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Summary 

The phenomenon known as 'air resonance', peculiar to helicopters with hingeless rotors, has been analysed 
and presented in as simple a manner as possible. 

In the air resonance case the 'body mode' with frequency close to the whirling frequency of the rotor C.G. is 
much more heavily damped than in ground resonance and the damping of the modes of motion is apparently 
unaffected by coincidence of the body and whirl frequences. 

The slower of the two C.G. whirl modes is unstable if only the aerodynamic lag damping is present and it 
appears that at least 4 per cent of critical damping is required for all the modes to be stable. 

A resonant situation may occur if the lag stiffness is so high that the blade lag frequency coincides with the 
flapping frequency. With low damping large lag amplitudes may be excited by Coriolis forces when blade 
flapping occurs. 

* Replaces A.R.C. 33 886. 
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1. Introduction 

In recent years several experimental and production helicopters have appeared employing hingeless rotor 
blades. Flight experience and theoretical investigations show that these helicopters may be subject to a 
phenomenon known as 'air resonance' in which instability or large lag plane amplitudes may occur due to 
coupling of blade lagging and flapping with the modes of body motion. 

Some papers, e.g. Refs. 1 and 2, have given a qualitative explanation of air resonance, whilst Ref. 6, 
although giving the outline of a theoretical method, explains the phenomenon mainly in terms of the numerical 
solutions of certain flight cases. Reference 7, which is not easily available, gives a detailed treatment of the 
problem but most of the results have been obtained by the drastic simplification of assuming that the pitching 
and rolling moments of inertia are the same, whereas they are usually in the ratio of about five to one. 

The object of this report is to give a simple theoretical treatment of the phenomenon regarding it as a logical 
extension of the more familiar classical helicopter stability problem. In particular, the so-called 'pendulum 
mode' is discussed in some detail. The analysis throughout has been kept as simple as possible in order not to 
lose sight of the physical nature of the problem. 

It is emphasised that in keeping the treatment simple not all of the parameters which could effect the motion 
have been included or fully investigated, but it is hoped that they are either relatively unimportant or, for 
practical reasons, are capable of only small variations. 

2. The Gyroscopic Modes 

Before obtaining the complete set of equations, it will be interesting to examine the motion of the helicopter 
when unsteady flapping motion is taken into account. 

For the moment we consider only blade flapping motion and associated fuselage pitching and rolling. Blade 
flapping in this report is defined as blade motion in a plane containing the blade in question and the rotor-hub 
axis. 

If z = RSdx)P,(O) is the displacement of a point of the blade in its first flapping mode, the azimuth 
coordinate is given by, Ref. 4, 

d:P, 1 f'OFs,(x) dx. (1) 
dO ----Y+A~P'(O) -~2R ~o mS2(x) dx 3o Ox 

Considering only pitching and rolling in hovering flight, and in the notation of Ref. 3, the blade loading 
distribution OF/Ox is given by 

1 2 ~r de,+ ] OF-~pacfl R [-xS~ x / 3 s i n O + x 0 c o s 0  + 
Ox dO 

^ 
+2mf~2R2(x~ cos 0 - x q  sin O)+m~2RZ(x~-~Psin O+x~ cos 0) .  (2) 

In calculating OF/Ox the steady blade incidence due to collective pitch and induced velocity has been omitted 
since it makes no contribution to the disturbed motion. We then have, again in the notation of Ref. 3, 

dZP, TE, dP, 
dO 2 2 dO 

4- A2P, T ='~[F,p sin ~ +F,t~ cos 6 ]+  

+ T [2P c°s 0 -  20 sin 0 + d~P'~ sin "y,c aqJ O+d-~ dq c°s 0]" (3) 

Now, in disturbed motion, we cannot assume steady blade flapping and the motion of each blade must, at 
first, be considered separately. Since only first mode flapping is being considered, the suffix 1 can be omitted 



from the terms in equation (3) and we can then write, for the kth blade, 

e'k'+ P'k+A~Pk = ~[Fi6 sin 0k +F0 cos 0k]+ 

+ F[2/~ c°s ~k - 20 sin 0k +~-~ sin 0k + d-~q'~ c°s ~kl d~ (4) 

where P;  denotes dPk /d~k ,  etc. and F =  ~/T~. 
Let us define 

2 b 2 
~ Pk sin Ok (5) a, = - ~  k~, Pk cos 0k ; /7, = 

where qJk takes the values 0 +2rr(k - 1)/b,  k = 1, 2 . . .  b. 
The relationships, equations (5), correspond to the classical Coleman transformation which convert the 

rotating blade modes to fixed body modes. It follows from (5) that 

b 
P~, cos Ok = - b  (a', +/7,); e ; s i n  Ok = b,);-' 

k=l k=l Z2 

b _p! - !  
P ' k ' s i n q J k = - - - ~ ( b l - - 2 a , - - / 7 , ) ;  ~ P~' cos Ok = - b  (5', + 2/7', - ",), 

k=l k=l 

and it can easily be shown that 

b b 
sin 2 Ok = F. cos 2 Ok = 2  

k=l k=I 

and 

b 
Y. sin 0k cos Ok = 0. 
k=, 

Then multiplying equation (4) by cos 4'k and sin Ok summing over the b blades of the rotor and using the 
above relations, gives 

A 

( a ' , 'q - / . 'd ' ,  + ( A  2 -  l ) a l  A-2/7'1-f- b'/71~ = --~--q-ff" 2/~ + d~ ) (6) 

and 

/ 7 7 + . / 7 ; + ( a } - l ) / 7 , - 2 ~ ; - v &  = -  /3+F  2 4 -  (7) 

where u = (T/2)E,. 
It is shown in Ref. 4, that the moment exerted on the helicopter by the kth blade is 

i' M k  = ~ ' ~ 2 R 3 ( A ~ -  ] )Vk  mxSl(x) dx, (8 )  
) 

and the rolling and pitching moments are, respectively, --Mk sin 0k and -Mk cos q~k. The total rolling and 
pitching moments are, therefore, 

i' boac f t2R~(h  ~ - ])/71 
L = - ~ Mk sin Ok = ~ b W R 3 ( , ~ ,  - 1)/71 m x & ( x )  dx  - 

k=~ ) 2T, ' 



and 

b bpacK~2R4(A~ - 1)at 
M = - Z M~ cos q,~ = 

k=l 2T1 

The equations of rolling and pitching motion of the helicopter are 

A dp= L = bpacY~2R4(A~- 1)bt 
dt 2y, 

and 

B dq= M - bpacf~ZR4(A~- 1)c~t 
dt 2"y~ 

Introducing the non-dimensional inertias 

A 
ia and W/ gR 2 

B 
is W/  gR 2 

and the relative density parameter 

g , =  W/g 
p S A R  ' 

where the solidity s = 
bc 

7rR 

enable (9) and (10) to be written in the non-dimensional form 

@ _ a (A~-  1)IT, 
d~0 2/x*iayi 

d O_  a ( A ~ - l )  _ 
d~0 2/~*isy, at. 

The complete motion is described by the four equations 

a ' (+ va'~ +-t/a, +2/~] + vb, + 2Fi6 + F ~ +  Kc~ = 0, 

-2a't - vat +/J',' + v/~ + 7/g, + F d ~ +  K,6- 2 @  = 0, 

ka/~t - d ~  = 0 

and 

d0 
k s d l - ~ =  O, 

where 

a ( A ~ - l )  a ( A ~ - l )  
ka - - -  ks - - -  

2/X*iAyt ' 2g*iBTl ' 

T 
,~ = ~ F , ;  n = A , ~ - I .  

(9) 

(10) 

(11) 

(12) 

(6) 

(7) 

(13) 

(14) 



Assuming, in the usual way, that typical solutions of the equations are of the form/3 = t% e "*, etc., leads to a 
characteristic equation of the form 

where 

aA6+bAS+cA4+dA3+eAZ+fA +g = 0 

a - - l ,  

b =2v ,  

c = 4 +  2r /+  v2 + f(kA + kB), 

d = 2v(2 + r/) + (kA + kB)(K + Fv), 

e = r f+v~+(kA  +ks){ff '(4+rl)+Ku}+kAkBff "2, 

f = (kA + kB)(rtK + 2Fu) + 2FKkAkm 

g = k A k s ( K  2 -t- 4ff~2). 

(15) 

We take the following typical values 

v = 0.836, r /=  0.245, 

Equation (15) then becomes 

the roots of which are, 

F =  1 "(18, K = 1-146, kA = 0"102, kB = 0-0204. 

A6+ 1.672As+5.32A4+4A3+ 1.44Az+O.26A +0-0124  = 0 

AI, 2 = --0"408 + 2"03i, 

A3,4 = --0"215 :t: 0"246i, 

M = - 0 " 3 5 6  and A6=-0"0698 .  

It is interesting to investigate the meaning of the two oscillatory roots. To do so we consider the simpler case 
of a rotor having centrally hinged blades rotating in vacuo and with the shaft axis fixed. The equation of free 
motion of a blade is 

with the familiar solution 

d %  ~ = 0, (16) 
dO 2 

/3k = -a ,~  cos 6 -  bl~ sin 0, 

a,~ and b~ being constants determined by the initial conditions of the kth blade. 
Applying the transformations of equation (5) gives a characteristic equation of the form 

A~(A~+4)=O 

whose roots are 

(17) 

(18) 

A~,2=+2i and A3,4=0. 

The first pair of roots imply that ti, and bl oscillate with realtime frequency 2f~; the second pair of roots 
imply that ci, and/~, are constants. 



Now & and bl represent, respectively, the blade flapping displacements resolved in the longitudinal and 
lateral directions, summed over all the blades. If the blade motions are not identical but if each, nevertheless, 
sweeps out a plane in accordance with equation (16), it follows that d~ and bl have periodic components of 
frequency 21). This is quite easy to see if we imagine a four-bladed rotor with one blade having different 
flapping from the other three. It also follows that the amplitudes of dl and/~1 must be identical; in fact, the 
eigenvectors corresponding to equation (17), for A = + 2i, confirm that the ratio of dl to b~ is unity. A similar 
sort of phenomenon is present with the two-bladed helicopter, even when the flapping is sinusoidal, because of 
the asymmetry of the rotor. It is easy to see physically that the longitudinal and lateral components of flapping 
have 21) fluctuations with exactly equal amplitudes. 

If the flapping of the blades are identical, the blade tips trace out the same plane. Substitution of this motion 
into the summations, equation (5), give constant values for d, and/~;  further, & and b~ have precisely the same 
values as al and b~ of the individual blades--indeed,  it was for this reason that a~ and/~1 were chosen as the 
notation for the summations, the bars denoting the flapping of the hingeless blade as explained in Ref. 4. 

Thus, the two sets of roots, A~.2 and A3.4 correspond to a 21) fluctuation of total blade flapping superimposed 
upon a steady tip path plane. 

Returning to the original problem, the presence of elastic root restraint, aerodynamic damping and coupling 
with the rolling and pitching motions, changes the values of the roots considerably. The pair of roots A ,.2 is still 
very close to the 21) of the simple case chosen for illustration, but A3.4 no longer corresponds to a stationary tip 
path plane but one which precesses with frequency 0.2641), the blade a natural frequency being no longer 
identical with the shaft rotational frequency. 

If the shaft is fixed these roots then become 

AL2 = - -0 .41 9 +  2.025i 

and 

A3,4 = - - 0 " 4 1 7 + 0 " 2 1 2 i  

It can be seen that the coupling of the blade motion with pitch and roll of the helicopter has little effect on the 
'twice per rev' oscillation, as might be expected from its relatively high frequency, but has a considerable effect 
on the other mode, particularly the damping. 

The general form of the characteristic equation in this latter case, if the damping is made zero, is simply 

(A2+r/)2+4A2 = 0, (19) 

from which one can easily see that the corresponding frequencies are 1)(1 + A 1) and 1)(1 - A ~ ) since 77 = A ,2 - 1. 
Now gyroscopic theory gives the steady precession rates o~ of a gyro as the solution of 

A ~  2 cos a - Cmo - WI = O, (20) 

where equation (20) is expressed in the standard notation of gyroscope theory, Ref. 5. 
Regarding the rotor as a disc gives C = 2A ; also the angular velocity of the disc is the shaft angular velocity, 

i.e. n = 1), the weight 'stiffness' Wl corresponds to the elastic hinge stiffness if a < ~r/2. The elastic stiffness is 
represented by the coefficient of P~ in equation (18) averaged in a given direction over all the blades i.e. 
½(A~- 1)b1)2R 3 ~o mxSl(X)  dx. But bR 3 S~o m x S l ( x )  dx is almost exactly equal to the polar moment of inertia C, 
and since the axis of the rotor is only slightly inclined to the shaft, cos a = 1. On substituting these values into 
equation (20) we get the same solution as that of equation (19); that is, the oscillations represented by the roots 
A1.2 and A3.4 correspond to the fast and slow (retrograde) precessions of a spring restrained gyroscope. 

The frequency of the slow mode is likely to be very close to that of the in-plane oscillations and we might 
expect the coupling to be important. This latter mode has often been referred to as the 'pendulum' mode, but 
this is clearly a misnomer since the motion is independent of gravity and, as has been shown above, the mode is 
still present when the shaft is fixed. From the above discussion a more appropriate term would be 'gyroscopic' 
mode. 

Both the oscillations discussed above appear in the analysis as a result of including unsteady flapping terms 
in the equations of motion. Neglecting these terms is equivalent to assuming that the motion of the rotor does 
not depend on its displacement relative to the shaft, but only on such 'external '  influences as pitching, rolling, 
forward speed, etc.; it also corresponds to the 'quasi-steady' assumption of classical stability analysis which has 



been based on examination of the frequency response of a blade to given shaft oscillations. The analysis of this 
section further justifies the 'quasi-steady' assumption in conventional stability calculations, since the modes 
corresponding to A,.2 and A3.4 can be seen to have frequencies well above those of the usual stability modes. 

3. Approximations to the Modes 

It has been found that a very good approximation to the fast 'gyroscopic' mode can be obtained by assuming 
the shaft to be fixed, i.e. by solving equation (15) with ka and kB put to zero. 

If, now, the ti',' and/~',' terms are omitted from equations (6) and (7), the characteristic equation reduces to 

h 4 + 0"823A 3 + 0" 306A 2 + 0.05541 + 0.00264 = 0 

with roots 

A3, 4 = -0"21 + 0"263i 

As = -0"334 and A 6 = - - 0 " 0 6 9 8 .  

The 'twice per rev' fast gyroscopic oscillation has disappeared and, apart from a slight change in As, the 
remaining roots are extremely close to those of the original sextic. 

If, in addition, the rolling freedom is omitted, the characteristic equation reduces to the cubic 

with roots 

and 

A3+O.803A2+0.186A +0.00906 = 0 

A3,4 = - 0 . 3 6 9 +  0 . 0 3 8 i  

A6 = --0"0659. 

This gives a poor approximation to the slow gyroscopic mode. 
If rolling in included but pitching omitted, the characteristic equation is 

A3+0.819A2+0.282A +0.0452 = 0, 

with roots 

and 

/~3.4 = - 0 " 2 1 2 + 0 " 2 6 4 i  

A5 = -0 .395 .  

These roots are very good approximations to the original roots. Thus, the slow gyroscopic mode represents a 
strong coupling between the slow precession mode of the rotor and the rolling of the fuselage. The 
approximate equations of this motion are therefore 

d& 
v - ~ +  rt& + 2 - ~ +  vb, + 2ffl/~ = 0, (21) 

_ 2 d & _  d/7, - ^ 
+ = o dq* v& d~ (22) 



and 

The characteristic equation is 

where 

kA/7, -- d ~  = 0. 

alA 3 + blA 2 + clA + dl = 0  

a l  = 4- I -  v z, 

b~ = 2v(2 + "O) + kaFv, 

c, = rt 2 + v 2 + ka{F(4 + r/) + Kv} 

dl = kA (Krl + 2Fv). 

(23) 

It remains to be seen if the approximations discussed above apply also when lagging motion is introduced. 

4. Blade Lagging Motion 

By analogy with the flapping motion the first mode lagging displacement of the blade will be represented by 

Y =  RT~(x)O,(qO (24) 

T~(x) being the mode shape and Q~(~0) the time or azimuth coordinate. If OG/Or is the blade lagwise loading, 
we shall have 

d2Q~ 1 Io OG (25) 

where klf~ is the natural undamped frequency of the first lagging mode. OG/ar will consist of inertia terms due 
to blade flapping, helicopter translation and angular motion, and of changes in local blade drag. 

In order  to keep the analysis as simple as possible, structural coupling between the flapping and lagging 
modes has been deliberately left out of account even though it may have a significant effect on the lagging 
motion. This is because it would probably arise from blade twist and collective pitch which are determined by 
the aerodynamic design and flight condition and are not really at the designer's disposal for controlling the 
lagging motion. In a full calculation structural coupling would be included. Other parameters will also be seen 
to be practically fixed in advance. Reference 6 considers the effect of an autostabiliser on the coupling between 
the airframe and the blade modes. 

4.1. Inertia Terms 

In order  to be able to calculate the Coriolis acceleration due to blade flapping, it is convenient to regard the 
blade as rigid and moving about a hinge. For this purpose we can use the offset hinge representation of Ref. 4 
and illustrated in Fig. 1. 

Take a set of unit vectors with i along the span of the undeflected blade, k upwards along the hub axis and j 
completing the right hand set, Fig. 2. 

The position vector r of a point P on the blade is 

r =  ( eR + r cos/3) i+(r  sin/3 + hR )[~ 

9 



and the angular velocity A of the axes system is 

A = ( -p  cos tO + q sin tO)| + (p sin tO + q cos tO)j + ftk 

Calculating the velocity and acceleration of P by operating on r twice with (O/Ot + A x) leads to rather lengthy 
expressions, but neglecting squares and products of p and q, and making the usual small angle assumption for 
/3, gives for the component of acceleration in the j-direction 

aj = ~6hn cos tO - glhR sin tO - 2f~r/313 + 2rp[~ cos tO - 2rq[J sin tO. 

Now, in disturbed motion, the amplitudes of p and/3 can be expected to be proportional to one another, 
whereas/3 will contain the coning angle which is independent of the amplitude of the motion. Thus, the terms 
2rp/3 cos tO and 2rql~ sin tO can be regarded as second order compared with the others. If now we add the 
translational acceleration of the origin to complete the motion, we can write for small disturbances 

a, = phR cos 0 - (lhR sin tO - 2~)rfi/J + fi sin tO + b cos tO (26) 

4.2. Aerodynamic Loading 

It can be seen from Fig. 3 that, due to flapping and lagging motion, the component of the change of 
aerodynamic force Y~ in the j direction, in an element of blade, is approximately 

Oz 1 Oz 
dGa =-½oac~2r  2 dr I (O-q~i xl ~ ) ( q ~ + x  ~)-(0-q~i)q~i]- 

(27) 

The term q~ + (1/x) (Oz/Oto) represents the local inflow angle due to the induced velocity and blade flapping; 
the terms in the square brackets represent the force difference between disturbed and steady motion. 

For small disturbances, equation (27) can be linearised to 

dG.  = -{pacFt2rR dr[(O - 2 ~p,) ~--~Oz+ 2 CD 0y].a,j (28) 

Letting the blade-lag displacement be expressed as Y=  RTdx)Ol( to) ,  the total aerodynamic and inertia 
loading is 

OG 
- - =  -m[~hR cos O+ mgthR sin 0 -  rnti sin 6 - m~5 cos q~+2mFI2RS,(x)S',(x)P,(O)P',(O) - 
Or 

-½pacf~2R2x[(O - 2q~)S,(x)P',(to) + 2CDT,(x)O',(to)]. 

Substituting in equation (25) gives 

dZO' ~_6dd@+K~Ol = 
dto .2 

l I(dPhcos~-~hsin~)I'mT,(x)dx]+ 
~', mT~(x) dx L \ d ~  

+ ~ sin tO +~-~ cos to , mT~(x) d x -  

- 2P,(to)P',(to) mS,(x )S 'dx)T , (x )  dx + 
) 

(29) 

10 



where 

l ' fo' , pacR = ~ xCDT~ffx) dx and ~ - S~ mT~ffx) dx" 

The 6 term could include any artificial damping which may be added to augment the low value of the natural 
air damping. 

Equation (29) can be written more shortly as 

d2O~ 
dO 2 

- -  -t- 6--~-~-- K~Q,= - h cos ~ - / 4  h sin 0 + / 4 d ~  sin 4, + H~-~ cos ~ - 

-2G~P',(¢).f +½y'CP'ff~b) 1 (30) 

where 

_ g mT,(x) dx. 
x , fo j=S~o mS~S'tT, dx. C= (O-2q~,)xS, T, dx 

So m ~  dx ' 

and aoP~(O) is the linearized form of P,(O)P;(O). Note that the last two terms on the right-hand side of 
equation (30) represent respectively the Coriolis inertia force and the aerodynamic force component in the lag 
plane due to blade-flapping velocity. Numerical calculations show that the former is much larger than the 
latter. 

We now define 

2 L 2 L et = --b k=, Ok COS 6k and f , = - ~ k =  Oksin6k. (31) 

Substituting these relations into equation (30) and summing over all the blades gives 

e','+6e;+~e,+2f'~+6f,= + + 2 & . f -  (d{ + 6,) 
dqJ ~ z : 

( 3 2 )  

and 

2 & j -  Y'-Z~--C)(6, , " ( z / - ~ )  f ,  +6f: +~f _2e ,_6el=_f f th~+f f lh_~6 + - y' (33) 

where 

~:=K~-I. 

The variables e~ and f~ can be interpreted as the lateral and longitudinal displacements of the centre of 
gravity of the rotor when the blades move out of phase with one another. The right-hand sides represent the 
inertial and aerodynamic excitation of the lagging motion. 

Putting these terms and the damping term 6 to zero gives the free-lagging motion, whose characteristic 
equation is 

A 4 + ( 4 + 2 ~ ) A 2 + s ~ 2  = O. (34) 

With £ =/<12- 1 the roots of equation (32) can be written 

A = + ( K ~ - I ) i  and A=+(KI+I ) i .  (35) 

Thus, the displacement of the rotor C.G. has two components; one rotates round the hub in the same 
direction as the rotor with angular velocity (K~ + 1)f~, the other rotates round the hub with angular velocity 

11 



(KI - 1)~ in the same, or in the opposite direction to the rotor, according as K, is less than or greater than unity. 
Omitting the e'[ and f'l' terms gives a characteristic equation 

4A2+~:2 = 0 

with roots 

/~ 1- 2 = ±~t(Kl- 1). (36) 

Taking K~ =0 .5  as a typical value, it can be seen by comparing equation (33) with equation (34), that 
omitting e',' and f',' leads to a poor approximation to the roots, unlike the corresponding flapping case where 
the neglect of these terms was seen to be not very important. The reason for this is that the flap damping is very 
large and tends to dominate the motion whereas the lag damping (here assumed to be zero) will probably be 
small even with artifical damping. The natural lag damping is typically less than 2 per cent of critical. Hence e'l' 
and f'~' should be included in the analysis. 

4.3. Motion of the Fuselage due lo Lag Damping 

We have now to calculate the effect of the lagging motion on the helicopter airframes. It has already been 
assumed that the flapping motion is unaffected by the blade lagging but the displacement of the rotor C.G., 
mentioned above, will produce inertia forces and pitching and rolling moments. To calculate them consider 
the displacement of a point P of the blade when deflected by lag bending, Fig. 4. 

The displacement of a point P of the blade in the Y' direction is 

Y'= Y~,+xR sin ~Pk +RTl(x)Ok(~b) cos 0k. 

The acceleration of P in this direction is 

d 2 y,  

d t  2 

d 2 
- Y~ , -x~2R sin ~bk + f~2RTt(x)-7--~.~{Ok cos Ok}. 

at//- 

°, 
The inertia force on the helicopter corresponding to this acceleration is -naY'  dr and the total force due to 

one blade is therefore 

I I i I d~2{ f 1 - Y'f, m dr+f~2R sin Ok naxR dx - f~2R Ok cos 0k} mRTl(x)  dx. 
J ) ) 

Using definitions (31), the force due to the whole rotor is 

"'¢ 1 2 2 tt /*|1 
-MbYo+~bUt R e, naT1(x) dx 

;i ) 
(37) 

where Mb is the mass of all the blades. 
The term -MbY~, denotes the blade inertia due to the motion of the fuselage and can therefore be absorbed 

into the total inertia of the helicopter. 
Similarly, the inertia force in the X' direction is 

I 2 2 t t  ['11 
~bft R f l J0 mTl(x) dx. (38) 

The rolling and pitching moments are respectively ½bhf~2R3 e; ' S'o mT,(x)  dx and -½bhf~2R3f', ' Ji, naT,(x) dx. 
Finally, the only other contributions to the translational motion are the force components due to the tilt of 

the disc, Fig. 5, which shows rolling combined with a sideways tilt of the disc. We need not consider the effect of 
roll and pitch since the inertia force on a blade element due to the acceleration is exactly balanced by the 
gravitational component in the lag plane, i.e. there would be no resultant motion in the lag plane. This is not so 

12 



when the rotor tilts relative to the shaft, however, because the acceleration thus produced has no compensating 
gravitational component  in the lag plane. 

From Ref. 4 we find that the component  of force in the X'  (forward) direction, due to a tilt of the disc, is - Tdl 
and in the Y' direction it is T/;a. Putting thrust equal to weight, the translational equations of motion are 

- -  - 1 2 2 er ( ' | I  W d u  -W~l+~bl~ R f ' Jo mTi(x) dx (39) 
g dt 

and 

W d v  - i 2 2 1* fO l g dt-+Wb~+~bf~ R el mT,(x) dx. (40) 

In non-dimensional form these equations become 

d~ 

d4, 
- -  - - ~ &  + if/f ]' (41 ) 

and 

&3 = +~/TL +/2/e; (42) 
d~O 

where 

_ i2 I bgR f l  g and mTdx) dx. - a 2 R  =-~-~ Jo 

It must be appreciated that, in equations (39) to (42), u and v are the velocities due to the rotor tilt relative to 
the shaft and do not include the contributions due to tilt of the whole helicopter, as explained earlier. 

The inertia moments calculated above must now be added to complete the equations (13) and (14), which 
now become 

d!5 = kab, +hHe'; (43) 
dr) l A 

and 

= kBa,-  l?th_f''. (44) N 
d~b tB 

4.4. Final Coupled Equations 

It can be seen that du/d¢ and dv/dO can easily be eliminated from equations (32) and (33) by means of (41 ) 
and (42). Thus, the final equations can be written 

~'[ + vS'~ + ~gt, + 2g't + vg, + 2PO + + K # = 0 ,  

-2a ' ,  - va, +/7;'+ v/7', + r//7~ + Pd~P ~ + @ - 2F  0 = 0, 
aq, 

^ 

h-He'( kAg, - - ~  = O, 

(6) 

(7) 

(43) 
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h/2I ,, dO 
f l NA51---'  = 0' (44) 

(1 - /4/2/)e ' (+ 6e'~ +sO:e, + 2fl + 6f - tYlh ~-~P - L' 5 ; -  L6, = 0 (45) 

and 

where 

( 1 - 1 7 t f l ) f ' ( + a f ] ' + ~ f , - 2 e ' ~ - 3 e , + E t h  + L S , - L ' b ;  =0 ,  (46) 

t ! 

L = 2 c ~ J - 2 c + / q  ~ and L ' = 2 & , . - [ - 2 C .  

It is interesting to examine equations (6), (7), (43) to (46) to see which terms can be regarded as variables in 
the coupled motion. 

In equations (6) and (7), the constants v, F, K, ~/ are determined by the aerodynamics and blade mode shape 
in flapping motion and these can be varied over only a narrow range. Only qq, which represents the blade 
flapping stiffness, is capable of being varied somewhat more readily. Nevertheless, in the present context they 
may be regarded as essentially constant. Similarly, in equations (43) and (44), the constants depend upon 
quantities, such as the rotor height and fuselage inertias, which are more or less fixed by overall design 
considerations and, again, cannot be arbitrarily varied except between narrow limits. In the last pair of 
equations, (45) and (46), the coefficients L and L' represent the combined effects of the Coriolis force and 
blade drag and, in the case of L' an extra inertia term due to horizontal acceleration. It can be seen from 
equations (29) and (30) that the Coriolis force depends on the coning angle &, and the drag term on the 
collective pitch angle 0 and downwash angle ~p,. These terms are governed by the aerodynamic design and flight 
condition and, in practice, cannot be varied to affect the lagging oscillation. The terms J and C depend a little 
on blade lag mode shape which is related to lag frequency. 

Thus, the only parameters which can be varied arbitrarily are the damping 6 and frequency ratio K1 of the 
blade lag motion. 

5.1. Solution of the Equations 

5. Calculations 

The numerical values of some of the parameters have already been given in Section 2.1. The blade mass 
distribution and shape of the first lagging mode lead to the following additional constants: 

/4 = 1-5, /_7i = 0"0117, J =  1.22 and 50 = 4.5 degs. 

these quantities having been defined in Section 4.2. 
The blade was assumed to have 8 degrees twist and the collective pitch was chosen to lift an 8000 ib 

helicopter at normal operating rotor speed. In the calculations the collective pitch (actually 8.2 degrees at 0-75 
blade radius) was kept constant although, strictly speaking, it should have varied with rotor r.p.m, to maintain 
constant thrust. This point will be commented upon later. 

Since interest is confined to the airborne case the range of rotor speed considered is from 0.8 to 1.2 times the 
normal operating value. Over this range the flapping frequency ratio can be assumed to be constant but the 
lagging frequency is assumed to conform to a Southwell formula 

2 2 2 2 2 K ,~  = Ko~Qo + 0"23gl (47) 

where K,.flo is the lagging frequency of the blade when not rotating and £1(, is the normal operating rotor 
angular velocity. Equation (47) can also be written as 

K 0  ~ 
2-~-~+0"23 (48) K I - -  
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where 

i =  fz 
~-~o" 

In the calculations Ko has been given the values 0.2, 0.4, 0.6, 0.8. 
The damping coefficient 6 is given as a percentage of the critical damping of the free lag oscillation, the 

values chosen being 0, 2, 5, 10. 
Some extra cases were considered to investigate the effect of blade torsional motion. To keep the 

calculations simple, torsional damping was excluded and the blade was assumed to twist linearly. The centre of 
gravity was assumed to be 1 per cent ahead of the flexural axis. It was further assumed that blade twist 
increased the lift only and gave no extra drag i.e. the twist gave rise to no lagwise force component.  

The equations of torsional-flapping motion are taken as 

dZflk ~- 0"836 d/3k+ 1"245/3k = 0"8360k 
do 2 dO 

(49) 

and 

(5o) 

where Ok is the torsional frequency ratio and took the values 2, 4, 6, 8, 10. 
The pitch angle, Ok, was transformed by a pair of Coleman coordinates and the appropriate terms on the 

right-hand side of equation (49) were added to equations (6) and (7). The two transformed equations 
corresponding to equation (50) were added to the set of coupled equations of the previous section. 

5.2. Results and Discussion of the Calculations 

The frequencies of the two blade lag modes are shown in Fig. 6. These frequencies, which represent the 
whirling motion of the rotor C.G., are almost completely independent of the lag damping so that the results for 
a given non-rotating stiffness Ko can be shown in each case as a single curve. The broken lines show the two 
gyroscopic mode frequencies and these are found to be practically independent of the lag stiffness and 
damping. 

Air resonance might be expected, as with ground resonance, if the slow frequency of the C.G. whirling mode 
coincides with a 'body'  mode, i.e. one of the two frequencies of the motion which we have called 'gyroscopic' 
modes. For self-excited oscillations a body mode must also coincide with the lag frequency of an individual 
blade. For these conditions to be satisfied simultaneously we must have 

IK,f~-l)[ = f~ b (51) 

where 12b is a body frequency. 
This relationship can be written 

[4X2o + 0"23~2- i l l  = fib 

where 

f~ 

The left-hand side of equation (51) corresponds to the frequency of the slow-lag-whirl mode (Section 4.2) 
and equation (51) is therefore satisfied when the slow-lag mode of Fig. 6 intersects the slow-gyro curve. For the 
cases considered, this can be seen to occur when i = 1.04 for Ko = 0.6. But we see from Figs. 7 to 10 that the 
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damping of both the lag modes show no particular changes in this region and no 'resonance'  is apparent. The 
reason for this is that the damping of the slow gyro mode is very high, as we have seen in Section 2; in fact it is 
over 60 per cent of critical, most of it being derived from the blade flapping motion. The system's natural 
damping, therefore, is much higher than is the case with ground resonance. This is confirmed by the work of 
Ref. 6 where it is shown, by means of a numerical example, that when the aerodynamic forces are absent 
resonance occurs when the slow lag mode coincides with the slow gyro mode and also when it coincides with 
the mode in which the pitching and rolling motions are coupled. When the aerodynamic terms are included 
these local instabilities are replaced by broad unstable regions as indicated in Figs. 7 to 10 of this report. There 
is the further difference that, whereas, in the latter case, the body motion can be regarded as a simple 
second-order mass-spring-damper system, the slow gyro mode is the result of coupling between the blade 
flapping and fuselage angular motion and is governed by a cubic characteristic equation. 

Nevertheless, as Figs. 7 to 9 show, the slow lag mode is unstable for all the lag stiffness and rotor speeds 
considered unless the lag damping is at least 4 per cent of critical. The fast lag mode appears to be stable for all 
these cases. Fig. 11 also shows that, unless the blade is very soft torsionally, twisting motion has little effect on 
the damping of the modes. 

Since the natural lag damping is very small (about 2 per cent of critical), one might expect that when the total 
system damping is redistributed by coupling of the modes, a small shift of damping away from one of the lag 
modes would have a large relative effect. It is not surprising, therefore, that at least one of the lag modes should 
become unstable and that more than the natural blade damping may be necessary to ensure that both lag 
modes are stable. Similar conclusions are presented in Refs. 6 and 7, 

There may be a number of parameters which appear to have quite a large effect on the stability of the lag 
motion, but as emphasised above, this is only because the damping is so low that these effects are only large 
relatively. One such parameter is the collective pitch which has been assumed constant in the calculations. 
Varying the collective pitch changes the values of the last two terms on the right hand side of equation (30). 
These terms represent the lag moments due to the Coriolis and aerodynamic forces arising from the flapping 
velocity; the first is proportional to the coning angle, which itself is roughly proportional to the collective pitch, 
whilst the second, and smaller term, is roughly porportional to the collective pitch also. It may well be that a 
particular range of collective pitch angles, together with certain values of other parameters fortuitously causes 
both lag modes to be stable but, as discussed in Section 4.4, these combinations could not be chosen arbitrarily 
and, in any case could not be expected to hold over the complete flight range. The effects of the individual 
collective pitch terms are discussed in Ref. 6. 

A genuine lag resonance, but not connected with self-excited oscillations, may arise when the flapping 
frequency of an individual blade is the same as the lag frequency so that large response to Coriolis excitation 
can occur. This flapping frequency can be found by subtracting unity from the frequency ratio of the fast gyro 
mode (i.e. to convert the Coleman mode back to rotating axes). Similarly, the lag-frequency ratio can be 
found by adding unity to the slow lag motion. Coincidence of these frequencies is shown graphically in Fig. 12 
and can be seen to occur when K,, = 0.8 and ~ = 0-89. The lower diagram of Fig. 12 shows the ratio of lagging to 
flapping amplitude ratio and we see that these ratios reach a peak when the frequencies coincide. The ratios 
reach very large values when only the natural aerodynamic damping is present, indicating that if blade flapping 
occurs due, say, to a gust or a manoeuvre,  the lag motion may reach excessively lag amplitudes. 

Although the motion is more stable in this region the possibility that very large lag amplitudes might occur 
may be more serious. 

6. Conclusions 

6.1. When unsteady flapping and body angular motion are considered two oscillations appear; one is heavily 
damped with a frequency of about twice per rotor revolution; the other a slower motion, but also heavily 
damped, whose frequency depends on the flapping stiffness. For the stiffness typical of hingeless rotors, the 
slower oscillation has a frequency of about one-quarter  rotor speed. 

In these modes the rotor can be shown to behave like a spring-restrained gyroscope, the 'spring' being the 
blade-flapping stiffness. The term 'pendulum mode'  often used to describe the slower oscillation, is inapprop- 
riate and 'slow gyroscopic mode'  is preferred. More generally, these modes are called 'body modes'  to indicate 
that fuselage movement is involved. 
6.2. The phenomenon called 'air resonance' is different in character from 'ground resonance'. In air 
resonance the slower body mode, mentioned above, may have a frequency similar to that of the slow C.G. 
whirling mode due to the blade-lag motion. But the high damping of the flapping motion seems to suppress 
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self-excited oscillations since little change of damping of the modes occur when there is coincidence of the flap 
and lag frequencies. 
6.3. It appears that when the blade lagging motion is coupled with the gyroscopic modes one of the two lag 
modes (the slow one) becomes unstable when only the low aerodynamic damping (2 per cent of critical) is 
present. Damping of at least 4 per cent of critical is required to ensure that all the modes are stable. The only 
parameters which appear, in practice, to have a considerable effect on the lagging motion are the lag damping 
and, to a lesser extent, the lag stiffness. 
6.4. A resonant situation may occur when the lag stiffness is high enough to bring the blade frequency (not the 
whirling frequency) of an individual blade into coincidence with the flapping frequency. In this situation the 
Coriolis forces excite the lagging motion which could reach large amplitudes when the lag damping has the low 
natural aerodynamic value. 
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LIST OF SYMBOLS 

Blade section lift slope 

Moment of inertia about roll axis 

Coleman coordinates of blade flapping motion 

Number of blades 

Moment of inertia about pitch axis 

Blade chord 

Aerodynamic integral defined in Section 4.2. 

fo' mS2(x) dx 

I ' mS,(x) dx 
) 

,y 

3q 

Coleman coordinates of blade lag motion 

hR 

J 

is 

K 

kA 

ks 

L 

m 

M 

P 

P(~) 

q 

O(O) 

r 

R 

Height of rotor hub above helicopter C.G. 

Inertia integrals defined in Section 4.2. 

Ag 
WR 2 

Bg 
WR 2 

3,F 
2 

a(a~-l) 

2tZ*iAT 1 

a(h~-  1) 
2/z*iB71 

Rolling moment 

Mass per unit length of blade 

Pitch moment 

Roll angular velocity 

Azimuth coordinate of blade flapping motion 

Pitch angular velocity 

Azimuth coordinate of blade lagging motion 

Radial distance of point on blade 

Blade radius 
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S(x) 

T(x) 

Y 
Z 

X 

Y 

Z 

O/ 

t~ 

"/1 

6 

0 

K1 

M 

P 

P 

T 

q~ 

~0 

Flapping mode shape 

Lagging mode shape 

LIST OF SYMBOLS (continued) 

Coordinates of point on blade 

X 
R 

Y 
R 

Z 
R 

Incidence of blade section 

Flapping angle of blade 

pacR 
~L o mS~ dx 

pacR 
~'o mxS, dx 

Damping coefficient of lag motion 
2 

Blade section pitch angle 

Frequency ratio of lag motion 

Frequency ratio of flapping motion 

2 

~, -1  

Air density 

Undamped torsional frequency ratio 

Inflow angle at blade section 

Azimuth angle of blade 

Angular velocity of blade 
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