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1. Introduction 

Time marching methods are in principle the most flexible means of calculating blade-to-blade flows in 
turbomachinery since the same method can be used for subsonic, transonic and supersonic flows with automatic 
inclusion of time dependence and shock waves. In practice time marching has not lived up to its promise because 
large amounts of computer time have been necessary to obtain limited accuracy; times of 5-10 minutes being 
typical for a 2D problem. 

The basic principle of time marching is to start with a guessed flow distribution and integrate the time- 
dependent equations of motion and energy forward with time until a steady-state solution is obtained. The 
current 'state of the art' has been reviewed by Gopalakrishnan ~ who concentrates on solving the equations in 
differential form. An alternative method, described by McDonald, 2 applies the equations for conservation of 
mass, momentum and energy to elemental control volumes. This integral method is claimed to be more stable 
than the differential methods since all fluxes are conserved once the steady state is reached. However, as used 
by McDonald the method requires a complex grid and computer times of the order of 5 minutes. 

Stability has always been a problem with time marching, limiting the size of time step which can be taken 
and hence the number of steps required to obtain a steady state solution. Many means of ensuring stability 
have been devised for the differential form of the equations. Some of these have been compared by Emery, 3 
all achieve stability only at the expense of extra computation. The only method published which does not 
rely on some form of artificial viscosity or smoothing is that of Marsh & Merryweather. 4 Their method, how- 
ever, required a very large number of time steps and so, although simple, it was still expensive. 

The extension from two to three dimensions is relatively simple in time marching requiring only the solution 
of an additional momentum equation. However, Gopalakrishnan 1 recently estimated that a 20 hour computer 
run would be needed to obtain a 3D solution of comparable accuracy to the 2D solutions. Despite this dis- 
couragement, time matching seemed to offer the only possibility for solving for transonic flow through highly 
flared blade rows where the currently available 2D methods are thought to be inadequate. Hence an attempt 
was made to develop a much faster form of the method. 

2. Two-Dimensional Method 

The approach chosen was to use McDonald's elemental control volume concept but with a simpler grid. 
The grid is shown in Fig. 1. It is formed by a series of quasi-streamlines which are evenly spaced in the y direc- 
tion and by pitchwise lines which need not be evenly spaced in the x direction. The control volumes overlap in 
the pitchwise direction and calculating points are located at the centre of each element. The quasi-streamlines 
upstream and downstream of the cascade are chosen to be roughly in line with the flow inlet and outlet directions 
but these lines do not control the flow direction. Cusps are placed at the leading and trailing edges of the blade 
to prevent discontinuities in the grid. Periodicity is applied over the bounding quasi-streamlines including 
cusps and so neither the cusps nor the boundaries exert any force on the flow and do not control its direction. 
The outlet flow direction is obtained as part of the calculation being determined by the periodicity condition 
behind the trailing edge. 

Throughout the calculation boundary elements are treated exactly as if they were whole elements with half 
their area beyond the boundary, the fluxes over the face beyond the boundary are found by extrapolation from 
the boundary and interior points. This is numerically exactly the same as applying the conservation equations 
to the half element at the wall and then extrapolating from the centre of that element to the boundary. Periodic 
boundaries are treated in the same way as solid boundaries but after each time step the properties at correspond- 
ing points are averaged. Also after each time step the velocities on solid boundaries are resolved parallel and 
perpendicular to the boundary and the perpendicular component is discarded. 

The conservation equations applied to a control volume AV for a time step At are 

and 

Mass At. ~ (pVx.dS x + pV~,.dSy) = AV .Ap ,  

Energy At. ~ (hoPV x . dSx + hopV~,, dSy) = AV.  AE, 

x momentum At. ~ ((P + pV~) dS, + pV~Vy, dSy) = AV. A(pV~) 

y momentum At. • (pV~Vy. dS x + (P + pV~)dSy) = AV. A(p Vy). 

(l) 

(2) 

(3) 

(4) 



The summations are made over the 4 faces of an element and d S  x, dSy are the projections of the face in the 
x and y directions. Also needed is the equation of state 

P = p .  R .  T =  p .  R (E  - ½V2)/C~. (5) 

It is common practice to omit equation (2) and obtain the pressure from the density by assuming isentropic 
flow. This assumption is not necessarily correct in supersonic flow and will give incorrect predictions for 
shock waves. A much better means of reducing the number of equations is to assume that the flow takes place 
with constant stagnation enthalpy. Equations (2) and (5) can then be replaced by 

P = p .  R .  T = p .  R(h o - 1 V 2 ) / C p .  (6) 

This assumption becomes exact when the flow becomes steady, even in the presence of shock waves. The 
unsteady flow is, in effect, being assumed to take place with heat transfer to keep h o constant. There is an added 
advantage in that the speed of a pressure wave at constant h 0 is less than that at constant entropy and so larger 
time steps can be taken than with the isentropic assumption. 

Initially central difference schemes were tried but it was found that a large amount of smoothing was necessary 
to obtain stability. Study of the mode of instability showed that it was due to combinations of high velocity 
and low pressure occurring at the centre of an element in conjunction with high pressures and low velocities 
at the centres of the upstream and downstream elements. This observation suggested a scheme whereby the 
pressure at the centre of an element acts on its upstream face whilst the velocity at the centre controls the fluxes 
through the downstream face. When a high x component  of velocity arises in an element the mass flux out of 
the element is increased. This reduces the density and hence the pressure in the element. The reduced pressure 
acting on the upstream face corrects the initial error in V x. The fluxes through the quasi-streamlines are small 
compared to those through the pitchwise lines and are obtained directly from the fluid properties at the 
calculating points on the streamwise faces of the elements. For the scheme to be effective the equations must 
be solved in the order: mass-pressure momentum. The order in which the momentum equations are solved 
is not important. The procedure adopted is to update the density at all grid points then use the new density in 
conjunction with the old velocities to obtain the pressure at each grid point (equation (6)). Finally, the new 
pressures together with the old densities and velocities are used to update the x momentum and y momentum. 
The method is therefore explicit, in the sense that the new variables are not used in the time step in which 
they are calculated, with the exception that the new pressure is used immediately it is available. 

A simple stability analysis has been developed for the scheme, this is reproduced in the Appendix and predicts 
that the maximum permissible time step is 

A l m a  x = mXmi n . ( N / / M  2 -[- 1 6  - M)/4c. (7) 

In practice the maximum stable time step is close to that predicted by equation (7) when M = 1 but the 
increase at low Mach numbers and decrease at high Mach numbers is less than predicted. The pitchwise spacing 
of the elements has no effect on the stability. 

The scheme described above for maintaining stability is equivalent to using upwind differences for mass 
and momentum fluxes and downwind differences for pressure. A similar scheme was used in differential form 
by Marsh & Merryweather 4 but appears to have been much less stable than when used with the integral form 
of the equations. Smoothing is not necessary to stability and in fact reduces the permissible time step. However, 
the solutions obtained sometimes show a slight 'waviness' with alternate quasi-streamlines having high and 
low values of the flow properties. This arises because each quasi-streamline is only affected by the difference 
between properties on its adjacent streamlines and not by the difference between these streamlines and itself. The 
effect is usually so small as to be scarcely noticeable but if necessary it may be removed by applying a slight 
smoothing in the pitchwise direction after each time step. Comparisons show that smoothing, several times 
greater than that needed to remove the waviness, has no significant effect on the surface velocities. 

Although simple and highly stable the basic scheme is of limited accuracy. It was therefore modified so that 
the short term stability is unchanged whilst the steady state solution is determined by more accurate differ- 
encing. This was achieved by adding correction factors to the fluxes and pressures at the pitchwise faces of the 
elements. The correction factors are obtained by curve fits along the quasi-streamlines and changes in them 
are damped. For example the value of V x entering element J through its upstream face is taken as 

V x (entering J) = V:,j_ 1 + C F  V X ,  

4 



where after each time step 

CFVX (new) = (1 - RF). CFVX (old) + RF. ~ a,. Vx.j_ .. 
t t  

(8) 

The coefficients a, are determined by the type of curve fit chosen and any curve fit can be used if the value 
of RF is made low enough (,,- 1 per cent). However, it is found that if the correction factors for mass and momen- 
tum flux are obtained from an upwind biased curve fit and that for pressure from a downwind biased one, 
high values of RF can be used. In practice parabolas through J, J - 1, J - 2 are used to obtain the fluxes 
entering element J and a parabola through J - 1, J, J + 1 for the pressure on the upwind face of element J. 
Relaxation factors up to 0.5 can be used without any loss of stability and so the correction factors only lag 
a few time steps behind the main calculation. In the steady state the gradients at a point are effectively found 
from a curve fit through 4 points and so, provided the properties vary continuously, the accuracy is equivalent 
to that of a streamline curvature calculation with the same grid spacing. 

The boundary conditions applied at the downstream boundary are a specified uniform static pressure on 
the last pitchwise line and a condition of zero velocity gradient along the quasi-streamlines. At the upstream 
boundary the stagnation pressure and temperature and flow direction are specified and there is assumed to be 
no pressure gradient along the quasi-streamlines. The static pressure on the first pitchwise line is taken to be 
the same as that calculated on the same quasi-streamline at the second pitchwise line. This static pressure is 
used in conjunction with an assumption of isentropic flow from the stagnation conditions to calculate the 
density and velocity. The inlet flow is, therefore, not necessarily uniform. 

The method described is very easy to program in 2 dimensions. The complete program requires only about 
300 cards and since virtually all operations are arithmetic the computer calculations are very fast. Time re- 
quirements are about 1.1 × 10 -4 seconds per point per time step on an IBM 370-165, This compares with a 
time of 1.7 x 10 -3 seconds on a CDC 3600 quoted by Emery 3 for the fastest of the methods he reviewed. 
For shock free flow a 30 x 8 grid is usually adequate, convergence to the steady state is obtained in 300-800 
time steps and run times are of the order 10-30 seconds, depending on the number of grid points used. The 
speed of the method is due to a combination of factors. Firstly, its simplicity makes the computing time per 
point per time step very low. Secondly, the high stability means that comparatively few time steps are needed 
to reach a steady state. Finally, the use of a curve fit to obtain the fluxes in the steady state enables comparable 
accuracy to be obtained with fewer grid points than other methods. 

3. Results from the Two-Dimensional Program 

The program was developed using the VKI gas turbine blade 5 as a test case since detailed e×perimenta! 
measurements and several other theoretical predictions are available for it. Fig. 3 shows the comparison with 
experiment at outlet Mach numbers of 0.81 and 1.31. Apart from a failure to predict the sudden decrease in 
Math  number over the rear of the suction surface at the higher outlet Mach number the agreement is good. 
None of the other methods used on this blade was able to adequately predict this decrease in velocity which 
is probably due to a shock meeting the surface. The shock could possibly have been predicted by the present 
method if more grid points had been used. 

The VKI steam turbine blade 5 presents a very severe test of any finite difference scheme since extremely 
steep gradients of the flow properties occur in both pitchwise and streamwise directions. Using a 10 x 50 
grid gave only fair agreement with experiment but a 20 x 50 grid gave much better agreement as shown in 
Fig. 4. The suction peak near the leading edge is predicted more accurately than by any of the other methods 
whilst only characteristics methods gave significantly better predictions of the shock on the suction surface 
at the lower Mach number. Again, the shock would have been sharper if more grid points had been used. 

Figs. 5 and 6 show comparison with Hobson's 6 two impulse cascades for which accurate analytical solutions 
are available. These blades are shock free and so it is not surprising that the agreement is good. Fig. 7 shows 
results for the NASA nozzle blade 8 which is often used as a test case, Gostelow 9 shows comparisons of other 
methods with this blade. The agreement of the present method with experiment is excellent on the suction 
surface but there is some discrepancy on the pressure surface near to the blunt leading edge. This error is due 
to the very rapid changes in flow properties which occur around the leading edge and a finer grid would be 
needed to give improved accuracy in this region. 

To study the behaviour of the calculation in shocked flows it was applied to a convergent-divergent nozzle 
for which a combined streamline curvature-characteristics solution was available. Fig. 8 shows the result when 
the nozzle was underexpanded so that an oblique shock is reflected between the walls. The agreement with the 
characteristics solution is fairly good. Fig. 9 shows the same nozzle with the back pressure raised so that a 



strong normal shock forms in it. The curve-fitting scheme cannot follow the rapid changes across the shock so 
that the discontinuity is smeared over about 4 grid points, irrespective of the grid spacing. The sharp peak in 
the Mach number distribution before the shock can be prevented by altering the curve-fitting scheme to give 
upwind mass and momentum fluxes and centred pressures, but the smearing of the shock is slightly worse 
(Fig. 9). Use of pure upwind differences only enhanced the peak. Although predictions within the shock region 
are not accurate overall, changes across the shock are correct since mass flow, momentum and energy are 
conserved across it. 

The rate of convergence to the steady state is illustrated for some of the above cases in Fig. 10. It is clear 
that the flow becomes effectively steady some time before the convergence criterion ((AVJV~)m, ~ < 0-0001) is 
reached and that for engineering purposes half the number of time steps would often suffice. 

4. Three-Dimensional Method 

Extension of the method to three dimensions is straightforward in a Cartesian co-ordinate system requiring 
only the solving of an additional momentum equation in the third dimension. For turbomachinery problems 
a 3D calculation is more useful if performed in a cylindrical co-ordinate system so that it can be applied directly 
to annular blade rows as well as to cascades. This involves some extra geometrical complexity but no extension 
to the principles of the method. 

The mesh used in 3D is formed between planes perpendicular to the axis, meridional quasi stream surfaces 
equally spaced between the hub and tip and surfaces evenly spaced between the blade suction and pressure 
surfaces. The intersection of this mesh with a quasi stream surface forms a grid exactly the same as that used 
in 2D (Fig. 1) and its intersection with a plane containing the axis is shown in Fig. 2. 

When applying the conservation equations to an elemented control volume in 3D the continuity, axial 
momentum and angular momentum equations are solved in a conventional (r, 0, x) cylindrical co-ordinate 
system. The equations are, 

Mass A t .  ~ (p V x . dS~ + p V o . dS o + p V~. dSr) = A V. Ap,  (9) 

Axial Momentum At. ~ ((P + pVZ)dS~  + pVxV o . dS o + pV~V~, dSr)) = AV. A(p Vx) (lO) 

and 

Angular Momentum At. Z ( p V  x . r V  o . dS~ + (P .  r + p V  o . rVo) dS o + pV~. r V  o . dSr) = AV.  A(prVo). (11) 

When applying the above equations it must be remembered that r and 0 are the local radial and tangential 
directions which vary around the faces of an element and from element to element. 

For the radial momentum, however, it is more convenient to use a Cartesian co-ordinate system (re, 0c, x) 
with the radial and tangential directions defined at the centre of each element and remaining unchanged over 
the whole of that element. This prevents difficulties arising from the V2/r and V~. V 0 terms which occur when the 
radial momentum equation is written in cylindrical co-ordinates. The equation becomes 

Radial Momentum At. Z (PVx" V~c. dSx + p Voc. VrL.. dSo~ + (P + pV~c)dSr~) = A V. A(pVJ. (12) 

The pressure is obtained from equation (6) exactly as in two dimensions. 
The boundary conditions applied to the 3D problem are also the same as in 2D except that the radial variation 

of static pressure at the downstream boundary is obtained from radial equilibrium and a condition of zero 
gradient of radial velocity in the stream-wise direction is applied at the upstream boundary. In all applications 
to date the upstream total pressure has been taken as uniform but there is no assumption of irrotational flow 
and non-uniform total pressures can very easily be included. Vorticity shed from the trailing edge of a blade 
appears as a discontinuity in spanwise velocity at the trailing edge. Since the suction and pressure surfaces 
effectively feed into the same element downstream of the trailing edge this discontinuity is immediately spread 
over 3 grid points and at greater distances behind the trailing edge it is further smeared by the coarseness of 
the grid. This smearing of the discontinuity is an approximation which becomes more exact as the grid spacing 
is reduced but with the relatively coarse grids which have to be used for 3D flow the smearing influences a 
considerable proportion of the flow. However, comparison of solutions with different numbers of grid points 
indicate that the smearing has little effect on the blade-surface pressure distribution. As a future development 
it may be possible to regard the stagnation streamlines as solid boundaries and to move them as the calculation 



proceeds in such a manner as to equalise the pressures at adjacent points. Such a procedure would preserve 
the discontinuity. 

5. Results from the Three-Dimensional Program 

The 3D program was found to be no less stable than the 2D version but requires about 3 times as much 
computer time per point per time step. Computer storage limits the number of calculating points, at present 
up to 2000 points can be used and this requires 230 k bytes of storage. However, comparison of solutions with 
differing numbers of grid points has shown that for shock-free problems adequate accuracy can be obtained 
with about 1000 points. Computer times of 2 to 3 minutes are required with this number of points. It is also 
interesting that the program can be run with a very coarse grid in the spanwise and pitchwise directions 
(e.g. 4 points) and this enables qualitative studies of 3D effects to be made reasonably cheaply. 

The 3D program can be run as a 2D calculation by making the hub: tip radius ratio very close to unity 
and in this form it gives results almost identical to the 2D program. There is, however, very little experimental 
or theoretical data available for comparison with 3D calculations. To obtain some data a 3D duct, representing 
a turbine nozzle with height variation, was designed and tested. This duct had 60 degrees turning coupled 
with 50 per cent reduction in height. The pressure distribution along each of its 4 corners was measured at low 
Mach number and the comparison with the calculated pressure distribution is shown in Fig. 11. The agree- 
ment is good over the upstream part of the duct but deteriorates slightly towards the exit. Some of the dis- 
crepancy is due to the pressures being measured in the corners of the duct where they are slightly higher than 
in the free stream. 

A further comparison was possible using NGTE data 7 for a cascade of nozzle blades with meridional pro- 
filing, the height of the cascade being suddenIy reduced by about 15 per cent midway along the blade passage. 
Fig. 12 shows the calculated and experimental pressure coefficients. Agreement is again fairly good, the very 
rapid fall in pressure on the suction surface along the curved end-wall is correctly predicted but the heights 
of the suction peaks are slightly over estimated. 

As an example of the application of the method to a transonic annular cascade Fig. 13 shows predictions 
for the same blade as Fig. 12 but placed in an annular cascade with a flared casing, similar to the one shown 
in Fig. 2. The hub:tip-radius ratio is 0.75 at outlet and the blade aspect ratio is 2.0 at outlet and 1-50 at inlet. 
For comparison Fig. 13 also shows a 2D solution at the hub pitch :chord ratio and pressure ratio. It is apparent 
that 3D effects are small at the hub, being almost entirely due to the increase in stream surface-thickness. 
Near the casing, however, the pressure distribution is greatly affected by the curvature of the stream surfaces, 
the load being increased near the leading edge and reduced near the trailing edge. 

6. Conclusions 

The method developed has proved a rapid and accurate means of calculating blade-to-blade flows. For 
shock-free flow the two-dimensional method is comparable in speed and accuracy with existing streamline 
curvature and relaxation methods and in the author's experience it is easier to program and less temperamental 
than either. For shocked flows time marching provides the only known means of solving simultaneously for 
mixed subsonic and supersonic flows. All methods smear shock waves over several grid points and so a very 
fine grid is needed to give accurate results. The speed of the present method means that much more detail can 
be obtained for the same computing cost. 

In three dimensions the method provides a comparatively simple and economical means of obtaining 
solutions for subsonic flow and is the only known means of solving for transonic flow. Three-dimensional 
shocked flows can be handled by the present program but will require about l0 minutes of computer time 
and so have not yet been attempted. 

Further developments, which require no extension to the basic principles of the method, include application 
to three-dimensional rotating-blade rows and to mixed-flow geometries. Ultimately is should be possible to 
obtain a three-dimensional solution for a complete stage. 
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A P P E N D I X  

Stability Analysis 

Consider flow in a one-dimensional duct divided into elemental control volumes of length A~ and cross- 
sectional area A. Since the flow across the quasi streamlines is small in comparison with the flow along them 
such a one-dimensional model should give a good estimate of the stability of a 2D or 3D flow. The flow is 
assumed to be initially steady but at the start of a time step the velocity at the centre of element J is increased 
by AV 0. The analysis follows the development of this initial perturbation through the time step using the basic 
scheme whereby the pressure at the centre of an element acts on its upstream face and the velocity at the centre 
controls the flow through the downstream face. 

When solving the continuity equation in the first part of the time step there will be a nett outflow from 
element J and an equal inflow to element J + 1. 

Ama = - A m s +  l = - P .  A . A V  o.At.  (A-l) 

The resulting changes of density are 

At 
A p j  = - Apa+ l = - p .  AVo " A~" (A-2) 

The changes in density are immediately used to calculate the change in pressure 

(A-3) 

When the momentum equation is now applied to element J there is a nett pressure force -- 2. A P  s . A in 
the x direction and a nett outflow of momentum = 2p. V. AV o . A. At. The change of momentum within 
element J during the next part of time step is 

A ( p . V . A . A x ) =  - 2 p . c  2 .AV o . A . & x x -  2 p . V .  AV o .A  At, (A-4) 

i.e. 

At) At 
p .  A V  + V .  A p  = - 2 p . c 2 . A V o  . Axx - 2 p .  V .  A V o . - -  

Ax"  

Substituting from equation (A-2) for Ap gives 

[Atl2 V, At 
zxv= - 2 c ~ . a v o . l ~ x ]  - v .A O.Ax. (A-5) 

After the time step, the new velocity at the centre of element J is 

V ' =  V + A V  o + A V .  (A-6) 

For stability we must have IV' - V[ < [AVo[, i.e. 

1 - 2c 2 . AXX 

As At is increased instability will start when 

At) 
- V.~--~x < 1. (A-7) 

I /2 
1 -  2c2.1Ax] - V. ~ = - 1 ,  

10 



i.e. when 

2c2 v • + - -  2 = 0 ,  
C 'CAx ~Axl 

i.e. 

At  V V ~  
c .  A x  - 4c + V/1-~c 2 + 1 

or, since V/c = M,  the local Mach number 

= A x [ .  / z 16 M) 
Atmax 4 c  ~ v M  + - ' 

Note that (c.  A t ) /Ax  is the fraction of a grid space that a pressure wave will travel in one time step. 

(A-8) 

11 



/ 
Periodic 
boundary 
element 

~4 

Solid Interior 
boundary element 
element 

X Calculating points 

\ 

\ 
\ 

FIG. 1. Grid system in two dimensions. (Grid used is much finer than one shown) 

12 



~- X 
f 

Y 

v v 

/ I /  J [ 
o/ n n °~ n / n 

Leading edge-- Boundary nterior 
element element 

n 

W 

)1 "" 

x 

V 

X " 

\ 

Trailing edge 

, Casing 

Hub 

x Calculating points 

FIG. 2. Intersection of three dimensional grid with meridional plane. 

13 



M 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

x Experiment } M2, = 
. . . .  Calculation is 0.81 

0 Experiment } 

Calculation M2,|s = 1.31 

O~ O0 0 

o 

x x x~x 

G 

0 i i i i ! I I 

~ . 2  0 0.2 0.4 0.6 0.8 1.0 1.2 

Fraction of chord 

FIG. 3. VKI gas turbine blade. 

14 



M 

2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

X Experiment } = 1.42 
- ~ Calculation M2'is 

Colculatian M2'is " 0 ~ / 
Experiment t = 1 80 

0 

0 0 

®Q 

-2. 

x 

x 
X 

x 

® 

\ 
i 

\ 
Q 

x 

x x 

® 

® 

0 

O0 

°, I 0.2 
-0.2 

I 

0 
I 

0.2 
I I 

0.4 0.6 

Fraction of chord 
0.8 1.0 1.2 

FIG. 4. VKI steam turbine blade. 

15 



Hodograph design 

x x x Time marching 

1.2 

1.0 

0.8 

M* 

0.6 

0.4 

0.2 

I I i | I A I I i I I 

0 1 0 20 30 40 50 60 70 80 90 100% 

FIG. 5. Hobson's second impulse cascade. 

16 



M* 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

X x X 

Hodograph design 

Time marching 

x X 

X x 

x 

i I I 1 I I I I I I I i 

0 0. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I .0 1.1 
x/c 

FIG. 6. Hobson's first impulse cascade. 



X Suction surface 

0 Pressure surface 

-- o - -  Time marching 

Experiment 

M* 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

/ 
@ 

¢ 
0 

/ 
x 

I 
I 
X 

@ 

i 
X 
0 

~,J 
/ 

e 

I,o 

0 

x 
m / \  / 

0 ' ~ ® J  

a n 

0 20 

o./ 
/ 

0 

o/ 
0 

o / 
0 o 

/ 
0 

/ 
0 

d..o 
@ 

/ 
o o/ 

/ 
0 

! I 

40 60 

% Surface length 

I ! 

80 1 O0 

FIG. 7. Nasa Nozzle b lade- -mean  section 

18 



2sF xx 

M 

2.0 

1.5 

1.0 

0.5 

0 
2 

| 

6 

Nozzle centre line 

X x x ~x~~ 

Nozzle wall 

X,O 

I i I I I 

8 10 12 14 16 
x (inches) 

0 

O0 

0 

Time marching 

Streamline curvature and 
characteristics 

I I ,,,| 

1 8 20 22 

FIG. 8. Convergent-~livergent nozzle--underexpanded. 



2.5 

2.0 

0 

÷ 

~=====g:===~ 

Standard parabolic correction 
factors 

Upstream velocities, centred 
pressures 

No correction factors ~ upstream 
velocities, downstream pressures 

Standard correction factors. 
Grid spacing halved through 
shock 

O 

1.5 

M 

1.0 

0.5 

\ 
L\  

6 
n I t I L = i 

8 10 12 14 16 18 20 
x (inches) 

22 

FIG. 9. Convergent~ivergent  nozzle. Overexpanded. Mach number on axis. 



250 

2OO 

150 

100 

[ 
0 

Naw.zle blade (Fig. 11 ) 
computer time I ].s 

VKI steam turbine 
computer time 84s 

\ 

Hdllon's impulse bJade 
computer time 16s 

/ 

VKI gas turbine 
computer time 20s 

t I 1 l I I I J 

I OO 200 300 400 500 600 700 800 

Time step number 

FIG. 10. Convergence of two dimensional program. Vx,re f = Axial velocity on suction surface just upstream 
of trailing edge. 

21 



Po ° P 

%- P2 

1.2 

1.0 

0 . 8  

0.6 

0.4 

0,2 

0 

t 
7 x 20 x 7 grld 
170 s computer time 

4 

o 

0 0 ~ Q ~ O  

6 8 

0 

x 

o 

Experiment } 
Calculation 

Experiment } 
Calculation 

Upper stream 
surface (curved) 

Lower stream 
surface (fiat) 

X/ 
/ 

/ 
/ / 0 0 #Z/ 0 

0 I 3 

0 ~ 

! 
I 

I 
! 

I 
# 

# 

" l I I 

10 12 14 
(inches) 

r 0 
0 

! I 

16 18 

FIG. 11. Three dimensional duct. 



Po-P 
Po - P2 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

J J J J  

r 

/ # # I  

x 

0 

w w 

- - 0  r o l l  

Experiment curved end wall 

Experiment flat end wall 

Calculation curved end wall 

Calculation flat end wall 

7x  2 5 x 7 g r l d  
202 s computer time 

. - - ~  . , , ,  I x, . . . - . . I  , , 

/ , r l J "  l j elo 
o o O o  

/ o / o 

" I / I f  / oj-/ ./ 
/t 

o , /  / L' 

..i';" ~ ~ "  a ¢~ q l 
. . I  ._..o 7 ,  

.,,..8 -~°6 , , ~  

i I I I I I 

0 0.2 0 .4  0.6 0.8 1.0 
x ~  c 

FIG. 12. Nozzle cascade with meridional profiling. 

23 



1.0 

0.9 

+ - - -+~  

m X ~  

u - J - m  

Hub stream surface 

Casing stream surface 

2D solution at hub 

8x  25×6g r i d  

1 84"s compute¢ time 

0 . 8  

\ x 

O. 

0.3  

0.; 

0.1 

r 
t 

'h = ~ :  

f 
~ 

H 

% J 

× = 0 .715c 
C 

r~ =~:: 

r h = 6 C 

÷ ~ 

\ 

V 
k 

÷ 

n I ! m ! 

0 0 . 2  0 . 4  0 . 6  0 . 8  1.G 

FIG. 13. 3D solution for transonic annular  cascade. 

Printed in England for Her Majesty's Stationery Office by J. W. Arrowsmith Ltd., Bristol BS3 2NT 
Dd. 289031 K5 5/75 

24 



Ro & M, No° 3775 

© Crown copyright 1975 

ttER MAJESTY'S STATIONERY OFFICE 

Government Bookshops 

49 High Holborn, London WC1V 6HB 
13a Castle Street, Edinburgh EH2 3AR 

41 The Hayes, CardiffCFI lJW 
Brazennose Street, Manchester M60 8AS 

Southey House, Wine Street, Bristol BSI 2BQ 
258 Broad Street, Birmingham BI 2HE 
80 Chichester Street, Belfast BTI 4JY 

Government publications are aLw available 
through booksellers 

Ro & M° Noo 3775 
ISBN 0 11 470920 3 


