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Summary 

The author's treatment of the Mangler and Smith vortex-sheet model of leading-edge separation is extended 
to the calculation of steady conical flow past a yawed slender delta wing. Introducing yaw destroys the sym- 
metry property inherent in the unyawed problem necessitating that the two leading-edge vortex sheets be 
treated as independent but mutually interacting singularity distributions in the cross-flow plane of the slender- 
body theory. From the calculations, predictions are obtained of the variation of the principal quantitative 
flow characteristics--including the two primary vortex core positions and the wing rolling-moment coefficient 
--with the incidence and yaw parameters. Comparison of these predictions with experimental data is reasonable 
qualitatively but only fair quantitatively, the discrepancies being attributed to the neglect, in the flow model, 
of the effects of the secondary separation system on the windward side of the wing. The range of the present 
calculations is to some extent limited by failure of the solution technique at lower values of the incidence 
parameter. 

* Replaces A.R.C. 33 963 
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1. Introduction 
In recent years, many theoretical studies of the phenomenon of separated flow about unyawed slender delta 

wings have appeared in technical reports. 1'2'3 This work culminated in that of Smith, 4 who presented the first 
really adequate approach to the calculation of flows involving leading-edge separation. Following the earlier 
work of Mangler and Smith, a Smith considered a flow model, based on the slender-body theory, in which each 
of the two spiral vortex sheets representing leading-edge separation are broken up into an outer part, retaining 
a sheet-like character, and an inner part, the circulation of which is concentrated on to an isolated vortex. He 
developed an ad hoc iterative technique for the numerical treatment of this model and used this scheme to 
calculate the flow, with leading-edge separation, past an unyawed semi-infinite flat-plate delta wing. Levinsky 
and Wei 5 have subsequently employed the same method to treat slender bodies formed of combinations of 
circular/elliptical cones and flat-plate delta wings. Smith 6 has since extended his treatment to deal with leading- 
edge separation from slender rhombic cones thus calculating for the first time the formation of a free vortex 
sheet at a leading edge of non zero cross-section angle, while Barsby 7 has used a variation of the Smith approach 
to investigate the effect of blowing from the leading-edge of a slender delta wing. 

Earlier, an alternative model for the treatment of separated flows had been developed by Sacks et al. 8 In this 
approach, the separated shear layers are represented by discrete vortices--shed from the wing leading-edges-- 
which are allowed to convect in an inviscid unsteady flow. This model is suitable for the calculation of non- 
conical flows but, like all approaches based on the slender-body theory, trailing-edge effects cannot be directly 
taken into account. Simplified flow models for low aspect-ratio wings in which trailing effects are included, 
have been presented by Garner and Lehrian, 9 by Polhamus, 1° and by Nangia and Hancock) 

More recently, the author ~ 2 has developed an alternative technique to Smith, for the treatment of the slender- 
body theory vortex-sheet model of conical separated flow. This approach, following Legendre, 1 formulates 
the general problem for an arbitrary number of vortex sheets, as a system of singular non-linear integro- 
differential equations. A finite difference representation of these equations, based on the Mangler and Smith 
vortex-sheet-cut-isolated-vortex model, is constructed, and a Newton-Raphson solution procedure is pre- 
sented. Some calculated examples with simple leading-edge separation are given. 

In all of the above-mentioned work, the slender bodies being treated have incidence to the oncoming stream, 
but not yaw, thus introducing a plane of symmetry into the problem. A slender conical body with both incidence 
and yaw may be expected to exhibit a region of approximately conical flow near the apex, and it therefore seems 
natural to extend the vortex-sheet model to the calculation of such flows. Ribner ~ 3 has treated attached flow 
past a yawed slender delta wing with and without dihedral, obtaining predictions of the lift and rolling moment, 
but to the author's knowledge no treatment of the yawed wing problem in which leading-edge separation is 
included, has yet appeared. 

On the experimental side, Fink ~4 carried out some preliminary measurements of the pressure distribution 
on a thin yawed slender delta wing in a region of approximately conical flow. This experimental programme 
was completed by Harvey, 15 who, in addition to pressure measurements, took detailed flow-field total-head 
surveys from which the positions of the vortex cores of the windward (attacking edge) and leeward leading-edge 
vortex systems were obtained. By integration of the wing pressure distribution, he also obtained the local lift 
and rolling-moment coefficients. 

From these experiments it was apparent that yawing the wing strengthened the windward vortex system 
which moved inboard and closer to the wing surface. Exactly the converse happened to the leeward system. 

In the present work, the problem of flow with leading-edge separation past a semi-infinite flat-plate delta 
wing--with both incidence and yaw--is treated using the inviscid slender-body theory. This allows the con- 
struction of a quasi two-dimensional complex velocity potential in the cross-flow plane. The flow is assumed 
to be conical and flow separation is taken to occur only at the wing 'leading-edges'. Firstly, the set of integro- 
differential equations for the strength and position of the two vortex sheets which represent the respective 
separated shear-layer core-systems is derived, and a finite difference representation of these equations is 
formulated, based on the Mangler and Smith vortex-sheet-cut-isolated-vortex model. A Newton-Raphson 
iterative procedure is then used to solve the resulting set of non-linear algebraic equations for a range of values 
of the incidence and yaw parameters. 

From the solutions, predictions are obtained of the positions of the vortex core centres of the leeward and 
windward separation systems, and also of the wing surface-pressure distribution and hence of the wing normal- 
force and rolling-moment coefficients. Comparison of the variation of these quantities with incidence and yaw, 
with the experimental data of Harvey ~ 5 is fair, differences being largely attributed to the neglect of the influence 
of secondary separation on the windward side of the wing. 

For an envelope of values of the incidence and yaw parameters, the Newton-Raphson procedure failed to 
yield solutions of the defining equations. This failure was associated with values of the incidence parameter 



in the low part of the range considered, and occurred, in particular, for flow situations for which experimental 
evidence might lead one to suspect that solutions should exist. 

It is perhaps of interest to note here, that solutions obtained for values of the yaw angle greater than half 
of the wing apex angle represent the calculation of a vortex-sheet from a trailing edge. The general approach 
to the present problem, including the formulation and solution of the relevant equations, is similar to that 
adopted in the author's treatment 1 z of the unyawed problem. 

2. Theory  

We consider conical inviscid separated flow about a semi-infinite flat-plate delta wing with both incidence 
and yaw, in which separation from the leading-edge is represented by free conical surfaces of discontinuity in 
the velocity potential known as ~vortex-sheets'. The effects of secondary and other separation, which might 
possibly be incorporated into such a flow model are ignored. The problem is formulated within the slender- 
body theory of Munk, Jones and Ward, of which the basic assumption is that stream-wise gradients of the flow 
properties are much smaller than the corresponding gradients normal to the free stream. We are thus restricted 
to the treatment of delta wings of very small aspect ratio. 

2.1. S t a t e m e n t  o f  the Prob l em 

Consider a slender semi-infinite delta wing in uniform stream and choose axes O-x-y  z fixed in the wing as 
shown in Fig. 1. The wing lies in the x y plane such that the x axis bisects its apex angle at 0, and is semi- 
infinite in the positive x direction. Let 6, which is small, be the half apex angle of the wing and let U be the 
free-stream velocity inclined at small angles ~ to the x - y  plane and fl to the x - z  plane. The sense of these angles 
is taken such that for small ~ and fl, to first order, the components of the free-stream velocity relative to the 
wing are 

U, - f l U ,  o~U, 

in the x, y and z directions respectively. 
Then, since the flow i; inviscid and irrotational, a velocity potential exists, which, within slender-body 

theory will be of the form 

• (x, y, z) = Ux + 4)o(X, y, z), (1) 

for small e, fl, and where q~o must satisfy 

~%o ~2q~o 
- -  + - 0. (2) 
Oy z Oz 2 

The most general solution of equation (2) is 

(Oo(X, y, z) = c~(y, z ; x) + g(x, Mo), (3) 

where M o is the free stream Mach number. The first term of equation (3) is a two-dimensional velocity potential 
in the y z 'cross-flow' plane in which x appears as a parameter. The second term, g(x, Mo), is a function which 
appears in the general slender-body theory, but which vanishes for the present case of a flat delta wing. 

Figure 2 shows the cross-flow plane at some value of x for which the wing semi-span is s = Kx .  The cross- 
section of the wing is represented by L 1 A L 2 B L I ,  a cut in the y - z  plane, and the cross-sections of the leeward 
and windward vortex sheets by further cuts C~ and C 2 respectively. The points L~ and L 2 represent the leading- 
edges of the slender delta wing being considered. Free-stream-velocity components in the cross-flow plane 
are shown as - f l U  in the y direction and aU in the z direction. Since the flow is assumed to be conical, the 
geometry of Fig. 2 will be that for any cross-section x = const > 0, the scale being altered accordingly. 

Mangler and Smith 3 have shown that, for conical flow, within the context of slender-body theory, the 
appropriate conditions which must be satisfied at each point P i t  on C j, may be written as 

t We introduce the convention that if a subscript j appears whose range is unspecified, it is to be taken to be 
j = 1, 2, referring to quantities on the leeward and windward sheets respectively as shown in Fig. 2. In particular 
P~ represents a point on a vortex sheet. 



c~n; 

for the condition that a vortex sheet is a stream surface of the three-dimensional flow, and 

(4) 

Is) 

for the condition that the pressure is continuous across the sheet, where 

trj is the arc length along Cj measured as positive from the appropriate leading edge L;, 

n; is the normal to C~ as shown in Fig. 2, 

A is the difference operator across either C1 or C2, taken as left-right, where left and right are defined 
relative to increasing aj along the appropriate C;, A~b2 for instance, being the jump in the discon- 
tinuous velocity potential at Pj, 

a~ 
is the velocity normal to and continuous across Cj, at Pj, and 

c3nj 

(a~-~a~j) m is the mean of the discontinuous tangential velocity at Pj. 

The other symbols are as defined in the notation. 
Since by equation (2), ~b is harmonic, it is convenient to introduce a complex velocity potential W(Z) ,  

Z = y + iz, in the cross-flow plane, such that ~b = Re (W). At infinity in the cross-flow plane, the velocity must 
approach the appropriate components of the flee-stream velocity. Hence we may write, for the form of the 
velocity potential W ( Z )  for large Z 

w(z)~ -u(/3 + i~)z + o(½), (6) 

since there must be no sources or overall circulation in the Z plane. 
The problem is thus to find the velocity potential ~b = Re (W), a solution of equation (2) which satisfies 
(a) Condition (6) in the Z plane, 
(b) Conditions (4) and (5) on C j, j = 1, 2, and 
(c) Condition (4) on L 1 A L 2 B L 1 (Fig. 2), since the fiat-plate delta wing must also be a stream surface of the 

flow. 

2.2. The Integro-Differential Equations for The Yawed Wing Problem 

In Ref. 12, the system of integro-differential equations for a number of mutually interacting twin-vortex-sheet 
systems in an unyawed flow were derived. The symmetry of the problem about the x - z  plane was embodied 
in the form of the equations, and, in particular, in the transformation of the cross-flow plane introduced to 
facilitate construction of the complex velocity potential. In the present problem, we consider only one pair of 
vortex-sheets, but the introduction of yaw destroys the symmetry inherent in the unyawed problem, and we 
must here regard the two leading-edge vortex-sheets as independent surfaces of discontinuity in the flow, 
whose shape and strength will be determined by the mutual and self interaction of the singularity distributions 
used to represent them, together with the action of the free stream and the effect of the wing. We now derive 
the pair of integro-differential equations expressing this interaction by considering the form of the velocity 
potential which satisfies conditions (a)-(c) outlined at the end of Section 2.1. 

Along any curve in the Z-plane, and in particular, at a point Pj(Zi)  (Fig. 2) we may write 

,, - i = ~ ~ d Z ] z j ~ d t r j .  (7) 



But from conditions (4) and (5) on Cj 

O( cos Xj + i sin X j) - -- 

leon/ 

(8) 

and combining expressions (7) and (8) gives: 

1 }/dZj.(dW) 
(9) 

Now for any curve in the Z-plane, Zj  = Zj(a), we have 

or alternatively 

dZj  _ ei~O j 
daj 

da~ e i , , =  l Id'rfl 

(1o) 

where ~j is the angle between the positive y-direction and the position vector to Pj, as shown for the windward 

vortex sheet in Fig. 2. 
Substituting equation (10) into expression (9) and noting that 

A = Oaj ' 

one obtains 

~(zx~) a~j ~ -a-2 z," 
(11) 

From simple geometrical considerations (Fig. 2), we have 

Oj = ~ j  - -  Z j  

and thus expression (11) may be written as, at Pj 

K U  { ( f ~ )  - " ' d(Zj/s) ; (.w) 
dZ  zs 

(12) 

where 

From equation (7), it can be seen that expression (12) represents the mean of the discontinuous complex velocity 
at Pj. 

We now introduce the transformation 

Z =  Z* + , 



r * a * r * n * r *  in the Z*-plane (Fig. 3A), to a slit of width 2s, L 1 A L 2 B L  1 which transforms a circle of radius s, -1 , .  ~2 ~ ~ 
in the Z-plane, and the curves C* in the Z*-plane to Cj in the Z-plane. 

Working in the Z*-plane, we can now construct a velocity potential which will satisfy condition (4) on 
L1 A L2 B L t ,  by applying the Milne-Thompson circle theorem to the function 

U 1 f f  1 f f  F(Z*)  = - (fl + i~)Z* - ~ log {Z* - t~*(A¢,)} d(A¢I ) - ~ /  log {Z* - t~(A¢2)} d(A¢2), 
1 2 

and by disregarding a term in the resulting expression which represents an isolated vortex of strength F1 + F2 
at Z* = 0, in order to satisfy the required form of W ( Z )  for large Z in the original cross-flow plane, as expressed 
by equation (6). Carrying this operation out, we obtain for the complex velocity potential 

• s z 1 o 
W(Z*,=  - U { , f l + i ~ ) Z * - ( - f l + , a ) ~ }  ~ / f i ~ l o g {  Z*_~t*(A¢,) "~ 

- z *  - s V K t ( A ¢ , ) J  d ( A ¢ , )  - 

1 f o  f Z*-t*(A~b2) "~ . . . . .  
2hi Jr~ tog ~,Z~ --- ~ 2 ~ 2  ) ;  a(za¢2), (14) 

where the first term represents the attached flow, which leads to velocity singularities at Lj in the Z-plane• 
The factor 1/2 appears because of the form of the transformation, equation (13). The two integral terms represent 
the velocity potential at a point Z* due to the two sheets C*, together with their images Cj* in the circle IZ*l = s. 

In expression (14) it should be noted that: 
(1) The integrals are to be evaluated along C*, j = 1, 2 respectively, t*(A¢~) representing parametrically, 

in the integrals, the as-yet unknown shape of C*. 
(2) The potential difference ACj across C*, at some point P*, is used in the same sense as in equation (5)• 

It is to be considered as an independent variable along C*. A given value ofACj, IFjl >/IACjl 1> 0 will uniquely 
define a point P* and will take the same value at corresponding points [through equation (13)3 Pj in the Z-plane. 

(3) A~bj is taken to be Fj at L* and zero at the end points of C*. Thus Fj is the total circulation around both 
Cj. and C*, at the particular value of x, for which s = K x .  It represents the total circulation in thejth separation 
shear layer at this x-station, and because of the assumed conicality of the flow, Fj is linear in x. 

Differentiating expression (14) with respect to Z, and evaluating the resulFting complex velocity at some 
point Z*(ACj) on C*, we obtaint 

t <  
, 7 Z  d z  Iz L + + ( - f l  + ia)-Z--~ 2 - 

l f ~ {  1 1 } 
2hi , Z *  - t*(A¢',) Z* - s ~ ( A ¢ ' , )  d(A¢2) - 

1 fr) { 1 1 } d(A¢~)]. (15) 
z ?  - e ; (A¢ '9  - z 7 - 

Note that the whole expression is a function of ACj defining Z* or Z~. Forj  = 1, the first integral in expression 
(15) is singular, and forj = 2, the second {s singular. The integral in each case is interpreted as a Cauchy principle 
value integral, taking the mean of the two values obtained by approaching Z* from either side of C*. 

Combining equations (15) and (12), and introducing the following non-dimensionalising transformations 

and 

Aj = 1 A~bj 
Fj ' 

Zj 
o ~  = - -  = ~ j  + i ~b ,  

s 

s 

t.* 
s j =  1,2, 

(16) 

t In carrying out this operation we replace the integration variables A¢~ in equation (14), by A¢~. 



we obtain? : 

&o _ d~)j ) -½{(b + ia) - (b - ia)/¢o . 2 }  + 

Glf'{ 1 

+ ~ Jo co* - ~l*(ZO 

O2f'{ 1 
+ ~ J o  co* - ~*(~i) 

i 

} dZ1 + 
~,  _ ~ / ~ ( ~ , ) j  

1 } d2 i 

j =  1,2, (17) 

where 1(, 
coj = ~ coj + , Gj  = F j / K U s ,  (18) 

a = c~/K, b = f i /K ,  

and 

K = tan & - 6, for small 6. 

Equations (17) together with (18) are a pair of complex simultaneous integro-differential equations for the 
real and imaginary parts of 

¢o~f()~j) = ~'~(2j) + itff(Aj), I ~ )~j ~ O, 

for j = 1, 2, where 2j is the normalized non-dimensional potential difference across either Cj or C*. The para- 
meters a and b, which are to be specified when solving equations (17) and (18), represent incidence and yaw 
respectively. The parameters Gj are unknowns of the problem and represent the total circulation about Cj 
or C*. They are made determinate within the mathematical model by applying closure conditions, namely 
the Kutta conditions, which require that the velocity be finite at the leading edges LI and L z in the cross-flow 
plane. 

These conditions may be expressed as 

dW/KUs  I 
G;~, /o , .oo = °  =~ 

j = 1, 2, (19) 

which by differentiation of equation (14), and application of relations (16), can be written in terms of the flow 
parameters as 

a + ~ %*o - ~*(~i) 

+ ~ %% -- ~,(,%) 

1 } 
:-, , d2'1 + off- 1/~l(;h) 

1 , } d2~ = 0 
%*o - ]/~(;~) 

j =  1,2, (20) 

where j = 1, COTo = ( - 1 ,  0) is the first Kutta condition applied at L*, and j = 2, ~o* 0 = (1, 0) is the second 
Kutta condition applied at L*, and (20) are two real equations since the expressions in brackets are real. 

It should be noted that, in equations (17) and (20), the incidence and yaw angles appear only in ratio to 
K = tan 6. Thus we may regard a and b as similarity parameters of the problem. Solutions of equations (17) 
and (20) and quantitative properties of these solutions, will therefore be functions of a and b only. 

? Terms involving a subscript j appearing twice, such as d N j / d 2 j ,  for example, are to be understood as not 

to be summed. 



3. Numerical Treatment 

3.1. Finite-Difference Form of  the Equations and the Zero-Force Conditions 

We now formulate a closed set of non-linear finite difference equations to replace equations (17) and (20), 
based on the Mangler and Smith vortex-sheet-cut-isolated-vortex model, discussed in detail in Ref. 4. Each 
sheet C* in the co*-plane is broken up into an outer part defined over 2~N 1> 2 /> 0, and an inner part, 1 >/2 > 2jN. 
The outer part of C* is represented by N discrete points in the o~*-plane 

(.o*,. = ~*. + i,/*. j = 1, 2, 

n = I . . . , N ,  

and the outer part of Cj  by N corresponding points in the ~o-plane 

(21a) 

% ,  = Ca, + itl j ,  j = 1, 2, 

n = 1 . . . , N .  

The discrete values of 2 corresponding to expressions (21a) and (21b), we write as 

(21b) 

2j, = h, ZjN, j = 1, 2, 

n = 1 . . . .  N, (21c) 

where 

h N = 1 > h N_ a.--  > h2 > hi > 0, 

and the h, are to be specified. Note that 21N and 22n are not necessarily equal. 
The inner part of C* is represented by an isolated vortex at a point co*+ 1 and is joined to co*N, the end of 

the outer part of C*, by a cut in the co*-plane, introduced so as to define the potential q~ unambiguously. This 
ensures that the velocities induced by the inner part of the sheet on the rest of the flow field are adequate ly  
modelled. Corresponding isolated vortices and cuts exist in the w-plane. The complex velocity d ( W / K U s ) / & o *  
is continuous across the cuts but the potential ~b is not, suffering a discontinuity equal in magnitude to the 
circulation concentrated at the isolated vortex. Thus, while the outer part of the representation retains its 
sheet-like character within the model, the inner part does not, any possibility of satisfying equations (17) in 
some form for 1 > 2 > 2su being discarded. The equivalent points representing C~.*, the image of C* in the 
circle Ico*l = 1, are given by 

1 1 
(°s*~ Cs*~ . , j = 1, 2, - Ztlj n 

n = 1 . . . .  N + 1. (22) 

Figure (3B) shows the break-up of C* and C)* for the finite difference representation. Of the total non- 
dimensional circulation about C*, a fraction 2iN is distributed along the N elements of the outer part, and a 
fraction 1 - 2iN will be concentrated at the isolated vortex ~O*N+I, or equivalently, at %N+J in the m-plane. 

We then have 4N + 6 unknowns given by : 
(1) The N + 1 real parts ~*,, and the N + 1 imaginary parts r/*,, of * " cos , , j=  1,2, n =  I . . . .  N +  1, tha t i s  

4N + 4 unknowns, and 
(2) The circulations Gj, j = 1, 2, 

We further choose to introduce an extra degree of freedom by allowing 2tN to be a free parameter (arbitrarily 
chosen instead of 22N ) while specifying 22N , giving now 4N + 7 unknowns, which we represent vectorially by 
~2, with components 

f2t l = 1 . . . .  4N + 7, 

arranged in some arbitrary order, the details of which will not concern us here. 
To find a sui table~ representing a solution of the problem for given values of a, b, h,, n = 1 . . . ,  N and 22N, 



4N + 7 relations involving f~ are required. 4N of these are supplied by satisfying equations (17) in finite differ- 
ence form along the outer part of the sheet, and 2 more are given by the finite difference form of equations 
(20). Four more relations are supplied by satisfying conditions of zero total force on each cut-isolated vortex 
system in the co-plane. This is introduced so as to make the inner part of the model force free in lieu of one 
in which the inner part retains its sheet-like character, each element being force and moment free. One final 
condition introduced, is that the sum of the two moments due to the pressure difference on the cuts coiN + 1 -- coIN, 
is zero. 

It should be emphasised that this 'zero-moment condition' has no significance in the sense that the zero 
force condition has for the inner part of each sheet. It is associated with the parameter 21N, and unlike the zero 
force conditions, it need not be incorporated into the model to obtain realistic solutions. We could for example 
specify 21N and drop the moment condition since it is unlikely that the main physical parameters of the problem 
- - the  sheet shape near the leading edge, the positions of the isolated vortices and the circulations--will depend 
strongly upon it. Nevertheless since the moment condition does ensure that overall, the fluid in the vicinity 
of the wing is moment free, we choose to include it. 

We satisfy a finite difference form of equations (17) at points in the co* plane defined by 

* 1 * * ] 
coj,_ . (23) and coj..,-1 = ~(coj. + 1) 

q 
2j,.,- x = 2~-(h, + h,-1) j = 1,2, 

n 1 . . . .  N 

Corresponding points coj,,,_ 1 in the co plane are given through equation (18). The left-hand side of (17) is 
replaced by a two point differentiation rule along Cj and the integrals on the right-hand side in 2j~/> 2 >~ 0 
are evaluated at points given by equations (23) using the trapezoidal rule (ignoring the singularity), that part 
for 2 > 2iN being given by the velocity field due to an isolated vortex. Thus a finite difference representation 

of equations (17) can be written as 

Hj.(~) =-(~*).o*j..~_l{coJ"-----~l(~-~. -1/2jNth._l, - ~ - - [ h ~ - l  -1/AJNI]~ -h.----h= , J  

- l{(b + ia) + ( - b  + ia)/co*z._~} + 1 }  
Aim co*,,,- CO *m - * - 1/ ~'~1,, + -I- ~/m=O 1 -- co jn ,n-  1 

G2N+I { 1 1 }  
A2m co;, ._ co*m- * = 0, "~ 2 - ~  =0 1 - -  O')jn,n- I 

j = 1, 2, n = 1 . . . .  N, (24) 

where 

Aio = h12m, 

Aim = (h, .+ l - h , . - 1 ) ~ - ~  

A m = (1 - hN-1)~' 

m = l  . . . .  N - l .  

and 

AtN+1 = 1 - -2 ,  u l =  1,2. 

Expression (24) is complex and represents 4N equations, 2N rea___ll and 2N imaginary. The terms (do)/dco*)co*,.,_ 1, 
%,-- and coj, _ 1 in equation (24) can be evaluated in terms of c0j*, and rni.* - 1 through equation (18). 

In equations (20) for the Kutta conditions, the integrals over the outer part of the sheets may be written as 

2--£ m= a ,m-, CO j*0- ~ CO j*0- 1/Z~' d2, 
(25) 

10 



for both l = 1, 2 in each case of equation (20), j = 1, 2. 
The integral for j = l, m = 1 in the above has a singularity (not of the Cauchy principle value type) at the 

leading-edge Lj, where 2 t = 0 and z* = 1/z* = coj* 0. From solutions of equation (17) valid near Lj, that is, 
for small 2~, it can be shown that the sheet shape is given by 

T* = ~*0 + A y  + inyt + o(,V +~), (26) 

where # > 0 and where A t and Bj are real constants that depend on the overall flow. Substitution of this 
expression into the first integral for j  = I in expression (25) yields 

2~Jo ~o*t0 - ~t* O9"o-~/~* e~ 

_ Gth~2t~ v 4 1 

zc 26o* 0 __ (O)t* + 09t*l) 203j* 0 
+ o(q,+9 

where > 0. (27) 

The other integrals in equation (25) are evaluated using the trapezoidal rule and thus the first Kutta condition 
j = 1, o9'o = ( -  1, 0) in equations (20) can be replaced by, dropping the term of 0(2Jl+0 in equation (27) 

Glhi21N 4 1 QI(~) = a + - -  + 
zc 2o*0 - (c°'1 + o9'0 2o9,~ 

GaN+' { 1 1 } 

.=~ Cd'o-CO*,. CO*o-1/og*,. + 

G N+I [" 1 1 
+_}_~z~,,=_o A2"~c°*o -CO*,, CO* ° _ 1/og~m = 0 (28a) 

where 

A ' l l  = (h  2 - h l ) L ~  A' lm = A2m,  m >1 2. 

The second Kutta condition, j = 2, COCo = (1, 0) can be written in a similar manner to equation (28a), with the 
subscripts 1 and 2 reversed. We represent this condition, symbolically as 

Q2(II) = 0. (28b) 

From considerations of the three-dimensional flow, Smith 4 shows that the conditions of zero force on each 
cut and isolated vortex may be written as 

~d(W/KUs) Gj(1 - 2iN ) 1 } -  2OgjN+ 1 + COrN = 0 (29) 
lim ,~ do9 - 2zci ~ OgjN+ 1 O)~O.~jN + 

j =  1,2, 

where the limit represents the velocity at ~ntN + ~ in the cross-flow plane, if the isolated vortex were not present. 
When this limit has been taken and the resulting integrals replaced by trapezoidal rule quadratures, equation 
(29) can be written in finite difference form as 

I ia~/og*z ) EI(~'~ ) = -½{(b + ia) + ( - b  + ,, 1N+1~ + 

+ 2-~/~.~'~'--o 091N+1" -- ---- CO*., m=0E CO*N+ 1 __ 1/O9". ) + 

r;'- N+I I ~ =  1 1 ,11 (dog) + 
- .2  & "  ~o*N+,  - 1/Ef£., ~ ~,~N+ 

+ ~ - o  - O9% - Og~'N+~ , 

G,(1 -- 2,N)J'_d_d {dog*l" l - 2O9,N+, + O91N = 0, 
+ 4hi [dOg* I do9 ]J ,o~+, (30a) 
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for the first zero-force condition, together with a similar equation with the subscripts 1 and 2 reversed for the 
second zero-force condition 

E2(f~ ) = 0, (30b) 

where the Aj,,, j = 1, 2, m = 1 . . . ,  N + 1, are as in equations (24), and equations (30) are 4 equations since 
equations (30a) and (30b) both have real and imaginary parts. 

We now derive the condition of zero total moment  on the two cuts cojt¢ + 1 -cojN in the co plane. Within the 
context of slender-body theory, the pressure coefficient at some point in the three-dimensional flow about the 
flat plate delta wing is given by (Ref. 4) 

C e = 2 ( y ~ y + Z ~ z - C ~ ) / U x - {  1~12,8y, + (OzO~b)2}/U2+~z+f12. (31) 

Now since both 8ck/Oy and 849/~z are continuous across the cuts co~N+ 1 - coiN, there will exist a constant 
pressure difference across each cut given by, from equation (31) 

Apj = ½pUEACpj - pUAOj 
X 

= _ pUFf(1 - 2iN) 

X 
(32) 

The x-wise moment  per unit length in the x-direction, of this pressure difference about Z~N + 1 in the Z plane 
can thus be written as 

_ _  B 

Dj = ½Apj(ZjN + 1 - ZjN) (Z~N + 1 - ZjN) 

_ p u  r (1 - + ,  - + 1  - 

2x 
j =  1,2. (33) 

Then since the total force per unit length in the x direction on each cut-isolated-vortex system is zero, taking 
moments  about  the origin of the Z-plane yields the condition that the sum of the x-wise moments  in the fluid, 
near the wing, due to the existence of the two cut-isolated-vortex systems is zero, viz: 

2 

Z Dj = 0, (34) 
j = l  

which can be transformed to non-dimensional variables using relations (16), to give 

2 
M(f~) = ~ Gj(1 - 2jN)(COjN+ 1 -- COjN)(-~JN+I --~--~i~) = 0, (35) 

j ~ l  

where (35) is one real equation. 
For the unyawed case (b = 0), equation (35) is satisfied by G 1 = - G  2, J . l S -  /~2N and cot, = --fD2n, 

n = N, N + 1. This is automatically satisfied by symmetry in the formulations of the unyawed problem in 

References 4 and 12. 
Equations (24), (28), (30) and (35) are the 4N + 7 equations involving the 4N + 7 unknowns of the problem. 

We represent these equations symbolically, their various real and imaginary parts assumed separated (which 
is actually not explicitly necessary for the solution procedure used herein), as 

fk(~) = 0, k = 1 . . . .  4N + 7, (36) 

the order of k in respect to equations (24), (28), (30) and (35) being chosen in some arbitrary but convenient way. 
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3.2. Solution Procedure 

For  the present work, equations (36) were solved for fixed values of hi . . .  hN and 2~N, for a range of values 
of a and b, by a Newton-Raphson technique previously developed by the author.~2 This method is a single 
iteration procedure and amounts to a full linearisation of equations (36) about some known approximation 
to a desired solution. A full outline of this method is given in Ref. 12. Only sufficient details are given here 
to indicate its present application. 

Each iteration of the above-mentioned scheme involves first the calculation of a (4N + 7) × (4N + 7) 
matrix, the components of which are 

Of,. 
Fu = Of 2_ k = 1 . . . .  4N + 7, (37) 

l 

l = l  . . . .  4 N + 7 ,  

and the subsequent solution of a set of 4N + 7 linear equations of the form 

4N+7 

Fkt(IF, ) 6f~f,p+ 1 = _fk(np) k = 1 . . . .  4N + 7. (38) 
1=1 

In equations (38), the fk and the F kl are evaluated at a pth approximation, say g~ p, to a solution of equations 
(36). The 6f~f 'p+I are the unknowns of the linear system, from which a (19 + 1)th approximation given by 

f~[+~ = l)[ + 6 f~  ,p+~ 1 = 1 . . . .  4N + 7, 

can be constructed. Repeated calculation of matrices (37) and solution of equations (38) (by a standard method), 
for p = 1, 2 . . . .  yields a sequence of approximations which should converge to a satisfactory solution of 
equations (36). 

The derivatives Ofk/af~l are determined by direct differentiation of equations (24), (28), (30) and (35) with 
respect to the various components o f ~ .  With regard to the real variables G1, G a and 21N, the differentiation 
is straightforward. With regard to the components of ~ which represent the real and imaginary parts of 
co j* = ~*, + iq*,, n = 1 . . . ,  N + 1, j = 1, 2, the required derivatives are found by differentiation with respect 
to co.*~, and co*, and use of the relations 

and 
O~j~ = Im + 

@*n Im t3ogj. 

(39) 

whe re f  k for some value of k, is either the real or imaginary part of the complex equation 

V(f~) = 0, (40) 

V being any of Hjn, n = 1 . . . .  N, Qj, Ej , j  = 1, 2 or M in equations (24), (28), (30) and (35). 

3.3. Choice of Numerical Parameters 

Solutions of equations (36) will be of the form 

f~t = f ~ ( a , b ; h l , h 2  . . . .  hN,/~2N),  l = 1 . . . .  4N + 7, (41) 

The work of Smith 4'6 on the unyawed problem, and the author's own experience indicates that solutions will 
not depend strongly on 22N, provided that sufficient of the outer part of the sheet is represented in a sheet-like 
manner. SuffÉcient in this context may be taken to mean: 

(a). That at least that part of the sheet which extends from the leading edge of the wing to a point where 
it may be considered that the spiral 'rolling up' process has properly begun, is included in the representation 
of the outer part. 
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(b). That enough of the sheet near the wing leading-edge is treated in a sheet-like manner  to ensure that the 
velocity field in this region is adequately modelled. 

Smith uses a geometrical variable---namely the polar angle 0 (in Ref. 4) taken around the isolated vortex 
in the transformed p lane- - to  specify the extent of the outer part  of the sheet and concludes, from numerical 
experiment, that the choice 0ma x = 157 degrees (maximum polar angle) gives an adequate representation. 
In the author 's  treatment of the unyawed problem lz for the flat plate, calculations were made for both 
2 1 N  : •2a' = 0.45, N = 20 and 21N = )~2N = 0.195, N = 10 (roughly equivalent t o  0ma x = 157 degrees) which 
confirmed Smith's conclusion. 

Hence, for the present work, N = 10 points were chosen on the outer part  of the sheet and "~2/q w a s  chosen 
a s  '~2N : 0"2 ,  that is, 20 per cent of the total circulation on the windward system is distributed along the sheet 
and 80 per cent is concentrated at the isolated vortex. The fraction of the total circulation distributed on the 
sheet in the leeward system is, of course, an unknown of the problem. 

The values of h, chosen were as follows: 

TABLE 1 

n 1 2 3 4 5 6 7 8 9 10 

h, 0.01 0.04 0.10 0.25 0.375 0.50 0.625 0.75 0.875 1-0 

3.4. Computational Details; Range of Solutions 

A Fortran IV computer progam (not included in the present report) was written embodying the solution 
procedure outlined above, in which the various numerical parameters of the problem--including an initial 
approximat ion--could  be input as data. Using this program, approximate numerical solutions to equations 
(36) were found, with the above values ofh I . . . .  h N and 22N, over a range of values of a and b. For given values 
of a and b, the solution procedure was terminated and a solution considered to be found, when an iterate, say 
g~P, was obtained which satisfied the condition 

1 4 N + 7  

4N + 7 ~ Ifk(~P)l ~< 10-8' (42) 
k = l  

It is believed (though it is not proven herein), that when condition (42) is satisfied, a solution to equation (36) 
has been found accurate to four significant figures in each of the components o f ~ .  This is considered to be 
more than sufficiently accurate given the limitations of the mathematical flow model, and the accuracy of the 
available experimental data. The conclusion that this degree of accuracy has been obtained was reached by 
observing that there was, in general, no change in the fifth significant figure of components  of successive iterates, 
say f~P and ~P+ 1, when (42) had been satisfied by ~P. Usually 4-5 iterations were required to reduce the 1.h.s. 
of equation (42) from 0(1) to 0(10-8), requiring about  10 seconds of CDC-6600 computing time. Often con- 
vergence was so fast in the later iterations that the l.h.s, of equation (42) was reduced to values several orders 
of magnitude lower than 10 -8 . 

Calculations were made for values of a up to 3.0, and values of b up to 2.0 along lines of constant a or b 
in the a b plane. Starting approximations were obtained from solutions for b = 0, that is, from solutions to 
the unyawed problem. Solutions with yaw were then found by increasing b by intervals of 0.1 Or smaller (where 
necessary), at fixed values o f a  = 0.5, 1.0, 1.5, 2-0, 2.5 and 3.0. From solutions obtained along the a = 3.0 line 
in the a b plane, further solutions were found by decreasing a by intervals of 0.1 at constant values of b given 
by b = 0-5, 1.0, 1-5 and 2-0. In this way, a grid of solutions was obtained in the region 0 ~< b ~< 2-0, 0 ~< a ~< 3.0, 
of the a-b plane. 

However, as stated in the introduction, it was found that at lower values of a, over the whole range of b, 
the Newton-Raphson scheme diverged, failing to yield solutions of the finite-difference equations. The lowest 
value of a for a given value of b, for which solutions could be obtained, was found to be given approximately by 

a = 0.15 + 0.4b. (43) 

Thus, in a significant part  of that region of the a-b plane, in which solutions were sought, none could be found. 
This phenomenon is discussed further in Section 4.2. 
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4. Results and Comparison with Experiment 

Table 2 gives a summary of the significant numerical parameters obtained from solutions of the defining 
equations. It lists the positions ~jN+I, qjN+l, J = 1, 2, of the two isolated vortices in the ~o plane, the total 
circulations G j, j = 1, 2, of the two sheet-isolated vortex systems, and the fraction 2~N of the total circulation 
distributed along the sheet in the leeward system, for values of a and b separated by 0.5. Also shown are the 
normal-force coefficient CN/K z, calculated by the method of residues [equation (A-9), Appendix], and the 
rolling moment coefficient Ca,/K 2 calculated by numerical integration of the first moment of the pressure 
coefficient across the wing surface, equation (A-13). 

4.1. Vortex Sheet Shapes 

Vortex sheet shapes and isolated vortex positions are shown, for the values of a and b indicated, in Figs. 4a, 
5a and 6a for the leeward system and in Figs. 4b, 5b and 6b for the windward system. They may be regarded 
as typical graphical representations of solutions obtained to the finite difference equations and serve to illustrate 
the principal features of, and in particular the extent of typical vortex sheet shapes in relation to the positions 
of the associated isolated vortices. 

The sheet shapes presented were constructed by drawing smooth lines through the plotted solution points 
~j,, r/j,, n = 1 . . . .  N, j = 1, 2. A typical distribution of these points along the outer part of the sheet is shown 
in Figs. 6a and 6b, where they are plotted for a = 1.5, b = 2-0. In Figs. 4a and 4b, the sheet shapes for a = 0-5 
and b = 0-95 represent the solution for the largest value of b (for a = 0.5) which could be obtained before the 
aforementioned failure of the iteration scheme occurred. For  a = 1.0 (Figs. 5a and 5b), failure occurred for 
values of b only slightly larger than 2.0, but for a = 1.5 (Figs. 6a and 6b), the solution range could be extended 
considerably beyond b = 2.0. A general comment regarding Figs. 4 to 6 worth mentioning here, is that for 
b = 0, the twin-vortex-sheet system exhibits, quite naturally, the symmetry property about the r/axis expected 
for zero yaw. 

It would seem, from Figs. 4b, 5b and 6b, that the geometrical extent of the outer part of the windward vortex 
sheet is adequate even though only 20 per cent of the total windward circulation is distributed along it, 80 
per cent being concentrated at the isolated vortex. In each of these figures, the extent of the outer part of the 
sheet increases with b indicating a movement of circulation towards the asymptotic centre of the system. As 
b increases at constant a, there appears to be a tendency for the whole windward sheet-vortex system to move 
closer to the wing surface, while the overall windward circulation G 2 (the variation of which with a and b, is 
shown in Fig. 10b), increases quite strongly. At higher values of a than those depicted in Figs. 4b, 5b and 6b, 
the tendency is not so much a movement toward the wing, as a movement inboard toward the wing centre-line. 
This is illustrated by the variation of the position of the isolated vortex, as shown by the heavy lines in Fig. 9. 

The outer part of the leeward vortex sheet is not so well represented geometrically as that of the windward 
sheet. From Figs. 4a, 5a and 6a, it can be seen that, as b increases, the distance between the free end of the 
sheet and the isolated vortex increases, and for higher values of b, it might well be argued that insufficientt 
of the outer part of the sheet is represented, to satisfy condition (a) in Section 3.3. The effect of this on the 
calculated position of the leeward vortex is that it is possibly too far to leeward, the velocity inducing effect 
of the 'missing part '  of the sheet, in the vicinity of the vortex being a component to windward. This is illustrated 
in Fig. 5a, where, for a = 1.0, b = 1.0, a leeward sheet and vortex position, calculated with 21N held fixed at 
21N = 0"20, is shown. The solution for the same a and b, in which the zero-moment condition is applied yields 
2an = 0.159 (Table 2). For a = 1.0 and a = 1-5 (Figs. 5a and 6a), as b increases, the isolated vortex approaches 
more nearly the tangent to the sheet at its free end. Although part of this effect can probably be attributed to 
the above-mentioned error in the calculation of the vortex position, it is nevertheless believed to be a genuine 
indication that the sheet (if it were continued) is becoming more tightly wound, geometrically, about its 
asymptotic centre. 

The main effect, of  increasing b, on the position of the leeward sheet and vortex can be seen to be a marked 
movement to leeward. For  b > 1, the wing leeward edge must be considered to be a trailing edge, since for these 
cases fl > 6. Thus in solutions calculated for b > 1 the leeward vortex sheet can be interpreted as one emanating 
from a trailing edge, and the overall flow, as that in the tip region of a very highly forward swept wing with 
a pointed tip of small apex angle. 

t Note, however, that at values of b near b = 2.0, the calculated value of 21u increases sharply (Table 2), 
which means that quite a substantial fraction of the total leeward circulation is distributed along the outer 
part of the sheet. 
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In the present study, through the assumptions used in obtaining equation (26) and its subsequent inclusion 
in equation (28) for the finite difference formulation of the Kutta  conditions; we have constrained both vortex 
sheets to separate in an outboard direction, tangentially to the wing undersurface at their respective leading 
edges. Barsby ~6 however, has suggested that under certain conditions a vortex sheet need not necessarily 
separate in this manner but may do so tangentially to the upper wing surface in a configuration consistent 
with a flow onto the leading edge. In this case, the separation point would lie inboard of the leading edge. 
Hence the most plausible explanation for the failure of the solution scheme is that for low values of a, our 
present model of separation is unlenable for the windward vortex sheet which should in fact separate as Barsby 
suggests. This would be consistent with the appearance of inflection points in the windward sheet shape (see 
Figs. 4b, 5b and 6b) near the leading edge, close to failure. To incorporate Barsby's separation model into the 
present formulation for values of a, say below those given by equation (43), an alternative to the present treat- 
ment of the singularity at the windward leading edge would be required. 

4,2. Isolated Vortex Positions; Circulation 

4.2.1..Calculated vortex positions The heavy lines in Figs. 7 and 9 show the variation of the calculated 
position of the leeward and windward isolated vortices respectively, and also depict a comparison of the 
calculated values with Harvey's 15 experimentally determined core positions. Figure 8 shows a similar com- 
parison of the calculated vortex positions on the leeward side with the results of an experiment carried out by 

the author. 
For b > 0, there is no longer symmetry of the two vortex-sheet-isolated-vortex systems about  ~ = 0. As b 

increases at a fixed value of a, Figs. 7 or 8 show that the leeward isolated vortex moves upwards away from 
the wing surface and towards, and eventually outboard of the leeward leading edge. This movement represents 
a general trend for all values of a. It is associated with a weakening of the leeward system which may be seen 
in Fig. 10a as a decrease in the magnitude of the total circulation G 1 with b at constant a. However, while 
the rate of movement of the vortex position with b appears to increase with increasing b, the rate of change 
of IG11 seems to decrease to near zero. Thus, at large yaw, the leeward vortex moves rapidly outboard with 
increasing b while the overall leeward circulation remains nearly constant. The main effect on the position of 
the leeward vortex, of increasing a at constant b, is a marked vertical movement  and a corresponding increase 
in IGt[. 

The effect of relaxing the zero-moment condition, on the position of the leeward isolated vortex, is illustrated 
in Fig. 8 where the dash<lotted line shows its variation with b for a = 1.0, obtained from solutions calculated 
with 21~, held constant at 2~N = 0.20. Differences between vortex positions given by this curve and those given 
by the heavy line (for a = 1-0), begin to become significant at values of b somewhat less than b = 1-0, where 
the calculated value of 21N associated with the zero moment  condition begins to differ appreciably from 
2~N = 0.2 (see Table 2). Where this value exceeds 0.2, the vortex positions given by the heavy line are to be 
preferred, and where it is less than 0.2, those given by the dot~lashed line will be more accurate. The effect 
of holding 21N fixed, on the windward vortex position, is too small to be illustrated graphically. The effect on 
the normal-force and rolling-moment coefficients was found to amount  to, except at very large yaw, a fractional 
change of less than 1 per cent. 

On the windward side of the wing, at high values of a, there can be discerned (Fig. 9) a strong inboard 
movement  of the vortex, without much variation in the height, as b increases at constant a. For intermediate 
incidence (a = 1.5, 1.0) the inboard movement  is less marked and there is a definite downward movement 
towards the wing surface. The variation of the vortex position with b is not very systematic for these values 
of a and is completely haphazard for a = 0-5, over the small range of b for which solutions could be obtained 
with N -- 10, 2zN = 0.20. 

As a decreases at constant b, the vortex path can be seen to move outboard and downwards towards the 
windward leading edge, the loci for all values of b converging as a decreases, until failure of the iteration scheme 
is encountered. The extremities of the heavy lines in Figs. 7, 8 and 9 at the lower values of a represent the first 
onset of failure for the values of b indicated. The appropriate  values of a are given by equation (43). To verify 
that this failure was not a numerical effect associated with, say, the particular numerical parameters chosen, 
some solutions for N = 8, 22N : 0.15 were obtained for values of a below 1-0. In general, for a fixed b, the 
iteration scheme first diverged at about the same value of a for the N = 10, 2zN ---- 0-2 cases. However, whereas 
for a = 0.5, no N = 10 solutions could be found for 0.08 < b < 0-5 (although solutions could be obtained for 
0.5 ~< b ~< 0.95), N = 8 solutions could be found for all 0.0 ~< b ~< 0-95. The vortex loci for these N = 8 solutions 
are shown in Figs. 7, 8 and 9 as dotted lines. On the leeward side, the N = 8 isolated vortex positions are 
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reasonably close to the N = 10 ones, except near the point of solution failure, but on the windward side, there 
is significant difference, the loci for both values of N being quite unrealistic. 

4.2.2. Present experiment. In Ref. 15 Harvey presents maps of the total head surveys (Figs. 7 to 15) he obtained 
for various values of the incidence and yaw angles ~ and fl and also a summary graph showing the variation 
of the leeward and windward vortex cores, taken as the positions of the respective total head absolute minima. 
Unfortunately there seems to be a discrepancy between the core positions that can be inferred from the total 
head maps and those presented in the summary graph. Discussion with Dr. Harvey led to the conclusion that 
the summary g r a p h I F i g .  16 in Ref. 15--in fact gives the correct experimental determination of the vortex 
cores, the total head maps being incorrect due to scale errors in the plotting process. Regrettably the original 
total head data has been lost. 

To verify that Harvey's summary graph indeed gives the correct core positions, and to determine core 
positions for some values of a and b which were not covered in Harvey's work, a further experiment was carried 
out by the author, in the 5 ft × 4 ft low speed wind tunnel at Imperial College. This was performed with the 
same delta wing (6 = 10 degrees) used by Harvey. Experimental conditions, and in particular the Reynolds 
number (Re ~- 6.1 x 105, based on distance from the wing apex) were generally similar to those of Ref. 15. 

The leeward primary core positions were determined by searching foF the absolute total head minima in 
the flow field, using a Kiel tube mounted on a Deiser traverse gear, for yaw angles off l  = 0, 5, 10, 15 and 20 
degrees at each of 3 values of the incidence, ct = 5, 10 and 15 degrees. Measurements were made only on the 
leeward side of the wing as it is believed that the effect of secondary separation on the windward side is so 
strong at higher values of b, as to make the extra data that might be obtained not worthwhile in relation to 
the present work. 

4.2.3. Comparison with experiment. Comparison of the calculated leeward vortex positions with the experi- 
mental t  results of Harvey (Fig. 7) and of the authors (Fig. 8) is fair and is similar to that obtained by Smith 4"6 
for unyawed flow. As b increases and the primary vortex core moves past the leeward leading-edge, the leeward 
secondary separation system diminishes in size and influence, eventually vanishing completely. One might 
therefore expect that comparison with experiment would improve, the higher the value of b. From Figs. 7 and 
8 it can be seen that this is not the case, the measured core-positions being, in general, rather inboard of the 
calculated positions of the isotated vortex. 

As was noted in Section 4.1, as b increases, the geometric extent of the outer part of the leeward vortex- 
sheet becomes less adequate, the probable effect on the calculated vortex position being an error to leeward. 
Since this is just the direction of the general theoretical-experimental discrepancy, we might perhaps interpret 
it as being the result of the improvement in the aptness of the flow model with increasing b (diminishing secon- 
dary separation), being to some extent offset by a slight worsening in the sufficiency of the present numerical 
representation. 

It can be seen from Fig. 9 that comparison with experiment on the windward side of the wing is not good 
and in fact worsens with increasing yaw. In general the height of the vortex core is well predicted but the lateral 
position is not, the calculated values being much too far inboard of the measured ones. These discrepancies 
are more likely attributable to the neglect of the windward secondary separation shear-layer core system, the 
size of which, as noted by Harvey, 15 increases with increasing yaw. The fact that the windward core position 
is not well predicted will, of course, through the mutual coupling of the velocity inducing effects of the leeward 
and windward circulatory systems, introduce errors into the calculated position of the leeward isolated vortex. 
However, since the two systems are fairly remote from each other, this effect is thought to be small. 

4.2.4. Circulation. Figures 10a and 10b show the variation of the total circulation of the leeward and the 
windward systems, G 1 and G 2 respectively, with b at constant a. That IGll decreases with increasing b has been 
previously noted. The circulation of the windward system, on the other hand, can be seen to increase quite 
strongly with increasing b, the rate of increase rising with both a and b. Thus for intermediate and large yaw, 
the windward circulatory system is much the stronger of the two. These trends are confirmed qualitatively 
by Harvey's a5 observations concerning the variation in strength of the absolute minima of his total head 
surveys, with ~ and ft. 

t In Figs. 7, 8 and 9 similarly flagged symbols of different type (different incidence) represent experimental 
results at the same yaw angle. 

$ Note that the present experimental leeward primary core positions, as they are based on one measurement 
only, must be considered to be less reliable than those of Harvey, which were inferred from detailed total head 
surveys. 
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4.3. Wing Surface Pressure Distributions 

The pressure coefficient---expressed as C e / K  2 so as to be a function of a, b and ~ = y/s only~'--was calculated, 
for various a and b, at discrete points along the upper and lower wing surfaces using equations (A-l) to (A-5) 
in the Appendix. Figures 11 to 16 show graphically the calculated pressure distributions, for the values of a 
and b indicated and compare them with measured distributions obtained by Fink14 and Harvey 1~ in regions 
of approximately conical flow. 

It can be seen in Figs. 11 to 16 that there appears to be a relative shift in the vertical scales of the calculated 
and measured distributions amounting to about 1.5 units of C e / K  2. The present theoretical distributions for 
b = 0 are in good agreement with those of Ref. 4, calculated for unyawed flow. Furthermore the centreline 
pressure coefficients on the underside of the wing are for all cases, slightly larger than the corresponding 
attached flow values 

_- a , o +  
K 1 A T T , t o  = ( 0 , 0  - ) 

which is consistent with the additional velocity inducing effect of vortex sheets present in the separated flow. It is 
therefore believed that the experimental distributions presented in Refs. 14 and 15 are slightly in error, a circum- 
stance which is thought to have arisen due to a static-pressure gradient which probably existed in the flow between 
the tunnel axis and the static-pressure tappings on the tunnel wall. This, of course, would not affect estimates 
of local lift and rolling moments obtained from them, which was the primary objective of the experiment. 

Fig. 11, for a = 0.5, Figs. 12 and 13, for a = 1.0 and Figs. 14 to 16 for a = 1-5 clearly indicate the effect 
of yaw on the calculated wing-surface pressure distributions. As b increases from zero, the distributions lose 
their symmetry about ~ = 0. The windward upper-surface suction peak follows the windward isolated vortex 
inboard and increases in strength, corresponding to the rise in the total circulation of the windward system 
and the slight downward movement of the isolated vortex. On the leeward side, the general effect is quite the 
opposite, the suction peak collapsing rapidly (as b increases), and moving outboard toward the leading edge 
in sympathy with the calculated movement of the isolated vortex, and the decrease in magnitude of the circu- 
lation of the leeward system. No pressure distribution is presented for which the leeward vortex is actually 
outboard of the leading edge, but for such cases the leeward suction peak vanishes completely. 

Comparison of calculated and experimental distributions is generally quite good along the lower surface 
of the wing and fair on the leeward upper surface. The large discrepancies which exist between theory and 
experiment on the windward upper surface, and which increase with increasing yaw, are believed to be due 
to the effects of secondary separation. The presence of this phenomenon influences the pressure distribution 
on the windward side of the wing directly, in that it causes a reduction in the size of the suction peak and 
inhibits pressure recovery between the primary vortex core and the wing leading edge. An indirect effect is 
that it displaces the primary core inboard. Overall the effect might be described as a 'flattening and broadening' 
of the windward suction peak. That the calculated suction peak is much too strong and is too far outboard is 
consistent with the discrepancies, previously noted, between the calculated and measured primary vortex 
positions. That the predicted shape is manifestly incorrect may be explained by the absence of the modifying 
effects of secondary separation as described above. 

As the influence of secondary separation on the leeward side of the wing diminishes (with increasing b), 
comparison with experiment improves significantly and in fact the shape of the small leeward suction peak is 
quite well predicted for the higher values of b in Figs. 1 lc, 12b and 16. 

It is interesting to note that at higher values of a and b, the calculated pressure distributions resemble more 
nearly those appropriate to a two-dimensional wing at incidence in a uniform stream. This is not surprising 
since with the present formulation, the limiting case 

a --~ oG  

b --, oo 

a/b - ,  Const = tan (7), say, 

corresponds to a two-dimensional flow (at incidence Y) with both leading- and trailing-edge separation. Of 
course, for stability reasons it is unlikely that such a flow could exist. 

t Integrals of the zeroth and first moments of ACp/K 2 about ~ = O, being the normal-force and rolling- 
moment coefficients respectively, will thus only be functions of a and b. 
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4.4. Normal-Force Coefficient 

Equation (A-9) gives the complex lateral force coefficient (Cr + iCN)/K 2 for the entire wing vortex-sheet- 
isolated-vortex separated-flow system. Since the wing has no thickness, and since there are no leading-edge- 
suction forces acting, the y-wise force on the wing must necessarily be zero. Because, however, of small residual 
forces acting in the fluid (due largely to the finite difference modelling of the in tegro-differential equations), 
the overall y-wise force will not vanish. For the same reason, the overall normal-force coefficient obtained from 
the imaginary part of equation (A-9), will differ from that obtained by numerical evaluation of equation (A-10), 
the integral of the pressure difference across the wing surface. In the present calculations, the magnitude of the 
real part of equation (A-9) was always less than 0.5 per cent of the imaginary part, and the fractional difference 
between the imaginary part, and numerical evaluation of integral (A-10) (using a 5 point rule), was always less 
than 1.5 per cent and generally less than 1 per cent. 

The lift in attached flow is given by the first term of equation (A-9) 

I - ~ l  ATT : 2ha, 

and is independent of yaw. 
Fig. 17 shows the variation of the imaginary part of (Cr + iCN)/K 2 with b for various values of a. Also shown 

are experimental values obtained in Ref. 15 from integration of measured pressure distributions. These values 
actually represent local normal-force coefficients, but have been corrected to give overall coefficients by 
assuming that the flow is conical. They therefore exclude trailing-edge effects. 

It can be seen from Fig. 17 that the calculated effect of yaw is to increase the separated-flow lift, the rate of 
increase increasing with both a and b. Harvey's experimental data shows an initial decrease in the overall lift, 
with increasing yaw, which is not predicted by the present calculations, and a subsequent increase. It is difficult 
to say whether or not this experimental trend is genuine, although there is no reason to doubt it. Quite possibly 
it is a result, direct or otherwise, of the change in state of the secondary separation systems with yaw, or it 
could perhaps be a thickness effect. We may conclude that although the details of the pressure distribution 
are not well predicted on the windward upper surface, the normal-force coefficient is reasonably well predicted, 
the regions of under and over prediction of the pressure coefficient, balancing in contribution thereto. 

4.5. Rolling-Moment CoeffÉcient 

For separated flow, the rolling-moment coefficient C~/K 2 c a n n o t  be evaluated by the method of residues 
(see Appendix) and in the present work was calculated by numerical evaluation of a span-wise integral of the 
first moment of the pressure difference across the wing surface, equation (A-13). Fig. 18 shows the variation 
of C~e/K 2 with b for various values of a. The dotted lines give the attached-flow rolling moment 

7~ 
IC  se /K2]ATT = -- gab, 

obtained by Ribner. 13 As was stated in Section 4.1, for b > 1, the leeward wing edge becomes, in fact, a trailing 
edge, at which it is necessary that the flow satisfy a Kutta condition. Since this is impossible without free 
circulation, the attached flow has no meaning for b > 1, and the dotted lines (in Fig. 18) are therefore terminated 
a t b =  1. 

Fig. 18 indicates that in general both the attached and separated flow rolling-moment coefficientst increase 
either with b at constant a or vice-versa. However, for a = 3.0, after an initial increase with b, the rolling-moment 
decreases for values of b greater than about 1.5. In general, the difference between the predicted attached and 
separated flow rolling-moments (for b < 1) can be seen to be significant, but not large. Thus although the 
separated flow considerably alters the wing pressure distribution from that obtained in attached flow, it 
produces rather smaller fractional changes in the rolling moment than it does in the lift. This may be interpreted 
as meaning that as b increases at constant a, both the attached- and separated-flow pressure distributions 
change--from the corresponding distribution at zero yaw--in roughly the same manner, even though they 
differ quantitatively and qualitatively from each other. 

~" The sense of positive rolling-moment is indicated in Fig. 1. 
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In Fig. 19, the rolling-moment coefficient plotted a s  C.~/(K2b) iS compared with Harvey's experimental values 
obtained as the first moment of the measured pressure distribution about ~ = 0. For a = 0.5, the comparison 
is quite good over the range for which solutions could be obtained. At higher a the experimental values generally 
lie between those predicted for the attached and separated flow. For the separated flow, the largest contribution 
to the rolling-moment will come from the windward suction-peak region of the wing, and since it is here that 
the upper surface pressure coefficient is most poorly predicted, it is not surprising that there is large discrepancy 
between theory and experiment. Since the windward suction peak is calculated to be rather too far outboard, 
we might expect that the magnitude of the rolling moment might be over-predicted, as is the case for a = 1-0 
and a = 1-5. The reasonable comparison with experiment obtained for a = 0.5 must be regarded as fortuitous. 

5. Conclusion 

Numerical calculations have been made of the conical inviscid flow, with leading-edge separation, past a 
yawed slender delta wing The Newton-Raphson iterative technique employed yielded satisfactory solutions 
to the finite difference equations over ranges of the incidence and yaw parameters, but diverged, failing to do 
so in a region of the parameter space associated with lower values of the incidence. 

For non-zero yaw, comparison of the calculated flow properties with experiment was generally no worse 
than for zero yaw, there being two notable exceptions, namely the position of the windward primary vortex 
core and the shape and strength of the associated pressure suction peak on the windward upper surface of the 
wing. The large theoretical-experimental discrepancies which were found to exist for these quantities were 
attributed to the increasing influence (with increasing yaw) of the secondary separation system, the effects of 
which were not included in the flow model. 

There was good qualitative agreement between theory and experiment, both of which indicate that increasing 
the yaw angle: 

(a) strengthens the windward primary vortex core which moves inboard and slightly downwards, 
(b) weakens the leeward core which moves markedly outboard of the wing centre line and upwards, 
(c) causes an increase in strength of the pressure suction peak on the windward upper surface of the wing, 

and a decrease in that on the leeward upper surface, 
(d) produces appreciable increase in the normal-force coefficient only at large yaw, and 
(e) induces a rolling-moment on the wing, not very much larger than that predicted by attached flow theory. 
It seems probable that the incorporation of Barsby's separation model at the windward leading edge would 

lead to solutions in the incidence-yaw range for which the present approach fails. 
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LIST OF SYMBOLS 

= e/K, incidence parameter 

Coefficient in expression for vortex-sheet shape near a leading edge, see equation (26) 

Coefficient in trapezoidal rule quadrature as defined for equations (24) 

Coefficient of Z -  1 in expansion of W for large Z 

= fl/K, yaw parameter 

coefficient in expression for vortex-sheet shape near a leading edge, see equation (26) 

Denotes cross-section ofjth vortex-sheet in the Z-plane 

Transformed shape of C~ in the Z*-plane 

Image of C* in the circle 12"1 = s 

Pressure coefficient 

Normal-force coefficient (z direction) 

Side-force coefficient (y direction) 

Rolling-moment coefficient 

CN 
K2 in attached flow 

Cze 
Ka in attached flow 

Coefficient of co-1 in expansion of W/KUs for large co 

x-wise moment acting onjth cut, see equation (33) 

= 0, symbolic representation ofjth zero-force condition [equations (30)] 

= 0, symbolic representation of kth equation, in equations (36) 

Function used in constructing the complex velocity potential in the Z*-plane 

Matrix coefficient defined in equation (37) 

Function which appears in the slender-body theory, see equation (3) 

= FJKUs,  nondimensional circulation about the jth vortex-sheet 

Quantity defined in equation (21c) 

= 0, symbolic representation of finite difference form of equations (17) at j-nth point 

Imaginary part 

= tan 

x-distance from apex, see equation (A-6) 

Denotes jth leading-edge in the Z-plane 

Point to which Lj is transformed, in the Z*-plane 

Rolling moment 

Rolling moment in attached flow 

= 0, symbolic representation of zero-moment condition [equation (35)] 

Free-stream Mach number 

Normal force 
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LIST OF SYMBOLS (continued) 

Static pressure 

Point on C i in Z-plane 

Point on C* in Z*-plane 

= 0, symbolic representation of Kutta conditions [equations (28)] 

Scalar distance of P1 from the origin of the Z-plane 

Real part 

Local wing semi-span 

Sliding point on the jth vortex-sheet in the Z-plane [see equation (14)1 

Free-stream speed 

see equation (40) 

Complex velocity potential 

Rectangular cartesian co-ordinates, fixed on the wing 

Total side (y-wise) force acting on wing plus vortex-sheets 

Complex variable in the cross-flow plane 

A value of Z on the jth vortex-sheet 

Complex variable in the transformed plane 

A value of Z* on thej th vortex-sheet 

Incidence angle of the wing 

Yaw angle of the wing 

Exponent defined for equation (27) 

Circulation about jth vortex-sheet 

Semi-apex angle of the wing 

Difference operator across vortex-sheet, see equations (4) and (5) 

Potential difference across jth vortex-sheet 

Pressure difference across jth cut in cross-flow plane 

Pressure-coefficient difference across jth cut 

= Im (o)), Im ((n j), Im (coj.) respectively 

= Im (co*), Im (co*), Im (co*.) respectively 

Angle in cross-flow plane, see Fig. 2 

= 1 - A~bi/F i, non-dimensional potential difference across jth vortex-sheet 

Value of 2 i at coj. or ~o*. 

Value of 2 i defined in equations (23) 

Exponent defined for equation (26) 

= Re (e)), Re (co j), Re (~oi.) respectively 

= Re (o9"), Re (o)*), Re (co*) respectively 

Free-stream density 

Arc length along C i [see equations (4) and (5)] 

22 



4, 

4,o 
Zj 

e~ 

o9 

ogj 

og jn 

ogjn,n- 1 

O9" 

o9, 

%* 

ogjn,n- 1 

f~ 

f~p 

tat 
6f~,p+ 1 

LIST OF SYMBOLS (continued) 

t.* =_2_J 
S 

Quasi two-dimensional velocity potential 

Slender-body theory perturbation potential 

Angle in cross-flow plane, see Fig. 2 

Complete velocity potential 

Angle in the cross-flow plane, see Fig. 2 

= Z/s, non-dimensional complex variable in the cross-flow plane 

A value of o9 on thej th  vortex-sheet 

Complex co-ordinate of the nth point on the jth vortex-sheet, in the co-plane 

Point to which o9".,._ 1 is transformed, in the og-plane 

= Z*/s, non-dimensional complex variable in the transformed plane 

A value of o9* on the jth vortex sheet 

Complex co-ordinate of the nth point on the jth vortex sheet in the og*-plane 

Midpoint of o9*. and o9"._ 1, defined by equations (23) 

Vectorial representation of the unknowns of equations (36) 

/th component o f ~  

pth approximation to a solution of equations (36) 

/th component off~ p 

Subscripts 

J 
k 

l, m 

N 

Refers to a quantity on a vortex-sheet, j = 1, leeward sheet ; j = 2, windward sheet 

kth equation in equations (36) 

Dummy subscripts in summation terms; m also denotes the mean value across a vortex sheet 

Refers to nth point on a vortex-sheet 

Number of points on the outer part of a vortex-sheet 
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APPENDIX 

Calculation of the Pressure Coefficient, Normal Force and RoBing Moment 

In this appendix, the expressions used to calculate the wing pressure coefficient and the lift and rolling- 
moment coefficients, are derived. 

A.1. Pressure Coefficient 

For conical inviscid irrotational flow about a flat-plate delta wing, the slender-body theory prediction of 
the pressure coefficient is given by (Ref. 4) 

- ~  - 2 y + Z~z - @  K2Ux -- 

- + ~z K2U2 + a2 + b2" (A-I) 

Note that the pressure coefficient is a quadratic function of the velocity components. Hence while solutions 
of equation (2) and the derived velocity fields may be superposed [since equation (2) is linear], pressure co- 
efficients and lift and rolling-moment coefficients, in general, may not be obtained by superposition. 

It is easily verified that the various terms of equation (A-I) may be expressed in terms of the complex velocity 
potential IV, and the mapping co(m*), as follows 

l~yl + / a z l )  = d~* d~ 

and 

)/ [ y~y  + Z~z - c~ K2Ux = - 2  Re ~ - o do)* d-~w_] ' (A-3) 

The last three terms of equations (24) (Section 3.1) give the present representation of the complex velocity 
d(W/KUs)/do9*, evaluated at a point ~o* in these ~,,, 1 on a vortex sheet in the o9* plane. By replacing o9.* - -  J n , n -  1 

terms by o9", we obtain an expression for the complex velocity at a general point in the o9" plane : 

d(W/KUs) 

dog* 

G1 N+I f 1 

A x.'~ ~o* o9L. 
+ ~, = 0  

G2 N+I f 1 
+ ~ 0  A2" ~* -o9"., 

where the A~m, l = 1, 2 are as in equations (24). 

~{(b + ia) + ( - b  + ia)/o9 .2} + 

, }  
co* - 1/-G~I~ + 

• o9" - -1/ogL ' 
(A-4) 

The associated expression for the complex potential W / K  Us is obtained by integration of (A-4) with respect 
to o9", which yields 

W/KUs  = - ~{(b + ia)og* - ( - b  + ia)/o*} + 

~i N+I { ~o* - o9",. } 
+ ~ f o A l ~ l ° g  w-~-_-l /~, .  + 

G N+a f ~0" 09* "1 
2 lo / ____-- W2m ! 

+ S o  A2., g l,o* - (A-S) 

Using equations (A- 1) to (A-5), the pressure coefficient can be evaluated at a point in the fluid, and in particular, 
at a point on the wing surface, provided that suitable branches of the logarithms appearing in equation (A-5) 
are chosen. 
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A.2. Normal Force 

Sacks, 17 using the slender-body theory, derives expressions for the overall forces and moments acting on a 
slender body in a generalised state of motion by considering various integrals of the pressure around contours 
adjacent to the body cross section in the cross-flow plane. In these expressions, where possible, contour integrals 
involving analytic functions of the complex variable in the cross-flow plane are obtained. These integrals are 
treated by expanding the contour to infinity and applying the method of residues. Although only attached 
flows (i.e. those without vortex sheets) are considered in Ref. 17 the arguments used and equations derived 
therein should be applicable to separated flow problems, provided that the contours considered surround the 
vortex sheets as well as the body, in the cross-flow plane. 

From equation (45) of Ref. 17, the complex lateral force, acting up to a station x = l on a flat plate delta 
wing with incidence and yaw, in a steady uniform stream may be written as 

Y + i N  = 2~zpU{d-1}x:l,  (A-6) 

where d _  1 is the coefficient of Z -  ~ in the expansion for the appropriate complex potentialt  W, at large Z. 
The complex lateral force coefficient, when divided by K 2, can be expressed as 

C r . C N = Y + i N  
K--- 7 + t-~7 ½pU2K2sl (A-7) 

where s = Kl.  Hence from equations (A-6) and (A-7) we may write 

Cr i CN 
K---- 7 + ~ = 4nc~_ x (A-8) 

where ~_ 1 = ~¢- 1/(KUs2) is the coefficient of ~o- 1 in the expansion of W / K U s  for large e). Note that equation 
(A-8) is valid for either attached or separated flow. 

For  the present problem, c~_ 1 can be evaluated using equations (A-5) and (18) (from Section 2.2), yielding 
for the overall complex lateral force coefficient 

E _ } A 1  }] Cy IE N --. G1 N+l Alm~l 09~m + Gz N+I __ * 
+ "~'-ff 2~ ia + 2 - ~ - - o  k ~ 1 -  ~ - - o  2 " { ~ m  O32" " (A-9) 

The first term on the r.h.s, of equation (A-9) may be interpreted as the linear lateral force due to the attached 
flow, which, in fact, turns out to be independent of the yaw angle. The summation terms represent the lift due 
to the separated flow, which depends implicitly, through the solution points * ' coj , , j  = 1,2, n = 1 . . . .  N + 1, 
on the incidence and yaw parameters. 

Alternatively, the normal-force coefficient may be obtained by integration of the pressure coefficient over 
the wihg upper and lower surface. Because of the conicality of the flow, this integral may be reduced to one 
along the wing cross section in the cross-flow plane, viz: 

CN 
- ~ T  4, (A-10) 

where A C  e is the pressure-coefficient difference, lower surface minus upper surface, across the wing. 

A.3. Rolling Moment 

Sacks also derives expressions for the rolling-moment acting on a slender body with a generalised motion, 
namely equation (52) of Ref. 17. However, for the present case, the integrals appearing in this equation can 
only be evaluated by the method of residues if the initial contour taken about the wing (and vortex sheets, 

t Note that in Ref. 17, wing fixed axes are chosen on the moving body such that, at infinity, the lateral velocity 
components are zero. The different choice of axes for the present work will have no effect on the coefficient 
d _  1--merely adding a term linear in Z to the general form of the velocity potential used by Sacks--and thus 
the expressions derived in Ref. 17 will be directly applicable to the present case. 
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if any) has mirror symmetry about the y and z axes. For  separated flow, the presence of vortex sheets will 
mean that there can be no such symmetry, necessitating the use of other methods in the evaluation of the 
separated-flow rolling-moment. 

For attached flow, however, the required symmetry exists (for the present problem), and in this case, equation 
(52) of Ref. 17 reduces to 

2~zpK4U213 Im [(b + ia)C~_ 1], (A-11) 
"~A T T = 3 

where E,.~]ATT is the attached-flow rolling-moment and where cg_ 1 is as defined for equation (A-8). Using the 
expression 

I~21  __ ~ATT 
ATT P K2U2s21' 

and noting that for attached flow we have 

ia 

we obtain for the attached-flow rolling-moment coefficient 

C~] = ~ab 
ATT 3 (A-12) 

This result agrees with that obtained by Ribner. 13 
The rolling-moment coefficient for separated flow can be evaluated by a wing-surface integration of the first 

moment of the pressure about the x axis. Reduction of this integral to one across the wing-span in the cross- 
flow plane leads to 

C.~ (A-13) K 2 ~f l  ACP d - - ~  ~, 

where ¢ = (y/s). In equation (A-13), ACp is as for (A-10). A positive C.~/K 2 ac t s  in the sense indicated in Fig. 1. 
As with equation (A-10), equation (A-13) can be evaluated numerically by a standard method. 
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T A B L E  2 

P r i n c i p a l  S o l u t i o n  P a r a m e t e r s  

N = 10, 22/7 - -  0-20 

a 

0.5 
0.5 
0.5 

1.0 
1.0 
1.0 
1.0 
1.0 

1-5 
1.5 
1.5 
1.5 
1.5 

2.0 
2.0 
2-0 
2-0 
2.0 

2.5 

2.5 
2.5 

2.5 
2.5 

3.0 
3.0 
3.0 

3.0 
3.0 

0-0 
0.5 
0-95 

0.0 
0.5 
1.0 
1.5 
2.0 

0-0 
0.5 
1.0 
1.5 
2.0 

0.0 
0,5 
1.0 
1.5 
2-0 

0.0 
0-5 
1-0 
1.5 
2.0 

0.0 
0.5 
1-0 
1.5 
2.0 

- 0.808 
- 0.849 
- 0.949 

- 0.704 
- 0 . 7 7 0  
- 0 . 9 5 0  
- 1.226 
-1 -583  

- 0.660 
- 0.746 
-0 ' .922 
- 1.190 
- 1.530 

- 0 . 6 4 3  
- 0.742 
- 0 . 9 1 5  
- 1-168 
- 1 . 4 8 1  

- 0 . 6 3 7  
- 0 . 7 4 6  

- 0 . 9 1 6  
- 1.159 

- 1.453 

- 0-638 
- 0.755 
- 0.921 
- 1 . 1 5 7  
- 1.437 

~1/7+1 

0.118 
0.162 
0.232 

0.249 
0.314 
0.415 
0.510 
0.613 

0.352 
0.431 
0.551 
0.688 
0.822 

0.428 
0-515 
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FIG. 1. Three-dimensional view of conical yawed flow past a slender delta wing with leading edge separation 
represented by vortex sheets. 
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FIG. 2. Crossflow plane showing wing (L, AL2B), leeward (Ca) and windward (C2) vortex sheets. 
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