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Summary 

The vortex formed above each leading edge of the wing is represented by a line vortex, as in the treatment of 
the flat delta wing by Brown and Michael, and the slender-body approximation is made. Four problems are 
treated: the thick, conical delta wing with rhombic cross-sections; the thick, conically-cambered delta wing 
formed by one--half of a circular cone; the fiat-plate wing with curved leading edges; and a wing with a partially 
unswept leading edge and lengthwise camber. The quantities of interest are the position of the vortex and its 
circulation, and the non-linear lift and pitching moment of the wing. In each problem the solution is presented 
as an asymptotic series in a small parameter representing the scale of the separation. The solutions are used to 
shed,light on a number of problems arising in the aerodynamics of slender wings. 
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1. Introduction 

It is generally accepted that an adequate model of the flow past a slender wing with leading-edge separation 
must include some representation of that part of the shear layer shed from the leading edge which lies close to 
the edge, as well as a representation of the part which is rolled up into a vortex. The present Report, on the 
other hand, treats the simple model, due to Brown and MichaelX, in which the entire shear layer is represented 
by a line-vortex in a potential flow, with a force-carrying cut connecting the line-vortex to the leading edge. 

There are two reasons for this. The first is that two recent papers by Barsby 2,a have indicated that, provided 
the scale of the separation is very small, it makes little difference to the overall behaviour of the flow whether a 
length of vortex sheet representing the shear layer near the leading edge is included or not. Earlier calculations 
with the vortex-sheet model 4 were not carried to small enough angles of incidence for this feature to be 
observed. Even now, the agreement between the line-vortex and the vortex-sheet models rests on numerical 
calculations rather than mathematical argument. However, the numerical evidence for the convergence of the 
results of the vortex-sheet calculations to the results of the line-vortex calculations, as the incidence (relative to 
the attached flow condition) tends to zero, is strong, both for the flat-plate delta 3 and for the thin delta with 
conical camber2; so it seems justifiable to make use of the line-vortex model for circumstances in which the 
separation is small. In particular, the leading terms in an expansion in terms of a parameter representing the 
scale of the separation may well be relevant to the real flow. 

The other reason is the much greater simplicity of the line-vortex model. In particular, for small separations, 
it is possible to obtain asymptotic expansions for the solution of the equations governing the line-vortex model. 
This has not so far proved possible with the vortex-sheet model. Moreover, as the scale of the separation 
becomes smaller, extra difficulties arise in the numerical treatment of the vortex-sheet model, first the 
appearance of inflections in the sheet shape 4 and then the movement of the separation line inboard of the 
leading edge 3. Thus the line-vortex model has the greatest advantage in simplicity over the vortex-sheet model 
for the small-scale separations for which it is also most accurate. 

There is a further general point to be made about the model. Because the separation line lies inboard of the 
leading edge for small angles of incidence, the line-vortex model becomes inconsistent, since it involves 
representing part of the vortex sheet by a cut which joins the vortex to the leading edge, rather than to the 
actual separation line. Smith 5 has recently re-examined the original problem of the fiat-plate delta wing, 
allowing the cut to join the vortex to the predicted inviscid separation line, and found the solution to be very 
little affected. In particular, the leading terms of the expansion of the solution in powers of the angle of 
incidence were unchanged. It seems therefore that the inconsistency can be disregarded and the model used in 
its original simple form. This is confirmed in the present Report for a wing with thickness (see Section 2.3). 

The other limiting feature of the present approach, and of all the work that has been done with the 
vortex-sheet model, is the use of slender-body theory. This means that quantitative agreement with 
experimental measurements can only be expected in fairly special circumstances, regardless of whether the 
flow is separated or attached. At low speeds, the flow over the forward part of a slender wing is described 
successfully, but overall forces and moments cannot be reliably predicted, as the upstream influence of the 
trailing edge on the flow is not represented in the model. As the aspect ratio falls, particularly for planforms 
with streamwise tips, or the free-stream Mach number rises towards one, the upstream influence of the trailing 
edge becomes less significant, and the quantitative predictions of slender-body theory are approached. At 
free-stream Mach numbers in the neighbourhood of one, there is evidence that lift and pitching moment are 
predicted correctly. Quantitative predictions become unreliable again at moderate supersonic speeds, 
essentially because the theory allows disturbances to propagate across the whole cross-flow plane, instead of 
confining them to the downstream Mach cone or conoid. In spite of these deficiencies, slender-body theory can 
provide a useful indication of effects which can only be calculated in detail by very elaborate treatments; in 
particular, it makes the representation of leading-edge separation relatively straightforward. 

In the present Report, the line-vortex model of leading-edge separation is applied, within the framework of 
slender-body theory, to four problems. In each case a solution is obtained in the form of asymptotic expansions 
for the position and circulation of the vortex and the lift and pitching moment of the configuration, for small 
values of a parameter representing the scale of the separation. 

The first configuration is the thick delta wing in the form of a cone with rhombic cross-sections. This has 
already been treated by the vortex-sheet model 6, but the representation used did not allow solutions to be 
obtained at small angles of incidence. The expansions now obtained for small incidence supplement the 
previous work 6 and that of Ref. 7, in which a treatment valid for thin cones was presented. The loci of 
the centre of the vortex for the thicker wings treated in Ref. 6 show a curious feature at the lower end of the 
incidence range for which solutions could be obtained; after tending steadily towards the leading edge as the 



incidence falls, the locus of the vortex centre appears to turn towards the wing surface, as shown in Fig. 3. The 
present treatment predicts a smooth and regular variation of the position of the line vortex in the 
neighbourhood of the leading edge, suggesting that the anomaly in the earlier calculations is due to an 
inadequacy of the numerical representation. A question that can be answered is that raised by Barsby 3, as to 
whether the inboard occurrence of separation is only predicted for wings of vanishing edge angle. The present 
treatment shows that inboard separation is to be expected for wings of finite thickness, provided the edge angle 
is not too great; for rhombic cones inboard separation is predicted for small angles of incidence provided the 
edge angle is less than 42.5 degrees. 

The second configuration is also a thick, conical delta wing, but it incorporates conical camber, since it 
consists of one-half of a circular cone. This was treated in attached flow by Portnoy 8. When the half-cone is 
placed with its flat lower surface at a positive angle of incidence to the stream, there is one angle of incidence at 
which the flow has no tendency to separate from the leading edge. This is referred to as the attachment 
incidence. At other angles of incidence the scale of the separation will be related to the difference between the 
actual incidence and the attachment incidence, and it is this difference which is used as the small parameter in 
the asymptotic expansion of the solution. The results obtained can be related to those found for the rhombic 
cone with the same edge angle (~r/2), so verifying Maskell's similarity theory 9 in a particular case. The 
configuration is of interest because the apex regions of warped slender wings combine appreciable cross- 
sectional thickness and camber in a similar way. Ref. 10 shows that a half-cone produces more lift at its 
attachment incidence than would be expected if it were regarded as a combination of a warped mean surface 
and a symmetrical distribution of volume. The present results show that the leading-edge separation from the 
half-cone produces less extra lift for the same increment in incidence above the attachment condition than 
does the rhombic cone with the same edge angle, at least when this increment is small. The lift increment due to 
the separation is the same in magnitude whether the increment in incidence is positive or negative. 

The third configuration is the fiat-plate slender wing with curved leading edges and a straight, unswept, 
trailing edge. This has previously been treated by Smith 11, using the line-vortex model of the flow and a 
numerical method for the downstream integration of the ordinary differential equations to which the model 
gives rise in this case. Clark is currently improving on this work by applying the vortex-sheet model of the flow 
to wings with curved leading edges and lengthwise camber. In the present Report  the differential equations 
governing the line-vortex model for the plane wing are expanded for small values of the angle of incidence, 
leading to much simpler differential equations for the coefficients of the leading terms. These simpler 
equations are integrated in closed form. Difficulties arise when the leading edges become streamwise and these 
are overcome by the use of matched asymptotic expansions. The solutions found confirm that separation can 
have a large effect on lift-curve slope and aerodynamic centre at small angles of incidence. The form of the 
solution also suggests an improvement in the usual method for obtaining the lift slope and aerodynamic centre 
at zero lift from wind-tunnel measurements on slender wings. 

The fourth configuration studied is only expected to be of interest in relation to a more complex situation. 
Consider a slender wing with longitudinal camber, but plane cross-sections, placed at an overall angle of 
incidence such that its local inclination to the free stream passes through zero somewhere along its length. 
Then the vortices formed near the apex cease to be fed from the leading edges at some station near that of zero 
local inclination. At about the same station vortices of the opposite sense begin to form on the opposite surface 
of the wing. Jones 12 shows a water-tunnel visualization of the flow past a delta wing with positive camber at 
zero overall incidence (i.e. the apex and trailing edge in the same horizontal plane, with the rest of the wing 
above them). Air is injected into the vortices, which become visible as hollow cores below the lower surface 
over the forward half of the wing and above the upper surface over the rearward half. No continuation of the 
apex vortices on the lower surface over the rear half is visible, probably because the pressure in them rises, so 
that the air finds its way, under the influence of pressure gradients rather than shear stresses, into the new 
vortices on the upper surface instead. This gives the impression that the vortices are being convected round the 
edge. Nangia and Hancock 13 also interpret their oil-flow visualizations in this way. The present authors 
believe, on the evidence of recent smoke and tuft explorations in the No. 1 11½ ft × 8½ ft tunnel, that this 
impression is misleading; and that, towards the rear of the wing, there are four vortices, one above and one 
below each panel of the wing, with opposite senses of rotation. This view is supported by Snyder TM, who 
observed the vortex cores through the condensation of steam injected into them. 

Recent, as yet unpublished, calculations by Clark, using the vortex-sheet model, provide some insight into 
the early stages of the phenomenon, upstream of the station at which the local inclination is zero. To proceed 
further downstream a representation of the second vortex must be introduced. This originates at a lengthwise 
station at which the span is finite, and at which an effective local incidence vanishes. Its initial growth is 
therefore likely to be the same as that of a vortex formed from the swept part of the leading edge of a t runcated 



slender wing (see Fig. 11), which has straight cross-sections and a form of lengthwise camber leading to zero 
local incidence along the unswept part of the leading edge. This is the fourth configuration studied. Solutions 
are obtained as asymptotic expansions in the distance downstream from the unswept part of the leading edge, 
which governs the scale of the separation. Different forms arise depending on the relative rates of growth of the 
local span and the local incidence in the downstream direction. Similar problems involving the formation of 
vortices from stations at which the span is finite but the incidence is zero are likely to arise on slender wings 
undergoing pitching motions which take them through zero incidence. 

The remaining sections of the Report deal with each of these four configurations. Each section can be read 
independently, though the principal symbols, the references and the figures are grouped at the end of the 
Report in the usual way. 

2.  T h e  R h o m b i c  C o n e  

In the Brown and Michael 1 model of flow over wings with leading-edge separation, the rolled-up vortex 
sheet which forms over each leading edge of the wing is modelled by a line-vortex. According to slender-body 
theory the solution can be derived by considering the flow in the cross-sectional plane perpendicular to the axis 
of the wing, with suitable boundary conditions representing the flow at infinity and representing the growth of 
the wing cross-section in the streamwise direction. In this cross-flow plane the line-vortex becomes an isolated 
point-vortex, and a cut is introduced joining this point to the leading edge in order to ensure that the velocity 
potential defining the flow is single-valued. The solution can then be determined by finding the position and 
strength of this vortex which satisfies the conditions that the velocity is finite at the leading edge and that the 
total force acting on the vortex and the cut is zero. 

This section deals with the flow over thick conical wings with rhombic cross-sections. These wings were 
examined by Smith 6 using the more detailed vortex-sheet model, so the conformal transformation used to 
derive the complex velocity potential follows immediately from this work. 

Fig. 1 shows the configuration with the origin of the coordinates at the wing apex and the x-axis along the 
wing centre line. It also serves to define the angles 6 and err. 

2 . 1 .  F o r m a l  S o l u t i o n  

The wing cross-section and the right-hand vortex are shown in Fig. 2a. The conformal transformation 

i0 o , t 2 , e 

maps the wing into the slit A C  on the imaginary axis in the to-plane as shown in Fig. 2b. From equation (1) we 
can show that the lengths s and d are related in terms of the beta function by 

s = ½  sin e l r B ( e  +½, l - e )  
d 

(2) 

The complex conjugate velocity also follows immediately from Ref. 6 by omitting the contribution arising 
from the vortex sheet, so that, if W is the complex velocity potential 

d W  K U c o s e T r f ' a  I t z ~ dt  F / 1 1 ) 
d----~ = - i a U +  - J_ I (3) 

In this expression ot denotes the angle between the wing axis and the free stream, so that the first term 
represents the required behaviour at infinity. The second term is the attached-flow solution satisfying the wing 
boundary condition, whilst the third term is due to the vortex of strength F at too and its image in the imaginary 
axis. 

We introduce the following non-dimensional quantities 

~ l = t o o / d  , 

a = a / K  



and 

3, = F / ( K U d )  (4) 

Since dto/dZ is infinite at the leading edge, by equation (1), the condition that the velocity there should be 
finite requires that dW/&o = 0 at t0 = 0, which leads to 

T = 27ra to1~1 
('01 _[_ O~ 1 ( 5 )  

The expression for the force on the vortex and cut is derived by Smith 4 for the vortex-sheet model, and the only 
difference in this case is that the cut ends at the leading edge of the wing. The zero-force condition is therefore 

dW F 1 ) lim ( - -  = K U ( 2 2 v -  s) (6) 
z-~zo \dZ  2~'i Z--Z~ s 

where Zv is the position of the right-hand vortex in the Z-plane. 
Substituting from equations (1) and (3) into this last condition gives, after some manipulation, 

cos eTr ' ~/ e 1 { to 2 "~/22,,_1'1 
- ia+ iTr I-i ~t2 *;-l--tdt ~_~(.tOl(1;to2) q _ ~ o l + ~ , ) = \ l + t o ~ ]  \ S ] (7) 

Eliminating the circulation from equation (7), using equation (5), leads to 

ia / 2 +o31)( 1 e 

COS EqT i ¢.01 Zv iTr f-i t 2 ~ dt 2 ~ - - ~ ~---~-t-(1--~) ( 2 s - l )  (8) 

which along with equation (1) is sufficient to determine the vortex position. 

2.2 Asymptotic Expansion for Small Incidence 

Rather than obtaining solutions to equations (5) and (8) this present report examines these equations for 
small values of the incidence parameter a, and obtains expansions in ascending powers of a for the vortex 
strength and position. Initially, we make the assumption that, as the angle of incidence decreases to zero, the 
vortex position tends to the leading edge, so that toa - 0 as a --) 0. 

Using Appendix C of Ref. 6 the attached-flow contribution in equation (8) can be expanded for small (Ol to 
give 

COS e'tr f~ t 2 ¢ dt { o02 ~ 
= -o0o~1 -~ OlO~1 -1-..) (9) iTr J_i ~ (Ol--t \1--~12} (1 '-' 1-2~_n 3-2e_ . , 

where 

1 - e cos e~r 1 
Bo-rr(lC°S_2e)e~" B(½+e, l - e )  and BI . . . .  3 - 2 e  "rr B(~+e, l - e )  

Also, from equation (1), 

-7 = 1+2~ 3~72~ * ' ~ +  (10) 

Substituting equations (9) and (10) into (8) yields 

ia [ 2  [ E ) )  2d 
(('01 "{- 0~1)2~1 Jr- 0~, (0)1 -{- 0.~1) ~ 1 -- 1 " ~ - - ~  12 = -- BOO, -- (1 + 2e)s 1C°114~1 + (B1 + eBo)~1 + . . . .  (11) 



Introducing the real and imaginary components of tO 1 = O r "1- i~" enables equation (1 1) to be written as 

ia ,,, 2_,r2_2eor(o._ir)+2eo.(or2+~.2)(o.+ir) + .) 4or2toor •. 

2d - 2 
= - B0(or + i'r) (1 +'2e)s "(Or + ~.2)2, (o-- iT) + (B1 + eB0)(o "3 - 3o'~ "2 + iz(3or 2 -  ~.a)) + . . .  (12) 

If we look initially at the leading terms on each side of this equation we find that 

e k  e k  2 

Or=~--B-~o a and r=2B---~o a (13) 

where k = , ] (3 -  2 e ) / ( 1 -  2e). The thickness parameter e must satisfy 0 < e < ½ with the value e = ½ corres- 
ponding to the thin wing. It can be seen that, for e = ½, k becomes infinite and the above expansion will break 
down. The thin-wing expansion is therefore not a uniform limit of this expansion, and this point is taken up 
again in Subsection 2.4. The reason for this non-uniformity appears to be that the boundary condition which 
must be satisfied on the surface of the thick wing determines the lateral velocity at the leading edge, whereas 
this is not determined for the thin wing. The behaviour of the real flow will be affected by the way in which the 
boundary layers on the upper and lower surfaces blend into the free shear layer. 

Examination of the terms involved in equation (11) suggests that we seek an expansion of the form 

tol=a ~ poa 2i+41e (14) 
ij=O 

where the p~j will be complex constants. The first of these constants follows immediately from equation (13), 
and if we substitute the expansion (14) into equation (12) the next two terms in the series can be derived. Thus 

ek 
Poo =7B-£o (1+ ik) , (15a) 

and 

ekd /e2k2 +k2))2"(l+ik(l+2e))  (15b) 
PO1 = -- Bg(1 - 4e 2)s ~4-~o 2(1 

e3k 
pl0 = 2Bg(1 - 2e) 2(1 - 2e + ik(1 - 2e2)) (15c) 

Substitution of the expansion (14) into equations (10) and (5) enables us to find the vortex position and 
strength in terms of these coefficients. This gives 

. 2e l+2e/ PO0 -- 4e . [ ep30 ~ 2 _  ) 
Z~=s+apooa k ~ t P o l a  t k P x o - ~ ] a  -t-... (16) 

and 

2 -2  - 2 - 2  - 2 ) 
2Ira [, 12 . pmPoo+pmPoo 4~ PloPoo+PloPooa2+... = ~ _  "a -~ 

y Poo+PooklPoo I -t Poo+Poo Poo+/~oo 
(17) 

An expression for the lift on this wing was derived in Appendix B of Ref. 6, and from it the lift coefficient is 
given as 

CL "[Tred2 '/r) 4d2 ~/Or (18) 
a K = 4 k " ~ - - c ° t e  -t S2 a 

7 



Incorporating the expansions given by equations (15) and (17) we find that 

CL = 4 ( ~ - - C O t  eTr) + a 247rdze2(3- 2e)(1-- e )x  
aK BEs2(1 - 2e) 2 

X ( 1 -  2d(2+e-2e2) [e2k2(l+k2))Z~azE.~ ez(2-e-2e2)  
Bos(l_4e2)(l_e)\  ' 4B 2 B2(l_Ze)2 a 2) (19) 

_..~1 It is clear that the coefficient of a 2 in this expression becomes very large as e ~, that IS as the wing becomes 
very thin. This implies that the range of values of a for which this approximation is useful becomes very small 
for thinner wings. The meaning of 'thinner' in this context can only be made clear by quoting numerical values. 
For e = 0.25, corresponding to an edge angle of 90 degrees, the coefficient of a 2 in equation (19) is about 6 
times the constant term, while for e = 0.45, corresponding to an edge angle of 18 degrees, this ratio has 
increased to 56. The inclusion of the higher order terms, a 2+26 and a 4, can only partially alleviate this since the 
coefficients of these terms become very large as e ~ 1. It seems therefore that this expansion is of little use for 
the calculation of non-linear lift at angles of incidence which are of practical interest. An expansion of wider 
validity is obtained in Subsection 2.4. 

In the derivation of these expansions it was assumed that as the angle of incidence vanished the vortex would 
tend towards the leading edge. However, in the numerical work by Smith 6 on the vortex-sheet model, it was 
found that, for smaller values of e, as the incidence decreased the vortex appeared at first to be approaching the 
leading edge, but then for smaller angles of incidence it began to turn inboard and away from the leading edge. 
This is shown in Fig. 3 for the ease in which e = 1/6. It was therefore thought worthwhile to look for an 
alternative expansion in which the vortex tends to some other point on the wing surface. This was done by 
assuming an expansion for the vortex position about a general point on the wing surface and by assuming an 
expansion about the wing centre line. Details of these calculations are given in Appendix A. However, both 
these assumptions led to contradictions and so the conclusion is that the only valid expansion for small 
incidence is that given by equations (16) and (17), and the deviation found in the earlier numerical results 
cannot be explained in terms of this simplified model. 

2.3 Inboard Separation 

It was found by Barsby 3 in his application of the vortex-sheet model to the flow over thin wings that, at low 
incidences, the separation did not occur at the leading edge but at a point inboard of, although still close to, the 
leading edge. This striking result invites speculation as to whether a similar behaviour might be observable in a 
real flow. It was suggested in Ref. 3 that this phenomenon might be peculiar to wings of vanishing thickness, 
and so it was thought to be worthwhile to examine the present solution for the thick wing to see whether such 
inboard separation could occur. 

First of all it is necessary to check whether the solution given in the preceding section is consistent with 
separation from the leading edge, that is, whether the flow on the upper surface just inboard of the leading 
edge is directed outwards across the conical rays. Therefore using equation (3), we derive an expansion for the 
velocity valid for [to[<< ]tovl-Thus 

1 1 = _ ( 1 + 1 ) (  ( 1  1 )  ) 
to-o,o to+ o , g  X , ,  1+ X - •  to+"" 

2rra( 2ri to ) 
~-d \1 t : r i+ r2d+ . . .  , (20) 

where we have made use of equation (5). Retaining the first two terms in equation (9) and noting that 

dto (d2+to2/e (21) 
dZ = \ 002 / , 

we are led to the following expression for the conjugate velocity 

1 dW / 2ar x~[oJ~l-2e 
= l+C -Bo.-j + . . .  (22) KU dZ \or- + T- / \ d }  



Substituting the leading terms for or and "r given in (13) gives 

1 d W  1 - 3 e + e z / t o \  1-2~ 
K U  d Z  = 1 + Bo" ~ _ - ~  ~-d) + . . . .  

(23) 

Since a point on the upper surface of the wing corresponds to to lying on the upper half of the imaginary axis 
the velocity on the wing is 

1 - 3 e + e  2 to 1-2e 1 
d W =  I + B°  ~'----~ -d (sin elr + i cos e~r) 

K U  d Z  
(24) 

The flow will cross the conical ray in the outward direction if the horizontal component of the velocity is 
greater than 

K U y / s  = K U ( 1  - (s - y)/s)  , 

and, since B0 > 0, comparison of this expression with (24) shows that this condition will certainly be satisfied if 

1 - 3 e + e 2 > O  (25) 

If, on the other hand, 1 - 3e + e 2 < 0 then the condition required for outboard separation will be that, close to 
the leading edge, 

Boll-3e+e2[sin 1-z  s - y  
e ( 1 - e )  e~r < - - s  (26) 

But on the wing surface close to the leading edge it follows from equation (10) that 

s - y  dsine~r[to l+z~ 

and for Ito[ sufficiently small [to[ 1+2~ << Itol 1-2~ and so (26) cannot be satisfied close to the leading edge. The 
inequality (25) is therefore a necessary and sufficient condition for outboard separation to occur. Since we are 
interested only in values of e less than 0"5, it follows that separation takes place from the leading edge if and 
only if 

e < eo = ½(3 - 4 ~ )  (27) 

This means that for wings on which the leading-edge angle is less than ( 1 -  2e0)zr radians, or about 42.5 
degrees, this model of the flow will predict an inboard separation as was found for the thin wing, but for wings 
thicker than this the flow separation will take place at the leading edge. The solution given in the preceding 
section is therefore only strictly consistent for thicker wings with the outboard separation. However Smith 5 
found that the modification necessary to make the solution consistent in the case of the fiat-place wing did not 
affect the leading term in the asymptotic expansion, and we will verify that this is still true for the thick wings 
dealt with here. 

If we denote the position of the separation line in the cross-flow plane by X and assume that the cut joins the 
vortex to this point then, as in Ref. 5, the only term in equation (8) to be altered will be that due to the force on 
the cut. This equation can therefore be written 

ia [ 2 ,  - :  (-1--~lZ)) = iqr I_, t2+1 ¢ o l - t  \ ~ ]  \ - - " - ~ ]  
(tol+o302ktol-etolttol+aSx) 1 e cosec" ' t 2 ~ dt  _ {  to~ ] ~ { 2 2 v - X ' ~  (28) 

The additional condition necessary to determine X is that X should lie on  a separation line, and this can be 
written, as in Ref. 5, as 

I d W  = g  (29) 
K U  d Z  z=x s " 

9 



Suppose that the separation point in the t0-plane is given by ilxd. Then from equation (1) 

= d f ~ /  t 2 \ ~  
s-,~s (sin eTr+i cos eTr)s Jo ~ i - ~ )  dt , (30) 

and so comparison of equations (8) and (11) enables (28) to be written as 

ia / 2  
(tOl "1- 0)1) 2ktol + 0)1(601 8 

=_Boto l+  ds inevr+icosevr  1+2~ 2e 2dlto114"rbl 
s l + 2 e  ./z tol t (Bl+eBo)tO3+. . .  (31) 

s l + 2 e  

A consistent solution to this equation and (29) for the vortex strength and position can be obtained if we 
make the physically realistic assumption that/x will be of the same order or smaller than ]toll. The leading term 
in equation (31) will then be unaffected by the presence of the inboard separation and the leading term in the 
expansion for the vortex position will be given by (13). 

The position of the separation line can now be determined from equation (29), which can be written, with 
the aid of equations (1), (3), (5) and (30) as 

ia( i tx( tol-~,)+/z  2) cos errj_r ~ t 2 I ~ dt 
(tol--i~)(tbl+itz) ~- irr i T - ~  il~--t 

" _ t l ,  2 ,  e ,  ~ (  t 2 , =(1--z7) (1-d(sin  +icos  )Io at) (32) 

Introducing tr and r for the real and imaginary parts of tOm and using equation (9) to find an expansion for the 
integral on the left-hand side gives 

a ( 2 r - p , )  - B o  d/z4_._~ ~ 
t r 2 + ( r - / z )  2 -  s l + 2 e  ~-(B1+eB°)lz2+"" (33) 

If we retain only the leading term in the right-hand side of this equation and use equation (13) for tr and r, then 
we find that 

a 2 I~ = -~o(ek  - 1 +~(1 + e(2 - e)k2)) (34) 

The positive sign gives rise to a root for which/x is always positive and which corresponds to the attachment 
line on ihe wing surface. We can use the expression for k given in equation (13) to examine the sign of the 
second root for/z, and from this we find that the second root is positive if and only if e > (3 - x/5)/2, which is 
precisely the condition given in equation (27) for an inboard flow separation to occur. 

Therefore, as Smith 5 found for the thin-wing solution, the modification of the line-vortex model to deal with 
an inboard flow separation does not affect the leading terms for the vortex position and strength given by 
equations (16), (17) and (15a). The corresponding approximation for the position of separation will be 

l+2e 

X = s + d ( - s i n e l r + i c o s e ~ r ) l + 2 e  , (35) 

where 

a 
tx = ~ o ( e k 2  - 1 - 4 1  + e(2 - e)k 2) (36) 

For the thin-wing solution it is found that the position of separation moves inboard from the leading edges as 
the incidence increases from zero and then returns to the leading edge at about a -- 0.2. Its maximum distance 
from the leading edge is less than 1 per cent of the semi-span. Introducing numerical values into equatioas (35) 
and (36) shows that the effect of increasing thickness is to reduce the inboard movement of the separation line. 
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2.4 Unitormly Valid Expansion 

It was pointed out in Subsection 2.2 that the asymptotic expansion found is not uniformly valid in the limit 
e ~ ½. Further examination of equation (12) shows that another change in behaviour of the solution arises in 
the limit as e ~ 0. 

When the possibilities that e may be close to 0 or ½ (measured in terms of the small parameter a) are 
admitted, it becomes clear that other terms in (12) may become of the same order as those retained in deriving 
the solution (13). In particular when e is small, the term 

2d . 2 
+z;s-Z-e'-(¢ + ~)2~(¢_ Jr) (1 

(37) 

must be retained. Also as e approaches ½, the leading terms which were retained for the expansion become 
smaller and so some of the higher order terms have to be retained. From the thin-wing results we require that 
tr ~ (a/4) 2/3, ": ~ (a/4) 1/3 when e = ½ and we can in fact show that it is sufficient to include the term given by (37) 
along with the leading terms to ensure that the solution has the correct behaviour in this limit. 

It is no longer possible to obtain an expansion in powers of a, but if we introduce the parameter P defined by 

P = 2d (tr 2 +'/ '2) 2~ (38) 
Bos l + 2 e  

then the revised equation can be written as 

ia 2 -  ~-2- 2e t r ( t r -  it)) = - (cr+i~ ' ) -P( tr - i ' : )  4Botr 2(3tr 
(39) 

Equation (39) can now be solved to give tr and ~" in terms of a and P, which can then be substituted into 
equation (38) to give 

a I + P  ]l/2(BosP(1+2e)]'/4~ 
=B°(1-Ze+(l+Ze)P)(i3-Ze)'~-e+P)le \" ~ "1 (40) 

which, for a given value of a, can be used as an implicit equation to determine P. In terms of this parameter the 
solution can be written as 

ae ( 3 - 2 e  ] i/z 1 
° ' = - ~ o o \ l - 2 e + ( 1 + 2 e ) P ]  ( l + p )  1/~ , 

(41a) 

ae 3 - 2 e  
"r = (41b) 

2 B o 1 - 2 e + ( 1 + 2 e ) P  ' 

(Zv - s ) / s  = s(1 + 2 e ) \ ~ o \ 1 - Z e  +(1 + 2 e ) P )  k ~ +  i ( 1 - 2 e  +(1 + 2 e ) P /  (42) 

and 

CL ./'fred 2 ~ . 4Ird2/(1 + 2e)BosP~ 1/2~ 
otK = 4 k T -  cot eqr) - t - - ~ k  ~ } (43) 

This solution reduces to the previous solution when 1 - 2 e  is not small, since P << 1 and (1 + 2e)P << 1 - 2 e ,  
and the terms involving P in equations (41) can be neglected. In the limit as e 1 ,  p now becomes significant, 
and it can easily be checked that the thin wing result, tr ~ (a/4) 2/3, r ~ (a/4) 1/3 is recovered. 
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The lift coefficient given by equation (43) is plotted in Fig. 4 and shows very good agreement with the 
numerical solutions obtained in Ref. 6 using the vortex sheet model. Also plotted in this figure are the values 
predicted by equation (19), indicating the severely restricted range of values of a for which this expansion is 
applicable. 

The vortex position given by equation (42) for e = 1/6 is plotted in Fig. 3 along with the values for higher 
angles of incidence derived by Smith 6 using the vortex-sheet model. A direct comparison here is not possible 
however since, as pointed out in Subsection 2.2, the numerical solutions display an unexplained inboard 
deviation as the incidence decreases. 

3. The Half-Circular Cone 

This section, like the last, deals with a thick conical wing but in this case the wing is conically cambered to 
provide semi-circular cross-sections, so that the wing consists of one half of a circular cone. For consistency 
with earlier work s, the flat surface of the cone is assumed to be uppermost and the angle of incidence a is 
defined as the angle between this surface and the free stream as shown in Fig. 5. This is drawn for a positive 
angle of incidence, for whiz'h fairly strong vortices will form over the flat surface of the wing. As the angle of 
incidence is reduced to negative values, the strength of these vortices is reduced until at one particular value, 
known as the attachment incidence, the flow remains attached. As the incidence is further reduced, vortices of 
the opposite sense are formed lying adjacent to the curved surface of the wing, and for incidences close to the 
attachment incidence the strength of the isolated vortices predicted by the Brown and Michael 1 model will be 
small. Asymptotic expansions for the strength and position of these vortices can therefore be found in terms of 
an incidence parameter related to the difference between the actual incidence and the attachment incidence. 

In Ref. 8 Portnoy obtained the solution for the attached flow past a thin slender wing with a half-body of 
revolution mounted beneath it. The conformal transformation and the attached-flow solution for the present 
body therefore follow immediately by taking the semi-span of the wing to be equal to the body radius. 

3.1 Formal Solution 

This problem is solved by a method like that used for the rhombic cone, the main differences lying in the 
conformal transformation and the attached flow required to satisfy the wing boundary condition. The 
transformation, which is a special case of that given by Portnoy s, is 

Z + s  _ ( t o - l ~  3/2 

Z--~-s = \to + 1/ ' 

or 

Z (to2 1)3/2 0)3  3to 

S 3to2+ 1 (44) 

and it maps the region external to the wing cross-section in the Z-plane onto the upper half of the to-plane with 
the leading edges, Z -- ± s being transformed into to = • 1 as shown in Fig. 6. 

If we write 

to = - 1 + 01 e i°1 

and 

to = 1 + 02 e ~°~ (45) 

and restrict to to lie on the Riemann sheet for which 0 ~  < 0i ~< 7r (i = 1, 2), then the fractional powers involved in 
equation (44) will be single-valued functions, and we can easily check that the boundary BADCB in the 
to-plane is correctly transformed into the wing cross-section shown in Fig. 6a. It should be noted that the point 
at infinity in the Z-plane is transformed by equation (44) into the point ix/3/3 in the to-plane. 

From equation (44) we can show that 

dZ 3s ~x/-~-~- I 
d--~ = o) 3 + 3to + (to2_ 1)3/2 (46) 
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As in the previous section we can write down the complex conjugate velocity in the transformed plane as the 
attached flow terms which follow from Ref. 8 plus contributions due to vortices of equal and opposite strength 
+ F at the points too and -¢h~. It is also necessary to introduce two image vortices in the lower half of the 
t0-plane to avoid disturbing the normal velocity condition on the wing boundary. With the angle of incidence 
of the plane upper surface of the wing measured in the direction shown in Fig. 5, the non-dimensional 
parameters a and 3" are defined by 

a = a/K 

and 

3" = r / K U s  (47) 

The complex conjugate velocity in the to-plane is now given by 

l dW 32ao~ ~_ 3o~ - ~z~/-~-~-~- 1 ~_ 3,oJ( 1 1__~) (48) 
KUs d w  = ~ r 3 ( 3 t o 2 + l ) 2  3to 2 + 1  " t r i \ t o2 - t °2  0-12 ' 

where to = oJ~ gives the position of the vortex in the first quadrant of the oJ-plane. The first two terms in this 
expression represent the attached flow velocity given by Ref. 8 and the remaining terms are due to the four 
vortices combined in pairs. As before, the unknown quantities 3' and o~ are to be determined by the conditions 
that the velocity in the Z-plane should be finite at the leading edge and that the force acting on the right-hand 
vortex plus the cut joining it to the leading edge should be zero. 

Since dZ/do vanishes at the leading edge, to = - 1, the finite velocity condition requires that dW/do~ = 0 at 
to = - 1 and this condition can be expressed as 

• 2 - 2  2ra(a - ao) (1 - oJ ~)(1 - oJo) 
3"= ~ 2 -2  ' q J  Okv--OJ v 

(49) 

where ao = -(3vr3/8) and is the value of the incidence parameter for which the flow remains attached. The 
zero-force condition will take the same form as for the rhombic wing, that is 

lim (dW F 1 ) z-,a, dZ 2rri Z--Z)  =K-----U(2Zo-S)s (50) 

Using equation (48) and noting that the only term in dW/dZ which is singular as Z ~  Z~ is that involving 
1/(oJ-co~) we can write equation (50) as 

32atoo ~_ 3too - 2~2~x~- 1 ( 
x/~(3to2+ 1)2 2 ~ 3' 1 3~%+1 2~i 

2toy ( 1 dZ 1 ~ 1( Zo l~dZ[ 
2 _~+ lim o,o-o,o z - ' Z o   z--zoH=7  2T- . . . .  

(51) 

The limit in this expression is obtained by expanding Z -  Z~ in a Taylor series about to = oJv so that, after some 
manipulation, equation (51) becomes 

32aoJ~ ~_3oJo-~/w2-1 3' ( 1 2wo 3 ) = (  Zo 1~1 dZ[ 
• -2 4----g---'~ 2 ( 2 o J o - - ~ )  ,2s- ' x/g(3to~+l) 2 3to2+1 2~ri 2to~(to~-l) to~-to~ . . . .  

(52) 

and this equation, together with (49), will be sufficient to determine the vortex strength and position. 
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It is convenient to rearrange equation (52) to obtain 

3 2 ( a -  ao)too 3vr-~2- 1 2 
x/~(3to 2 + 1)2 + ~ - 72((to v + 3toy - 1)x/-d~ - 1 - (too + 1) 3) 

(3to~+ 1) 

2 -t - -  = 2 - (53) 2m 2 t o ~ ( ~ - l )  z -2 to~-to~ 2 ( 2 ~ -  ,s- d-w~ I . . . .  

and it is in this form that the equation will be used subsequently. 

3.2. Asymptotic Expansion for Small Vortex Stren~h 

To find an approximate small vortex solution for this wing it is necessary to examine equations (49) and (53) 
at angles of incidence close to the attachment incidence. We therefore introduce the new incidence parameter 
p defined by 

p = (a - ao)/x/-3 , (54) 

and we look for an asymptotic solution to the problem in which to~ + - 1 as p + 0. Accordingly we write 

to,, = - 1 + 7 /  

and 

n = o- + ir  (55) 

and note that in accordance with equation (45) we must have 0 ~< arg r/~< 7r. If we make the assumption that r is 
of the same order as o- and write r = ko" in equation (49) we find that 

27rptr(1 + k z) (1 + O(o~2)) (56) 
Y -  k 

Inserting this into equation (53), making use of equations (44) and (46) and retaining only the first order terms, 
we obtain 

_ 2 p + 9 r ( l + i k )  p c r ( l + k 2 ) /  1 - i k  1 \ 
8 ik = °  (57) 

Rearranging this equation and equating real and imaginary parts leads to 

9 5 k 2 - 2  

and 

ko- = P 
4k (58) 

from which we find that k = :~ (l/v/5) corresponding to 

10 i 
rl = 9 P ( -  1 ± ~ )  (59) 

Now, since 0 < arg 7/< ~, it follows that the imaginary part of r /must  be positive, and so we must choose the 
positive sign in equation (59) if p is positive and the opposite sign for negative p, with the different forms for the 
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solution corresponding to the vortices forming adjacent to the plane surface and the curved surface 
respectively. It should be noted that, with the plane surface of the wing uppermost,  the lift on the wing at the 
attachment incidence will act in the downwards direction. Therefore  the magnitude of the lift will increase as p 

becomes negative. 
The leading terms in the expansion for the vortex position in the physical plane now follow from equations 

(44) and (59) 

Zv=s(l+~-7303/41p13/2exp(i(4+3/3))) (60) 

where tan/3 = x/5, 0 </3 < ~r/2, and as before the positive sign corresponds to positive p. The vortex strength 

now follows from equations (56) and (59): 

~=~--~-plpl (61) 

The corresponding approximation for the lift coefficient acting on the wing is derived in Appendix B and can 

be written as 

CL 13~" 4 19rr .640r r  3 
K--'S = 8v/-~ - + 7 - - ~ P * ~ P  

= - 1.05 + 6.63(a - a0) + 8.27(a - ao) 3 (62) 

The first two terms in this expression give the attached flow contribution to the lift and are a special case of the 
result given by Portnoy 8, and the remaining term is the non-linear contribution due to the vortices above the 

wing. 
To this first approximation, the magnitudes of both the vortex strength and the non-linear lift are the same 

for the same increment in incidence either above or below the attachment incidence. There seems to be no 
physical reason to expect this result, since the vortex lies alongside the curved surface of the half-cone for 
angles of incidence above the attachment incidence and adjacent to the fiat surface for angles of incidence 
below it. 

This result for the lift of the half-circular cone can be compared with that for the rhombic cone of the same 
edge angle by setting e = 0.25 in equation (19): 

CL 
~--~= 4 .75a  + 2 8 . 2 a  3 

Comparing the two wings at the same incidence away from the attached flow condition, we see that the 
half-circular cone produces more linear lift, but less non-linear lift than the uncambered wing with the same 
edge angle. Too much reliance should not be placed on this comparison in view of the limited range of values of 
a for which (19) is an adequate representation of the lift. 

Since the edge angle of 90 degrees for the half-circular cone is greater than the largest value for which 
inboard separation was found to occur for the rhombic cone considered in Section 2 we would expect to find 
that the flow near the leading edge is directed outboard across the conical rays, indicating that the separation 
does in fact occur from the leading edge. This point will now be confirmed. 

Close to the leading edge to = - 1 and we can approximate to to using either of the expressions in equation 
(45) where p l will be small and 02 will be close to rr. Substituting these approximations into equation (48) leads 
to 

= ( 9 )  e .  1 dW - 2 p -  (plP2)I/2e i(01+02)/2- 4p-~ Pl 
KUs dto 

2 - 2  2 - 2  Y(too-too) {1 eiO, [ 2 ( 2 -  too-  to~) 
- -  • 2 - 2  "l'- P l  2 - 2  

rn(1 - to o)(1 - to~)\ \(1 - to~)(1 - to~) 
1) ) + O(p3a/2) . (63) 
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Using equation (49) for the vortex strength, and equations (55) and (59) to approximate its position we find 
that equation (63) reduces to 

1 dW 3 ,/2ei,O,+o~)/2(1 + 4[p1'~'/2 
KUsdto ~(Plp2) \ 3\~2] ei(°'-°~'/z(l~58+O(P))+O(pl)) (64) 

from which, with the aid of equation (46), the complex conjugate velocity near the leading edge is given by 

1 dW 1+4_[p1"~1/2i(o_o2)/2[15 . . . .  "~ 
KU d Z = 3kpJ  ~ kT-r~ tP)]  +O(p,) (65) 

The first term on the right-hand side of this expression represents the velocity in the cross-flow plane at the 
leading edge, and so the second term approximates to the velocity relative to the leading edge. From Fig. 6 we 
can see that on the plane surface AB, 0~ = 02 = rr and so the second term in equation (65) will be real and 
positive, indicating that the velocity relative to the leading edge is directed outboard. Also, on the curved 
surface AD, 0~ = 0 and 02 = 7r, so that the second term will represent a velocity which is upward and therefore 
directed towards the leading edge. 

3.3 Comparison with Similarity Theory 

The consistency of the leading terms given by equations (16) and (60) for the two different wing 
cross-sections can be checked with the aid of the similarity theory of Maskell first put forward in 19609. This 
theory relates the development of small leading-edge vortex systems on wings of different cross-sections but 
with the same edge angle. The present account is based on unpublished work by Maskell extending Ref. 9. 

If Z~ is the complex coordinate based on the wing leading edge, with its real axis aligned along the bisector of 
the edge angle, then close to the leading edge the attached-flow contribution to the complex velocity potential 
can be expanded in the form 

l--L-- Wa = - iA lZ~/(2-") + Z+ (A2 - Ao)Z 2/(2-') +. 
KUs s "" (66) 

where A0, A~ and A 2 a r e  constants depending on the geometry of the wing cross-section and nTr is the edge 
angle. The term with coefficient A0 is due to the flow at the attachment incidence, whereas the terms with 
coefficients A 1 and A2 are due to the incidence and sideslip measured relative to this position, vanishing at the 
attachment incidence for zero sideslip. 

Maskell's theory states that, for a small vortex system, the position and strength of corresponding points on 
the vortex sheet, or in this particular case the position and strength of the isolated vortex, can be written in the 
form 

and 
Z, = Lf(n, P) (67) 

F 
KUs = L 2g(n' P) (68) 

where L and P are non-dimensional similarity parameters defined in terms of A0, A1 and A2. These 
length-scale and incidence narameters are nronortion~l *,~ t a  _ a  ~t(2-,)/(2tl-n))] , , a  A f f ( A o -  
A ~ [ ( 3 - - 2 n ) / ( 2 ( 1 - - n ) ) ]  . .  , r . . . .  ~ 1 1 _  ~ ~": \ . c~O z"x21 . . . .  

~2J respecuvety, ano, Ior eacn vame ot n, the constants of proportionality are chosen so that they 
reduce to 1 and ct/K respectively for the rhombic wing at zero sideslip. 

The attached flow contributions to the velocity potential can be derived from equation (3) with the vortex 
contributionl omitted. For comparison of this wing with the half-circular cone we are interested only in the case 
e =z for which the leading-edge angle is a right angle, so that we can expand equation (3) with the aid of 
equations (9), (10) and (2) and integrate to obtain 

1 Wa = . d / 3 s  \2 /3  Z 2 [ 3 s ~  4/3 
K--~s -~a-~s~~-~Z~ ) + s - ~ - - ~ z Q  + O ( Z 2 ) ,  (69) 

the arbitrary constant having been omitted. 
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and 

Comparison of equation (69) with (66) for n = ½ indicates that, for the rhombic cone, 

[3\2/3[d\ I /3  

A I = k ~ )  k s )  a 
(70) 

- 2 ( 3 s ]  4/3 (71) 
A o -  A z -  1r k 2 d /  

so that the similarity parameters can be written as 

and 

x / ~ d  2 ././. 3/2 

L = 9s 2 ' (Ao-A2)  3/2 (72) 

p =  9s 3 A1 (73) 
,tr2d 3 ( A o -  A2) 2 

For  the rhombic cone, Z1 = [ ( Z - s ) / s ] ,  and so, for e = ¼, the leading term in equation (16) gives 

2d 3/2 
Z1 = -~s (Pooa ) (74) 

where Po0 is given by equation (15a). For e = ¼, k = x/5, and so in terms of the angle/3 defined by tan/3 = x/5, 
0 </3 < ~/2 ,  we find that 

¢rd (1~5] . 
P0o =-~-s ~ / ~--~] e '~ (75) 

Since, for this wing, L = 1 and P = a  comparison of equations (74) and (75) with equation (67) shows that 

3/4 3/2 5/2 
f(½, p ) =  (15]  w (d ]  p3/2 e3i[3/2 (76) 

\ 3 2 /  12 k s /  

Similarly comparison of equations (17) and (75) with equation (68) yields 

3x/5 2 / d \  2 2 
g(½' P ) =  -i-6 --It ~s)  P (77) 

The attached-flow complex velocity potential for the half-circular cone' can be obtained from equation (48) 
with 31 = 0. Making the substitution to = - 1 + 7/and expanding for small 1-17t we find 

1 dW,, 2(3,f3) ~ (.~ 3) = - a +  _ 77a/2- + ~ + 0 ( ~  3/z) , (78) 
K U s  drl 8 242 43  8 

and so 

1 W~ = 2 / 34c3\ i 3/2 2 / 3 4 3 \  2 5/2 
- ka+sf),7 +O(,7 ) (79) 

17 



For this wing the complex coordinate Z1 is defined by 

Z 1  Z - -  S - 'n ' / /4 
= e , (80) 

S 

and so applying this to equation (44) and making the approximation used above gives 

~q = 2 i (~  ) 2/3 (1 - i(_~)2/3 + O(Z1) ) (81) 

and 

Z = s(1 --  l i ~ f 2 r / 3 / 2  + 0(75/2)) 

The complex potential can now be written 

(82) 

1Wa : 4 .( +3q/-3~fZ1~ 2/3 Z 4 +3x/3) 9x/3~(Z,)4/3 
8J SJ a 8 , - - i - 6 - , , 7 J  + ' (83) 

where the arbitrary constant has been omitted. 
Comparison of equations (66) and (83) now shows that 

24/3/" 3X/3\ 
Al : - - -~a  +---ff--) (84) 

and 

22/3{94~ [ +3~/3~) 
A°-Az=---'~\'--~ - - \a  8 / /  (85) 

As pointed out earlier in this subsection, A2 is proportional to (a + (3x/'3/8)), which vanishes at the attachment 
incidence. In the present approximation this term is small compared with A0 and so can be neglected. It is only 
when this term is retained that the similarity theory will predict different forms for the solution at incidences 
above and below attachment. 

With this assumption we can substitute the expressions (84) and (85) into (72) and (73) to obtain the 
length-scale and incidence parameters for the half-circular cone: 

34~Ir3/2 a2 
L= 32s 2 (86) 

and 

256s3 / +3x/3) 
P=9"c/-3"rr2d 3~a 8 / (87) 

It can now be checked that by combining these with equations (67) and (76), and with equations (68) and (77), 
the asymptotic expressions obtained agree with the vortex position and strength given by equations (60) and 
(61). 

4. The Fiat-Plate Wing 

The wing considered is without thickness or warp, consisting of that part of the plane z = 0 for which 
0 ~  < x ~< c and -s(x)<~ y <~ s(x). The local semi-span, s(x), is a differentiable function of the coordinate x 
measured downstream along the centre line of the wing from the apex. It is assumed that s'(0) > 0, so that the 
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wing is asymptotic to a delta wing at its apex, and that s '(x)  ~ 0 for 0 < x ~< c. The aspect ratio 

A = 2S2(C) s ( x )dx  (88) 

is small. This wing is at a uniform small angle of incidence, a, to the free stream of speed U. 
The application of the line-vortex model of the flow to this configuration is described in Ref. 11, from which 

the equations governing the model will be extracted as required. The line vortex will be assumed to lie close to 
the leading edge, in such a way that its vertical and lateral displacements from the edge tend to zero like 
positive powers of a as the incidence tends to zero. The coefficients of these powers of a are functions of x, 
satisfying ordinary differential equations. Solutions of these equations are found in closed form in Sub-sections 
4.1 to 4.4, providing asymptotic expressions, valid as a / A  tends to zero, for the position and strength of the 
vortex, and the lift and pitching moment  of the wing. Sub-section 4.5 presents a comparison with a numerical 
solution of the equations of Ref. 11, for a gothic wing, and an application to the analysis of experimental 
measurements is described in Sub-section 4.6. 

4.1. The Equations 

The circulation of the starboard vortex is represented by F = yUs  and its position by y = 7s and z = ~s, 
where % 7 and ~" are non-dimensional functions of x to be determined. A conformal transformation is 
introduced which maps the cross-flow plane x = constant outside the wing slit lyl ~< s, z -- 0 on to  a plane in 
which the slit lies in the vertical plane of symmetry. If the non-dimensional coordinates of the starboard vortex 
in this transformed plane are o- and r, we have 

1 -- 72-}" ~ 2 m. ,./.2 __ 0.2" 
and (89) 

7K = on- , 

by equation (I. 1) of Ref. 11. The Kutta-Joukowski condition of finite velocity at the leading edge yields 

~'/ ~..... 0-2 _[.. ~.2 

2ira 2o" ' (90) 

which is (I.2) of Ref. 11; and the two equations which express the vanishing of the two components of the 
transverse force on the combination of the vortex and the cut joining it to the leading edge can be written as 

sT' = Fa - ( 2 7  - 1)s '+ s(1 - 7)3"/3' (91) 

and 

s( '  = G a  - 2(s '  - s~y'/3, , (92) 

where primes denote derivatives with respect to x, and 

F = 20.(0. 2 + r2 ) [. 7 + ~" 

G -  1 /7 (~2+½(r2-  0.2)) 
-- 2o-(0 .2+ T2)[ 7 2 + ~ r  2 

(TT -- ~0.) (T 2 -- 30  -2) } 

2o" 

(70" + ~',r) (,r 2 -- 30  -2) } 

2o- 

(93) 

by equations (1.4) and (1.8) of Ref. 11. Finally, for the lift L ( x )  acting on that part of the wing upstream of the 
station x, a momentum calculation yields 

L ( x )  = pU2s2(qTO~ "{- 270") , (94) 

where p is the density, by equation (9) of Ref. 11. Here the first term is the result of R. T. Jones for the attached 
flow, and the second term represents the non-linear lift arising from the vortices. 
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Inspection of equations (91) and (92) suggests that the form of the asymptotic solution for small a (tr, 7, 3', 
small, r / -  1) may depend on whether s '(x)  is strictly positive or zero (planforms for which s ' ( x ) < 0  are 
excluded from consideration). This turns out to be the case. The solution for s '(x)  > 0 is found in the following 
sub-section. If s'(xo) = 0, this solution breaks down as x -> x0 from below, with the coefficient of the leading 
term in the expansion increasing indefinitely. A coordinate stretching procedure, in the neighbourhood of 
x = x0, is introduced in Sub-section 4.3, and provides a solution which can be matched to the upstream 
solution. If the wing continues downstream of x = x0 further consideration is needed. This is given in 
Sub-section 4.4 for the special case of the wing with streamwise edges, i.e. s(x)  = S(Xo) for x/> x0. 

4.2. Solution tor s'(x) > 0 

Since any solution found must embrace that for the delta wing, for which s' is constant, it is reasonable to 
seek a solution of the form found for the delta wing. FollowingRefs. 1 and 5, we introduce a small parameter t: 

t = (a /4)  1 / 3  , (95) 

and suppose that 

O" = O'o(X)t2 + O ( t  3) 

='ro(x)t  + O( t  2) . 
(96) 

It is then clear from equation (89) that 

and r /=  1-½~'gt2+O(t 3) 

= O'o~'ot 3 + O(t4) .J  (97) 

Equations (90) and (96) now give 

,~J O- 0 "T 2 - t  
- -  =- - r  ro + O ( t )  (98) 

The leading term in F is found easily: 

,99, 
4O-ot 

and a little manipulation produces 

O = ~z°~ + O(t)  (100) 

It is now clear that equation (91) is dominated by the first two terms on the right, which are O(1). Equating 
them gives 

2 I 
~'o = O'oS (101) 

All the terms in equat ion (92) are O(t3); equating them and rearranging the result gives 

(o',') ~" =- 2s 

This can be integrated directly to g ive  

~0 X .:~s 2 = S ( x )  = 2 s ( £ ) d £  , (102) 

since ~'o must be finite at x = s = 0 to match the known solution for a delta wing. S(x)  is just the planform area 
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upstream of the plane x = constant. It is convenient to introduce a 'local aspect ratio', 

A(x)=4s2(x)/S(x) , (103) 

noting that A ( c ) = A .  
The leading terms in the asymptotic expansion of the solution can now be expressed in terms of s(x), s'(x), 

A(x) and IT. For the non-dimensional vortex position, from equations (95), (97), (101), (102) and (103): 

1 [  IT ~2/3 
"rl = 1 - 2 k ~ ]  + O(IT) (104) 

and 

IT 4/3 (105) 
~=2(A(x)s,(x)),/2+O( IT ) 

The vortex strength follows from equations (90), (96), (I01), (102) and (103): 

. . . .  /s'(x)V/2 
F = ]/Us = g 7 r i T u s ~ x ) t " ~ )  ~ O(0~4/3) (106) 

and the lift acting forward of the station x is given by equation (94): 

L(x)=zrpuaiTsa(x)( 1 / IT ,~2/3 + 2 k ~ - ~ )  + O(IT)) (107) 

These expressions agree with those of Refs. 1 and 5 in the case of a delta wing, for which s'(x) and A(x) are 
constant. It is of some interest to recall a conjecture made in Ref. 11, on the basis of numerical solutions of 
equations (91) and (92), that CL/aA (which is equal to L/2pU2as 2) might be a function of a /A  only, 
independent of the actual planform shape. Equation (107) confirms that this is so for small values of a/A, and 
Fig. 6 of Ref. 11 shows that the evidence for the conjecture is strongest for small values of IT/A. 

The solution obtained is valid (for small enough values of IT) provided s'(x) > 0. As s'(x) tends to zero the 
solution breaks down, as indicated by the right-hand side of equation (105) tending to infinity. The explanation 
is that s'(x) appears in the leading terms of equations (91) and (92). To obtain a meaningful solution for s'(x) 
small, it is necessary to relate the magnitudes of s'(x) and IT, and this is now attempted through a stretching of 
the x coordinate. 

4.3.  Ex tens ion  of  the  Solut ion  to  the Stat ion at which  s'(x) = 0 

Consider a planform for which s'(x) > 0 for x < Xo and s'(xo) = 0. To examine the behaviour of the governing 
equations for small a and small Xo-X, we introduce a stretched coordinate ~ defined by 

x = x 0 -  t ' ~  (108) 

where m > 0 is to be chosen in such a way that a solution is obtained, and t is given by equation (95). Retaining 
the form of equation (96) for tr and "r does not lead to a solution which can be matched satisfactorily to the 
upstream solution of the previous sub-section. On the other hand, (102) defines a well-behaved function To(X), 
so it is reasonable to retain the form for ~', and try for an inner solution of the form 

tr = O'l(~:)t n + . . . .  ¢ = ~h(~)t+. • • (109) 

It emerges that 1 < n < 2, and this will be assumed in order to simplify the presentation. 
It follows at once from equations (89) that 

"x 
1 2~2--1 2~2n__ | 

and ~ = 1 - ~ - i ~  -t-~o-l~ - r . . .  l (110) 
n+l  ~" = cra¢lt + . . . .  
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and equations (93) become 

T1 0" 1 
F =  2 2,,-~ F . . .  and G =  + (111) 

"40"1t  ~ . . . .  

From equation (108), d x / d ~  = - t ' ,  and so, by equation (110): 

and 

~7 ' = d ~ /  d x  = "r1"r~ t 2 - m  --Orlo '~ t 2 n - m  + . . .  

~' = d ¢ / d x  = - ( O r l T 1 ) ' t  n - m + l  + . . . .  

where, on the right-hand side, primes denote differentiation with respect to £. Similarly, from equations (90) 
and (109), 

3" 1 d3" O" 1 /'1"12~ ! 
- - ' = - - - - = -  m 2 - -  "{-- 
3" 3" dx  t "r: k~rl} "" 

The equation of the leading edge immediately upstream of x = Xo can be expanded as 

y = s(x)  = S(Xo) -  B ( x o -  x) ~ + . . .  

where l > 1 and B is a positive constant. Hence 

(112) 

s ' ( x )  = B l ( x o -  x )  t-1 + . . .  = B l t lm-m~ t-~ + . . . .  (113) 

by equation (108). With these expressions, the leading terms in equations (91) and (92) can be written as: 

~ 4 - 2 n t  2 n L l m - - m ~ l - - I  1 2--rag 2 j  x t - -  So'rl'r~ t2-m-$OOrlO'~t 2 n - m  = "~lt /0" 1 - o u  ¢; - -~So~, t  tT1/O'a) t . . .  (114) 

_ _ S o ( O . 1 T l f t n + l - m  ,~ n + l t  2 ~ r ' , ,  n + l - m + l m ~ l - l _ _  2z 2 t  \ ,  n + l - m j  = z o ' a t  / r l - Z O - l r 1 1 J t t  ~ -t-SoO'll.T1/O'l) t / r , +  . . . .  (115) 

where So = S(Xo). 

In equation (115) the first two terms on the right are of higher order than the others, since m > 0 and l > 0. 
Equating the lower order terms gives 

' 

( O r l T I ) '  ~" = 0 , 

O ' l ' r l  "/ 'l \ o ' 1 /  

which is directly integrable to give r~ = constant. The value of the constant is obtained by matching this inner 
solution to the outer solution (102). The process leads trivially to 

"rl(~:) = "r0(x0) = ( 4 / A ( x o ) )  1/3 (116) 

Since ~-', = 0, it is now clear why an additional term has been retained in the expansion of ~1'. However,  
inspection of equation (114) shows that the second term on the left is of higher order than the last term on the 
right. The three terms on the right can be combined in four different ways. Omitting the first leads to an 
expression for ~r, which grows exponentially as ~ increases. This cannot be matched to the outer solution. 
Omitting the second leads to an expression for o-~ z which becomes negative as ~ increases, and again cannot be 
matched. Omitting the third leads to an expression for o-1 which is unbounded as ~:~ 0 and affords no 
improvement over the outer solution. With all four of the same order: 

4 - 2 n =  l m - m = 2 - m  

and 

2 r S00"l('rl/O'1) + 2 B l ~  ~-1 - 2 r , / g ~  = 0 
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Hence 

m = 2 / l  and n = l + l / l  (117) 

With r~ = 0 and the substitution o-~ =f(~),  the differential equation becomes linear: 

f ' -A2l~l-~f+4/So~'l  = 0 , (118) 

where 3, 2 = 4B/So'r 2 > 0. The solution can be obtained, using an integrating factor, as 

o ' l = f = e x p ( A 2 ~  l) C -  exp( -A2u l )du  , 

where C is a constant and u is a dummy variable of integration. C should be determined by matching to the 
outer solution. In fact, its value is obtained without recourse to the formal procedure, since it is a prerequisite 
that o'1 is bounded as ~ ~ oo. Hence 

O0 C=SoTs4 Io exp( -A2u t )du  

and 

2 4 o'1 = exp(3`z¢ t) e x p ( -  A2ul)du (119) 
SoT1 

The integral can be expressed as an incomplete gamma function, by for example 8.350.2 of Ref. 15: 

2 _ 4 exp(A2~:l)r/1 A2~l' ~] 
(120) 

O-1-- So'ri lx 2// "\l'  

The asymptotic expansion of F for large values of ¢, from 8.357 of Ref. 15, gives 

4 [1 1 - 1  -zl 
o "2 = s0~.lAZ/~:t_l k (121) )) 

We can now verify that this inner solution (119) matches the outer solution. The first step is to express it in 
terms of the outer variable x. ~ is given by equation (108) and so 

~t = (Xo- x)t / t  2 , using equation (117). 

Therefore, for small values of t, ~ is large, and we need only look at the leading term of equation (121). Using 
this leading term, with equations (117) and (118), we find from equation (109) the single-term outer expansion 
of the single-term inner solution as: 

"rl 2 + 
o-=o-zt" + . . . =  ~ Bl(xo_x)t--xt . . .  (122) 

According to the matching principle of Van Dyke 16 this should be the same as the single-term inner expansion 
of the single-term outer solution. The outer solution, by equations (96) and (101), is 

~'o t 2 +  
o- = s ' ( x )  . . . .  

If we write this in terms of Xo-X, by equations (108) and (113), and take the leading term for small values of t, 
we do indeed recover solution (122). 
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The next step is to form a composite expansion 16 or other expression for o" valid over the whole range 
0 <~ x <~ xo. It is perhaps more revealing to look at the process for a particular planform. Consider the gothic 
wing of unit chord and aspect ratio A, for which 

s ( x ) = A x ( 2 - x ) / 3  for 0~<x~<x0=l (123) 

'l-hen s'(x)= 2 A ( 1 - x ) / 3  and, by equations (102) and (103), 

A (x) = 2A ( 2 -  x)2/(3 - x) 

The outer solution, (104) to (107), is then 

and 

1(o~ 3 _  x ,~2/3 
"0 = 1 - ~ k ~ -  2(2_ x)2 ] + . . .  

a 4r3"(3 - x)  

~" = A 4 ( 2 -  x) 1,,/i~- x t - . . .  

F a x / ( 1 - x ) ( 3 - x )  
A---~ = 2"rgU-~-~ v 3 I-. . .  

L(x)=.n.oU2ots2(x)(l+_{ot 3 - x  ,~2/a 
2~,~- 2 ( 2 - x )  2} +'" ") 

(124) 

The similarity parameter a / A  is now apparent, as is the breakdown of the outer solution for ~ and F as x + 1. 
To supplement this the inner solution is required. Comparing equations (123) and (112), we find l =  2 and 
B = A/3. Hence by equations (116) to (118): 

% = (4/A) 1/3 , m = 1 , n = 3/2 and )t = 2(A/4) 1/a 

The expression (119) can best be written in terms of 

~'= A~ = h(1 - x ) / t  = 2(A/t~)l13(1 - x )  (125) 

It becomes tr 2 = 6g(~)/A, where 

g(~) = exp(~) exp ( -  u2)du = exp(~) erfc(~) , (126) 

in terms of the complementary error function. The inner solution for ~" follows from equations (110): 

3g(~) 1/2 a s/6 

The corresponding inner solution for the vortex strength F follows in the same way: 

I'* "/rU ] 2 ( o~ ~7/6 
A2 = - - f - ~ / ~ \ ~ )  + . . . .  (128) 

The significance of the variable ~, equation (125), is apparent when it is remembered that the entire 
- 1 / 3  - e x p a n s i o n  procedure is for small values of a/A. When x = 1, ~ = 0; when 1 - x  is small, of order (a/A) , 

takes values which are of order one; and when 1 - x  is of lower order, ~ becomes large. Now g(0) = ~ / 2 ,  
finite, while g(~)-~ 0 as ~ oo. The leading term in ~" in the outer solution is O(a/A), with a coefficient which 
tends to infinity as x ~ 1. In the inner solution this is replaced by a term of lower order, (a/A) 5/6, whose 
coefficient tends to zero as ~ oo. The leading term in F behaves in the opposite fashion: in the outer solution 

24 



the leading term, again O ( a / A ) ,  has a coefficient which vanishes at x = 1; while the leading term in the inner 
solution is of higher order and its coefficient tends to infinity as ~ oo. 

It is convenient to have single expressions for ~ and F, valid over the whole range 0 ~< x ~< 1. These can be 
formed as composite expansions 16, adding the inner and outer solutions and subtracting from the sum their 
'common part', the inner expansion of the outer solution (equal to the outer expansion of the inner solution). 
Carrying out the inner expansion of the outer solutions (124) for ~ and F, and returing to the outer variable x, 
we find 

and 

1 [  3 a 

=5'qz(a-_x) X 

A 
F . . .  

The composite expansions follow by subtracting these from the sums of (124) and (127) or (128): 

5/6 1 {/-g 34  -x] a .  
 c°mp= 2 - x  ) A  T''" (129) 

[A-'~)/r"omp = 2"trU l ~ - x  , , - - - - - a  7rU [ 2 [ol\7/6 
- 3 q - - ~ ( 4 2 - x 4 3 - x ) - ' A + - - - 3 - q 3 - ' ~ k - A )  + . . . .  (130) 

When x -~ 1 and ~-~ 0, these expressions agree with the inner solutions (127) and (128). In the limit ~-* oo, they 
agree with the outer solutions (124). How appropriate the limit ~ oo is at a particular value of x < 1 depends 
on the size of s / A ,  through (125). 

The numerical behaviour of these solutions is discussed in Sub-section 4.5. 

4.4 Solution for Wing with Side-Edges 

For a portion of a slender wing with streamwise edges, s ( x )  = S(Xo) for x ~>x0, we have s ' ( x ) =  0 and the 
differential equations (91) and (92) reduce to: 

s¢'= • J 

(131) 

After some experimentation it was concluded that a solution to these equations for small angles of incidence 
only existed if o" and ~" were both of order t = (o~/4) 1/3. Since we are assuming that s ' ( x )  is continuous and 
non-negative, upstream of x = x0 the solution of the previous sub-sections must apply. In this, the leading term 
in o" at x = x0 is 0(t"), where n depends on the shape of the edge in the neighbourhood of x = Xo, but is strictly 
between 1 and 2. The order of the leading term must therefore be expected to change at x = x0. 

The necessary degree of generality is obtained by setting 

o" = tcr2(x, t) +0(t2) / (132) 

and ~- = t'r2(x, t) + 0(t 2) J 

where o'2 and ~r2 are 0(1). Then, by (89) and (90) 

1 2 2 2 vl = 1 - ~ ( r z - o ' 2 ) t  + . . . .  ~ = cr21"zt2+. • • (133) 

r . 2 - -  2 ~ t  
"r o"2 [o'2-~'2~ ~ = ~  ~ +. 
' y  0 " 2 +  T 2 \  0"  2 ,] " "  

(134) 

25 



with these expressions equations (93) become 

2 2 
l tT'--  " / '2(T2 - -  0 -2 )  0"2 
,t - -  2 2 2 + G =  +. (135) 40"2(0-2 + "r2)t 2 2 • • . . . .  2(O'2 + rz)t 

All the terms in (131) are now of the same order. Equating the leading terms gives 

2 2 2 2 2 2 t 
_ s ( r 2 _  0-2), = 2r2(r2 - 0-2) s (r2 - 0"2)0-2 {0-2 + r2"~ 

2* 2 , 2,, "{'- 2 2 ~ (136) 
0-21,O" 2 "1" TZ)  0"2 + "r2 \ 0-2 "1 

and 
2 . 2 , 2 x t  

$(O.2 , / .2) ,  = 2 0 - 2  S 0 " 2 ' r 2  / O " 2  "1- ' r 2 ~  
2 2 ~ ~ (137) 

0 " 2 + ' / ' 2  0"2"{ - ' / ' 2  \ 0-2  ] ' 

where primes denote differentiation with respect to x and s is now constant. 
Equation (137) can be rearranged as 

2 2 t 
(¢2(0"2 +'r2)) = 2 / S  , 

which can be integrated downstream from x = Xo. At x = Xo, ¢ = 0 and the upstream solution is given by 
equation (109): 

0- = O-l(0)t" + . . . .  r = r l (O) t+  . . . .  

where 0-2(0) = 4 F ( 1 / I ) / s r l l a  2/t by equation (120), 

rl  ( O) -- rl  = ( 4 / A (xo) ) 1/3 by equation (116), 

and ), and l are related to the local shape of the planform through equations (112) and (118). Hence 

r2(0- 2 + r22) = 2(x - Xo + k ) / s  (138) 

where, with equations (117), 

2s +_2V(1]( t ]  2/' 
k=a(xo---)-7 ~7,' ~-/ (139) 

Knowing the integral (138), we can proceed to solve equation (136) to obtain 0"2 and r2 separately. One way is 
• 2 2 .  • . . 

to write 0"2 =/xr2 in equations (136) and (138), whmh eventually leads to the equation 

/x' 2 

l - l ,  = X - x o + k  

The solution of this is immediate: t* = 1 - K / X  2, where 

X = x - x 0 + k  , (140) 

and K is given by the initial condition at x = Xo, X = k ,  as 

K =  k 2 ( 1 - A ( X ° ) F ( l ] ( t ~ 2 / ' ]  
(141) \ sl \ I /  \ A /  / 

With this expression for/x, equation (138) gives 

0-2 = ( X  2 - K) I/2/[s(x2 - ½ K ) ] l / 3 ~  
and (142) / 

7"2 --'~ X / [ S ( X  2 - ½ K ) ]  1 /3  • J 

Equations (132) and (139) to (142) give the formal solution required. 
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It is interesting to note how k and K depend partly on the overall shape of the wing ahead of x = x0 through s 
and A(x0), and partly on the local shape near x = Xo through h and I. The structure of the solution depends on 
the value of I. We avoid discussion of the general case by considering the ordinary streamwise tip, which has a 
continuous tangent and a curvature which is discontinuous, but finite. This is given by l = 2. 

With ! = 2, equations (142) become 

o'2 = A 1/6(Ao~2 -b 4~+  2"~t /hs) l /Z/ (A 2o~Z + 4Ao~+ 2) 1/3 

and 

"r2 = (Ao~ + 2)/ A ~ / 3 ( A ~  + 4Ao~ + 2) 1/3 

where ~ = (x - Xo)/S is a non-dimensional coordinate measured downstream on the parallel-sided part of the 
wing and A0 = A (Xo) is the aspect ratio of the upstream part. The coordinates of the vortex in the cross-flow 
plane follow from equation (133), its strength from equation (90) and the lift acting upstream of the plane 
x = const from equation (94): 

and 

2t 2 
7/= 1 -  [A0(A02~2 + 4A0~+2)]  2/3 + 0(t3) ' 

- 2)(Ao~2+4~+2q~t/Xs)l /ztz  
~=( - -A°~A~/6(A~  +4Ao~+ 2)2/3 +0(t3) 

8,n.Us(A 2 ~'2 + 4Ao~- + 2)2/3 t 4 
F = TUs A5/6(Ao~.2+g~.+2x~t/hs)l/a 

F . . .  

L = 7rpuZsea(1 + 4 ( A g ~  + 4A0~+ 2)a/st2/Ag/3 + . . . )  

(143) 

These expressions can be compared with the much simpler upstream solutions (104) to (107). The orders of the 
leading terms in the expansions of ~" and F change: ff is of order t 3 for x < Xo, order t 2 for x > x0 and order t 5/2 
for x = Xo; F is also of order  t 3 for x < Xo, but becomes order t 4 for x > Xo and order t 7/2 for x = x0. The terms in 
the expansions of 7/ and L remain of the same order, but their coefficients become more complicated for 
x >x0.  Some simplification is gained by introducing the local aspect ratio, A ( x ) =  2Ao/(Ao~+2),  in, for 
instance, the last equation: 

71" / " / A 2 t x  " ~ \ 1 / 3 /  ot  \213 
C L = L / ½ p U 2 S ( x ) = - 2 A ( x ) a I I + 2 1 2 - ~ o J )  i -A -~ )  +'") (144) 

for x I> x0. The change t o  the parallel-sided part of the wing has introduced the factor (2 - A 2(x) /A 2) 1/3 on the 
non-linear term in the lift. As x increases, A (x) falls from Ao to zero and the coefficient increases slightly. It is 
of some interest that the non-linear part of the lift coefficient, as given by equations (144) or (107), falls to zero 
as the aspect ratio tends to zero, though more slowly than the linear part. It is not clear how the inclusion of 
higher order terms would affect this result. 

Finally it is worth noting the simple forms assumed by equations (143) for stations well downstream on the 
parallel-sided part of the wing: 

and 

2 .-_4/3[0t'~ 2/3 A 2 / a \2/3 

~ ~'2/3(a/4)2/3 ~ (a/2A)2/3 , 

F ~ 87rUs~/3(a/4) 4/3 ~ 2"n'aUs(a/2A) 1/3 

L ~'rroU2s2a(1 +4(a /2A)  2/3) , 

(145) 

27 



where the approximation is for a small, ~ large and A small. It is only in the first of these expressions that any 
trace of that part of the wing upstream of x = x0 remains, and there it only affects the rate at which the vortices 
move to positions above the side edges far downstream. The vortex height, its strength and the lift are (to this 
order) independent of the upstream part of the wing. It is therefore plausible to regard the last three of 
equations (145) as applying generally, even to cropped delta or rectangular wings, for which they could not 
have been derived by the present arguments. 

4.5 Comparison with Numerical Solutions 

It is not in general possible to assess the range of validity of asymptotic expansions, such as those derived in 
this Report, except by comparison with complete solutions. For the present problem, a complete solution must 
be numerical. Fortunately numerical solutions can easily be computed and several years ago the method 
described in Ref. 11 was programmed and solutions were found for several planforms over a range of angles of 
incidence. For the present purpose the results obtained for a gothic wing provide a convenient comparison. 

We consider first the overall lift and the centre of pressure. A convenient and sensitive way of displaying the 
non-linear variation in lift with incidence is to plot CL/aA against a/A, since this function depends only on 
a/A and is constant for attached flow. Its asymptotic expansion follows at once from equation (107): 

CL =2(1  + /o~'~ 2/3 
2[~-) + .) (146) aA "" 

The distance, h, of the centre of pressure from the apex is given by 

hL(1)= fol X-~dx = L(1)- foI L(x)dx , 

for a wing of unit length, and L (x) is given by equation (124) for a gothic wing. The linear term in L (x) is easily 
integrated analytically. The non-linear term was integrated numerically by Simpson's rule over 10 intervals, 
leading to: 

7 a 2/3 +...) (147) 

Fig. 7 displays the approximations (146) and (147) as curves, compared with the points obtained by 
numerical integration of the basic equations (91) and (92). The single-term asymptotic expansion reflects the 
qualitative behaviour of both the lift and the centre of pressure over this range of values of a/A quite 
satisfactorily. In quantitative terms, the error is about 20 per cent in non-linear lift (7 per cent of overall lift) at 
a/A = 0.1, which seems intuitively to be rather large. It appears less surprising if it is recalled that the 
expansion parameter is (a/A) 1/3, which is about 0.5 when a/A = 0.1. 

Fig. 7 suggests that the range of validity of the single-term asymptotic expansion is rather small, so the 
smallest value of a/A (0.0279) used in the numerical calculations was chosen for a closer examination of the 
results. The lateral position of the vortex is given by equations (124). For its height above the wing, we have 
three different asymptotic expansions: the outer (124), valid away from the trailing edge; the inner (127), valid 
near the trailing edge; and the composite (129), valid over the whole length of the wing. Fig. 8 shows how these 
expansions compare with the numerical solutions for offA = 0.0279. It is clear that the single-term asymptotic 
expansion for the lateral position of the vortex is not a reliable approximation at this value of a/A. Near the 
apex, where the wing approximates to a delta wing of a/A = 0.0105, the asymptotic expansion is good, and the 
deterioration as x increases is associated with an increase in local sweepback of the leading edge. For delta 
wings, the accuracy of the single-term expansion also deteriorates in an obvious way as the sweepback 
increases and the incidence is constant. The variation in the height of the vortex along the length of the wing is 
well described by the single-term composite expansion, though again the error increases as the local 
sweepback increases. The outer expansion diverges as the trailing edge is approached, so the improvement 
brought about by the use of the inner expansion is striking. It is remarkable that the composite expansion is 
closer to the numerical results than either the inner or the outer expansion over the whole length. 

The circulation of the vortex is also described by an outer expansion (124), an inner expansion (128) and a 
composite expansion (130). These are compared with the numerical calculation for the same test case in the 
upper part of Fig. 9. All show a decrease in circulation towards the rear of the wing, as reported in Ref. 11, 
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which must be associated with the shedding from the leading edge of vorticity of the opposite sense. The 
composite expansion is quite successful in describing the variation of the circulation. 

The distribution of non-linear lift is shown in the lower part of Fig. 9 in terms of the ratio of the total lift 
acting forward of the station x = constant to the linear, attached flow, prediction of the lift forward of the same 
station. From equations (123) and (124) 

L l i n  = " t rpU20ts2(x )  = 1rpU2aA 2x2( 2-  x)2/9 , 

and the single-term asymptotic expansion is given by 

L =l+2/a__ 3 - x  "~2/3 
Zlin \A  2(2 - x) 2] 

This expansion correctly predicts that the non-linear lift becomes a greater part of the total as the sweep 
increases rearwards. The non-linear lift is slightly underestimated near the apex, and increasingly so further 
aft. This explains the discrepancies in lift and centre of pressure apparent in Fig. 7 at this value of a/A. 

4.6 An Application of the Asymptotic Solution 

In view of the relative ease with which the numerical solution can be calculated and the limited range of 
applicability of the asymptotic expansion, the utility of the latter is obviously limited. However, it does 
perform the minimum role of an analytic treatment in suggesting a useful way to look at experimental results. 

Almost all calculations of aerodynamic properties are based on the assumption that the flow remains 
attached, while experiments with plane, sharp-edged, slender wings show that the flow separates from the 
leading edges at very small angles of incidence. Theoretical models of the separated flow agree that the 
lift-curve slope, OCL/OOt, and the aerodynamic centre, OCm/aCL, are given by their attached-flow values when 
the angle of incidence of the plane wing is zero. In order to assess the accuracy of the calculations for attached 
flow it is necessary to derive the lift slope and aerodynamic centre at zero incidence from measurements. The 
usual method is to plot CL/Ot and C,~CL against a or CL and extrapolate to find the ordinate at zero lift and 
incidence. The limitations on the accuracy of measurement make this procedure difficult and the difficulty is 
increased by ignorance of the form of the dependence of these quantities on the incidence. 

An example, taken f r o m  Kirby 17, is shown on the left of Fig. 10, where the normal force coefficient CN has 
been used in place of CL. The measurements were made on the overhead balance of the 4ft x 3ft tunnel at 
Farnborough at 200 fps, Reynolds number 2.2 million, with free transition. The model was a sharp-edged 
delta wing of aspect ratio one, with a maximum thickness-chord ratio of 4 per cent. The scatter in the derived 
values of CN/ot at small angles of incidence is not unusually large, this example being chosen because the large 
number of measured values makes it clear that limitations on accuracy rather than systematic error are 
responsible. The curve is that given in Ref. 17 as a best fit to the measurements and it appears to be a good one. 
On the right of the figure, the same values of CN/a are plotted against lot 12/3, and a straight line is drawn by eye 
through the points, discounting those which are most scattered. 

Two facts stand out: the use of a 2/3 has produced a more linear relation, as would be expected from equation 
(107), and the extrapolated value of CN/ot at ~ = 0 is about 10 per cent lower on the right than on the left. Since 
the apparently linear part of the curve extends to values of a larger than those for which the present treatment 
is reliable, there is an element of good fortune about the straight-line fit. The important point is that the form of 
the asymptotic solution provides the justification for the linear extrapolation in the region where the 
experimental values are no longer a reliable guide. The significance of a 10 per cent difference in the value of 
the lift-curve slope at zero lift, as derived from measured values, becomes apparent when we recall that it is this 
quantity which we should compare with an estimate for attached flow (based on lifting-surface theory, for 
instance), in order to determine the importance of boundary layer and wake effects in the absence of 
leading-edge separation. For two-dimensional aerofoils at low speeds the reduction in lift due to these effects 
is normally less than 10 per cent. 

5. Wings with Lengthwise Camber 

This section examines a second non-conical flow in which we take the edges of the wing to be straight lines 
but we alIOw the.local angle of incidence of the wing to vary along its length. The wings considered are specified 
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by their local semi-span and incidence by the equations 

and 
s(x) = Ao + Aax 

a(x)  = KIx"  
(148) 

where Ao is a non-negative constant, and K1 and n are positive constants. The wings take the general form of 
the truncated delta wing shown in Fig. 11, with the unswept part of the leading edge at zero local incidence. 
Delta wings are obtained with Ao = 0, A1 >0;  while with A'0> 0, a wing with an unswept leading edge, and 
raked-in, streamwise, or raked-out tips is obtained, as A1 is negative, zero, or positive. 

The method used here is based on that used by Smith 11 in his application of the line-vortex model to wings 
with curved leading edges. No separation takes place from the unswept part of the leading edge; it is assumed 
that separation takes place at the other edges of the planform and this separation is modelled in the same way 
whether the edge is leading or trailing in a geometrical sense. The Kutta condition is imposed at the edge, and 
the zero force condition is imposed on the vortex and cut, leading to ordinary differential equations for the 
vortex position and strength as functions of the downstream distance x. Since we are interested in the initial 
growth of the vortices close to the station of zero incidence we shall find asymptotic solutions to these 
equations valid for small x. 

5.1  Der ivat ion  of Vortex  Equat ions  

The configuration is shown in Fig. 11 with the rectangular axes Oxyz fixed with respect to the wing with 0x 
parallel to the free stream. In the cross-flow plane, x = constant, we introduce a set of parallel axes 0'y'z' in 
which the origin is on the wing centre line, and a complex coordinate Z defined by 

Z = y '+  iz' = y + i(z + h) (149) 

where h(x) is the distance of the wing centre line below the x-axis, so that h'(x) = a (x) is the local incidence. 
The flow in the cross-flow plane can now be represented by a velocity potential 

O -  Uz'h'(x) 

where the boundary conditions require that OdPlaz' should be equal to Uh'(x) for large z' and be zero on the 
wing. Under the slender-body assumptions the velocity potential ~ must satisfy Laplace's equation in the 
cross-flow plane, and so it can be written as the real part of an analytic function W, the complex velocity 
potential. 

As in Ref. 11 we make use of the conformal transformation 

Z*2 = Z 2 -  82 (150) 

which maps the wing into a slit on the imaginary axis, the plane of symmetry in the Z*-plane. The complex 
velocity potential becomes 

2~I  Z * - Z *  W = - i a U Z * +  l n ~  (151) 
• Z + Z ~  ' 

where the vortex strength F and its position in the transformed plane Z* are to be determined from further 
conditions on the vortex system. These conditions are provided by the Kutta condition, requiring that the edge 
should be a stagnation point in the Z*-plane, and the zero force condition, which requires that the total force 
on each vortex and its cut should vanish. 

Introducing the non-dimensional quantities 

Z*l = z *  / s 

Zl  = Z J s  
and 

3' = F/(27rUs) , (152) 
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the Kutta condition becomes 

a Z * 2 *  (153) 
~' = z"; + 2*~ 

The force per unit length acting on the cut has been derived by Smith H and is 

s) dF ioU(Z,,-  -~x ' (154) 

and the zero force condition requires this to be balanced by the force exerted on the corresponding line vortex. 
This contribution will be given by the product of - ipF and the component of velocity normal to the vortex 
induced by the remainder of the flow. The axial velocity U will contribute a component 

d . U~fx(Zo_ih ) - c r - ~ ( y o  + , z ~ ) =  - (155) 

normal to the vortex, whilst the normal component of the cross-flow velocity is 

F 1 
z_,z( d W l i m  - -  2~-i Z - - Z , )  - ih ' ( x )U (156) 

\ 

Using equations (150), (151) and (153) the complex conjugate of this limit can be expressed as 

r zo (z*~+2*  1 s 2 ) - ~  ~ ' - ~  , - ,  ;T-~, , 
27ri Zv \ Z,,Z,~ Zo + Z,~ 2Z,,Z,, 

and this can be combined with (154) and (155) to give the zero force condition in the form 

~x , d , ~ . ,  y2 Z I [ Z * + 2 *  1 1 ) 
(21-1)  (~¢s)-l-~t--~-~t/~lS)-~-7-~l - ~ , ~  Z ~ " { - 2 * l  2Z~Z~ ' (157) 

a x  l z ,  1 \ 1-., 1 L 1 

where we have used the non-dimensional quantities defined by equation (152). This expression agrees with 
that given in equation (8) of Ref. 11 for a fiat-plate wing. 

Using equations (148) and (153) we can rearrange this equation to give 

. _ d / ( Z 1 - 1 ) Z * Z * x " \  . (221-1)Z*Z*x"  
(Ao+,~xx)-7-[ ~ I + A a  "~,~ ~ ' ~ ,  

a X  k l-, 1 "i-1-, 1 / Z..,1 z..,1 

~.,2~,2 Zl ( z~  + 2 "  1 g l  X 2 n  !_., 1 z.., 1 

- i ( Z * + ; Z ~ )  2 - ' ~ x \ ~  Z * I + Z *  

We now introduce the real and imaginary parts of Z1 and ZI* by 

Z~ = 1 -A + i/z 

and 

Z *  = cr + i¢  , 

so that from the conformal transformation (150) 

or2__ T2 = h2 2A __]/.2 

and 

o'-r = (1 - A)/~ 

2z-lzz~) (158) 

(159) 

(160a) 

(160b) 
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Substituting equations (159) and (160b) into equation (158) and equating real and imaginary parts leads to 

( A o  + A l X  )d._d_( A(o.2 + r2)x,) _ Ar(1-23.  )(o .2 + "r2)"x 
ax  ko. o" 

g 2n~ ) 
lX It  2 2xt,~ 2 2: 2O.2'I'2+/d'2(O'2--T2) 

= 4 - - ~  kt~" - ~  )toot -a" ) ~ , (161a) 

and 

( A o  + A l X  ) 4 (  l~ (o. 2 +'r2)x "] + A1 '2/z(o.2 + "r2) ' 'x  
ax  \o- / o- 

KaxZn{.r(o. z + p,2)(3o.2 - .r 2) o..r(o -z - .r 2 _ 2~2)'~ 
= 4 - " ~  \" o. ( l_A)2+/ .  2 ] (161b) 

We can now proceed to find asymptotic solutions to equations (160) and (161). Four separate cases arise 
corresponding to different choices for the planform parameters A0 and A1. Thus for A~ = 0 and Ao > 0 the 
planform will be rectangular, for Ao = 0 and A~ > 0 it will be be delta shaped, for A0 and A~ both positive the 
planform will be that of a truncated delta wing or an unswept wing with a raked-out tip, and for Ao > 0 and 
A~ < 0 it will be an unswept wing with a raked-in tip. 

5.2 The Rectangular Wing 

It emerges that a solution can be found only if o- and ~- are of the same order of magnitude, so that to first 
order we can write 

o. = A x  p , ~" = ko. (162) 

where A, k and p are constants. Again retaining only the first order terms, substitution in equation (160) yields 

I~ = k A 2 x  2p , )~ = -½A2(1 - k2)x  2p (163) 

These equations can now be substituted into equation (161) with Aa = 0 and the resulting expressions 
simplified retaining only the leading terms in x to give 

-½(3p + n)A3(1 - k4)x  3p+n-a 1 _ k2)x2n =~ssKlk( 1 (164) 

and 

( 3 p + n ) A 3 k ( l + k 2 ) x 3 p + n - a  K1 2n = ~ S  x (165) 

Comparison of these two equations indicates that we must have k 2= 1, and since o., and hence A, must be 
positive we can see from equation (165) that k must be positive, so that k = 1. Since each side of equation (165) 
must be of the same order in x it follows that 

p = l ( n + l )  , (1.66) 

and from equation (165) 

K1 ~1/3 

A = 4 A o ( 2 n  + 1)] (167) 
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In terms of these two constants the vortex position is given by 

Z *  = A s ( l +  i)x p + . . .  (168) 

in the transformed plane and by 

Zv = s(1 + iA2x 2p) + . . .  (169) 

in the physical cross-flow plane. 
The application of slender-body theory to the rectangular wing is only justifiable if the local incidence 

vanishes at the leading edge, i.e. if n > 0. However,  it is interesting to consider the limit n ~ 0, in which the 
incidence tends to the constant value kl. We have p --> 1/3, so that the vortex position (169) becomes 

t \ 4 s /  / 

This is the same behaviour as that described by equation (145) for the vortex position on the parallel-sided part 
of a wing at a small, constant angle of incidence a, well downstream of the station at which the span became 
constant. Approaching the rectangular wing at uniform incidence from two quite different directions thus 
leads to the same result. 

5.3 The Delta Wing 

If we choose A0 to be zero and A1 to be positive then the planform reduces to that of a delta wing. It is found 
that choosing o" and ~- to be of the same order  of magnitude no longer leads to a consistent first-order solution 
to the equations and so we now look for a solution of the form 

Or = A X  p , 7" = B x  q (170) 

where A, B, p and q are constants, and where we make the further assumption, based on the results for plane 
delta wings, that p > q. 

From equations (160) we find that, to first order  

tl, = A B x  p+q , )t = l B 2 x 2 q  , (171) 

and when these expressions are substituted into equations (161) we obtain to first order  

K 1 B  3 A1 B2 ~+2q-p_ 2~+3q-3p (172a) 
A -x - 4A 3 x 

and 

(n + 3q + 2)A1B3x n+3q = ½Klx e~ (172b) 

These two equations can now be solved to give 

K1 ~ 1/3 
q = n / 3  , B =  4 A 1 ~ - + 1 ) ]  (173a) 

and 

(K1B~ 1/2 (173b) 
p = 2 n / 3  , A = k 4 A 1 /  

The vortex position in the transformed plane is given by 

Z*v = s ( A x  2n/3 + iBx n/3) + . . .  (174a) 
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and in the physical plane by 

Zo = s(1-½B2x 2n/3 -t- iABx")  (174b) 

It should be noted that for n = 0 the wing becomes a plane delta wing over which the flow will be conical. The 
solution given by equation (173) now becomes 

~ m  Zo - s(B 2 + iB) (175) 

where B = (K~/4A1) a/a, and this agrees with the leading term in the expansion given in Ref. 1. 
The height of the vortex above the wing takes a simple form. For this non-dimensional height we have, from 

equations (174), (148) and (173), 

5~{Zols} = a ( x ) l ( 4 A l ( n  + 1) '/z) (176) 

Expressed as a fraction of the distance of the wing below the x-axis, the vortex height becomes 

d~{Zdh} = ¼(n + 1) a/2 , (177) 

and these two equations represent simple generalisations of the corresponding results for the plane wing, for 
which n = 0. 

5.4 The Truncated Delta Wing or Raked-Out Tip 

If we assume that both Ao and A1 are positive, then the resulting planform is that of the truncated delta 
wing. As in the previous case we look for a solution for which or << ~-, so that we can assume that the leading 
terms in the expansion for the vortex position are still given by equations (170) and (171) with p >q .  
Substituting these expressions into equation (16 lb) and retaining the leading terms on either side, we obtain 

A o  ~~(  B 3 x  n+3q) = ½ KlX 2n (178) 

from which it follows that 

( K1 ~ 1/3 (179) 
q = ( n + 1 ) / 3  , B = \2(2n--+i)Ao/ 

Similarly from equation (161a) 

A d [ B 4  n+4q--PX~ A I B 2  KIB3 O-'~X ~ " ~  X ) -- - - " ' ~  X n + 2 q-p  ~. __ 2n + 3 q -  3 p , 
4A 3 x (180) 

and using the value for q given by equation (179) we can see that the second term in the left-hand side of 
equation (180) will dominate provided that n >½. In this case the first term can be neglected and so 

1 (K1B'~ 1/2 
p = ~ ( 4 n + l )  , A = \ 4 A 1 ]  ' (181) 

and the vortex position will be given in terms of these constants. If, however, n <½ then the first term in 
equation (180) dominates, and since (n + 4 q - p )  and B will both be positive there can be no solution to 
equation (180). The reason is that, as can be seen from equations (179) and (181), the original assumption that 
p > q will no longer hold if n ~< ½. 

Therefore,  for the case 0 < n < ½, we look for a solution in which o" and ~" are the same order of magnitude so 
that we can assume that equations (162) and (163) hold. The leading term in the solution will in fact be the 
same as that obtained for the rectangular wing in equations (166) and (167) since it can easily be checked that 
the terms involving A ~ in the left-hand sides of equations (161) will be small compared to those terms retained 
in equations (164) and (165). The vortex position for this case will therefore be the same as that given by 
equations (168) and (169). 
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When n = ½ a different dependence emerges, details of which are given in Table 1. 
The original problem, derived from an attempt to describe the flow over a wing with lengthwise camber, is 

the one for which, at x = 0, the local incidence has a simple zero, i.e.n = 1, the span is non-zero, i.e. Ao # 0, and 
the span is increasing, i.e. A1 > 0. For this ease we have p = 5/6 and q = 2/3 from (179) and (181). Using the 
relations set out above, we find the vortex position, Zv, in the cross-flow plane is given by 

Zv= X[ot\2/3[s'x\ 2/3 i a/s ' xh  ~/2 
s 1 - ~ )  ~ s )  + 2 ~ - s )  + . . . .  (182) 

where A0, A1 and K1 have been replaced by s, s' and a / x  respectively, and the circulation, F, is given by 

F l'S'X\ 1/2 
--~ss=27ra~s) + . . .  (183) 

This behaviour appears physically plausible, remembering that a is proportional to x, except for the 
behaviour of the height and strength of the vortex for small values of s'. If s' is actually zero, the rectangular 
wing solution of Sub-section 5.2 applies and the vortex height becomes of order x 4/3 instead of x 3/2, while the 
circulation becomes of order x s/3 instead of x 3/2. If a uniformly valid expansion for s' small is required a 
matching process like that in Section 4.3 should be used. 

It is hoped that the asymptotic forms (182) and (183) will be helpful in modelling the initial growth of the 
second vortex which is shed from the rearward part of the leading edge of a wing with lengthwise camber. At 
least they make it clear that a conical growth is not to be expected. 

5.5 The Raked-In Tip 

If we assume that Ao is positive and A1 negative, we obtain a planform with an unswept leading edge and a 
raked-in tip. Geometrically, the tip is now a trailing edge. The unswept leading edge is at zero local incidence 
and so the same flow model, using slender-body theory and representing separation from the swept edge only, 
is still appropriate. 

There are now no asymptotic solutions to equations (160) and (161) with or << ~-, essentially because the sign 
of the second term on the left-hand side of equation (180) has changed and the term cannot balance the 
right-hand side. With or >> ~-, i.e. p < q, introducing (170) and (171) into (161b) and discarding higher-order 
terms leads to: 

A o d  (A2Bx "+zv+q) = ~hlxX" 2, (184) 

in place of equation (178). The same procedure applied to equation (161 a) leads to: 

- A°~x (1A 3Xn+3p) - A1Axn+P = K1nxzn+q-P4A (185) 

in place of equation (180). Equating indices in equation (184) shows that 2n + q - p  = n + p + 2 q -  1, which 
exceeds n + 3p - 1, by the assumption that q > p. Hence the right-hand side of equation (185) is of higher order 
than the terms on the left. Equating the left-hand side to zero gives: 

1 ( flA1 .~1/2 (186) 
p = ~ , A = (2n +3)A0] 

Introducing equation (186) into equation (184) now gives: 

(2n + 3)K1 
q = n , B = (187) 

8(2n + 1)A1 

Since we have assumed that q > p, this solution is only valid for n > ½. 
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1 
To find solutions for n ~<~, we suppose p = q and use the formulation of (162) and (163). Introducing this 

into equation (161b) and discarding the higher-order terms leads to: 

A o d ( k ( 1  + k 2)A 3x "+3p) = ½K~x 2" , (188) 

from which 
/ 

.+1 ( K1  1,3 
P = 3 ' A = 2k(1 + kZ)(2n + 1)Ao/ (189) 

The same process applied to equation (161 a) leads to: 

A0~xx~---~-(ld / A 3 _ k 4 ) x . + 3 p ) _ A 1 A ( l  +k2)x,+p - Kxk(1-k2)x2"4 (190) 

The first term is now of the same order as the right-hand side, by equation (189), so there are two possibilities: 
either these two terms are equal and dominate the second term on the left, or all three terms are of the same 
order. If they dominate the second term, p > n, n < 1 and 

-½AoA 3(1 - k 4 ) ( 2 n  q- 1) = 1 g  1 k (1  - k 2) 

This is only compatible with equation (189) if k 2 = 1, implying o- = z, since both are positive. Hence, for n <½, 
we have 

/~ "1- 1 ( g l  ~1/3 (191) 
P = q -  3 ' A = B = k 4 ( 2 n + I ) A o /  

If, on the other hand, all the terms in equation (190) are of the same order, introducing expressions (189) into 
equation (190) shows that n = p  = ½ and the coefficients A and B satisfy quartic equations. 

The essential features of the results obtained in Section 5 are summarised in tabular form in Table 1. Here,  
Bo is a root of the quartic equation: 

4A1B(4Ao  B3 - K1) + KI(8Ao B 3 -  K1) = 0 (192) 

For A1 > 0, this equation has a single positive real root, which must therefore be chosen. For A 1 < 0, the 
equation has two positive real roots, of which the smaller must be chosen to ensure that A is also real. 

It is noteworthy that for 0 < n < ½, the effect of the rapid increase in the angle of incidence dominates the 
effect of the change in local span, so that the solutions tabulated are independent of A ~. The same solution is 
naturally found for all values of n > 0 for the rectangular wing. In this solution or and z are the same, so the 
vortex lies directly above the leading edge, in this first approximation. For n/> 1, which includes the most 
interesting case (n = 1) of a regular variation of the angle of incidence, the effect of the variation in span 
becomes important and the solutions differ in the leading term. For the raked-out tip, or truncated delta wing, 
T >> o- and the vortex lies inboard of the edge of the planform. For the streamwise tip the vortex lies above the 
leading edge, and for the raked-in tip, o- >> ~- and the vortex lies outboard of the planform edge. 
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LIST OF SYMBOLS 

a ~ 

a o  

a0, a l ,  a 2  

A(x) 
Ao, A1 

A , B  
bo, bl, b2 

Bo, B1 
c 

CL 
d 

F , G  
f(n, P), g(n, P) 

h(x) 
k 

K =  
KI 

l 
L(x)  
ttl, tl 

p= 

Pij 
P,q 

P 
s(x) 
S(x) 

t= 
U 
W 

Wa 
x, y, z 

x', y', z' 
Z 

z1 
zo 
Z*  

Ol 

B(w, z) 
F 

F(x, y) 
T 

E =  

EO = 
r/= 

A,/z 
P 

tr,~" 
tr0, ~'0 
O'1, ~'1 

tO 

tOo 

tO1 r----- 

a / K  incidence parameter 
Attachment incidence parameter for half-circular cone 
See equation (B-4) 
Local aspect ratio 
See equation (148) 
See equations (162) and (170) or (112) 
See equation (B-4) 
Functions of e, see equation (9) 
See equation (B-2), also used as wing chord in Section 4 
Lift coefficient 
Semi-span of rhombic wing in transformed plane 
See equation (93) or (A-l) and (A-2) 
See equations (67) and (68) 
See equation (126) 
Camber of wing centre line 
Constants, see equations (13), (139) or (162) 
six. See also equation (141) 
See equation (148) 
See equation (112) 
Lift acting on wing upstream of the station x 
See equations (108) and (109) or equation (148) 
(a - ao)/4-3 see also equation (A-7) 
Coefficients in the expansion of to1, see equation (14) 
See equations (162) and (170) 
See equations (38) or (67) 
Wing semi-span 
Planform area, or cross-sectional area in Appendix B 
(O~/4) 1/3 

Free-stream velocity 
Complex velocity potential 
Attached flow contribution to complex velocity potential 
Rectangular cartesian coordinates aligned with the wing 
Rectangular cartesian coordinates aligned with the free stream 
Complex variable in the cross-flow plane 
Complex coordinate based on wing leading edge 
Position of the right-hand vortex in the cross-flow plane 
Complex variable in transformed plane, see equation (150) 
Angle of incidence to free stream 
Beta function 
Circulation about right-hand vortex 
Incomplete gamma function 
Non-dimensional vortex strength 
Leading-edge angle of rhombic wing 

½(3-4 ) 
1 + too, see equation (55) 
Non-dimensional vortex coordinates in Section 4 
See equation (159) 
Fluid density 
Vortex coordinates relative to leading edge in transformed plane 
See equation (96) 
See equation (109) 
Complex variable in transformed plane 
Position of right-hand vortex in transformed plane 
to ff  d 
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X 
/x 

/91,/92, P3 

01, 02, 03 

LIST OF SYMBOLS (concluded) 

Point of inboard-flow separation in cross-flow plane. See also equation (140) 
Point of inboard-flow separation in transformed plane 
See equation (108) 
See equations (45) or (A-10) 
See equations (45) or (A-10) 
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APPENDIX A 

Uniqueness ot Small Vortex Solution for the Rhombic Cone 

We wish to examine the possibility of the existence of solutions of equation (8) for which the vortex system 
tends to some point on the wing other than the leading edge in the limit as the incidence vanishes. 

We introduce the functions F(to) and G(to) defined by 

to F(a0 = B(½+ e, 1 - e) cos ezr + - - ~ 2 F 1 ( 1  - e, ½- e ; 3 /2  - e, - to 2) 
q r (1 -2e )  (1 

where 2F1 is a hypergeometric function, and 

. 2 -e ,o ,  , t 2 , 

Using equation (C-3) from Ref. 6 we find that 

dF 2 e 2 cos e~" 
d--Z = to {I + j )F ( to} ,  + ;-r} J 

where 1 1 J = ~ B ( ~ + e ,  l - e ) .  
We can therefore expand F and G about any point to to give 

and 

F(to + n) = F(cO)+l-~2(~F(to)+c°s:TrJ)n +0 (n  2) 

(A-I) 

(A-2) 

(A-3) 

(A-4) 

2e 0) 2 2e 
G(to+rl)=G(to)'+to(l+to2)G(~o)rl+ l + t o  2 ~+0(r/2)  (A-5) 

Using equation (1) and equations (C-I) and (C-4) of Ref. 6, equation (8) can be written as 

ia / 2 - -  +o31)(1 e _2dG( to l )  
( to l  "I- 031)2 It to I -[- t o l ( t o l  i "~¢.O:~)) ~-- - F ( t o l )  S (A-6) 

Since we are seeking a solution for which the vortex approaches some inboard point as the incidence vanishes 
we write col = ip + ~ where 0 < p ~< 1. We deal with the case in which p < 1 first of all, and taking 7) = o- + ir we 
can use the expansions given by (A-4) and (A-5) to obtain the leading terms in (A-6), 

ia [ 2 2iepor 0(~72) ) 
- '~2k-p  - 2 p z  + 1 - ' ~ +  

=-(F(ip)+~G(ip)) (12_~(~p(F(ip,+~G(ip))+c°;e~rJ)(cr+ir) 

2d[ p2 ,2~(cr_i~.)+0(n2) (A-7) 
s \ l - p  2} 

Now suppose that there exists a value for p such that 0 < p < 1 for which F(ip) + (2d/s)G(ip)  = 0, then we find 
by equating the real parts of equation (A-7) that o- = 0(a 1/2). However  equating the leading imaginary terms 
leads to the conclusion that ~" = 0(1), and so, if such a p exists it will not provide the solution we are looking for. 
We can therefore take F(ip) + (2d/s)G(ip) to be non-zero, and we note that it will in fact be purely imaginary. 
Again we can equate the leading imaginary terms to find that 

lap 2 
4cr2 = F(ip) + 2d G(ip) , (A-S) 

S 
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and substituting this back into equation (A-7) and equating the leading real terms gives 

cos eTr d /  p2 \2~ 
= 0 (A-9) 

Now since 0 < p < 1 both terms in this equation will be positive and there can be no solution for p in the 
required range. We can therefore conclude that there can be no solution for which the vortex approaches a 
point on the wing surface away from the centre line and the leading edge. 

It only remains to examine the possibility that the vortex might tend to the wing centre line as the incidence 
vanishes. This will involve expanding the expressions for F and G given by (A-I) and (A-2) about the point 
to~ = i and since (1 + to2)~ will be many-valued at this point it will be necessary to specify which root should be 
chosen to ensure that F and G are single-valued. If we write 

601 - -  i "~" ~1 e i ° l  , 

to 1 + i = P2 ei°2 

and 

tOx = 03 e i°~ (A-10) 

and constrain to~ to lie on the sheet of the Riemann surface for which 0~, 02 and 0 3 all lie in the range 
[-(zr /2) ,  7r/2] then using 

d Z  ( 
= J 

' ,01192/  
(A-11) 

we can verify that the transformation will correctly map the boundary of the right-hand half of the to-plane, 
D A B C D  in Fig. 2b into the imaginary axis and wing cross-section D A B C D  in Fig. 2a. 

We can now make use of the properties of the hypergeometric and beta functions to expand equations (A-1) 
and (A-2) for small pl to obtain 

i o .  1 
F(i + P l e  1) _(~pl)~ cosec 7re e I((~/2)(1-~)-~°1) (A-12) 

and 

2d G(i  + pl eiOl) 2 s (2pa)~ cosec ~ e  e i ( (~ /2) (1-e) -eO0 , (A-13) 

where we have also applied equation (1). 
If we write to1 = i + o-+ iT where o- and ~- are both real and small then we can expand the left-hand side of 

equation (A-6) and apply equations (A-12) and (A-13) to give 

ae'r ia( (1-e)o-2  +'r 2) coseCe~ei((~/2)(l_~)_~01) 
4o.(o.2 + 72) 40.2(o.2 + ~.2) (2pa)~ (A- 14) 

Now since [01[ ~ 7/'/2 and 0 < e < ½ it follows that 0 < Ir/2(1 - e ) -  e01 ~< ~r/2 and so the imaginary part of the 
right-hand side of equation (A- 14) must be positive. However the imaginary part of the left-hand side is clearly 
negative and there can be no solution satisfying this equation, and hence no solution in which the vortex 
approaches the centre line as the incidence vanishes. 

The only valid small incidence approximation must therefore be that given by equation (13) for which the 
vortex tends to the leading edge as the incidence vanishes. 
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APPENDIX B 

Calculation of the Lilt on the Half-Circular Cone 

The lateral force on a slender body is given by Ward TM in terms of the axes Ox'y'z' aligned with the free 
stream. If we assume that the incidence is small then the coordinates with respect to these new axes will be 
related to those of Section 3 by 

Xl = X d- OtZ , 
y ' = y  

and 

z '= - a x + z  (B-l) 

We write Z ' =  y ' +  iz', and let Z'g(x') be the value of Z '  at the centre of area of the wing cross-section at the 
station x'. The lateral force in this cross-sectional plane is now given by equation (9.7.11) of Ref. 18 as 

F 
i -7,2 = 4~rc +2  (Z~(x')S(x')) 
~pt.) 

(B-2) 

where S(x') is the cross-sectional area in the plane x' = constant and c is the coefficient of 1/Z' in the expansion 
of W/U+ iaZ for large Iz'l. 

The conformal transformation given by equation (44) maps the point at infinity in the Z-plane to the point 
to = i/4~, and so if we write 

to = i(1 + rl)/x/3 (B-3) 

[Z[ large will correspond to small 17/I. Also, for small ['0[, we can find expansions for 1/~/and Win the form 

l = b o  1 + b l ~ + b 2 ~ - ~ + 0  , (B-4a) 
r/ 

--W= a°+  al In "0 + a2 + a3~/+0(*/2) (B-4b) 
U r/ 

Combining these two expressions leads to 

W/U+iaz=(a°bs ° + i a ) Z - a l  lnZ+a2+aobobl+(aobob2 -albl+~o)-~+'O(~-~ s 1 (B-5) 

and making the further approximation Z = Z'(1 + iax/Z') which follows from equations (B-I) we can show 
that 

c = aobob2s + a3s/bo- albls - iaa~x (B-6) 

From the transformation (44) we can expand to in terms of 1/Z  for large Z to give 

-~3 ( 8i s 16S2 8i s3 ) 
to = 1 -~ 343 Z 27 Z 2 + 8 1 ~  Z 3 ~- . . . .  (B-7) 
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so that with the aid of equation (B-3) we can derive an expansion for 1/~/from which we find that the constants 
involved in equation (B-4a) are 

3x/3 2x/-3 5 
bo = - - -~ - i  , bl = - - -~ - i  , b2 = -2-7 (B-8) 

The expression (48) for the complex conjugate velocity can also be expanded for small r/using equation 
(B-3) to obtain 

1 d W  8ai 4r3i {2a+43~i  3' { 1 1 ] ]+0(r/)  

K U s & o  3 , 2 + - ~ - \ 3  2 } - ~ - ' ~ \ w - ~ + 1 / 3  t%+1/3  
(B-9) 

which can be integrated to determine the remaining constants involved in equation (B-6). Thus 

8aKs [ 2a , 1"~ . . .  Kys{ 1 1 ) 
a°= 3xf3 a l  = -1Ks  a 3  = - - - I - - -  l k S *  - -  - -  ' ' ~3",/3 2 ] 37r i lw~+l/3  o5oZ+1/3 (B-10) 

Now the centre of area for the wing cross section is at a distance 4s/37r below the upper surface so that 

) - i x  

Also to the order of approximation used here 

S(x') = S(x) = ½~rK2x 2 

and we can write 

3 2 
d~(Z'gS(x')) = - - - ~ a K s  i 2 Ks2 i 

Z 

(B-11) 

(B-12) 

(B-13) 

Therefore, combining equations (B-6), (B-8), (B-10) and (B-13) in equation (B-2) the lateral force is given 
by 

F _ 19Ks27r. , 13Ks2~r . . . .  2..  32K'ys2{ 1 1 
½pU 2 3---"~ tp~- 8 - - - -~ -~+~s t~  - 9----~.o .}z+1/3 o52+1/3, ] 

(B-14) 

Using the planform a r e a  s 2 / g  to define the lift coefficient CL, and using equations (49) and (54) to replace 3' 
gives 

CL 13~" 19~" 647r(1-w2o)(1-o32) 

-S= 8v/-3- 4 +3- '~ p+ 9x/'3(to~ + 1/3)(t~zv + 1/3i p 
(B-15) 

At the attachment incidence p = 0 and so the first two terms will give the lift at this incidence. The first three 
terms agree with the expression given 8 by Portnoy . The last term is the non-linear lift due to the vortex system, 
and can be further simplified using the asymptotic behaviour for t% given by equations (55) and (59), so that we 
find 

CL = 13"rr 19"n" 640"n" 3 

K2 8v/- ~ 4+~--~p+2---~p (B-16) 
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TABLE 1 

Vortex Position in the Transgormed Plane: Z *.= s(  A x  ~' + iBx q ) 

Planform 

Delta: Ao = 0, A1 >0 

Rectangular: Ao > 0, A1 = 0 
(streamwise tip) 

Tip raked-in or out: 
Ao>0, AI #0  

Tip raked-in or out: 
Ao>O, AI~O 

Tip raked out: 
Ao>0, A1 >0 

Tip raked in: 
Ao>0, AI<0  

Camber 

n > 0  

n > 0  

O<n<½ 

1 
1 2 - -  2 

n>½ 

.>½ 

P q 

2n n (K,B~ 1/2 
3 3 \-~11] 

A B 

n + l  n + l  ( K, ~,/3 
3 3 \4(2n + 1)Ao/ 

| 

n + l  n + l  ( K, ~1/3 
3 3 \4(2n + 1)Ao/ 

/ 

~ Bo KI +4A~Bol 

4 n + l  n + l  (KIB~ 1/2 
6 3 \4A1/ 

1 ( 4Al  )1/2 
n \(2n + 3)Ao/ 

K1 ~1/3 
4(n + 1)AJ 

K1 ]1/3 
4(2n"+ ])Ao/ 

K1 ~1/3 
4(2n + 1)Ao/ 

Bo 

K1 ) 1/3 
2(2n + 1)Ao/ 

(2n + 3)Kl 
8(2n + 1)A1 

(for Bo, see equation (192)) 

45 



J 
f 

/ 

/ " / 
/ 

/ 
/ 

" / / /  

, V / 

6 ~-------~9 

C 

Z 

15 

Y 

× 

FIG. 1. Wing and coordinate system. 
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