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Summary 

A technique is presented for condensing a multi-degree-of-freedom flutter calculation so that similar flutter 
conditions are achieved with two degrees-of-freedom. Use is made of digital computer programmes, and the 
process is largely automatic. 

Examples of the application of the technique are given, and show that systems can often be reduced to two 
normal modes, or to two orthogonal combinations of normal modes, and that these modes can be interpreted 
physically. 

A detailed analysis of one of the derived two degree-of-freedom systems is made. This analysis uses a method 
restricted to a binary system, and so the condensation technique made possible the application of this method. 

*Replaces R.A.E. Technical Report 73168--A.R.C. 35 211 
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1. Introduction 

Flutter equations representing systems with many degrees-of-freedom can be readily solved with the aid of 
a digital computer. It is tempting to use a large number of degrees-of-freedom in order to avoid making excessive 
simplifications, or to cover any possible type of coupling, but there is then the danger of reaching a level of 
complexity at which it is diffficult to identify the different types of flutter that may be revealed. This difficulty 
may hinder the use of previous experience of similar systems for the identification of important parameters. 
It is, of course, possible to vary data in a systematic manner to find important parameters, but the outcome 
of this approach can be a vast quantity of results for different combinations of varied data, and there is a risk 
of a general air of confusion caused by the sheer bulk of results to be assimilated. 

If a given flutter condition can be represented with a two degree-of-freedom, or binary, system, the analysis 
of that condition is as simple as it can be, both because of the reduction to the minimum number of degrees-of- 
freedom and because specialised techniques are available I for the study of the binary. For the equivalent 
binary system to be of practical use, the two degrees-of-freedom should be of physical significance, or bc capable 
of physical interpretation, to the flutter analyst. For this reason, purely mathematical techniques may not 
prove satisfactory. The technique described in this Report was, in fact, derived empirically with the physical 
significance of the equivalent binary system in mind. 

The technique is applied using digital computer programmes with a small amount of analysis between the 
stages of the process. It does not necessarily yield a satisfactory result, but the failures have been few. The 
amount  of additional computer time required is not large, compared with the time required for the basic 
solutions. 

The technique is outlined in Section 2, and is illustrated and described in more detail by an example of its 
application. Section 3 contains a discussion of the technique, whilst Section 4 is devoted to an analysis of the 
equivalent binary systems derived from the example in Section 2. The analysis of Section 4 is given in detail in 
order to illustrate how the benefits of reducing a flutter problem to equivalent binary form can be fully realised. 
Thorough analysis of the equivalent binary is an essential sequel to the application of the technique for deriving 
the binary, and the potential of the graphical representation I of the binary in this context is well illustrated in 
Section 4. 

2. The Technique 

2.1. Introduction 

The technique of condensing a multi-degree-of-freedom flutter problem into an equivalent binary may be 
conveniently divided into three stages. In the first stage, the problem is transformed so that the equations 
of motion are expressed in terms of normal modes of the system. In the second stage, a systematic examination 
of the normal mode equations is made, in which degrees-of-freedom are successively omitted and the resulting 
flutter characteristics are calculated. The object of this stage is to reduce the number of degrees-of-freedom, 
whilst retaining an acceptable approximation to the flutter characteristics of the original system. Where two 
of the normal modes are insufficient to achieve this object, a method of grouping degrees-of-freedom is used 
so that an equivalent binary system can be found in which each mode is a linear combination of two or more 
of the normal modes. The method of grouping ensures that the modes of the resulting equivalent binary have 
certain normal mode properties. The third stage consists of applying a matric transformation to the original 
equations of motion in order to obtain the equations of motion of the equivalent binary. The numerical values 
of the terms in the transforming matrices are determined from the second stage. 

2.2. Basic Results of the Example 

The technique is described by reference to results obtained from a flutter analysis of the rear fuselage, fin 
and rudders of an aircraft. This analysis was itself a part of a much more comprehensive analysis of the aircraft. 
The geometry of the system is shown in Fig. 1. The rear fuse!age was assumed to be encastr6 in this example. 
From the structural analysis of the rear fuselage, fin and rudders, with the rudder jacks assumed to be rigid, the 
normal modes were found and the five lower frequency modes retained in this analysis. To these, were added 
two modes of upper and lower rudder rotation against rudder jacks of assumed equal stiffness K J  o, Jo being 
a standard stiffness and K a scaled stiffness. The aerodynamic forces in this example were found using two 
different sets of quasi-steady assumptions (referred to as Set 1 and Set 2). By the usual process of solving the 
equations for specific values of airspeed, flutter speeds and frequencies were found for different rudder jack 
stiffnesses K. These results are shown in Figs. 2 and 3, from which it may be seen that the different aerodynamic 



assumptions give very different results, and, from the evidence of flutter frequencies shown, it appears that 
changing the aerodynamic data for the same stiffness K, can result in a different type of flutter becoming critical. 

The frequencies of the modes in this representation, called the arbitrary modes, are given in Table 1. 

2.3. Stage 1 : Transformation to Normal Modes 

It may be seen from Figs. 2 and 3 that interesting parts of the curves are given with values of K ~ of 0.324, 
0.725 and 1.0. Taking these values in turn, with each set of aerodynamic assumptions, will lead to sets of flutter 
equations of motion with constant coefficients : 

Acl + (a~B + D)(l + (rflC + E)q = 0, (1) 

where q is a column matrix of generalised coordinates, 
A is a matrix of structural inertia coefficients, 
B is a matrix of aerodynamic damping coefficients, 
D is a matrix of structural damping coefficients, 
C is a matrix of aerodynamic stiffness coefficients, 
E is a matrix of structural stiffness coefficients, 
cr is atmospheric relative density and 
u is scaled equivalent airspeed. 

A typical physical deflection z is given by z = Zq, where Z is a matrix of deflection coefficients. 
The first stage of the process is to transform equation (1) to normal coordinates. A computer programme 

takes the coefficients of the equations, finds the normal modes rT/from matrices A and E, and transforms and 
scales the original matrices so that new equations in the normal modes c-/are obtained. 

For example, if the normal modes obtained are given by : 

[q] = [ T ]  [~], {2~ 

where [TI is a square matrix, and [T] T is its transpose, then 
[A] = [T]T[A] [T], and [,4] is made identical with the unit matrix 
[l] by an appropriate scaling procedure on [T] 
[B] = [T]V[B][T] etc. 

The deflections in the normal modes are given by [z] = [Z] [T] [~]. 
With the new coefficients, exactly the same solutions to the equations of motion will be obtained as for the 

original coefficients, as long as all the normal modes are retained. 
The frequencies of the modes in this normal mode representation for the example are given in Table 2. 

2.4. Stage 2: Degree-of-Freedom Dropping 

A computer programme takes the normal mode coefficients output by the programme described in 2.3, 
together with the flutter speed and frequency of the total system. It then deletes the elements of ~/, one at a 
time, and tests whether the reduced set of equations has a critical flutter condition within a specified range* 
of the critical airspeed and frequency of the total set. If the reduced set of equations has a critical flutter condition 
within the specified range, a further element of ~ is deleted and the test applied again. If the reduced set of 
equations does not have a critical flutter condition within the specified range, the element of ~/just deleted is 
replaced and another element is deleted. The process continues until all the elements of ~, in a specified order, 
have been checked. The critical flutter speed and frequency given by the reduced g:/, together with the associated 
amplitude and phase vectors, are recorded. Results for the example are shown in Tables 3 and 4. 

It has been found that two normal modes are often sufficient to represent the flutter conditions of a larger 
problem, as Tables 3 and 4 show. Typical vectors, when more than two elements of ~/are necessary, are shown 

* The range used in the example was +_ 10 per cent on critical speed and + 15 per cent on critical frequency. 
Some judgment is required in fixing these values. Those quoted would allow the elimination of, say. 5 modes, 
each resulting in a 2 per cent change in flutter speed. This would be considered acceptable. The result of each 
stage of the degree-of-freedom dropping is output by the programme. These are studied at the end of a run, and, 
if it is thought necessary, a run is repeated with modified tolerances, if, for example, the elimination of a single 
mode results in a 10 per cent change of flutter speed. Such a large change in one stage would be unwise, and 
smaller tolerances would be called for in this case. 



in Figs. 4 and 5. It may be seen how, in most cases, the vectors tend to cluster around two directions. This 
feature has been observed in many examples. The plotting of the vectors when the minimum set of normal 
modes exceeds two is the only step in this process that is not the routine running of a standard computer 
programmes, and the clustering of the vectors in two directions is the only requirement for continuing the 
condensation process in a routine manner. Sometimes it is possible to achieve a good representation when 
the clustering is not obvious. Points h. and i. on Fig. 5 are examples of this. These points are considered further 
in Section 2.5. 

2.5. Stage 3: Binary Transformation 

The reduction to a binary system is effected by a transformation matrix Et], of order (n x 2), where n is the 
order of the original matrices. [t] is derived from the results of Stage 2, the degree-of-freedom dropping. This 
is described below, but there is an important feature of the form of [t] which is conveniently described initially. 
The transformation effected by Et] is, for instance: 

[~] = [t]'rEE] Et] 
where [E] is output by stage 1, 
and [t]T is the transpose of [t]. 

Stage 1 ouputs matrices of coefficients appropriate to normal modes, and so the structural inertia matrix 
[4] ( = [I]) and the structural stiffness matrix [E] are diagonal. If, now, It] is formed so that any row of Et] contains 
no more than one finite element, then it can easily be shown that the (2 × 2) matrices [4] and [ffS] are diagonal. 
This property is found to have advantages which are discussed in Section 3. 

With this in mind, the derivation of [t] is based on the output of Stage 2 and depends on the form of this 
output. 

(a) When Stage 2 has output a minimum ?/, with only two elements, then, for example: 

~0 0- 

[10 
:0  1 

t =  0 0 w i t h n =  7 

0 0 

0 0 

_0 0. 

where, in this case, the equivalent binary consists of modes 2 and 3 of the original 7. 
There is an arbitrary value of unity in the elements marking the two specified elements of the original ?/, 

and the effect of this transformation is to select the (2 × 2) matrices appropriate to the two required degrees-of- 
freedom. 

(b) When Stage 2 has output a minimum ?/with more than two elements, then [t] is formed by reference to the 
plot of the critical vectors. 

Each column of [t] is allocated to one of the two directions that are usually indicated by the clustering of the 
vectors, and the elements in each column are proportional to the amplitudes of the vectors allocated to that 
direction. 

For example, 

where 1, a, - fl are the relative vector amplitudes 
in the other direction. 

0 

[ t ] =  - f l  01 w i t h n = 7  

0 01 

0 0_] 

in one direction, and 1, 7, are the relative vector amplitudes 



Figs. 4 and 5 give examples of the form of [t] for typical Stage 2 outputs. It should be noted that no attempt 
is made to include the components of the vectors in one specific direction. This reflects the empirical nature of 
this stage. Obviously, if the vectors to be associated lay in precisely the same direction, the elements in Et~ would 
accurately represent this. If the vectors are nearly in the same direction, factors proportional to the cosines 
of small angles could be introduced but, in view of the fact that this stage is essentially an approximation, this 
has not usually been done. A similar point arises when the clustering of the vectors into two directions is not 
obvious. Examples of this are points h. and i. on Fig. 5, for which there is some doubt about whether normal 
mode 3 should be associated with mode 2 or with mode 4. The obvious compromise, to resolve mode 3 in the 
directions of the other modes, would result in finite elements in row 3 of each of the columns of Et], which 
is undesirable as it results in non-diagonal matrices [.~] and [ff,]. Instead, both possibilities for mode 3 were 
developed ; the full amplitude was associated separately with modes 2 and 4. The [t] matrices shown on Fig. 5 
resulted in the representation shown in Fig. 3. The alternatives did not give such good agreement with the full 
system. 

The binary transformation is carried out by a computer programme which uses the normal mode coefficients 
output from Stage 1 and the matrices [t]. 

For example, with [g/] = [t] [q], 

[/~] = I/IT[El[/] [E]is of order (2 x 2) 

etc., and 

[z] = [Z] [T] It] [~]. 

2.6. Stage 4: Checking the Binary System 

The binary transformation programme of 2.5 will produce sets of binary coefficients. The equations associated 
with these coefficients are solved in the same way as for the basic results for the original system. The results 
from the original system and from the binary are then compared for the following features : 

(a) critical flutter speed, 
(b) critical flutter frequency and 
(c) variation with airspeed of the frequency and decay of the critical root. 
Only if there is reasonable agreement in all of these features, may it be concluded that the binary system 

represents the original system. 
The agreement achieved with some of the points in the example given here is shown in Tables 3 and 4. 
The flutter speeds from binary solutions are superimposed on those from the complete system on Figs. 2 

and 3. The binary solutions are marked with a letter. 
For jack stiffness K s = 0.324 and Set 1 aerodynamics, the variation of mode frequencies and dampings with 

airspeed is shown, in Fig. 6, for the original system, and, in Figs. 7 and 8 for the binary equivalents. 
For jack stiffness K ~ = 0.725 and Set 2 aerodynamics, the variation of mode frequencies and dampings with 

airspeed is shown, in Fig. 9, for the original system, and, in Figs. 10 and I l, for the binary equivalents. 
It may be seen that there is good agreement, and there can be little doubt that the equivalent binary systems 

contain the essence of the flutter conditions of the original system. 
The mode shapes associated with the binary systems are also found. Some of these are described in Section 4, 

together with an example of the analysis that is possible with the binary equivalent systems. 

3. Discussion of the Binary Condensation Technique 

There are probably many binary transformations that will result in a binary system with similar flutter speed 
and frequency to the original system. For instance, if the critical vector of any system is found at flutter, a 
binary transformation matrix t, with (real) columns proportional to the real and imaginary parts of the vector 
will result in a binary system with the same flutter speed. However, Section 1 states that the two degrees-of- 
freedom should be of physical significance, and this is unlikely to be the case with this transformation. 

Normal modes have physical significance at zero airspeed, and the graphical representation technique 1, 
useful in the analysis of the equivalent binary, requires the binary to be in normal modes. These considerations 
suggested that the use of normal modes would be fruitful. The first transformation is to normal coordinates 
(Stage 1), and it may be seen from Tables 3 and 4 that degree-of-freedom dropping (Stage 2) often results directly 
in showing that two normal modes represent the flutter condition adequately. In cases when more than two 
normal modes remain, the form of the binary transformation matrix ~t] (Stage 3) was chosen so that, when the 
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transformation is applied to normal mode coefficients, a diagonal binary inertia matrix [,~] and structural 
stiffness matrix [E] results. This follows from the form adopted for [t]--in each row, if one element is finite, the 
other element is zero, as pointed out in Section 2.5. The binary degrees-of-freedom, therefore, have one of the 
properties of normal modes, although they are not orthogonal through the matrices [.~] and [El with all of the 
true normal modes. Stages 1 and 3 of the technique as described, result in the simplest evolution of two modes, 
which form an equivalent binary system and which are orthogonal through the structural inertia and stiffness 
matrices. This simplicity makes it more likely that the physical significance of the normal modes will be retained 
in the equivalent binary modes. 

Other approaches tend to lead to more complication. For instance, it has been found that if the normal mode 
transformation (Stage 1) is omitted, this often results in less distinct clustering in the vector output after degree- 
of-freedom dropping (Stage 2). Stage 3, the choice of the binary transformation, would, then, not be so obvious, 
and the form of It] that leads to diagonal [.4] and [E] would probably have to be abandoned. In this case, 
another stage would be necessary before Ref. 1 could be applied, since this requires diagonal [,4] and [ff~]. The 
likelihood of any physical significance in the equivalent binary modes would be reduced by this last stage. 

The standard method of Section 2 has worked well with the example quoted here and in other examples, and 
has, in particular, resulted in mode shapes with physical significance. Some of these are described in Section 4. 

4. Analysis of the Binary Systems 
4.1. Introduction 

Figs. 2 and 3 show the degree of representation achieved with the d~rived binary systems. A description of 
the binary condensation process is the main purpose of this Report. However, some of the mode shapes associated 
with the binary degrees-of-freedom will be described, and one example of the type of analysis made possible 
when the system has been reduced to a binary will be presented. 

In Section 4.2, modes will be discussed in relation to the general form of Figs. 2 and 3. 
In Section 4.3, the Graphical Representation 1 will be briefly described and its application to a particular 

point given in Section 4.4. 

4.2. The General Form of Figs. 2 and 3 

It is explained in Section 2.5 that Stage 3, the binary transformation, gives, as well as the binary flutter co- 
efficients, the physical deflections in the two degrees-of-freedom, that is'the shapes of the modes involved in the 
flutter. As well as these modal shapes, there will also be available the shapes of the original modes, and of the 
normal modes from Stage 1. It should, therefore, always be possible to judge whether the Stage 3 binary modes 
are capable of physical interpretation by comparing them with the full system modes. For instance, in the 
example used here the binary modes were often different from the full system modes by the elimination of the 
rotation of one of the rudders. In general, the normal modes showed rotation of both rudders, due to inertia 
couplings, but the overall result of degree-of-freedom dropping and Stage 3 was often the removal of, or reduction 
in, the rotation of one of the rudders if this rotation was not significant in the flutter being considered. 

The modes found for all the binary points are not presented here, but it is hoped enough examples are given to 
explain their usefulness. 

Study of the mode shapes associated with points a, b and c on Fig. 2, with Set 1 aerodynamics, indicates that 
the branch of flutter represented by these points is due predominantly to coupling between the rear fuselage 
and fin fundamental mode and a mode containing upper rudder rotation together with some fin twist which 
increases as the jack stiffness K increases. As an example, Figs. 12 and 13 show the two modes associated with 
point c. This point is for a high value of the jack stiffness, and Fig. 13 shows that the second mode has appreciable 
fin twist, and that this feature results in the nodal line over the upper part of the fin being forward of the hinge 
line. The importance of this is shown in Section 4.4. 

Study of the modes associated with the binary systems, with Set 2 aerodynamics on Fig. 3, shows that a 
similar type of flutter is given by the curves containing points f. and k. Therefore, for this type of flutter, both 
aerodynamic assumptions give similar flutter speeds at low values of jack stiffness K (compare a. on Fig. 2 with 
f. on Fig. 3), whereas Set 2 aerodynamics results in much higher flutter speeds at higher values of K (compare c. 
on Fig.~2 with k. on Fig. 3). At intermediate jack stiffnesses, Set 2 aerodynamics does not lead to a critical 
flutter coupling of this type. 

The detailed reasons for the differences between points c. and k. are indicated in Section 4.4. 
On Fig. 2, with Set 1 aerodynamics, study of the mode shapes indicated that the branch represented by points 

d. and e. is due predominantly to coupling between the rear fuselage and fin first overtone mode and the lower 



rudder rotation mode. The equivalent branch, with Set 2 aerodynamics, on Fig. 3 is that represented by points 
g., h. and i. As an example the modes associated with point i. are shown in Figs. 14 and 15. It may be seen 
from Figs. 2 and 3 that there are considerable differences between the results obtained using Set 1 and Set 2 
aerodynamics for this type of flutter. With Set 1 aerodynamics at low values of jack stiffness K, the flutter speed 
is higher than with Set 2 aerodynamics. As K is increased, with Set 1 aerodynamics the flutter speed increases 
until a limiting value of K is reached, beyond which this type of flutter is eliminated. With Set 2 aerodynamics, 
on the other hand, there is little variation of flutter speed with K. 

On Fig. 3, with Set 2 aerodynamics, study of the mode shapes indicated that the branch represented by 
points j. and 1. is due to coupling between the fin twist mode and the upper rudder rotation mode. This type 
of flutter does not appear on Fig. 2, with Set 1 aerodynamics, up to the maximum speed investigated. 

4.3. The Graphical Representation I of a Flutter Condition 

In the Graphical Representation, the equations of motion are recast so that the zero value of the Routh 
Test Function T3 (i.e. the critical flutter condition) is obtained at the intersection of a conic and a straight line. 
The coordinates chosen are ~o z, proportional to the square of frequency, and y, proportional to the square of 
equivalent airspeed. The problem is scaled so that the inertia matrix [A] is the unit matrix. 

In Fig. 16, for example, the conic for the atmospheric relative density, ~, equal to zero, depends on the aero- 
dynamic stiffness coefficients [C] and the structural stiffness coefficients [~]. The conic with ~ equal to unity 
differs from that with ~ equal to zero due to a comparatively simple expression involving aerodynamic damping 
coefficients [B]. The straight line depends on aerodynamic damping coefficients [~], aerodynamic stiffness 
coefficients [ffl and structural stiffness coefficients IF]. For convenience, the straight line is called the 'damping" 
line, because it is more dependent on [ ~  than is the conic. Properties of the conic and the damping line (for 
example, the values of the conic and the damping line at speed parameter y equal to zero, the values of y 
for limiting values of the conic, the slope of damping line) are given in Ref. 1 as expressions containing the 
flutter coefficients. The expressions enable visual analysis of the conic and damping line to be interpreted in 
terms of the binary flutter coefficients. 

4.4. Effect of Aerodynamic Assumptions on Point c., Fig. 2 

Point c. on Fig. 2 arises from the coupling between the rear fuselage/fin fundamental mode and the upper 
rudder rotation mode. With Set I aerodynamics the scaled critical flutter speed is 1.35, while, with the same 
binary system, but Set 2 aerodynamics, the scaled critical flutter speed was computed to be 1.88. The reasons 
for this difference are investigated using the mode shapes for the binary degrees-of-freedom in Figs. 12 and 13, 
together with the binary coefficients and the Graphical Representation I of the binary with Set 1 and Set 2 
aerodynamics shown in Figs. 16 and 17. 

From Figs. 16 and 17, it may be seen that the lower flutter speed with Set 1 aerodynamics is attributable to 
the following features of the diagrams : 

(a) Set I aerodynamics results in a lower value of the limiting y for the conic with atmospheric relative 
density a equal to zero, and this feature appears to be due to differences in the slope of the conic for the higher 
frequency point at y equal to zero, 

(b) the effect of atmospheric relative density a on the conic is smaller with Set 1 aerodynamics. 
In Ref I expressions in terms of flutter coefficients for these features are listed. They are discussed in Appendix 

A with the binary flutter coefficients for Set 1 and Set 2 aerodynamics, and it is shown that the most significant 
differences in coefficients are those between c21 and c2z. Since quasi-steady strip theory is being used here, each 
aerodynamic coefficient can be expressed in terms of contributions from the aerodynamic derivatives, which 
are defined in Appendix B and listed in Table 5. It is a simple matter, using the transformation programmes of 
Stages 1 and 3 to find these derivative contributions, and, in Table 6, the contributions to c2~ and c22 with Set 1 
and Set 2 aerodynamics are compared. It can be seen from Table 6 that the differences between the coefficients 
are mostly due to differences between values o f ( - m s )  and (-mt~,). 

Appendix B.2 shows that the position of the local centre-of-lift is given by the ratio (-m,)/(l~) or ( - m, , ) / ( l , , , ) .  
Since 15 and In, , are similar, it follows that the differences in (-m~) and (-rap,)  describe differences in local 
centres-of-lift. 

From the values of the derivatives in Table 5, the positions of the local centre-of-lift are : 
(a) with Set 1 aerodynamics, 

due to incidence c~, 0.25c aft of leading edge 
due to upper rudder rotation flu, 0.50c aft of leading edge 



(b) with Set 2 aerodynamics 
due to incidence ~, 0.30c aft of leading edge 
due to' upper rudder rotation flu, 0.67c aft of leading edge. 

The significance of these differences may be seen by considering the derivation of aerodynamic stiffness co- 
efficient crs. This coefficient is derived from the work done by the aerodynamic forces due to mode s in a small 
displacement in mode r. For both c21 and c22, the major contributions are seen, from Table 6, to be from the 
lift due to incidence (l, and (-m~)) and the lift due to upper rudder rotation (lp, and (-m~,)). Therefore, the 
essential differences between Set i and Set 2 aerodynamics for czl and c22 arise from the differences in the work 
done by the two sources of lift in a small displacement in mode 2 (Fig. 13), and these can be deduced by con- 
sidering the two centres-of-lift and the deflections in the mode. To assist in this, the centres-of-lift quoted above 
are superimposed on the mode 2 shape in Fig. 13. It may be seen how, over the upper part of the fin, the nodal 
line is close to the different centres-of-lift. This is due to the fin incidence in the mode, and it results in there 
being large differences in deflection at the different centres-of-lift. This is responsible for the differences in c21 
and e22. Thus there are two sources for the differences : 

(a) the differences in the centres-of-lift--an aerodynamic effect, 
(b) the fin incidence in the mode, which results in the nodal line being forward of the rudder hinge, and, 

therefore, at chordwise stations close to the centres-of-lift--a structural effect. 
The analysis has, therefore, revealed the importance of a combination of aerodynamic and structural features, 
and the accuracy of the flutter estimates can now be assessed by concentrating on the accuracy of the data for 
each feature. 

The conclusions could, no doubt, have been reached by other methods, by, for instance, variations of indi- 
vidual aerodynamic derivatives in the complete calculation. This would have certainly involved a great deal 
more computation. It would also have been more complicated, as Fig. 2 shows that three types of flutter, all 
possibly varying in a different way with derivatives, would have had to be identified, and the pin-pointing of a 
particular aerodynamic effect on a particular mode shape would have required the additional solution of cases 
with reduced degrees-of-freedom. At all stages this alternative approach would have been tentative. On the 
other hand, the technique described above in Section 2 works progressively towards a positive result. 

5. Concluding Remarks 

The example of the technique that has been described has shown that it is possible to condense the flutter 
conditions in a multi-degree-of-freedom flutter analysis to equivalent two degree-of-freedom systems, in which 
the associated modes have physical significance. The technique uses digital computer programmes, is largely 
automatic, and the additional computer time required is not large. 

One advantage of being able to study a two degree-of-freedom system has been shown by the use, with an 
example, of the Graphical Representation ~ of the binary. In this example, significant aerodynamic and structural 
features have been revealed. 
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Cycles to half amplitude 

Column matrices of generalised coordinates 

Transformation matrices 

Column-matrix of deflections 

Matrix of deflection coefficients 

Coordinates of Graphical Representation--see Section 4.3 

Typical finite elements of matrix t 

Frequency parameter 

Scaled equivalent airspeed 

Scaled critical flutter equivalent airspeed 

Atmospheric relative density 
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A P P E N D I X  A 

The Analysis of the Example of Section 4.4 

Expressions from Ref. 1 for Significant Features of Figs. 16 and 17 

A.I.  F r o m  Section 4.4, the significant differences between Figs. 16 and  17 are :  
(a) l imit ing y for conic with a tmospher ic  relative densi ty  o- = 0, 
(b) effect of  a tmosphe r i c  relative densi ty  a on l imit ing y, 
(c) s lope of  conic  at  higher  frequency po in t  at y = 0. 

F r o m  Ref. 1, the l imit ing y with a = 0 is 

(e  2 --  et)¢,  c22)  n t- 2N/Tf--~l} 4g "II, CI 1 - -  - -  

where g = d + ~{Cl l  - -  C22) 2, d = c 1 2 c 2 1  a n d  

e r - -  
~rr 

e l  i + e22  

With  values of  coefficients from Figs. 13 and  14, with a = 0, 

g = C12C21 "}- ~{Cl l  - -  C22) 2 

Set 1 g = ( - 2 - 5 0 2  x 0-389) + 0.25(0.488 + 1.084) 2 

= - 0 - 9 7 3  + 0.618 = - 0 . 3 5 5  

Set 2 g = ( - 2 - 8 4 2  × 0.227) + 0.25(0.558 + 0 . 0 9 6 )  2 

= - 0 . 6 4 5  + 0-107 = --0.538. 

It may  be seen that  the differences in 12'21 and c22, shown under l ined above,  are largely responsible  for the 
smal ler  numer ica l  value o f g  with Set 1 data .  

Wi th  a = 0 

l imit ing y - 
( e  2 - -  e l )  ` - - - -  

4g / ( e l l  - 12'22) -+ 2x/ /-c12c21} • 

(0-883 
0"117)I(0.488 + 1.084) + 2 2x~0.502 × 0.389] 

Set 1, Y = 4 x ( - 0 . 3 5 5 )  

0.766 
- 4 × ( - 0 . 3 5 5 )  {(1"572) + (1.973)} 

0.766 
× ( - 0 - 4 0 1 )  = 0.216. 

4 x ( - 0 . 3 5 5 )  

(0.883 0.1 17) 
"0 558 _ 2 x / ~ 4 2  × Set 2, y = ~ x ~ 2 0 . ~ 3 8 )  d + 0.096) + 0.227] 

0.766 
- 4  x ( - 0 - 5 3 8 )  {(0.654) - 1.606} 

0.766 
- x ( - 0 . 9 5 2 )  = 0.339. 

4 × ( - 0 . 5 3 8 )  

It may be seen that  c21 and  c22, shown under l ined  above,  a re  responsible  for differences in numera to r  and  
d e n o m i n a t o r  (via the value of  g) and  on the l imit ing values of y. 

Wi th  finite a, 

l imit ing y - ( e 2 ~  e l )  (C l l  - -  12'22) (e 2 eO + 2 + e l , c ,  
- - (e2 - -  e l )  (e2 - -  e l )  2 " " 

where b = a[bl lb22 - bt2621]. 
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Set 1 S e t  2 

(e  2 - -  e l )  0.766 

4g 

Ca 1 - -  C22)  

b 

(e2 - ea) 

b(el ae2  - -  c 2 2 e 1 )  

(e2 - - e a )  

b2eae2 
(e2  - e l )  2 

- -  Ca2C21  

4 × ( - 0 . 4 2 5 )  
= - 0 . 4 5 1  

0.488 + 1.084)= 1.572 

0.322a 
- 0 .420a 

0-766 

0.322a 
(0.488 × 0.883 + 1.084 × 0.117 

0.766 

4 x ( - 0 . 4 0 7 )  
0-471 

0.588 + 0-096 = 0-654 

0.396a 
- - 0 . 5 1 7 a  

0.766 

0 .39@ 
- - - ( 0 - 5 5 8  × 0.883 + 0 .096)×  0-117) 

0.766 

= -0 .420(0 .431  + 0.127) 

= - 0 . 2 3 4 G  

0.3222G z × 0-117 × 0-883 

(0.7662 ) 

= 0.018a z 

2.502 × 0.389 = 0-973 

= -0 .517(0 .493  + 0.011) 

= 0.261a 

0.3962a z × 0.117 × 0.883 

(0.766 z) 

= 0.028a z 

2-842 × 0-227 = 0.645 

Therefore ,  wi th  tr = 1. 

Set 1, l imi t ing  y = - 0 . 4 5 1 { 1 . 5 7 2  - 0.420 _ 2 ~ / - 0 . 2 3 4  + 0.018 -4- 0.973} 

= - 0 . 4 5 1 { 1 . 1 5 2  _ 1.742} 

= ( - 0 . 4 5 1 )  × (0.590) = 0.266. 

Set 2, l imi t ing  y = - 0 . 4 7 1 { 0 . 6 5 4  - 0.517 _+ 2 ~ / - 0 . 2 6 1  + 0.028 + 0.645} 

= - 0 . 4 7 1 { 0 . 1 3 7  -4- 1.284} 

= ( - 0 . 4 7 1 )  × ( - 1 - 1 4 7 )  = 0.540. 

It  m a y  be seen tha t  differences in  C2a a n d  c22 (these coefficients o r  t e rms  s ignif icant ly  affected by  them are 
u n d e r l i n e d  above)  are  largely respons ib le  for the differences in  l imi t ing  y, with  cr = 1. 

13 



A P P E N D I X  B 

B.I. DefinRions of Quasi-Steady Aerodynamic Derivatives 

z M 

. . . .  j . _ . .  

I 

per unit span 

L = pV2c[L~ot q- Lt~*g ], 

M = pVZc2[M=cz q- Me,g ] 

and 

H = p V2c2[H~o( q- Ht~*g ] 

where L = l~ + ivl~ - v 2 1 ~  etc., and  fl may refer to upper  or  lower rudders .  

B.2. Position of Local Aerodynamic Centre 

~ M  

I 
L 

T 

C 

Lift E acts at x aft of leading edge, with 

E = L and L x +  M = 0  
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therefore 

therefore due to c~, 

i.e. due to ~, L acts at 

due to/~, 

i.e. due to/3, L act at 

X = 

X m 

M 
X - -  

L '  

- p V 2 c 2 m c ~ c ~  = , cm~ 

p V 2 clct O~ 1~ ' 

--jO V 2 c2mf l f l  _ cmp 
p V 2 c l p f l  lfl ' 

aft of leading edge 

aft of  leading edge. 

Mode  

1 
2 
3 
4 
5 

Upper  rudder 
Lower rudder  

T A B L E  1 

Arbitrary Mode Scaled Frequencies in Example 

Fin and fuselage 
(K = oo) 

0.62 
1.47 
1.78 
2.23 
2.56 

K ~ = 0.324 

0.93 
0.67 

Rudders 

K ~ = 0.725 

2.08 
1-49 

K ~ = I-0 

E 

2.87 
2-05 

T A B L E  2 

Normal Mode Sealed Frequencies in Example 

1 
2 
3 
4 
5 
6 
7 

0.324 

0.55 
0.67 
1.08 
1.79 
2.39 
2.74 

0-725 

0.61 
1.12 
1.61 
1.89 
2.50 
3.72 

7.53 9.07 

1.0 

0.62 
1.27 
1.70 
1.97 
2.52 
4.78 

10.59 
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TABLE 3 

Scaled Flutter Speeds and Frequencies in Example 

Set | Aerodynamics 

/<½ 

0.324 

0.725 

1.0 

7 modes 

0 c 

0-53 
1-46 

1.17 
1.97 
2-40 

1.30 

L 

1.01 
1.84 

1.25 
2.00 
2.08 

1.24 

Point 

a .  

d. 

b. 

e. 

e. 

C. 

Modes remaining after 
degree-of-freedom dropping 

Modes 

1 2-3 
2-3-4 

1 3 
1-2-3-4 5 

1-3 

Or, 

0.52 
1.56 

1.17 
1.86 

1.35 

L 

1.01 
1-83 

1.35 
1.97 

1.34 

I) c 

0.53 
1.55 

!.17 
1.87 
2.58 

1.35 

Binary 

L 

1-02 
1.82 

1-35 
1-95 
2-14 

1.34 

* This point is an upper critical flutter speed to which the degree-of-freedom dropping procedure does not 
apply, but which is represented by the binary for the corresponding lower critical flutter speed. 

TABLE 4 

Scaled Flutter Speeds and Frequencies in Example 

Set 2 Aerodynamics 

K~ 

0.324 

0.725 

1.0 

7 modes 

oc f ,  

0.61 1.02 
1.11 1-78 

1.06 1.86 
1.83 3-13 

1.23 1-94 
1.80 1.24 
2.43 4-14 

Point 

f. 

g. 

h .  

j. 

i. 
k. 
1. 

Modes remaining after 
degree-of-freedom dropping 

Modes 

1 3 
1 2-4 

2-3-4 
3-6 

2 3-4 
1-3 
3-6 

Oc 

0.64 
1.18 

1.06 
1.96 

1.23 
1.88 
2-52 

L 

1.03 
1.77 

1.87 
2.95 

1.94 
1'32 
3.93 

0 c 

0.64 
1.15 

1.06 
1-96 

1.27 
1.88 
2.52 

Binary 

L 

1.03 
1.77 

1-85 
2.95 

1.92 
1.32 
3.93 
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F o r  6' 21 

T A B L E  5 
Values of Aerodynamic  Stiffness Derivatives,  with Associated 

Centres of  Lift  

Der ivat ive  Set 1 Set 2 

ldt 
(-m,) 
l#L 
( -  ma3 
( -- hal  ) 
(-h~L) 
( - h ~ v )  
lay 
( - m a y )  
( -  hay ) 
( -  m,)/l* 
( - mOL)/l'~z 
( - mav)/l~v 

1.26 

0.315 
0.682 
0-341 
0-0181 
0-00137 

- 0 - 0 1 5 2  
0.887 
0.443 
0.0252 
0.25 
0.50 
0.50 

1.31 
0.394 
0.686 
0.501 
0.0157 
0.0006 
0.006 
0-881 
0-590 
0.0296 
0.30 
0.73 
0.67 

* See Append ix  B .2 - -va lues  are  centres  of lift in fract ions of 

chord  aft of leading edge. 

T A B L E  6 

P o i n t  c. ,  F ig .  2 - - C o n t r i b u t i o n  to  A e r o d y n a m i c  Coe f f i c i en t s  
Coe f f i c i en t s  cz~ and c22 from the  D e r i v a t i v e s  

Due to 
der ivat ive 

l~t 
( - m ~ )  

laL 
(-m~L) 
( - hal  ) 
( - h~L) 
( - h ~ v )  
lay 
(-may) 
( - hay) 

Set 1 

0-519 
- 0 . 2 0 6 *  

0.069 
- 0 . 0 2 4  
- 0 . 0 1 0  

0.000 
0.022 
0.280 

- 0.229* 
- 0 . 0 3 2  

.'.c21 = 0.389 

Set 2 

0.538 
-0 -258*  

0-069 
- 0 - 0 3 5  
- 0.009 

0-000 
- 0.009 

0.276, 
-0 -304*  
- 0 . 0 4 1  

.'.c21 = 0.227 

F o r  c22 

Idt 
( - m ~ )  

lpt 
(--reaL) 
( - -haL)  
( - h J  
( -h~ ,o)  
lay 
(-may) 
( - hay ) 

- 1.499 
0.649* 

- 0 . 1 1 6  
0.036 
0.017 
0.000 

- 0.069 
- 2.395 

2.013" 
0.280 

.'. C22 = -- t '084 

- 1.554 
0.812" 

- 0 - 1 1 6  
0-053 
0.015 
0.000 
0-027 

- 2 . 3 6 1  
2.681" 
0.347 

.'.c22 = - 0 . 0 9 6  

* Significant differences. 
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U n s t a b l e  . 

3 " 0  

2 . 5  

u 2 " 0  > 

(- 1"5 

3 
4- 

-~ ~.o 

0-5 

Numbers on curves are 

s c a l e d  f l u t t e r  ? rec~uenc i~s  

Letters r e f e r  t o  b inary  ¢c~uivalents - see section 2.6 

d 
d 

I "81 

L 
/ 

0 0.2 0 - 4  0-6  0 - 8  

I< z 

C~ 

.O 

FIG. 2. Variation of scaled flutter speed vc with scaled jack stiffness K--Set 1 aerodynamics. 
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L e t t e r s  r e f e r  t o  binQry eo~uiva0emts - see sec t ion  2.C~ 
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Q_ 
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0-5 

O'B I  

j®  

h 

1-24 

0 0 . 2  0 . 4  .L 0"6 0-8  8.0 
Kz 

FIG. 3. Variation of scaled flutter speed v c with scaled jack stiffness K--Set  2 aerodynamics. 
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N u m b e r s  refer t o  n o r m a l  m o d e s  
For  d e r i v a t i o n  o f  t - - s e e  s e c t i o n  P . 5  

Point 

3 
r t = -0"778 0 ~ 

0-654 0 
0 I-0 
0 0 
0 0 
0 0 
0 0 

P o i n t  d 
l.,qw 4 

,.o g 
0 0.09 
0 I- 
o 
0 
0 

Point e 
t --l- 

4 

Poin ts  b a n d  C b o t h  r ~ d u c e  t o  b i n a r y  I - 3  t = 

- 0 0 - 1 B 8 -  
0 - 8 4 5  0 

- 0 . 3 0 2  0 
0 I ' 0  
o -o-114 
o 0 
o 0 

FIG. 4. Critical flutter vectors for reduced systems output by Stage 2--Set 1 aerodynamics. 
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NumbcPs refeP t o  n o r m o l  modes 
f o r  d e r i v o t i o n  o f  t - s e e  sect ion P-.5 

21 4 Po in t  cj 
t =  0 - 2 1 6  0 

- 0 - 1 5 8  0 
0 0 
O I '0  
0 O 
O 0 
O 0 

Po in t  h 
4 

Point i 4 

2 

t =  I 0 0 
I ' 0  0 
0 - 0 - 3 0 ;  
0 I -0  
0 0 
0 0 
0 0 

t= I 0 0 
1.0 0 
0 - 0 . 4 8 5  
0 i 'O 
0 0 
0 0 
0 0 

Points f and h both reduce to binory I-3 

Points j and ~ both reduce to binary 3-6 

Fl(;. 5. Critical flutter vectors for reduced systems output by Stage 2--Set 2 aerodynamics. 
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F~G. 1.. Binary point c - - l s t  mode, scaled frequency = 0-62. 
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