tenporature ratio T_{o} nust bu considorably larger than the values normally employed. Since tho multiplu-diaphragm shock tube offectively exchanges a ducrease of pressure ratio in favrur of an increase in termerature ratio, tho variablos P_{0} and T_{O} across the final diaphragm may be adjusted to give a final 'constant liach number' shock tube flow. Consider the reflucted shock type of multiple-diaphragm shook tube shown in Fig. 7 and let shock $M_{s_{6}}$ be roflectod from diaphragm D_{3} in the usual manner. It may be colculated that if the pressure ratio p_{61} is about 1.0 to 1.5 , depending on $M_{S E}$, conditions in the final channel will satisfy the 'constant Mach number' caso; that is $\mathrm{H}_{2} \bumpeq \mathrm{H}_{3}$. It is therefore suggested that only a minor minmatch betwoen Ma_{2} and M_{3} would occur if $p_{61}=1.0$. Hence, in practice the required final shock Mach number $M_{s_{6}}$ would be produced and then subsoquently the shock tube flow would be converted to the 'oonstant Mach number' condition by the addition of a further diaphragn with zero prossure difforonce across it.

8.2 The Performance of Diaphragms having Zero Pressure Difference Across then

Considor a shook wave of shook Nach number $M_{\mathrm{SA}_{1}}$ which is roflected from a diaphragn having zero prossure differonco across it. Subsequently let the diaphragm bo ruptured and let the resultant shock Mach number be $M_{S_{2}}$.

From the general formala (6.4) with $d p=0$ and $y=1.4$, it follows that

$$
\left[\begin{array}{c}
7 M_{S_{1}}^{2}-1 \\
\hdashline M_{S_{2}}^{2}-1
\end{array}\right]\left[\begin{array}{c}
8 M_{S_{1}}^{2}-2 \\
-M_{S_{1}}^{2}+5
\end{array}\right]=\left[\begin{array}{cc}
1 M_{S_{1}} & \left(M_{S_{2}}^{2}-1\right) \\
\left.1-\frac{M_{S_{2}}}{} \frac{\sqrt{\left(4 M_{S_{1}}^{2}-1\right)\left(M_{S_{2}}^{2}+2\right)}}{1}\right]^{-7} \cdot(8.1) .
\end{array}\right.
$$

Let $i_{S_{1}} \gg 1$ and $i_{s_{2}}=X_{S_{1}}+d r_{S_{1}} \gg 1$ so tnat

$$
\begin{equation*}
\frac{M_{S}^{2}}{8 M_{S_{1}}^{2}}=\left\{1-\frac{i_{S_{2}}}{4 M_{S_{1}}}\right\}^{7} \tag{8.2}
\end{equation*}
$$

Now suppose

$$
\begin{align*}
& z_{s_{2}}=k_{s_{1}} \\
& \frac{k^{2}}{8}=\left(1-\frac{k}{4}\right)^{7} \tag{8.4}
\end{align*}
$$

$$
\ldots(8.3)
$$

which is satisfied by one real value of k, that is, $k=1.01525$

$$
\begin{equation*}
k=1.01525 \tag{8.5}
\end{equation*}
$$

Thus, an the linnt as $\mathrm{M}_{\mathrm{S}} \gg 1$, the gain oí shock iach number by this method is 1.5%. Now consider equation (6.5), with dp $=0$, namoly:-

$$
\begin{equation*}
1=f_{1}\left(M_{S}\right)\left\{1+f_{2}\left(M_{S}\right) d i I_{s}\right\} \tag{8.6}
\end{equation*}
$$

and refer to Table V where $\rho_{1}\left(N_{S}\right)$ and $\rho_{2}\left(N_{S}\right)$ are tabulated.
NH Note that if $M_{S}<2.077$, d. H_{S} us negative; if $M_{S}=2.077$, $d H_{s}=0$ and if $M_{s}>2.077$, $d \tilde{H}_{s}$ is posituve.

Alternatively the ancraments in shock Nach nuaber $d M_{s}$ wicy be calculated directly frols Tables IIf and I: these results are given in Table VII. These calculations show that

$$
\begin{aligned}
& \text { If } i_{s}<2.67, \text { dis is negative } \\
& \text { If } i_{s}=2.67, \text { in is zero } \\
& \text { and } \text { if } i_{S}>2.67, \text { dis is positive. }
\end{aligned}
$$

The anconsistency between thesc two methods is presumably due to the assumption that $\mathrm{dim}_{\mathrm{S}}$ is infinitesinal in the thenry but finate in the tables.

The results for maltiplomapinaga shock tubes may be sumarisud as follows. Let the number of diaphragns n be vary large so that the prossure differcnce $d p$ across cach diaphragn is small. If $d p \neq 0$, the maximun attainable shock Wach number in increases as n increases to a lunat whach as a function of the overall pressure ratio across the extrene ends of the shock tube. If a shock of hach number greator than 2.67 is allowed to strike a series of diapnragas cach with zero pressure difference across it, then the raxumin attainable shock Mach number increases wathout luriet. On the other hand, if the initial shock Mach number is less than 2.67, shock decay will take place.

8.3 Duration of Flow in ifultiple Duaphragm Shock Tubes

The available flow durations may be calculated by standard methods ${ }^{1}$; the multiple diaphragms may be conveniently grouped near the high pressure end of the shock tube sance the flow duration merely depends upon I , $\mathrm{M}_{S_{1}}$ and H_{2} (see Fig. 7) according to the equation

$$
\begin{equation*}
\frac{\tau}{L}=\frac{1}{a_{2} I_{2}}-\frac{1}{a_{1} M_{S_{1}}} \tag{8.7}
\end{equation*}
$$

9. Discussion and Conclusions

9.1 Resumé of Results

The maximum possible gains in shock ilach number in over that obtainable using a simple shock tube with the same anctial conditions are illustrated in Fig. 12 and Table VI for each type of modified shock tube discussed in this paper.

It 1 s clear that shock tubs wath area discontinuzties are not of much practical use whon the overall prossure ratio P_{0} exceeds 10^{3} (say); the increase of shock Naoh number thus obtained 13 small whilst structural costs would become prohnbituve even for modercute area ratios. The double-diaphragm technioue appears to be extrenely sumple and offers a considerable increase of shock ?fach number; in practıce the unsteady expansion type would probably be used since it does not requare the electronic delay equipment needed for the reflected shock technique. In view of the very large gauns of shock Macn number indicated by the theory of multiple daphragn shock tubes with high overall pressure ratios, there is a need for experimental investigation of these types of shock tubes.

9.2 The Performance Calculations

The Tables and Flgures in this report have been calculated from perfect gas theory. This amplies that, in order to avold the effects of dissociation (above $3000^{\circ} \mathrm{K}$) and ionisation (above $4500^{\circ} \mathrm{K}$), the calculations of P_{0} from equation (3.3) mast be restricted to $\mathrm{M}_{\mathrm{s}} \ngtr 8.0$ and $\mathrm{T}_{\mathrm{C}} \$ 15$ assumang $T_{1} \doteq 238^{\circ} \mathrm{K}$ inctially. Thus lable I does not involve apprecable errors due to gaseous imperfections.

Unfortunately it 1 s not possible to apply the general results of the Tables to cases where $\gamma \neq 1.4$, but the calculation of tho performance of shock tubes using any other possible gas combination or combinations follows from the general formulae which have been derived above.

9.3 Conclusions

From tho performancu calculations for multiple-diaphragn shock tubes prosented herein, it is concluded that an experimontal investigation of these shock tubes would be valuable. Attention is drawn to the 'constant Mach number' mode of operation of shock tubes: this fcature of maltaple-diaphragm shock tubes may bo a uscful addition to the hypersonic shock tube technique.

Acknowledguments

iifiss C. M. Tracy and lir. P. J. Peggs performed the computations and Dr. G. E. Gadd and lir. E. W. E. Rngers oifered helpful suggestions.

Roforences

No.	Author (s)	Tztle, etc.
1	B. D. Henshall	Some Notes on the Flow Durations occurring in Hypersonic Shock Thbes. A.R.C.17,608-F.M.2243-T.P.461. 11th August, 1955.
2	J. Iukasiewicz	Shock Tube Thoory and Applications. N.A.I., Canada, Report 15, 195̌. A.R.C. 15,653 -T.F. 385 - F.X. 1963. 18 th February, 1953.
3	B. D. Henshall	On Some Aspects of the use of Shock Tubes in Aerodynamic iescarch. University of Bristol, Dept. of Aaronautical Engineering Report No.P.4. Conmunicated by Prof. A. R. Collar. A.R.C. $174+07$ - T.P. 44 9. 24th February, 1955. and Corrigendum, 13th July, 1955.
4	H. bernstein	A Double-Dlaphragm Shock Tube to produce Transient High Miach Nuniber Flows. J.Ae.Sci., Vol.20, No.11, pp.790-791, November, 1953. A.R.C. 17,549 - F.If.2225. 7th Aprıl, 1955.
5	E. I. Resler, S. C. Lin and A. Kantrowitz	The Production of High Teraperature Gases in Shock Tubes. J. Appla. Phys., Vol.23, No.12, p.1390, Decomber, 1952.
6	O. Laporte	On the Interaction of a Shock whth a Constriction. Los Alamos Scientific Laboratory Report LA-1740, January, 1955.

AP MDIX

Inturpolation from Table I to Determano N_{s}

Given the anitial overail pressuro ratio F_{0} and tomperiture ratio T_{0} across a diaphragn, the shock Nach nurber M Whach is producod when the diaphragm is muptured may be calculated as follows.

As an example of the metion fi anterpelition, consider the case

$$
P_{0}=42.513, \quad I_{0}=2.496 .
$$

From Iablu I, from the colums of To,

Thys muthod of successive linear anterpolation was chechod and found accurate to $1 / \sim$ for tho antervals givon an Tavlo 1 .

Values of P_{0} for Independent Ranges of if ${ }_{s}$ and T_{0}

PARIE I (contā.)

TABIE I (conta.)

TABLE I (contd.)

TABLE I (contd.)

TABLE I (contd.)

	8	9	10		11	12	!	14	15
\% 4 4*9	1933.5	1941.1	1205.7		1009.2	867.30	760.90	678.41	613.00
+ 480	2135.4	1635.9	1316.0		1097.1	939.64	821.86	730.98	659.0여
71	2358.5	1795.2	1436.5		1192.5	1017.8	887.61	787.43	708.31
7.2	2605.9	1970.2	1568.2	!	1296.4	1102.3	958.55	848.17	761.23
703	2879.6	2162.5	1712.0		1409.2	-119400	¢ 1034.9	: 913.39	818.04
74	3183.4	2374,1	1869.6	;	1531.7	-1293.2	-1147.5	983.57	878.92
$7 \cdot 5$	3520.8	2607.2	2041. 6		1665.0	1400.8	1206.6	1059.1	944.27
7.6	3884.2	2855.5	2223.1	!	1805.2	: 1512.6	- 1298.9	1137.2	1011.3
$7+7$	4311.8	3146.4	$24,35.8$		1968.4	. 1643.3	. 1406.6	1228.1	1089.5
7.8	4775.4	3458.3	2661.0		2140.6	1780.2	: 1518.6	1322.0	1170.2
7.9	5290.4	3801.8	2931.2		2328.0	1928.2	1639.6	1423.4	1256.7
8.0	5863.8	4181.4	3178.7		2532.5	2088.8	1770.4	1532.6	1349.6

TABIT II
Values of $P_{02} T_{0}$ and Y_{s} for the 'Constant lach Number' Shock Tube

i_{s}	$\stackrel{\left.P_{O}^{(}, 10\right)}{\operatorname{Eqn}} \cdot($	$\mathrm{TO}_{\mathrm{O}}^{(3.9)}$
1	1	1
2	15.443	2.4 .00
3	55.534	4.332
4	122.92	6.952
5	216.42	10.294
6	333.60	14.370
7	475.00	19.171
8	635.67	24.716
9	827.48	30.984
10	1028.2	38.009
11	1258.2	45.810
12	1510.6	54.259

TABLE III/

TABSLE III

The Reflection of a Shock Wave from a Rigid Wall

1.00	1.000	1.000	5.0	191.40	11.880
1.1 !	1.5397	1.1319	5.1	200.55	12.329
1.2	2.2371	1.2634	5.2 :	209.90.	12.787
1.3	3.1082	1.3974	5.3	219.45	13.254
1.4	4.1669	1.5355	5.4	229.20	13.730
1.5	5.4250	1.6790	5.5	239.15	14.215
1.6	6.8932	1.8287	5.6	249.29	14.709
1.7	8.579:	1.9833	5.7	259.63	15.214
1.8	10.489	2.1492	5.8	270.16	15.722
1.9 .	12.629	2.3207	5.9	280.89	$1 \epsilon_{0} \sim 43$
2.0 :	15.000	2.5000	6.0	291.81	16.772
2.1	17.607	2.6874	6.1	302.93	17.310
2.2	20.450	2.8830	6.2	314.24	17.856
2.3	23.530	3.0869	6.3 :	325.75	18.412
2.4 .	26.846	3.2992	6.4	337.44	18.977
2.5 :	30.400	3.5200	6.5	349.33	19.550
2.6	34.189	3.7493	6.6	361.42	20.133
2.7	38.211	3.9873	6.7	373.69	20.724
2.8	42.465	4.2339	6.8	386.16	21.324
2.9	46.952	4.5083	6.9 :	398.82	21.933
3.0	51.667	4.7531	7.0	411.67	22.551
3.1	56.609	5.0258	7.1	424.71	23.178
3.2 .	61.776	5.3072	7.2 .	437.94	23.814
3.3	67.165	5.5974	7.3	451.37	24.458
3.4 .	72.778	5.8963	7.4	464.98	25.112
3.5 .	78.609	6.2041	7.5	478.78	- 25.774
3.6 .	84.600	6.5206	7.6	492.78	: 26.445
3.7	90.923	6.8460	7.7	506.96	. 27.125
3.8 :	97.403	7.1802	7.8 :	521.33	27.814
3.9 '	104.10	7.5231	7.9 :	535.89	28.512
4.0 -:	111.00	7.8750	8.0	550.65	29.219
4.1 :	118.11	8.2357			
4.2	125.44	8.6052	9 :	708.63	36.775
4.3 ,	132.97	8.9835	10	885.40	45.220
4.4 .	140.71	9.3707	11	1082.3	: 54.617
4.5	148.65	9.7668	12 :	1295.3	64.776
4.6 ,	156.79	10.172	13	1528.5	75.887
4.7 :1	165.14	10.586		1780.2	87.888
408 : 1	173.69	11.008	15 :	2089.7	: 102.68
409	182.45	11.440	16	2339.9	. 114.56
5.0.	191.40	11.880	17	2647.8	129.22
			18 ;	2974.3	144.78
			19	3319.6	1161.22
			20	3683.5	: 178.56
;					-

- 30 -

TABLE VII
Gain in Ms due to Rerlection of a Shook from a Dlaphragm having Zero Pressure Dit'ference across it.
${ }^{T} 0=1$

$M_{S_{1}}$	ins_{5}	$\frac{d M_{s}}{(T a b l e s ~} I \text { and III) }$
1.0	1.000	0
1.5	1.491	-0.009
2.0	1.981	-0.019
2.5	2.497	-0.003
3.0	3.006	+0.006
3.5	3.515	+0.015
4.0	4.024	+0.024
4.5	4.533	+0.033
5.0	5.043	$+0.043$
5.5	5.557	+0.057
Very	Very	1.5\%
large	large	(Theory)

Fig. 1

A simple shock tube: Flow diagram

Fio. 3.

Double diaphragm shock tube - reflected shock type (see also figure 3)
Effect of variation of intermediate pressure p_{6} on $M_{s_{1}}$ for given P_{0}

Fig. 5

Double diaphragm shock tube - unsteady expansion type: flow diagram

Fig. 6.

Fis 7

Multiple diaphragm shock tube - reflected shock type: flow diagram.

Fig. 8

Multiple diaphragm shock tube _ reflected shock type
Influence of number of diaphragms on maximum attainable shock
Mach number

Fig. 9

Multiple diaphragm shock tube - reflected shock type.
Functions $f_{1}\left(M_{s}\right)$ and $f_{2}\left(M_{s}\right)$

FiG. 10 (a \& b)

Shock tubes with area discontinuities

Fig. 11.

Shock tube with area discontinuly
Area ratio $A_{6} \cdot 1$ and gain factor G - see section 7.1

Crown copynght reserved
Printed and published by Her Majesty's Stationery Ofrice
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London w i
P O Box 569 , London SEI
13A Castle Street, Edinburgh 2
${ }_{109} \mathrm{St}$ Mary Street, Cardıff
39 King Street, Manchester 2
Tower Lane, Bristol i
2 Edmund Street, Birmingham 3 80 Chichester Street, Belfast or through any bookseller

[^0]: ${ }^{\mathrm{K}}$ See: Arsendix .

[^1]: *The smooth change of area shown in Fig. $10(\mathrm{a})$ would become a sharp discontinuous change in practice - this does not affect the subsequent

