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Summary 

A method of computing the steady, inviscid flow around a thick, cambered and twisted wing (neglecting 
dihedral) is presented. The flow field is represented by distributions of sources and doublets in the chordal 
surface, the strengths of which are determined iteratively from the boundary conditions on the wing upper and 
lower surfaces. To save computing time, these conditions are transferred to the surface of the related 
uncambered wing (the 'thickness surface') by a two-term Taylor series expansion in the camber ordinate. This 
approximate boundary condition is now correct to second order. In order to improve the approximations for 
the singularity distributions at each stage, and so to speed up convergence, an inner iteration scheme is 
employed, based on a similar Taylor expansion centred on the mean chordal surface. 

The method is extended to compressible (subcritical) flow with the help of the Prandtl-Glauert rule. 
The method is tested on R.A.E. Wing 'B', a research wing with rapid spanwise changes in camber and twist 

near the root and tip. Results from two runs with different numbers of chordwise and spanwise stations agree 
well, which suggests that the method is well-conditioned and reliable; agreement with some results from the 
B.A.C. (Roberts) program is satisfactory; and the predictions of the latest version of the R.A.E. Standard 
Method agree with these reasonably well, in view of the marked spanwise deformation of the wing. 

* Replaces R.A.E. Technical Reports 73047 and 74044 A.R.C. 34 959 and 35 354. 
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1. Introduction 

Only in recent years, with the coming of large and fast computers, has it been possible to obtain fairly 
accurate numerical solutions for the steady inviscid incompressible flow around a given finite body immersed 
in a moving stream. The pioneering work was done by Smith and Hess I who calculated non-lifting solutions by 
distributing sources over the surfaces of such bodies, and showed how to include lifting effects in two- 
dimensional aerofoils and cascades. The flow around a finite wing at incidence can alternatively be represented 
by distributions of singularities (sources and doublets) on the wing chordal surface, and in this Report we 
describe the development of a computer program to perform the calculations for this method. 

The method is based on the full second-order small-perturbation theory due to Weber 2, and proceeds by 
iteration as follows. We obtain approximations for the singularity distributions and compute the flow fields due 
to these singularities using the Ledger3-Sells 4 computer subroutine. In general these flow fields violate the 
boundary conditions of zero normal flow at certain points (collocation points) on the upper and lower wing 
surfaces; the amounts of these violations are computed and interpreted as residual errors in upwash. These 
residual errors are added and subtracted to give a symmetrical part and an antisymmetrical part, and can then 
be used to generate new source and doublet distributions to add to those already stored, in order approxi- 
mately to cancel the respective errors. The velocity components may now be recomputed, and the iteration 
cycle continued. 

The present method is judged important for the following reasons: 
(1) For many years wing research workers have used linear theory, which is sufficiently accurate for some 

purposes; however, as time goes on greater accuracy is needed in some applications, and the present method 
can help to provide it. 

(2) Some second-order terms can be conveniently added to the methods of linear theory, leading to the 
R.A.E. Standard Method 5'6 and its modification as in equation (3) of Ref. 7 (due originally to Lock13); see also 
Appendix E, Ref. 2, and Appendix B, Ref. 11; these methods are fairly quick to apply, and the present method 
can be used to check them when there is reason to be doubtful of their accuracy. To some degree, this will also 
be true for compressible subcritical flow when the local Mach number is sufficiently small for the Prandtl- 
Glauert rule to work well. 

(3) In recent years a surface source distribution method, similar to that of Hess and Smith I but extended to 
lifting three-dimensional configurations, has been successfully designed and programmed at B.A.C., Wey- 
bridge, and is described by Roberts and Rundle 15. This method, though time-consuming, is the best available 
for complicated body, or wing-and-body, shapes, but for wings alone it is considered worthwhile to have 
another method which might require less computing time for similar accuracy. Such a method would at least 
provide a compromise for anyone who desires more accurate knowledge of the flow field than the R.A.E. 
Standard Method can provide, without the expenditure of computer time on the scale of Roberts' program. 
The present method has the further advantage of providing a 'feel' for the physics of the flow, as the iterates 
(printed out by the program) can be examined at each stage. 

(4) Possibilities are envisaged for extending the present method to deal with a wing mounted on a fuselage 
(and ultimately to a tailplane and engine nacelles also), still within the computing time-scale of the Roberts' 
program 15 and still with a 'feel' for the physics of the flow. This appears to be both important and possible, as 
Weber has shown (see, for example, Ref. 16) that there are wing-fuselage interaction effects which are not 
negligible but on the other hand not necessarily so large that such an extension is doomed to failure. 

(5) The method can also be adapted as a wing design tool, as shown by Weber z and partially implemented 
23 by Sells . Such an extension could also be used to design wings in combination with a fuselage or nacelles as in 

(4) above, or starting from a nearby solution obtained by other means. This may represent an advantage over 
the Roberts' method 15 which cannot be used economically as a direct design tool. 

We now have to consider the most suitable way to compute the velocity fields due to the singularities. When 
the wing is symmetrical, it is sufficient to do this (for each collocation point) at one value of the local cartesian 
coordinate z (measured normal to the wing chordal surface), namely the section thickness ordinate z = z,, and 
then to apply the symmetry and antisymmetry properties. For a cambered wing, two different values of z are 
relevant in general and to compute velocity fields at both values would effectively double the run times. We 
might do the computations on the chordal surface z = 0 and obtain the wing surface values by Taylor series 
expansions about z = 0 (Maclaurin series)i as suggested by Weber 2. This would save some computing time but 
would very likely fail near the tip, and near the root of a swept wing 2. A better method seems to be still to 
compute velocity fields at z = zt and then to obtain the values on the wing surface using the first two terms of 
the Taylor series expansions about the 'thickness surface' z = + zt. One advantage of this method (over the 
Maclaurin series approach) is that the 'thickness surface' will be nearer to at least one of the actual wing 



surfaces than the chordal surface, and may be nearer to the other one also if the camber is sufficiently small, so 
that this Taylor series should be more accurate than the corresponding Maclaurin series. These matters are 
discussed more fully in Section 3, and the problem of calculating the necessary velocity field derivatives with 
respect to z is tackled in Section 4. 

The basic first-order source distribution is easily obtained as twice the local 'thickness surface' slope (this 
follows from the first-order boundary condition). Determination of the basic first-order doublet (thin-wing 
loading) distribution is the classical problem of lifting-surface theory; the desirable attributes of any method of 
solution are speed, accuracy and mathematical rigour, in that order, and with this in mind the choice fell on the 
vortex lattice method as developed by Carr-Hil119. This method is indeed fairly quick for the first calculation 
on a given grid--a collocation matrix has to be set up and inver ted--and very quick thereafter as the inverse 
matrix can be stored on magnetic tape for future use. It has been shown to give accurate answers in 
two-dimensions 2°, and for the comparisons that have been made with other methods on three-dimensional 
wings so far the accuracy is generally sufficient for our purposes, and--most  impor tant - -any local inaccuracies 
will be corrected along with second-order effects when the boundary condition error is evaluated. 

For the success of the method, and because of the time scale involved in computing velocity fields, it is almost 
essential that the process converge adequately in at most two iterations. This means that the best possible 
singularity distributions must be sought at each iteration. Now, it is not essential to begin with an exact solution 
of linear theory. S!mple improvements to the basic distributions determined as above are available from the 
Standard Method 5 , and have been found sufficient for uncambered wings; but for cambered wings there are 
extra cross-coupling terms in the boundary conditions, and these slow down convergence unacceptably. To 
recover from this, we have devised a fast inner-iteration technique, again based on the Maclaurin series 2 and 
the Standard Method 5, which generated still better singularity distributions and enabled us to realize our goal 
of convergence almost everywhere in two iterations, even for wings with quite large camber or variations in 
camber. The details are set down in Section 5; some results for particular wings are discussed in Section 6. 

To obtain meaningful results near the wing leading edge, where linear theory predicts singularities in certain 
velocity components,  we employ a device suggested by Lighthill I° which in effect terminates the singularity 
distributions at a small finite distance behind the actual leading edge. Details appear in Appendix C. 

In the course of the iterations a problem was encountered: having made the best available first guess for the 
singularity distributions, comparatively large errors in the boundary conditions appeared at the root section 
(on our swept wings), and these errors were at first reduced only slowly as the iterations proceeded.  One 
difficulty is, that in the vortex-lattice scheme no collocation point can be placed at the centre line of a swept 
wing, so that no information from the centre line can be used for defining the planar-doublet distributions. A 
more general flaw is that no distribution of singularities could ever produce outside of itself a stream surface 
with a ridge line, which is always present at the root of a swept wing with constant-section geometry; and this 
affects both source and doublet calculations. What happens in practice is that at the root we require a rapid 
spanwise variation of these distributions which cannot be represented easlqy by parabolic interpolation on 
their values at the grid points, as is required for the Ledger-Sells method 3'4. To overcome this difficulty we 
tried introducing a line-source and line-doublet distribution along the centre chordline (still strictly inside the 
wing surface). From the boundary-condition errors near the root, we can calculate the approximate strengths 
of these line singularities, and then calculate the velocity fields due to them and add to those due to the planar 
singularities; the boundary-condition errors can then be recalculated and the iteration cycle continued. The 
details are set out in Appendix D. This device was successful in reducing the boundary-condition errors so that 
they did not vary too rapidly near the root, and so the calculations with the planar distributions became more 
reliable, and convergence was improved. Of course, the ridge-line obstacle is not completely overcome in this 
way, and when the errors were checked in between the root and the first outboard collocation station, some 
fluctuation was observed in a sample case; however, the pressure coefficients turned out to be relatively 
insensitive to these fluctuating errors, once they had been reduced to second order,  so that the problem is likely 
to be well-conditioned in practice. 

Since the method would normally be run for at least two iterations, in terms of perturbation velocities it is a 
second-order method in the s6nse of Weber  2. Also, since each perturbation velocity field is expanded to two 
terms in Taylor series, the boundary conditions to be satisfied, and the final pressure coefficients, are formally 
correct to second order in terms of section ordinates, twist angle and incidence. Thus, an assumption of the 

* Still further improvement can be sought on the lines of Appendices A and E of Ref. 2, which give further 
higher-order terms. Allowing for differences in the basic lifting-surface theories, these terms should be 
equivalent to the second inner iteration of the technique described herein. 



method is that the field errors due to the approximations by Taylor series are tolerably small. Moreover, since 
the Ledger-Sells subroutine applies only to singularities in a plane, we shall assume further that, when the wing 
is twisted, the singularity distributions in the mean chordal surface can be transferred to the unbanked plane 
containing the local chordline at each collocation section, without affecting the accuracy of the computed 
velocity fields to second order. This assumption requires 2 that any wing dihedral be of second-order 
magnitude, and that any chordwise local dihedral due to non-zero rate of change of twist daT/dy  at the root be 
also of second-order magnitude. The method does not provide an internal a posteriori check on these 
assumptions, and it would be well to bear in mind, in any particular case, that they have been made. For 
untwisted symmetrical wings, of course, the assumptions are correct and then the final accuracy of the solution 
depends principally on the distribution of collocation points. 

For subcritical flow, in which the flee-stream Mach number is sufficiently small so that the local Mach 
number does not exceed about 0.8, the Prandtl-Glauert rule is used; the downstream (x) coordinate is 
uniformly stretched, leaving the transverse coordinates unchanged (affine transformation), so that the wing is 
transformed into the so-called analogous wing, and computations are performed in the affine coordinate 
system. The results are not the same as those for the analogous wing in incompressible flow, because the 
boundary conditions on the thick wing are changed by the affine transformation. The details are set out in 
Appendix E. For subcritical flow the method is no longer fully second-order, as the Prandtl-Glauert rule takes 
only the first-order compressibility perturbations into account. 

An overall view of the program is provided in a r6sum6 in Section 7, for the reader who wishes to know 
roughly how the program operates without going into the detailed exposition of the main text. The r6sum6 is 
cross-referenced, and a flow diagram is also provided. 

The program is written in Fortran and occupies just over 40K words of core store on a computer of the 
ICL 1900 series, with the storage requirements of most of the calculations reported in Section 6. 

2. The Boundary Conditions on the Wing Surface 

We consider a finite wing at a reference angle of incidence a in a free stream with speed unity. We take 
cartesian coordinates x*, y, z* with origin O* at the apex of the wing, with the x*-axis in the reference 
downstream direction, the y-axis to starboard and the z*-axis upwards; the free stream makes an angle a with 
the x*-axis. 

We intend to represent the flow field by distributions of sources and doublets on the wing chordal surface, 
which is generated by the chordlines between the leading and trailing edges at each value of y. When the wing is 
untwisted the chordal surface lies in a plane, which can be taken to be the plane z* = O; in general, however, 
the chordal surface is non-planar. Then we proceed as follows. At any spanwise 'control' station y, where the 
boundary conditions are to be satisfied, we consider the local plane II which contains the local chordline and 
has normals parallel to the (x*, z*)-plane, that is to say, the plane is unbanked and makes an angle aT(y) (the 
local twist angle) with the x*-axis, see Fig. 1. aT is reckoned positive in the sense in which the local angle of 
incidence is increasing, that is, clockwise in a view along the positive y-axis. Thus, in this representation we 
shall ignore dihedral effects. We define local cartesian coordinates (x, z) such that the x-axis is the intersection 
of the local plane II with the central plane of symmetry y = O, so that the x-axis is parallel to the local chordline, 
and the z-axis is in the central plane y = 0 and is directed upwards, completing a right-handed set with the x 
and y-axes; the local plane II is the plane z = 0. The origin 0 is the z-projection of the apex 0* on FI. The 
(x, z)-axes can be got by rotating the (x*, z*)-axes through the angle aT(y). Wing thickness and camber are 
given for each spanwise station, y = constant, in the form used for two-dimensional sections, i.e. as ordinates 
zw normal to the chord 

z~(x, y)= +z,(x, y) +z~(x, y). (1) 

zt is the thickness distribution and zs the camber distribution. Both z, and zs vanish at leading and trailing 
edges, zffc(y),  z f fc(y) ,  a w and the incidence a will all be taken as at least first-order small quantities, where 
c(y) is the local chord. 

Following Weber 2, we now assume that a singularity distribution on the plane z = 0 produces the same 
velocity field--to second-order accuracy--at this control station, as would the singularity distribution on the 
twisted chordal surface. Such an assumption has to be made here, since we intend to employ the Ledger- 
Sells 3'4 computer subroutine which applies only to singularity distributions in a plane. The assumption is not 
unreasonable, because the most significant contribution to the integral for a velocity component comes from 
spanwise stations near the control station, which lies in both surfaces, and moreover the two surfaces are nearly 



parallel at this station, depending on the local behaviour of the (assumed small) quantity daT/dy*. As 
remarked by Weber 2 the assumption fails at the centre line of a wing with dihedral of first-order magnitude, 
and so any dihedral will be assumed to be of at most second-order magnitude, so that we can ignore it. (Overall 
dihedral can be treated if and when necessary, by considering singularity distributions in two half-planes). 

Source and doublet distributions are placed, then, in the wing chordal surface, and we shall assume that at a 
particular value of y with an associated local plane H, the velocity field would be approximately the same if the 
aforementioned distributions were placed instead in the projection of the wing on II. The shape of this 
projection, the apex of which is at 0 (see Fig. 1), is independent of aT to first order, and can be taken as that of 
the projection on the basic reference plane z* = 0. Let the perturbation velocities due to these distributions be 
(in the xyz-coordinate system) 

u, = [u , (x ,  y, z ,  .4- z,), v,(x,  y, z~ + z,), w~(x, y, z ,  + z , )  

=[u,(x, y, z,+z,),  v,(x, y, z,±z,) ,  +w,(x, y, z,±zD] (2) 

and 

ul = [ul(x, y, z~ + zt) ,  vt(x,  y, z~ + zt) ,  wl(x ,  y, z~ + zt)] 

= [ ±  ut(x, y, z, + z , ) ,  +v~(x, y, z, + zD,  w~(x, y, z~ + zD], (3) 

where the upper and lower signs correspond to upper and lower wing surfaces, respectively. 
The incident free stream makes an angle a + aT(y) with the local x-axis, see Fig. 1, and so in the local (x, y, z) 

coordinates it has components 

Uoo = [cos (a + aT), O, sin (a + aT)]. (4) 

The surface boundary condition of vanishing normal velocity is 

(Uo~+u, +u t ) .  grad [Zw(X, y ) -  z] = 0. (5) 

Substituting for all quantities in equation (5), we have 

u(%oz,)+ o 
Ox Ox/ ',Oy Oy/ 

(6) 

where 

and 

U = cos (a  + aT) + U,(X, y, Z, ± Z,) + UI(X, y, Z, + Z,), ] 

/ 
V= v,(x, y, z,+zs)+vdx, y, z,+zs) t 

! 
W = s i n  (a + aT) + Wt(X, y, Z, + Zs) + WI(X, y, Zt + Zs).J 

(7) 

We have obtained equation (6) by a simple method based on the geometry of Fig. 1, but it is derived 
rigorously (to second order) by Weber 2, both at and away from the centre section y = 0. 

The sign convention of equations (2) and (3) implies the assumption that the upper surface lies entirely 
above the local chordline and that the lower surface lies entirely below it; that is, [zs[ < zt for all (x, y) on the 
planform. However, for two-dimensional flow the derived formulae can be given a meaning and can produce 
meaningful results, even for a section with large camber so that part of the chordline lies outside the section. It 
is reasonable to expect similar behaviour in three dimensions. 

* By a quasi-two-dimensional analysis, it can be shown that the errors in ut and w~ due to this assumption are 
of the order (zw/c)(daT/dy) times integrals of the source and doublet distributions respectively, i.e. 3rd order, 
and in general that the errors in wt and u~ are smaller still. 



3. Taylor Series Expansion in the Camber Ordinate 

Let  us assume that we have determined approximate source and doublet distributions and are ready to 
compute their velocity fields at collocation points for insertion into the boundary conditions (6), either to 
obtain better  approximations or to check the accuracy of the solution. Equation (6) may be considered in 
several ways. 

(1) Velocity components may be computed at the wing surfaces z = zs + zt for each collocation point. In 
principle, for untwisted wings this would give the residual error  in the boundary condition exactly. But whereas 
a single computation at z = zt (and use of equations (2) and (3)) suffices for these wings, with zs = 0, when zs ¢ 0 
the resulting velocity field computation at two values of z would approximately double the run times (because 
this computation takes up most of the total time), which is undesirable in itself and would also render  the whole 
method less competitive. Moreover,  when the wing camber is so large that the chordal (singularity) surface 
intersects the wing surface, zw might become very small at some points; the Ledger-Sells 3'4 subroutine for 
z # 0 would become ill-conditioned there, and the rather different (and larger) subroutines for z = 0 would 
have to be incorporated; this would increase the program size--a minor but still significant detail. If any such 
points (of small Izwl) were to lie on the centre line of a swept wing, a further problem would arise since in 
general ws would have a logarithmic singularity there. 

(2) Some velocity components (ut, vt, wl) may be computed on the chordal surface (z = 0) and the boundary 
condition transferred there by Taylor (Maclaurin) series expansions. (ut, vt and wt are immediately available in 
terms of the singularity distributions.) This approach has been thoroughly discussed by Weber  2 who points out 
that the method will fail at the root y = 0 of a swept wing, where neither wt nor w~ may be expanded in 
Maclaurin series, and does not recommend it near a wing tip either. She has suggested a hybrid method in 
which computations near root and tip are performed on the surface z = Zw instead, as in (1) above, and makes 
out a case also for surface computations near the leading edge. As remarked above, this method would 
encounter  difficulties for a wing with large root or tip camber; further, if the singularity distribution is such that 
the velocity field computed at the surface z = zw differs significantly from that found by Maclaurin series (and 
computations at z = 0), then there may be a numerical mismatch between the respective computation regions; 
this may lead to irregular behaviour in the corrections to the singularity distributions, and this in turn to 
spurious fluctuations in the computed velocity fields at the next iteration cycle. While not necessarily serious, 
this situation should preferably be avoided if possible. 

However,  we shall show later (Section 5) that despite the regional limitations, Maclaurin series can be 
advantageously employed to reduce the number of iterations required in our procedure. 

(3) In an earlier pilot program for symmetrical wings which has been proven reasonably accurate and fast, 
field computations were done on the surface z = zt. A simple extension suggests itself in which these are done 
in conjunction with two-way Taylor expansions about the 'thickness surface' z = + z, for the velocity 
components on the actual wing upper and lower surfaces. This method partly shares the advantage of 
wing-surface computation over Maclaurin series, because the 'thickness surface' will be nearer to at least one 
of the actual surfaces than the chordal surface, and may be nearer to the other one also (if Izsl < lz,), so that this 
Taylor  series should be more accurate than the corresponding Maclaurin one. This advantage will be 
particularly marked near the leading edge ~ = 0, because (for conventional sections with rounded noses) z~ 
goes to zero faster than zt does, as ~:~ 0. 

The proposed Taylor series method also shares the advantage of the Maclaurin series approach over 
wing-surface computations, of computing at only one value of z; all three components of ut or u, must still be 
computed by double integration, but as the Ledger-Sells subroutine now computes all three in parallel, with a 
saving in arithmetic, there would not be much difference in computing times between Maclaurin series and 
Taylor series methods. 

Further,  although wt and w~ do not possess Maclaurin expansions at the root  of a swept wing, they still 
possess Taylor expansions valid in some neighbourhood of z = zt > 0, and so the method can be applied at the 
root. From a strict mathematical viewpoint, Taylor expansion is valid only up to the nearest singularity which 
in this approach is z = 0, and so we should require Izsl < z,; for Izsl > z, the full infinite Taylor series would 
diverge; but as computation of an infinite number of terms is not practicable, we shall content ourselves with 
the first two terms only, which will exhibit the local behaviour sufficiently near z = zt, i.e. for sufficiently small 
z~, and which will provide a continuous formal extension, which cannot diverge, to larger values of z,. We can 
argue that z = 0 is not a real singularity of the physical flow (which is unique outside the wing surface, and only 
changes inside the surface according to the type a n d  posi t ion of the singularities representing it), and thus the 
results of our two-term Taylor expansion can indeed be meaningful for some Iz~ [t> zt. 

This argument also makes it easy to justify the sign convention in equations (2) and (3), starting with the 
remark that (since zt > 0) both these equations are correct on the 'thickness surface' z = + zt. 



In a neighbourhood of z -- z~ then, we formally write the two-term Taylor  expansion for a typical velocity 
component ,  say ut: 

. Out, 
u,(x, y, z, 4- z~)= u,(x, y, z,)± zs 0--~-(x' y, z,)+ O(z~) (8) 

with similar expressions for v,, wt, uz, v,, wz. From now until further notice, we shall work with these quantities 
at z = zt and drop the brackets (x, y, z) .  We then have for the complete velocity U = Uoo + u, + u~ = (U, V, W) 
(see equation (7)) on the wing surface, the relations 

\ Oz / 
(9) 

(10) 

and 

W=sin(a+aT)+(z~-~+wz~+(wt+z Ow~] 
", OZ / s OZ ]" 

(11) 

These equations can now be used in equation (6) and will also be needed to obtain the pressure coefficients 

Cp = 1 - ( U 2 +  V2--{ - W 2 ) .  (12) 

Within second-order  theory, for both equations (6) and (12) we can write sin (a + aT)  ~. ot + Ol T in equation 
(11), and for the boundary condition (6) (but not for equation (12)) we can write cos (a + aT) -- 1 in equation 
(9). Making these changes, we have 

U =  Oo 4- O l (  

V = Q2 4- Q3 

W = Q5 4- Q4 

(13) 

with 

, Out 
Q0 = l + u t * z s - ~ z ,  (14) 

OUt 
O l  = Zs-~z q- Ut, (15) 

. Ovt 
Q2 = v, -~ zs-~z, (16) 

Q3 = Z s ~ b  t)l, (17) 

OWl 
0 4  = wt + Zs 

az 
(18) 

and 

aWt 
Q5 = a + Ol T "[- Zs"2---'[- W I. 

07. 
(19) 

8 



Substituting values (13) into the corresponding square brackets in equation (6), we have 

/c3zs Ozt\ +Q /Ozs+Ozt\ 
(20) 

Multiplying out, equation (20) becomes 

R1 + Rt = 0 

whence we obtain the symmetric part of the boundary condition 

Rt = 0 (21) 

and the antisymmetric part 

Rt = 0 (22) 

where 

_ Ozt Q c3zs+ c3zt+ OZs 
Rt=(.~O-~x-t- 1-~X 02- '~ O 3 - ~ y - Q 4  (23) 

-- OZs - OZt OZs 
R:= tJO ~x + Ol~x-x + 

Q2 -~y d- OZt Q3~y - Os. (24) 

Rt and Rl are called residuals, for a reason which will become clear later. 
It is convenient here to introduce the local coordinate system used. The local percentage chord ~ is given by 

x = XL(y) + c(y)~ (25) 

where xL(y) is the leading edge ordinate and c(y) is the local chord. We can define a variable ~ = y to go with ~, 
and use 0/a~ to denote partial derivatives with respect to ~ along lines of constant percentage chord ~. Then 
from equation (25) 

0 1 0 
Ox c O~ (26) 

and, writing x [  = dxL/dy, c'= dc/dy 

0 0 . r  , 0 0 . 0  
=-z-=- (XL+ C ¢)7-- = ' : : - -  tan A-Z-- 

orl ox or 1 ox 
(27) 

where A = arctan ( x [ +  c'~) is the local sweep angle. 

4. Determination of the Velocity Field Derivatives 
4.1 General 

We assume that at this point in an iteration cycle, we have obtained approximate source and doublet 
distributions and that we have computed their velocity fields ut, nz at discrete collocation points [x, y, zt(x, y)], 
following the procedure of Section 3. The next step is to substitute ut and nt into the expressions (24) and (25) 
for the residuals. To do this, the z-derivatives occurring in O0. • • Os given by equations (14) to (19) must also 
be determined numerically, and this is not a trivial matter. 

It may be enquired, whether we can simplify the problem by making use of the values of wt, ut and vx which 
are known on z = 0, being simply related to the source and doublet distributions. There are two reasons for not 



doing this. At the root, we intend to make use of line source and doublet distributions on y = z = 0, to improve 
the quality of the solution there (see Appendix D); thus we do not have this information at all at the root. Also, 
near the leading edge ~ = 0, w,, us and v~ (on z = 0) generally become large like ~-~, and (following Lighthill's 
theory; see Appendix C) we intend to make the solution uniformly valid near the leading edge by stretching the 
~-coordinate; these two facts would impose an intolerable strain on numerical differentiation between z = z, 
and z = 0. 

We therefore want to determine the derivatives from the values of u computed on z = z,(x, y). To attack the 
problem, we draw two families of curves on the thickness surface z = z,. One family is generated by the 
intersections of the thickness surface with sectional planes y = constant, and we may call these, chordwise 
curves. The other family is generated by the intersections of the thickness surface with the (not necessarily 
planar) surfaces ~ = constant; these we may call spanwise curves. Let  the arclength along a chordwise curve, 
measured from the leading edge to some point P, be Sl, and that along a spafiwise curve (measured from the 
root) be s2; also, let tl be the unit vector tangent to the chordwise curve at P, and t2 the unit vector tangent to 
the spanwise curve (Fig. 2). If a typical velocity field component u has been computed at the intersections of 
the two families of chordwise and spanwise curves, then by regarding u as a function of sl and s2 we can obtain 
the surface derivatives, Ou/Osl along t~ and Ou/Os2 along t2, at each point P by numerical differentiation. 

We remark that the program has been arranged to compute the chordwise derivative Ou/Osl by cubic spline 
fit, and the spanwise derivative Ou/Os2 by a simple quadratic fit through three points at a time. We chose the 
latter technique because we discovered that in a simple case with some variation along a spanwise curve near 
root and tip but hardly any in mid-semispan, the spanwise cubic spline fit produced a small oscillation in the 
(presumed smooth) mid-semispan region. This is an occupational hazard for the user of cubic spline fits; it can 
frequently be tolerated if the oscillations are small enough compared with the intrinsic variations, but 
otherwise we prefer not to have them. We do not claim complete accuracy in the numerical derivatives either 
way, and particularly not in the chordwise derivatives near the leading edge (we have checked these for two 
analytic functions). Tile leading edge is a sensitive region but we do not know how to improve the treatment 
there, apart from the crude acquisition of more data; we have tried suitable reflection of the data in the axis 
s~ = 0 but we found surprisingly that this only made matters worse. However,  we bear in mind that the end 
results of the present computation are derivatives like 3u/Oz which will be multiplied by the local camber zs, 
and since z~ ~ 0 as the leading edge is approached, larger errors may perhaps be tolerated in this region than 
elsewhere. 

Returning to the task at hand, we consider first the chordwise curves. Let 01 be the angle between the 
tangent vector tl and the x-axis (Fig. 2), so that tan 0~ is the local chordwise slope of the thickness surface: 

OZt 
tan 01 = _  . 

Ox 

By resolution along tl, or by rotating coordinate axes, we have 

Ou Ou 
- - c o s  01 +Ou sin (28) 1 ~ - - "  Ox Oz Osl 

Similarly, if u = (u, v, w) stands for either u t  or us, v and w satisfy the equations 

and 

Ov Ov Ov 
- - c o s 0 1 +  sin 0 1 = - -  
Ox Oz Osl 

0w 01 =0w 
- -  cos 01 +Ow sin 
Ox Oz Osl 

We can establish similar relations among the derivatives by considering the spanwise curves. Let  a typical 
spanwise surface length element ds2, aligned with the vector t 2 be resolved into length elements dx, dy, dz, let 
02 be the angle between t2 and the (x, y)-plane and let A be the angle between the y-axis and the projection of 

10 



t 2 o n  the (x, y)-plane (Fig. 3). Thus tan 0 2 is the local slope of the thickness surface along the spanwise curves: 

tan 02 =--0zt 
0R 

Also A is the local sweep angle, as before. From Fig. 3, we have 

OX 
- -  = C O S  0 2  sin A---- (t2)x, 
Os2 

Oy 
- -  = C O S  0 2  C O S  A -  (t2)y (31) 
OS2 

and 

Oz 
- -  = sin 02 - ( t 2 ) z .  
0s2 

Hence,  for the field quantity u 

On Ou Ou 
- -  COS 0 2 sin A+  ~ cos 02 cos A + - -  sin Oz = ---  
Ox Oy Oz 8s2" 

(32) 

Similarly 

Ov A +Ov A+ Ov 02 =Or 
- -  cos 02 sin cos Oz cos sin 
OX Oy OZ 0$ 2 

(33) 

and 

0_~w A +  0w A +  0w ~w 
cos 02 sin cos 02 cos sin 02 = - .  

Ox Oy Oz Os2 
(34) 

The six equations obtained thus are completed by the relations for irrotational flow (curl u = 0 ) :  

Ow Ou 
Ox Oz' (35) 

Ow Ov 
Oy Oz' (36) 

Ou Ov 
- -  = - -  ( 3 7 )  
3y 8x 

and the relation for conservation of mass in incompressible flow (div u -- 0): 

Ou Ov Ow 
- - + - - + - -  = 0 .  ( 3 8 )  
3x 3y 3z 

We now have a total of ten linear equations for the nine unknowns Ou/Ox, etc. However,  the first nine 
equations are not linearly independent.  Let  us write [grad u] for the second-order tensor whose components 
are Oui/Oxj, where ui - (u, v, w) and xj -- (x, y, z). Since the tensor is symmetric, OuffOxj = OuJOx~, the two 
double scalar products with tl and t 2 a r e  equal: 

[tx • grad u] .  t2 = [ t 2 .  grad u] .  tl 
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or, in suffix notation with summation over repeated suffices: 

Oui\ / Ouj\ 
ta,~xiJt2i = I t2i-~xiJtlJ" (39) 

The unit vector t~ has components (cos 01, 0, sin 01) and ~2 has components given by equations (31). Thus the 
components of t l .  grad u are given by the left sides of equations (28) to (30) and the components of ~2 - grad u 
are given by the left sides of equations (32) to (34). Equation (39) now tells us that a linear combination of 
equations (28) to (30) is equal to a linear combination of equations (32) and (34) (the coefficient (tOy for (33) is 
zero). For consistency the same linear combinations of the right sides ought to be equal, which gives on 
substituting into equation (39) 

Ou Ov 02 cos A + ~0-ff-w sin 02 = - - c o s  01 sin 01. - - C O S  02 s i n A + - - c o s  Ou +Ow 
OS 1 OS 1 OS 1 OS2 0S2 

(40) 

In fact, because of discretization errors in calculating the field derivatives with respect to sl and s2, the 
consistency condition (40) is not in general satisfied. However, if the error represented by the difference 
between the two sides of equation (40) is not large compared with the largest of IOu/Oz[, [Ov/az I and IOw/az[, 
then this gives us a measure of confidence in these values. This difference is in fact output by the program along 
with the z-derivatives, for both ut and ul, as a check. 

Despite the linear dependence, it turns out that we cannot safely ignore any one of the equations and simply 
solve the rest. We can examine two cases. 

(1) At the points of chordwise maximum thickness 01 = 0; invoking equations (35) to (37) here and 
throughout the analysis, equations (28) to (30) give 

Ou Ou Ov Ov Ou Ow 

OX OS 1 OX OS 1 ' OZ OS 1 

Substituting in equation (32), we get 

OU av aw O___u_u 
- -  COS 02 sin A+  ~ c o s  02 c o s  A+---- sin 02 ----- 
081 OS 1 OSl OS2 

which is the consistency equation (40) for this case, 01 = 0. Thus, if we keep equations (28) to (30), equation 
(32) is redundant; we shall then need the other equations, in particular (34). 

(2) At the leading edge 01 = 7r/2; equations (28) to (30) give 

Ou Ou Ov Ov Ow Ow 
-~Z=~SI ;  OZ OSl' OZ OS 1 

Substituting in equation (34), we find 

0/A 
- -  COS 02 sin A+ Ov cos 02 cos A+ Ow sin 02 = Ow 
0S1 OS 1 OS 1 OS 2 

which is the consistency equation (40) for 01 = ~-/2. Thus if we keep equations (28) to (30), equation (34) is 
redundant; we shall then need the other equations, in particular (32). 

It follows that if we keep (32) and ignore (34), the equations will become ill-conditioned near the maximum 
thickness positions 01 - 0; and if we keep (34) and ignore (32), the equations will become ill-conditioned near 
the leading edge, 01 - 7r/2. 

This immediately suggests that we seek a linear combination of equations (32) and (34), possibly depending 
on 01, which will produce the appropriate equation in each of these neighbourhoods. Let us then multiply (32) 
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by A and (34) by/z,  where A and/~ are to be determined, and add. This gives 

(A sin 02 + tt cos 02 sin A)-~-U- +/z  cos 02 cos A 0__vv + Ix sin 0 2 - ~ +  
OZ d Z  OZ 

+ h cos 02 sin A Ou + h cos 02 cos A Ov Ou Ow 
0 x  0 x  = ( 4 1 )  

Eliminating Ov/Oy between equations (33) and (38): 

Ow A_OU 0__v_v sin 02 - - -  cos 02 cos cos 02 cos A + Ov cos 02 sin A = Or. (42) 
Oz Oz Ox Ox Os2 

The five equations (28), (29), (30), (41) and (42) for the five unknowns Ou/Oz, Ov/Oz, Ow/Oz, Ou/Ox, Ov/Ox, 
possess a matrix A whose transpose A '  (written thus to save space) is 

sin 01 0 cos 01 h sin 02 -t- ltz cos 02 sin A 0 

0 sin 01 0 /x cos 02 cos A sin 02 

0 0 sin 01 /x sin 02 - cos  02 cos A 

cos 01 0 0 h cos 02 sin A - co s  02 cos A 

0 cos 01 0 A cos 02 cos A cos 02 sin A 

A , =  (43) 

The determinant of A' ,  det A '  = det A, can be expanded about its fourth column and written as the sum of 
two determinants: 

where 

and 

det A '  - hDx +/xD~ 

D~= 

sin 01 0 cos 01 sin 02 0 

0 sin 01 0 0 sin 02 

0 0 sin 01 0 - co s  02 cos A 

cos 01 0 0 cos 02 sin A - co s  02 cos A 

0 cos 01 0 cos 02 cos A cos 02 sin A 

= sin 01[sin 2 01 cos 2 02 + COS 2 01(COS 2 02 COS 2 A + sin 2 02) - 2 sin 01 sin 0z cos 01 cos 02 sin A] 

= sin 0111-(sin 01 sin 02+ cos 01 cos 02 sin A) 2] 

D/z 

sin 01 0 cos 01 cos 02 sin A 0 

0 sin 01 0 cos 02 cos A sin 02 

0 0 sin 01 sin 02 - co s  02 cos A 

cos 01 0 0 0 - c o s  02 cos A 

0 cos 01 0 0 cos 02 sin A 

= - cos  0111 - ( s i n  01 sin 02+cos 01 cos 02 sin A) 2] 

det A ' =  (h sin 01--~ COS 01)[1-  (sin 01 sin 02 + COS 01 COS 02 sin A) 2] (44) 

whence 
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We observe that D~ and D ,  are the determinants of the systems of equations got by omitting (34) and (32) 
respectively, and that DA vanishes when 0L = 0, and D ,  when 01 = 4-7r/2, which leads to the conclusions 
already established about these two systems. 

Now, since [A I < zr/2, the quantity 

sin 01 sin 02 + cos 01 cos 02 sin A 

lies strictly between the two expressions 

sin 01 sin 0z-COS 01 cos 02 = - co s  (01+02) 

and 

sin 01 sin 02+cos 01 COS 02 = COS (01 --02)  

which themselves lie between - 1  and 1. Hence the square bracket in equation (44) is always positive. By 
choosing 

h = sin 01, ]~ = - c o s  01 (45) 

we make 

and this ensures 

h sin 01- /z  c o s  O1 = 1 (for all 01) 

det A '  > 0 

so that the matrix A is non-singular, and the equations are made as well-conditioned as they can be. The final 
form of equation (41) is thus 

(sin Ol sin Oz-cos Ol COS Oz sin A)~z-COS Ol COS Oz COS A~z 

Ow Ou ~v 
- c o s  01 sin 02-2-- + sin 01 cos 0z sin A-- +sin 01 cos 02 cos A - -  

oz Ox Ox 

Ou Ow 
= sin 01 7 - -  cos 01 7 - .  (46) 

os2 os2 

4 . 2  T h e  C e n t r e  S e c t i o n  

When the wing is unyawed and flying without bank, so that the flow is symmetrical about y = 0, we have 
v = 0 on this plane and hence 

Ov Ov 
- -  = O, - -  = O. ( 4 7 )  
Ox Oz 

However,  because of discretization errors in the numerical computation of the derivatives 0/A/0S1, etc., if we 
were to solve equations (28) to (30), (46) and (42) at y = 0 the computed values of Ov/Ox and Ov/Oz would not in 
general be precisely zero. Instead of blindly using the computed values of the other  variables we need, Ou/Oz 
and Ow/Oz on y = 0, it seems advisable to make use of the information (47) in the solution. This is quite likely to 
be an improvement,  because in general when there is some doubt as to the exact values of quantities inferred 
from given information, the more information we have at our disposal, the better. 

The equation (29) is satisfied automatically by (47) and this leaves four equations for the three unknowns 
Ou/Oz, Ow/Oz, Ou/Ox. These equations can be solved approximately by least squares. The coefficients of the 
least-squares equations are combinations of the elements of the matrix (43), and as these elements have to be 
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coded in the program anyway, it is most economical (in coding effort, compilation and program size) not to 
write down or explicitly to code the coefficients as functions of 01, 02 and A, but to code the combinations 
instead. The details as programmed are set out in Appendix A. 

5. Iterative Calculation of the Planar Source and Doublet Distributions 

In this section we show how to derive initial source and doublet distributions q(1)(x, y),/(1)(X, y) to start the 
iteration cycle. To improve the quality of these initial approximations, and thus to reduce the number of 
iterations required for adequate convergence, an inner iteration scheme is employed. The same technique is 
used subsequently, when from singularity distributions q("), 1 in) at the nth iteration we have computed velocity 
fields u~ "), ul ~) and residuals R(t n), RI n) from equations (23) and (24); we can similarly derive additional 
perturbation distributions hq ("), AI (~) to yield the next set of singularity distributions 

q(n+x) = q(~) + Aq(n) 

and 

I(n+l)= l(n)+A/(.)" 

The iteration cycle will then be closed. 

5.1 Basic Solutions 

If we start out from the situation where there is just the uniform free stream and neither source nor doublet 
distribution, u~ °~ and u~ °) are both zero and from equations (14), (19) and (23), (24) we have 

and 

R ( O )  Ozt 
t = - -  (48) 

0x 

R~°) OZs . 
= ~-X --  (O/ "[- a T ) .  ( 4 9 )  

In linear theory, both these conditions are transferred from the wing surface to the chordal plane z = 0. 
Following the classical procedure as in Ref. 2, we can regard R(t °) as a deficiency in the symmetrical (source) 
velocity component wt(x, y, 0) and add the basic source distribution 

qB(x, y) = 2R~ °)= 20zt (50) 
Ox 

to cancel this deficiency. This satisfies the boundary condition (21) to the first order, but not exactly. We also 
regard RI O) as a deficiency in the antisymmetrical (doublet) velocity component wL(x, y, 0) and add a basic 
doublet distribution lB(x, y) which satisfies the double integral equation of classical lifting-surface theory 

8---~ (--~_-yS-~[,, [(x_x,)2+(y_y,)2]~ dx 'dy '=R~ °) 
planform 

OZs 
= - - - -  ( ~  + aT) -  (51 )  Ox 

Assuming that the solution of this equation exists, the boundary condition (22)is now satisfied to the first 
order, but likewise not exactly. 

In subsequent iterations, R t and Rt can likewise be thought of as deficiencies in wt and wt which can, as in 
linear theory, be transferred to z -- 0 and approximately cancelled by extra source and doublet distributions hq 
and Al satisfying equations similar to (50) and (51): 

Aq(x, y) = 2Rt (52) 
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and 

1 II Al(x ' , y ' ) f .  x - x '  } 
8---~ (-y - ~ ' - ~  / 1 + [(x - x') z + (y - y')21-~ dx' dy' = R, 

planform 

(53) 

Since we actually have to compute ut and ut on the thickness surface z = zt, the boundary conditions are still 
not quite satisfied next time, but the residual error fields R ~t n), R I n) hopefully become smaller as n increases. 

The task of solving equation (53), or the special case (51), exactly for a swept wing is very difficult. Moreover,  
as equation (53) will have to be solved for several different right sides as the iterations proceed, it is most 
undesirable that any method of doing this should consume much computer time, compared with that needed to 
evaluate velocity components. On the other hand, if equation (53) can be solved quickly and fairly accurately, 
then any errors in this first-order solution will accompany those due to the evaluation of velocity components 
on the surface, and will be taken into account at the next pass. This can be done by the vortex lattice method, 
which has been programmed by Carr-Hil119. In this method, each half wing is divided into M~ panels by lines 
y = constant, and the panels may be of any convenient widths except that the last panel before the wing tip 
should have a width four times its distance from the tip. These panels are bisected by other lines y = constant = 
Y k  + l ( 1 ~ k <~ Mr), say. These spanwise stations are the collocation stations at which computations will actually 
be done; thus the distribution of spanwise collocation stations ought to be compatible with a spanwise 
vortex-lattice panelling suitably tailored to the wing planform. The value y = Y~ = 0 is reserved for the centre 
line. We use a version of the subroutine with a Multhopp chordwise distribution of alternating vortex and 
downwash stations, in order  to cope with camber variations near the leading edge. With a number L~ of 
chordwise panels, the vortices are placed at the chordwise stations 

1 [1 - cos  ( 2 P -  1)It] £ , = ~  ~-~ +-~ j (1~< P~<L~) 

and the downwash sensing stations at 

[ 2P~- ] 
~D = 1 - cos - - 2 L ~  + 1] (1 ~< P~<L°)" 

Now the downwash field due to a vortex element is directly proportional to the strength of the element, so by 
calculating the downwash at every sensing point due to every vortex element per unit strength, a matrix A of 
order L~M~ can be set up to give the downwash field in terms of the vortex elements. The matrix A can be 
inverted once for all, and then the vortex element strengths can be found for any downwash field. Finally the 
loading coefficients ACp (doublet strengths l) can be calculated and output at the mid-points of the vortex 
elements, i.e. again on the bisecting lines y = Yk+l. 

The Ledger-Sells subroutine requires singularity data at the Weber  points (L in number) 

£w = ~ [ 1  - c o s  (1 <~P<~L) 

and, except for the leading edge P = 1, it outputs velocity fields at the same stations. So the residual field R~ is 
calculated at Sew and interpolated to £D for input to the vortex lattice subroutine, and the resulting doublet field 
l output at £~ is factored with [£/(1 -~)]~ to remove the end-point singularities and interpolated back to ~w- 
Both interpolations are done by a cubic spline fitting subroutine. 

The method is reasonably quick for the first pass with a given vortex lattice grid, the calculation and 
inversion of a typical matrix of order 80 taking about 100 mill s on an ICL 1907 computer,  and is very quick 
thereafter as the inverted matrix is available for subsequent iterations and can also be stored on magnetic tape 
for future use. 

5.2 Modification by [nner Iteration with Madaurin Series 

Although it may be mathematically quite satisfactory to construct an iteration scheme and to demonstrate 
that it converges, in a program of this kind with a large iteration cycle time, it is almost essential to keep the 
number of cycles as small as possible. We can expect that to attain accuracy to within a few per cent at least two 
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cycles will be needed (for wings with thickness ratios typically of the order of 10 per cent, the first order 
solution is not good enough), and the pilot program for uncambered wings typically required 3 cycles for 
acceptable accuracy• For such wings, if the basic doublet distribution 1B is assumed to be of fiat-plate-at- 
incidence character, the theory of the R.A.E. Standard Method 6 enables us to modify lB into a better 
approximation 1 (I) by a simple factor; the source distribution qB can be modified with slightly more labour, 
using a Maclaurin series expansion, and then the number of iteration cycles needed for the same accuracy is 
typically reduced to 2. For cambered wings the simple modification to IB fails, but we can instead extend the 
Maclaurin series approach to derive both source and doublet modifications, including the extra terms due to 
camber. 

In a preliminary run, on a wing with admittedly large camber, this approach turned out to be insufficient. The 
difficulty is in the cross-coupling between the symmetrical and antisymmetrical boundary conditions, which 
presents a further set of error terms in the residuals (23) and (24) when these are worked out from the velocity 
fields due to the singularity distributions derived from the previous residual errors; this adversely affects the 
convergence ratios and the number of iterations needed for a given accuracy. Still further improvement to the 
singularity distributions is required, and having set down the modifications to the basic approximations qB, IB 
for cambered wings, we show how to extend our treatment so as partly to counterbalance the cross-coupling 
effect and again to attain the accuracy we desire with only two iterations. 

We return to the ordinary (exact) boundary condition, ,keeping it i n  the form of equation (6) for 
compactness, and construct an inner iteration sequence• Let u ('p) = u (, 'p) + ul 'p) be the complete perturbation 
field at the n th main (outer) iteration and pth inner iteration. Then the residual R("'P) in the ordinary boundary 
condition is 

R(n'P)=OZ--W[cos (Ol.-['(TgT)"~-u(n'P)(xrt y, Zw)]-~OZwlA(n'P)(x, y, Zw)--w(n'P)(x, y, Zw)- - s in  (c~ + C~T). 
ox Oy 

(54) 

Now, let us suppose that corresponding to u ('p) we have an estimate for the residual field R("'P), either from the 
main iteration (at the start of the inner iteration) or from a previous inner iteration. Using the techniques 
described in the previous sub-section, we compute additional source and doublet distributions Aq, Al 
producing additional velocity fields Au = Aut + Aul, so that on the plane z = 0 

Aw(x, y, 0) -- R ('p). (55) 

Equality will not hold precisely because the vortex lattice technique used for the lifting-surface theory is not 
exact. The new velocity field 

U ("'p+I) = U ("'p) -t- AU 

produces the residual field 

R (n'p+l) =--~-E[cos (or q-OtT)q- U(n'P)(X, y, Zw)+Au(x , OZw (n,p) ox y, [v (x, y, Zw)+Av(x, y, Zw)] 

- [ s in  (a + aT) + W("'P)(X, y, Zw) + AW(X, y, Zw)]. 

Following Weber 2, we now expand Au in Maclaurin series (about z = 0) in regions where this is valid, and also 
use equation (54) to get (all quantities evaluated here at z = 0) 

R in'p+1)-= R ( ' p ) -  [Aw OAw 2 "l Oz~ .  + + 0(z wau)J + 0(z au) + °zwav + 0(z  au). 
0y 

Neglecting the higher order terms and using the continuity equation to eliminate OAw/Oz, we have 

• (n p) 0 0 
R ('p+I)=. R " -AW+~xx(ZwAU)+--(zwAv). 0y 

(56) 
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Substituting from equation (1) and the analogues of equations (2) and (3) on the chordal surface, 

R ("'P+')= R ¢"'p) - [±  Awt + Awt] + O [ ( ±  zt + z~)(Aut + Aut)] + ~ y [ ( +  z, + z~)(At) t ± Art)] 

so that (with R = ± Rt + Rl) 

(9 0 
R(/~'p+ I} = t~ ,"("'P)- A ,,, +_d_xx (ZthUt + ZsAUt) +.ff_dy (Z,Avt + z, Avt) (57) 

and 

Rl"'P+ ') = Rl"'P)-- A wt + O  (z,Auz + zsAut) +-;y (ZtAvt + zsAv,). (58) 

In the same way as for the basic source distribution (50) or for the source distributions derived from exact 
residuals (on the thickness surface) (52), A w t -  Awt(x, y, 0) can be made precisely equal to R(t n'v) so that the 
first two terms in equation (57) cancel; and by using vortex lattice technique as for the solution of equations 
(51) or (53) we can approximately cancel Awt against RI n'p) in equation (58). (We observe that for the error in 
this cancellation to be of the same order as the terms neglected in deriving equation (58), the numerical error in 
the vortex lattice method should be of third order magnitude in Zw/C, Au. A shortcoming of the scheme is that 
at present this cannot be guaranteed in practice, for example near the root of a highly swept wing.) 

With certain expressions or estimates for Aut, At)t, AUt, At)l, equations (57) and (58) now furnish new 
estimates for the residual field R (n'p+l) corresponding to u ("'p+I), and the inner iteration cycle is complete. 

These equations are of course not new. With Au = u,n +urn, um being derived by simple two-dimensional 
and sheared-wing solutions of the lifting-surface equatiofl (51), they lead to the second-order terms of the 
R.A.E. Standard Method. With Au = u (1), equations (57) and (58) are also derived and discussed in Ref. 2, for 
the purpose of a single second-order calculation. As remarked in Section 3 above, to implement Weber 's  
approach via Maclaurin series we should now need the Ledger-Sells subroutines for z = 0, in order to 
compute u,, v, and wt precisely by double integration; however, to do so here would imply a very lengthy inner 
iteration which would defeat its own object. 

When qn is known from equation (50), the work of Kfichemann and Weber 5 as amplified by the Standard 
Method 6 provides quick estimates for um and VtB. We can treat the general perturbation source distribution 
Aq = 2R(t "'p) in exactly the same way. We first calculate a generalization in terms of local percentage chord 
~:, o-(s c, y), of the function S(1)(~) (Ref. 5): 

d( o'(n'P)(~, y) = l  lol R~"'P)(~', y) ~_ ~,. (59) 

A subroutine for evaluating this Cauchy principal-value integral at the Weber  points ~:w is incorporated in the 
program. The estimates we seek are now given by 

and 

Aut = K3 Or(n'p) cos A - K f f ( A )  cos AR(t "'p) 

Av, = - (1  -[K2[)o -(n'p) sin A 

(60) 

(61) 

where 

= l l n _  l + s i n A  /(A) 
7r 1 - s i n  A 

and Ke(y) is an interpolation function which is zero over the mid-semi-span (sheared wing) region, rises to one 
at the root and takes negative values near the tip. We write, as in Ref. 6 or 7 

K 2 = K c - K T  . 
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KT is the contribution from the tip, and we adopt Wooller's formula given in Addendum 1 to Ref. 6: 

0 . 073 -0 .098u '  
K r =  0 .104+u '  u ' < 0 . 7 4 5  

0 u' > 0.745 

where u'= (s-y)/CT, S being the semi-span and CT the tip chord. If the actual tip chord is zero, as for a 
curved-tip wing, Cr is taken as 0.4 times the chord at 75 per cent semi-span. 

K~ is the contribution from the root (centre line). Wooller gives a formula for K~ also, but examination of 
preliminary results for a 45 degrees swept constant-chord wing indicated that better values of K2 could be 
found and would agree well with those suggested by Carr-Hill 2. The author fitted a rectangular hyperbola to 
these values, and the result was 

i 1611-0"3052u u<0-528  
K~ = 0 .1611+u  

u > 0.528 

where u = y/CR, CR being the root chord. This choice of K2 is not claimed to be the best possible, and it is quite 
likely that the optimum choice varies from one wing to another, taper effects being especially likely to prove 
significant; but we hope it is a good mean choice over the range of most practical wings. 

The calculation of the other interpolation function K3(y) is complicated 6, and since it does not normally 
differ much from 1, the approximation/(3 = 1 is used here. 

When Al is known (approximately) from the vortex lattice subroutine, we have also 

Auz =¼A/ (62) 

and since Ant is irrotational, making use of equation (27) 

x 

Av,= f (OAut/Oy)dx=-~(f~L¼AIdx)-Au, tanA. (63) 

We can now examine equations (57) and (58) to see if they will maintain the correct behaviour near the leading 
edge ~ = 0. We consider wings for which zt = 0(~ ~') and zs = 0(~) for ~ +  0. Let us assume as an induction 

• --/- t l  • 

hypothesis that away from the centre section, R~ n'p~ and hence Aq are 0(~ 2) and that RI 'p~ is 0(1). The 
induction starts, because R~°'°>=Ozt/Ox =0(~ -=) and R~°'°~=OzJOx-(a+ar)=0(1). Then o-(n, p) from 
equation (59) is 0(1) and Al and Aut, Art from equations (62) and (63) are 0(~-~). From equation (61) 

. n( ,p)  at~ ~ The art Art = 0(i). From equation (60) Au, has one part 0(1) and the other part, with the factor ~ ,  " , ~,ts--). P 
( n  p + l )  2 ( n  p + l )  0(1) now gives R,  ' ,  = 0(~--) and R t ' = 0(1), and as far as this part goes the induction proof is complete. 

The other part 0(s c-~) would not disturb R~ ~'p+I) (it would give a contribution 0(1) but we always extrapolate R, 
to the leading edge on a ~:-~ basis anyway), but it would give R~'P+~=0(~:-~) and thus break down the 
induction proof and damage the convergence of the inner iteration. 

We must therefore modify the second term of equation (60) so that Aut has both parts 0(1). This can be done 
by generalizing the 'Riegels rule '2 and re-writing equation (60) in the form (compare Ref. 7) 

R ~n,p) 
Au, = o -{n'p> cos A - K 2 f ( A )  cos A[1 + R~,.v~2]_~. (64) 

We have now only to compute some derivatives of equations (64), (59), (62) and (63) for insertion in 
equations (57) and (58) to close the inner iteration cycle. The calculations are straightforward and are set out in 
Appendix B. 

We comment that when z~ = 0, the Au~ and Avt terms drop out of equation (57) and for the first inner 
iteration of the first main iteration (n = p  = 0) we recover the expression used in the pilot program for 
uncambered wings, for q~l~ = qB + Aq. We expect to do better with our inner iteration cycle, employed not just 
as the first main iteration but for the next one or two also. 
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As remarked in Section 3, the Maclaurin series approach fails at the root of a swept wing, and so, after the 
first inner iteration, Aq is extrapolated to the root (by a parabolic fit from the first three outboard stations). The 
root values of Awl are not required by the vortex lattice subroutine, but the output doublet  distributions Al are 
also extrapolated to the root. Both Aq and Al are further extrapolated to the last spanwise data station before 
the tip, at which computations of ut(x, y, zt) and at(x, y, zz) by the Ledger-Sells subroutine 3'4 would probably 
not be accurate and so are not performed, nor are vortex lattice calculations. 

From equations (55) and (56) we expect that 

R("'P+I) = O[R(",P)Zw/C(y)] (65) 

and hence that for sufficiently small zw/c the successive residuals will decrease. We generally exit from the 
inner iteration after 5 cycles or when JR, I, IR~t<0.001. (It is arguable whether as many as 5 cycles are 
worthwhile; but the computation time per cycle is very small compared with the main iteration cycle time.) 

It should not be thought that inner iteration, with a sequence of residuals decaying in the manner of equation 
(65), is a means of restoring the neglected terms 0(z~Au) in equation (56). If we repeat the analysis leading to 
this equation, keeping the neglected terms, we find that they are still present in the next residual approxima- 
tion, along with the next set of otherwise neglected terms, so that as the inner iterations proceed, they will 
accumulate. What the inner iteration does is to take into account the effect of repeatedly transferring 
successive simple approximations to the true residual error from the wing surface to the chordal surface; the 
effect of transferring the errors in the approximations is lost. But this is where the main iteration comes to our 
aid, for this effect will reappear when we evaluate the residual errors properly, on the thickness surface. The 
point is that if the errors in the approximations are of higher order than the approximations themselves, then 
the remaining residual errors in the main iteration will be of higher order than they would have been without 
the inner iteration scheme. 

Other errors, which accumulate invisibly as the inner iteration proceeds, are: in R~, the successive true field 
values of the lifting surface approximation error (RI ~'p)- A w~); in both Rt and R~, the difference between true 
values of Au, and approximate values derived from the Standard Method (with a very ad hoc Riegels rule), and 

• ( n , p ) .  • in these, the errors due to numerical integration of the Cauchy integral (59) for o- ; numerical integration of 
(63) for Av~; numerical differentiation of Au,, Art, Au~, Avl; and possibly the extrapolations to the root and 
near-tip stations. The root extrapolations have the virtue of maintaining smooth spanwise behaviour of the 
singularity distributions and so satisfying an implicit condition for the accuracy of the Ledger-Sells sub- 
routines3"4; since no account is taken of the residuals at y = 0 in the inner iteration, we can expect 
comparatively large values there when we evaluate them in the main iteration, but we can improve the 
situation substantially by placing a line source and llne doublet distribution on the root line y = z = 0. (See 
Appendix D.) So all these errors are likewise taken into account in the main iteration scheme. 

6. Results 

6.1 High Aspect Ratio Unswept Wing 

As a first test of the accuracy of the Taylor series expansions, calculations were made for an unswept, 
untapered wing with a constant spanwise section• The aspect ratio was taken as 60, this being judged 
sufficiently large to produce two-dimensional flow conditions at the centre section to at least three significant 
figures, enough for graphical accuracy. The section was a 'medium' camber Karman-Treff tz  aerofoil, as 
studied by Foster 12 for which the two-dimensional flow is known analytically; the thickness/chord ratio was 
13 per cent, the camber ratio 9 per cent, and the trailing-edge angle 10 degrees. The section ordinates at 72 
points are listed in Foster's report,  and the section is shown at the top of Fig. 4. We see that the camber ordinate 
zs is larger than the thickness ordinate zt over most of the chord, being about twice as large around £ = 0.7, and 
so this is quite a severe test case for the hypothesis, put forward on physical grounds in Section 4, that the 
region of validity of our Taylor series is not restricted to Izs I~ < zt. 

We consider first the predictions for the chordwise distribution of pressure coefficient Cp at zero incidence. 
Fig. 4 shows the analytic result and also the successive results from three iterations of the present method. We 
see that the present method converges quickly over most of the chord, the second and third iterations being 
indistinguishable except near the leading edge. We also see that the level of absolute error is acceptable except 
at the three stations near ~ = 0.3 on the upper surface, where it is around 4 per cent; this corresponds to about 3 
per cent error in perturbation velocity. This final error has been investigated with the help of the analytic 
solution (the Karman-Trefftz  transformation), which we have continued across the upper surface to the upper 
thickness surface z = zt (we can do this as we do not cross a singularity of the circle transformation function). 
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Using this solution, we computed the velocity fields u, w and their derivatives Ou/Oz, Ow/Oz on the upper and 
lower thickness surfaces, and then in order  to see whether the two-term Taylor series was everywhere 
adequate,  we inserted these analytic values into the Taylor series to calculate the surface velocities. The 
resulting values of Cp are shown as the dashed curve in Fig. 4, and it is evident that this Taylor series is indeed in 
error  near the peak in Cp on the upper surface, and that, except near the trailing edge on the lower surface, this 
error  is very similar to the error in the converged results from the present method. 

The remaining difference between these two sets of results could be due to the rather sparse distribution of 
chordwise data points, to some inaccuracy in computing velocity field derivatives at these points from the 
spline fits along the thickness surfaces, but also to the velocity field being forced to satisfy a surface boundary 
condition which is not quite correct because the two-term Taylor series used in it is inadequate. (This 
difference happens to be beneficial in mid-chord, for this case.) Thus, although comparison of our converged 
results with the exact values on the thickness surface reveals certain differences in the velocity fields and their 
derivatives, it is difficult to apportion error  to particular sources. (But from our experience with the pilot 
program for symmetrical wings, the error  on the lower surface near the wedge-shaped trailing edge is probably 
caused by a deficiency in the local source solution for such an edge.) 

To demonstrate the need for an inner iteration scheme (or some other improvement),  we have plotted in Fig. 
4 the results from the first iteration when the basic singularity distributions are only modified once as in Section 
5.2 and thus no inner iteration is performed. The convergence of the main iteration (not shown) is very slow, 
and the prediction for the upper surface is considerably in error compared with the corresponding result when 
inner iteration is employed. 

In Fig. 4 we also show the predictions of a simplified version of Lock's method 7'13 (see also Appendix G) 
which for two-dimensional flow reduces to the classical method of Weber  17, assuming that the vortex lattice 
technique reproduces the camber solution of linear theory and that the methods of computing the thickness 
solutions of linear theory produce nominally identical results. We see that by this method the pressure 
distribution is predicted best on the lower surface; on the upper surface, the suction is considerably 
under-est imated in mid-chord--not  as badly as it was by the present method first time without inner iteration, 
as above, but the full present method does much better. Near the leading edge, on the other hand, the suction is 
overpredicted. For camber ratios of this size, second-order effects are of course important, and Foster has 
shown 12 that full second-order (Gretler) theory, which is essentially the two-dimensional form of the 
Maclaurin series approach 2, gives considerable improvement for this section; about 5 per cent accuracy is 
found, compared with 4 per cent accuracy by the present meth.,d. 

The corresponding results are shown for the section at incidence 10 degrees in Fig. 5. Again the present 
method converges very well, two iterations sufficing over most of the section, and the correct pressure 
distribution on the lower surface and the rear half of the upper surface is well represented, but the results 
oscillate about the exact curve over the front half of the upper surface, with a maximum error of about 4 per 
cent. The causes of error are probably similar to those for the zero incidence case, exacerbated by the very 
rapid changes of velocity in that region. 

In this case too, Foster has shown 12 that full second-order theory produces marked improvement on 
first-order theory, and so we are not surprised to see from Fig. 5 that on the upper surface the results from the 
first main iteration, when no inner iteration is set, are again further from the exact solution than those of the 
full present method, and that the results from the method of Lock (Weber) are only slightly better, though 
excellent agreement obtains on the lower surface (not shown here, for clarity). A second-order method (at 
least) is essential for wings with camber ratio of this order.  

6.2 Uncambered Constant Chord Wing 

We now consider an untwisted, undihedralled constant chord wing with aspect ratio 6, leading-edge sweep 
45 degrees, and uncambered 9 per cent thick R.A.E. 101 section. Computations were made using an 8 × 10 
grid (with seven chordwise collocation stations and nine spanwise), and for the lifting-surface calculations a 
10 × 8 vortex lattice grid with the eight outboard spanwise stations (not including the root) as before, and 
chordwise stations as defined in Section 5.1 with Lv -- 10. The computer  storage required, including that for 
the program, was 40K words, and each iteration took about 350 central processor seconds (cps); thus the total 
time for two iterations was about 750 cps. 

We have also obtained results (denoted 'previous results') for this wing with our pilot program in which the 
Standard Method was used once to improve the basic singularity distributions at the first iteration. We 
compare the two sets of results in some detail, in order  to show the effect of the inner iteration scheme with 
Maclaurin expansions. 
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Fig. 6 shows the residual errors Rt from both methods, near the root and near the tip, at first and second 
iterations. We have also plotted the basic thickness slope, divided by ten, as a dotted line to provide a 
background scale. It is clear that, for the source solution, the present method converges much better  than the 
previous method; the error field from both methods resembles a chordwise wave, and the amplitude of this 
wave is reduced by about 75 per cent, compared with 50 per cent previously. We also see that the errors at the 
first iteration are improved by the inner iteration, everywhere except near the apex and possibly the trailing 
edge; it is likely that in both these regions, the Maclaurin series method is a little doubtful, and the fact that 
near a wedge-shaped trailing edge ut shows a logarithmic infinity according to linear theory probably also 
inhibits convergence there. Overall, however, the improvement due to the inner iteration is substantial. 

Fig. 7 shows the corresponding results for the pressure coefficient Cp at zero incidence. We see that the 
results from the first iteration with the present method are generally closer to the final results than those with 
the previous method, and that the final results from both methods do not differ much. This suggests that even if 
we were able to satisfy the boundary condition Rz = 0 precisely, the resulting change in Cp would be very small, 
and so after our two iterations the only practical uncertainty in our results is the error due to our rather sparse 
chordwise partitioning for L = 8. (Since the chordal surface of this wing is unwarped and all the velocity 
components are calculated on the exact wing surface which coincides with the 'thickness surface', the solutions 
generated are free of errors due to Taylor expansions as well as the planar approximation to a warped chordal 
surface.) 

In Fig. 8 we show the results for the other residual error Rt. This time we see that near the root the previous 
method was better, the present method still having a final maximum residual error of almost 5 per cent of the 
incidence field (with corresponding results for the first iteration). This is probably because the Maclaurin series 
(58), used in the inner iteration, is increasingly in error as we approach the logarithmic singularity in wt at 
the root y = z = 0. (The computed doublet distribution has a kink at the root.) Near the tip the situation is 
reversed and the present method reduces the error field to a negligible level. As we approach the leading edge, 
the residuals from the present method at the first iteration tend to increase. This suggested at first that the 
finite-difference representation of aut /ax  was slightly ill-conditioned, but an alternative programming 
technique failed to improve matters; it is now thought that the residual may be an accumulation of 
leading-edge downwash errors in the vortex-lattice technique as the inner iterations proceed. However,  this 
effect disappears at the second iteration. 

Finally, in Fig. 9 we show how the doublet function e~ = I sin ~b varies, near the root  and near the tip. (We use 
et in order to demonstrate results for the leading edge s c=  0; we remember  that on the chordal surface 
UI(X , y, O) 1 = ~e~(x, y)/sin 4~. Also we wish to keep the doublet effects separate from the source effects in this 
comparison.) Here we note that near the root, the final values from the two methods are similar except for a 5 
per cent difference just downstream of the apex, and that the values from the present method do not change 
much from the first to the second iteration except near the leading edge, which we expect to be a sensitive 
region from the discussion of Fig. 8. However,  near the tip the first iterate from the present method is much 
closer to the final result than that from the previous method, and so it is likely that lifting effects will be better 
represented near the tip by the present method. 

We can conclude from this study that the inner iteration scheme is beneficial everywhere except perhaps for 
the doublet distribution near the root. For a cambered wing, the benefit will be still greater, as shown by the 
results for the Karman-Treff tz  section, since the inner iteration now includes the camber terms. 

6.3 R.A.E. Wing 'B' 

R.A.E. Wing 'B' is a research wing designed by Jones and Grey-Wilson TM (with the aid of the R.A.E. 
Standard Method) to have a roof-top near-sonic chordwise pressure distribution on its upper surface at 
free-stream Mach number 0.8 and zero incidence. The wing planform and thickness distribution are the same 
as those of R.A.E. Wing 'A':  aspect ratio 6, taper ratio ~, mid chord sweep angle 30 degrees, and 9 per cent 
thick R.A.E. 101 section at all spanwise stations. The wing has substantial variations in both camber and twist, 
near the root and also near the tip; analytic formulae are given in Ref. 14, and the twist distribution and some 
camber shapes are shown in Fig. 10. 

Computations were made for this wing at zero incidence (in incompressible flow) with two grids, the 
comparatively coarse 8 x 10 grid as employed for the constant-chord wing already discussed, and a finer 
12 × 20 grid with one extra station in each interval between consecutive spanwise stations. The corresponding 
vortex lattice grids used were 10 x 8 and 8 × 18 respectively; for the fine grid, eight chordwise collocation 
stations was a compromise between equivalent chordwise accuracy and computer storage; with 8 × 18 = 144 
collocation points, a 144 × 144 matrix already requires about 42K words of core store, unless time-consuming 
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magnetic tape or disc operations are demanded. (Another 40K words were needed to hold the rest of the data 
for the fine grid, and the program; the upper limit of available core store on the ICL 1907 at R.A.E. is 96 K.) 

Three iterations were run with the coarse grid, only two with the fine grid to save computing time. Fig. 11 
shows how well the method converges for both grids on the root section, which was likely to be very sensitive 
because of the rapid changes in camber and twist on this wing. Over much of the section, the second and third 
iteration results from the coarse grid are graphically identical, and the results from the second iteration are 
then omitted for clarity. Except near the apex on the upper surface, the results from the first and second 
iteration with the fine grid are also very satisfactorily close together. We also observe that the difference 
between the final results for the coarse and fine grids is very small, except near the apex, and this tells us that 
despite the rapid spanwise changes near the root, the overall discretization error is sufficiently small for 
practical purposes, with respect tO both chordwise and spanwise variations in grid size. Also it seems likely that 
we can tolerate a reduced accuracy near the apex without impairing the quality of the solution downstream. 

Next, we compare the final results from coarse and fine grids with the results from the B.A.C. program of 
Roberts 15, near the root, in mid-semispan and near the tip, in Figs. 12, 13, 14 respectively. Again noteworthy 
is the excellent agreement between the two sets of results from the present method, indicating that (except 
near the apex and tip leading corner) the present method is everywhere well-conditioned with respect to grid 
size. Also the good convergence of the present method found at the root in Fig. 11 was maintained everywhere 
on the wing, and so even for this seemingly difficult case two iterations with either grid would have sufficed. At 
mid-semispan the Roberts method agrees well with the present method, and also over most of the near-tip 
section, with the exception of the forward upper surface. Near the root the two methods disa.gree somewhat in 
mid-chord. We do not know how well the Roberts solution has converged with respect to spanwise grid size; 
Roberts took 17 spanwise stations for this run (and 27 chordwise over each complete section), but his method 
at the time of writing does not have a collocation station at the root ~/= 0 precisely. If we take the Roberts 
solution as near-accurate on this scale, then we are left with an error of about 5 per cent in the present method. 
Since discretization and convergence errors are small, we may consider two other possible sources of error: 

(i) Inadequacy in the two-term Taylor series, as already noted for the Karman-Trefftz wing. Since we have 
neglected terms 0(z2), this particular relative error is likely to be proportional to the square of the maximum 
camber ratio; on this basis the 4 per cent error found for the Karman-Trefftz wing with 9 per cent camber ratio 
would reduce to 0.2 per cent for Wing 'B' with 1.8 per cent root camber ratio. This takes no account of the 
rapid spanwise changes on Wing 'B', and a more conservative estimate of the error from this source would be 1 
per cent, which is still small compared with the error shown in Fig. 12. There may be a similar effect near the 
tip, already mentioned (Fig. 14), but we expect some disagreement there because of the finite area of the wing 
tip section; neither method imposes zero normal velocity there, and hence, not only is neither method exactly 
right, but also the tip flow field due to a surface source distribution (Roberts) will not be the same as that due to 
our chordal plane source distribution, and hence in a neighbourhood of the tip the two methods must produce 
different results. In mid-semispan the excellent agreement between the two methods (Fig. 13) may owe much 
to the relatively small forward camber on that section (Fig. 10). 

(ii) Local dihedral at the root, here largely due to the rate of change of twist. If the chordal surface is 
z* = zc(x, y) and we take the wing trailing-edge to lie in the plane z* = 0, then the local dihedral is found as 
arctan (OzJOy) where 

~= tan ATE tan aT(O) + ~ Z ( 0 )  sec 2 aT(O). C(0)(1 -- ~) 

where AT~ is the trailing-edge sweep angle. For Wing 'B' this gives about - 0 . 3 0  at the apex ~ = 0, and about 
-0 .13  in mid-chord. These values are clearly not of second-order magnitude, which violates the assumption 
we made in Section 2 when replacing the chordal surface by a plane for the singularity integrations. Although 
the dihedral is local only, intuitively speaking the contributions to these integrals can depend significantly on 
these local values; it is quite likely that this accounts for most of the remaining error in Fig. 12. As Wing 'B' is a 
research wing, and practical wings are not expected to exhibit local dihedral on this scale, it is not now 
proposed to extend the program to deal with purely local dihedral effects. 

The predictions of the simplified version of Lock's method are also shown in Figs. 12-14. At mid-semispan 
very good agreement obtains, except possibly at mid-chord on the upper surface. Near the tip the Lock results 
are higher than the Roberts results but agree with those from the present method with the coarse grid, on the 
forward upper surface, and they come out lower than the Roberts results on the lower surface; thus Lock's 
method will slightly overpredict the tip sectional lift. Near the root the Lock results are too high over most of 
the upper surface and also on the forward lower surface, but fall between the present method and Roberts 

23 



method results over the rear lower surface. The sectional lift is underestimated by about 4 per cent, compared 
with the present method. From our studies with the pilot program, we would expect some overprediction of 
root thickness and incidence effects on the forward upper surface, but the overprediction seems greater than 
we would have expected, especially over the rear, and we can attribute this part of the error largely to camber 
effects. However,  the error on the forward lower surface is likely to be an overestimate of the thickness effect. 

A similar method to Lock's, known variously as SPERT or the BAC thin wing method, has been developed 
at B.A.C., Warton, and is compared with the Roberts method in Ref. 15, also for R.A.E. Wing 'B' at zero 
incidence and Mach number. The differences between these two methods are everywhere similar to the 
differences shown here between Lock's method and the present method. 

6.4 R.A.E. Wing ~A' in Subcrifical Flow 

To demonstrate the program's action for flows at low Mach number Moo, we have computed the flow past the 
symmetrical R.A.E. Wing 'A' at 10 degrees incidence with Moo = 0.4, and the results (after two iterations) are 
compared with the results from Roberts '  program in Fig. 15. Roberts '  program also operates in the 
PrandtI-Glauert  (affine) space, and so the two methods are expected to agree except perhaps near the tip, as 
noted earlier. Very good agreement is found in mid-semispan, good agreement near the root, and fair 
agreement near the tip. This is not considered as a particularly interesting or even difficult exercise, but it does 
check out the modifications (for the affine space) set down in Appendix E; the affine scaling factor , f l -  M~ is 
0.916 so that any programming errors would be expected to show up on the scale of Fig. 15. 

7. R6sum6 

In this section we summarize briefly the action of the program to give the reader an overall view. A flow 
diagram of the program is provided in Figs. 16a-h. 

The number of chordwise collocation stations (see Section 5.1) and of spanwise collocation stations, and the 
free-stream Mach number M~ are input. The leading-edge ordinate xL and local chord of the planform (the 
analogous wing planform in compressible flow, by the transformation x F ;x/'-f -Z- M~; see Appendix E) are 
input, and also any outboard-crank-station ordinates. The twist distribution aT, normalized thickness 
distribution z~/c(y) and camber distribution zs/c(y) are specifed along with Oz,/Ox, Ozs/Ox at the collocation 
stations, the thickness distribution zt is cubic-spline-fitted against the angular chordwise coordinate ~b at each 
spanwise station, and the chordwise arclength sl on the 'thickness surface' z = zt(x, y) is determined, zt and z~ 
are also cubic-spline-fitted spanwise along lines of constant ~, and values of Ozt/O~ and OzJOfl (derivatives 
along these lines) are determined, also the spanwise arclength s2 on z = zt. 

The function 2(~zI0£)sin ~b is extrapolated to ~b = 0 and used to determine the leading-edge Lighthill 
E-shift at each spanwise station (see Appendix C) to make the solution uniformly valid near the leading edge. 
The values o f / (2  and d[K2[/dy (see Section 5.2) are also stored. 

If the number of spanwise stations is large, it is possible to read in a set of integers corresponding to stations 
where the velocity fields u, and u~ are to be computed by the Ledger-Sells subroutine, and then at the 
remaining stations ut and ut can be found by spanwise interpolation along lines of constant 4~ (spanwise 
curves). This facility can save some computing time, but should be used sparingly and in any event not near the 
root  or near the tip. 

If final pressure distributions are required at any further spanwise stations, these stations are read in here. 
For the symmetrical residual R, the basic residual error RtB is set: 

RtB= Ozt/Ox (equation (48)) 

which gives the corresponding basic source function 

etB = 2RtB sin ~b. 

The incidence a is read in, and then at each spanwise station the camber distribution zs is cubic-spline-fitted 
chordwise and the derivative OzJOx is determined at the downwash sensing stations in the vortex lattice 
method (see Section 5.1). For the other residual Rz the basic residual error field RtB is set: 

R lB= OZs/OX -- (a + OlT). (equation (49)) 
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Here  the main iteration cycle begins. The vortex lattice subroutine is entered, where on this first entry the 
vortex lattice matrix is either computed or read in from magnetic tape; and the card input and magnetic tape 
peripherals are released. The subroutine returns values of the doublet function et = I sin 4~ at the vortex 
stations, and these are interpolated chordwise to the Weber  points. This first entry produces the basic doublet  
function et~ = lB sin ~b. 

At  this point the inner iteration cycle begins. From R t w e  compute approximations to ut and vt on z = 0 
based on the R.A.E. Standard Method: 

A - Ka 1 + sin A R t  
ut ~- o- cos In - -  zr 1 - s i n  A cos A ~  (equation (64)) 

and 

vt ~- - ( 1  -IK21)~r sin A (equation (61)) 

where A is the local sweep angle and 

1 Io 1 d~' o-(~, y) = -~ R , ( ( ,  y) ~-----7" (equation (59)) 

With et equal to the basic doublet function ets, we also compute (on z = 0) 

1 1 • ul = al = aeJsm ¢ 

and 

vt = o-%[ c( ~l) Io' U~(,', ~) d~'J - ut tan A. 

(equation (62)) 

(equation (63)) 

With the aid of Maclaurin series expansions, we have estimates for the next set of residual error fields: (for 
Moo = O) 

and 

Rt • ~x ( Ztut + 0 + ZsVO 

0 0 + z~v,). R, = 0--£ (z,u  + z,u,) + Oy (z,v, 

(equation (57)) 

(equation (58)) 

From Rt an extra source function Aet = 2Rt sin ~b is derive.d, and is added to the basic source function to 
produce an accumulated source function which is stored separately. From R~ and the vortex lattice subroutine 
an extra doublet  function Aet is derived; R~ is also added to the basic vortex-lattice input field to produce an 
accumulated vortex-lattice input field which is likewise stored separately. 

The Maclaurin series are not used at the root, at the last spanwise station before the tip or at the leading 
edge. The source and doublet  functions are instead extrapolated to these stations. 

With the new R, in place of RtB, and the new Act in place of ezB, the inner iteration cycle is repeated and 
further residual errors are computed approximately, the further source functions and vortex lattice input fields 
being likewise accumulated. The inner iteration is terminated after a fixed number of cycles (2 to 5) or when 
the residual errors become sufficiently small. 

From the accumulated vortex lattice input field the doublet function e~ corresponding to the doublet  
distribution I °) is derived, and input to the Ledger-Sells subroutine which computes u~ on the 'thickness 
surface' z = zt. Then the accumulated source function et corresponding to the source d i s t r i b u t i o n  q(X) is input to 
the Ledger-Sells subroutine which now computes ut, likewise on z -- zt. These computations are performed at 
~-values stretched so as to give the Lighthill shift near the leading edge. 

Both velocity fields are differentiated numerically with respect to Sl (chordwise) and s2 (spanwise) at each 
collocation point. From these, by resolution of derivatives in the sl and s2 directions, we have to compute 
values of their derivatives with respect to z. Making use of the equation of conservation of mass and the 
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equations of irrotational flow, the number  of unknown derivatives for any velocity field in incompressible flow 
is reduced to five (au/oz,  av/az,  Ow/Oz, ou/ax, Ov/Ox) and the equations for them read: 

__ Ou Ou 
Ou sin 01 + - -  cos 01 = - -  (equation (28)) 
Oz Ox Os~' 

av . Ov Ov 
- -  sm 01 + - -  cos 0a = - -  (equation (29)) 
Oz Ox c3s1' 

Ou Ow Ow 
- - C O S  01 "[- '~--sin 01 = - -  
OZ 02: OSl ' 

(equation (30)) 

~v ~w 
(sin 01 sin 0 2 - c o s  01 cos 02 sin a ) - z - - c o s  01 cos 02 cos n - -  - cos 0a sin 02 + 

oz Oz Oz 

A OV 0 1 ~ - c o s  Ow + s i n  01 COS 0 2 sin A0U+sin 01 c o s  02 COS - - =  sin 
OX ax US 2 O1 OS 2 

(equation (46)) 

and 

Ov . Ow au Ov o__.~_v 
- -  sm 02 - - -  cos 0z cos A - - -  cos 02 cos A +  ~ cos 02 sin A = 
OZ az OX OX OS 2 

(equation (42)) 

where 01 and 0 2 a r e  the slope angles between the sl, s2 directions and the plane z = 0. The matrix of these five 
equations is inverted and then used to obtain the z-derivatives for both ut and u~. At the root y = 0, where we 
have already Ov/Ox = Ov/Oz = 0, a least squares solution is taken. 

The residual errors Rt, R~ can now be computed from Taylor series expansions about z = z ,  using the 
numerically accurately computed values of u, and u~: for M~ = 0 

Ozt Q Oz~+o Ozt+ Ozs 
R, : Qo~x-x + 1 ~ -  x 2~--~y Q 3 ~ y - Q 4  (equation (23)) 

with 

and 

0 0 Z s +  ~ Ozt+ ~ OZs+ ~ OZt 
R, = o T ;  x Ty 

Qo = 1 + ut + zs Out/Oz, ] 

Q1 = ul + Zs Out/Oz, I 

Q2 = ot -b Zs Ovl/Oz, I 

Q3 = Ol q'- Zs c3"ot/Oz, 

Q4 = w, + z, Ow10z I 

! 
Qs = a + aT + Wt + Z~ OwtlOzJ 

(equation (24)) 

(equations (14) to (19)) 

Actually, at first R, and Rt are only computed at the wing root and the first outboard spanwise station. Then an 
at tempt  is made to reduce the errors at the root by placing line source and line doublet  distributions along the 
centre line y = z = 0 as explained in Appendix D. The velocity fields uo  and up  due to these distributions are 
computed on z = z,, added to ut and ut respectively, and also (in subsequent iterations) accumulated with 
previously computed uo  and uo, to be added to velocity fields ut, u~ from the Ledger-Sells  subroutine. 

Next, the residuals Rt, Rl and the pressure coefficients Cpu, Cpl on upper  and lower surfaces, are computed at 
all collocation stations, and output  as printed tables. 
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This marks the end of the main iteration cycle. If more cycles are to be done, a new extra source function Aet 
is derived from Rt and is also added to the accumulated source function, while Rt is added to the accumulated 
vortex-latt ice input field. Then Rt itself is input to the vortex-lattice subroutine, and the inner iteration cycle is 
entered as already described. 

If the required number of cycles has been done, the absolute local Mach number is printed out (for 
compressible flow). As the Prandtl-Glauert  rule is not sufficiently accurate for regions with local Mach number 
near unity, if such regions are observed in this print-out the solution should be regarded as qualitative only. 

Finally, if output is required at any further spanwise stations, Cpu and Cpl are interpolated to these stations 
along lines of constant 4~, allowance being made for the presence of any crank stations. 

8. Conclusion 

A program has been written to determine iteratively the pressure distribution on a thick, cambered, twisted 
wing in incompressible or subcritical flow. 

The computing time is dominated by the time to calculate the velocity fields due to planar source and 
doublet  distributions; with an 8 × 10 computing grid this requires about 350 central processor seconds (cps) 
per iteration on an ICL 1907 computer  (which has a cycle time of 1.00/zs). Excellent convergence is obtained 
with two iterations, giving a total time of about 750 cps. This excellent convergence was attained with the help 
of a fast inner iteration scheme to improve the initial approximations for the planar source and doublet 
distributions. 

The method has been tested on a research wing, R.A.E. Wing 'B', with severe camber and twist near root 
and tip; the results from two different computing grids agree very well, and so the discretization errors due to 
finite grid size are likely to be small and thus it may be assumed that the method is well-conditioned. These 
results agree well also with the results from the B.A.C. method due to Roberts and Rundle ~5, except near the 
root  where it is thought that local dihedral effects impair the accuracy (at the root) of the integrations over the 
wing chordal surface in the present method. 

The computing time for the coarse grid was about one-third of that required by the Roberts method 15. This 
gave the results at one incidence; to obtain results for a range of incidences, as the Roberts method can already 
do, a second run would be necessary so that the factor would rise to two-thirds. But this will be immaterial for 
the extensions of the method, recently programmed by the author z3 and considered to be potentially still more 
useful, to some wing design problems--for  which the Roberts method cannot readily be adapted. 
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LIST OF SYMBOLS 

Local chord 
dc/dy 
Pressure coefficient 
Spanwise interpolation function in R.A.E. Standard Method 
Planar doublet (loading) distribution 
Number of chordwise intervals in computing grid 
Number of spanwise intervals in computing grid 
Free-stream Mach number 
Number of chordwise panels in vortex-lattice subroutine 
Planar source distribution 
U=Qo+-Q1, V=Q2+Q3, W=Qs+Q4 
Residual error in boundary condition 
Semispan 
Arclength along a chordwise curve (section) 
Arclength along a spanwise curve 
Unit vector tangent to chordwise curve 
Unit vector tangent to spanwise curve 
General (perturbation) velocity vector 
Components of u 
Free-stream velocity vector 
Complete velocity vector: U~ + ut + ut 
Components of U 
Local Cartesian coordinates in wing chordal singularity plane 
xl41 -ML 
Cartesian coordinates referred to apex 
Leading-edge ordinate 
dxL/ dy 
Wing thickness ordinate 
Wing camber ordinate 
Wing section ordinate, z~ + zt 
Incidence 
Wing twist, reckoned positive clockwise viewed along starboard y-axis 
Planar source and doublet increments 
y/s 
y; but (0/0~]) denotes differentiation along line of constant 
Local chordwise slope of 'thickness surface' 
Local spanwise slope of thickness surface; local slope of spanwise curve 
Local (geometric) sweep angle 
Percentage chord; x = XL(y)-I-c(y)~ 

Weber points ~w = l [ 1 -  cos (P - ?  )¢r] (l~<p~<L) 

Vortex points and downwash sensing stations in vortex-lattice method: 
l r ,  (2p - 1)~] j 

(l <-p<,Lo) 
- cos  2p________~_~ 

Co =½[1 2Lo+ 1] 

1 Io 1 d~' 
--Tr Rt(~',  y) ~ _ ~,  

Angular chordwise coordinate 

Basic (first-order theory) 
Due to planar doublets (loading) 
Due to planar sources 
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Superscripts 
(n) 

(n, p) 
Outer iteration number 
Inner iteration numbers 
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APPENDIX A 

Solution of Linear Equations by Least Squares 

The task at hand is to solve equations (28), (29), (30), (46) and (42) for the five quantities (au/Oz, Ov/Oz, 
aw/Oz, Ou/ax, Ov/ax) which may be represented by the vector (X]), ] = 1(1)5. Since the first three of these are 
the quantities finally required, it is computationally convenient to have them in this order. 

On the central symmetry plane y = 0, we have from equation (47) 

X2 = X5 = 0 (A-l)  

and equation (29) is automatically satisfied. We arrange the system of equations for the Xj so that equation 
(29) comes last. (In order to ensure that the leading diagonal is free of zeros, so that row and column 
interchanges will never be needed when solving the straightforward set by a Gauss]an elimination subroutine, 
we take the equations in the order (30), (46), (42), (28), (29); but this does not affect the least squares equations 
below). Let the matrix corresponding to the rearranged equations be (a~j), and let the vector (q~) represent a set 
of typical right sides of these equations. 

The straightforward set of equations would be 

5 

Y. a0X s =ql i =  1(1)5. 
] = 1  

When (A-l)  holds, we try to minimize the sum 

2or = aljX] - qi . 
i = 1  j =  1,3,4 

We have, for s = 1, 3, 4 

and hence 

a Xs ai, ~ aljXs - qi = 0 
i = 1  ] = 1 , 3 , 4  

(4 
Y. ~= aisa X r = aisqi (s = 1, 3, 4). (A-2) 

j '=1 ,3 ,4  i 1 i = I  

The 3 x 3 matrix corresponding to (A-2) we call (b,j), with 

n = 1, 2, 3 corresponding to s = 1, 3, 4 

and 

] = 1, 2, 3 corresponding to ~ = 1, 3, 4. 

This matrix can be inverted using the same Gauss]an elimination subroutine as before. 

APPENDIX B 

Computation of Field Derivatives in the Plane z=0 

We have to evaluate the velocity field derivatives occurring in the expressions (57), (58) 

R~n'P+ l) = ~x ( ztAut + zsAUl) + ~y (ztA~)t + zsAth ) 

. Oz,. Oz~. +Oz, A Oz~. 
= z, V2.  hu~ + z~V2. zxut + ~ x  hu, +-~-x hul Oy v~ +~'y Art 
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with 

V2 " AU t = OAut+ OAvt 

OX Oy 
(B-l)  

V 2 . AU l -~- oAbll., t_ OAl)l 
OX Oy 

(B-2) 

"~ ZtV2 , AU l "+ ZsV 2 AU t " + ' ~  Alg l OZs . OZ t , OZs • + au, + av, av,. 

The derivatives thus occur only through (B-1) and (B-2). To evaluate (B-1), we have the estimates (64), (61) 

R ~n,p) 
AUt = O "(n'p) COS A-K2(y) f (A)  cos h[1  + R~.,p)2]~ 

where 

Av, = --[1 --IK2(y)[]o "("'~) sin A 

d~' 
o'("'P)(~, y) = 1 I /R~ 'P)(~ ' ,  y) ~ _  {,. 

o(-,p) is the previous residual field. Substituting into (B-l),  K2(y) and f(A) are defined in Section 5, and ..~ 
neglecting variations in the sweep angle A and making use of the derivative relations (26), (27) 

0 1 0 

Ox c O~ 

and 

0 0 

0y 0~1 
tanA 1 0 (B-3) 

c 0~ 

where 0/04 denotes the partial derivative with respect to y = ~ along lines of constant percentage chord s c, we 
have 

1 --[K2[ sin 2 A 1 Oo "("'p) 
V 2 • AUt = 

cos A c 0~ 

OR ('~'P)/o r- A t I 
K2f(A) c o s ~  [ 1 + R ~'~'P)Z]~ 

dig2[ 1 Oo "{'p) 
-t d (y / s )  s {r("'P) sin A -  (1 - Igz l ) - -  T sin A. (B-4) 

R~ n'p) and o "("'p) are stored at equal intervals in angular chordwise coordinate ~b, with 

~ = 1 ( 1 - c o s  'b) 

so that 

o 2 o 
0~ sin 4} 04}" (B-5) 

So the chordwise derivatives in (B-4) are calculated from central difference formulae in &. 
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The spanwise derivative Otr(n'P)/O~l is found by differentiating a three-term Lagrange interpolation 
polynomial at one of the data points. Quite generally, if f(v) is a function of v which takes the value fi at v =/ ' i  
for i -- 1, 2, 3, then f can be approximated by 

f ( / ' )  ~- ~ -/ 'j)(v-/'k) 
Z f,( /'j)(~,_/'~) 

i,j,k 
e i j k  = 1 

(where eiikiS the alternating tensor). Hence at v = va 

~"~f/'f ( / ' 1 ) =  f l ( t 3 - / 2 ) - h ( q  + t3)"F f3( t2  q- t l )  (B-6) 

where 

1 1 1 
t l  ---- - - ,  t2 ---- , t3 ---- - -  

1"2 - -  1"3 / '3 - - / ' 1  /21 - - / ' 2 "  

We also note that 

dZf " E fi 
dv 2=z" i,i,k (Vi--Ui)(Ui--/'k)" 

eijk = 1 

(B-7) 

To evaluate (B-2), for a given doublet distribution Al we have from equations (62) and (63) 

AUl = ¼AI 

and 

OI 
Avt =-7=_ - Auz tan A 

o,/ 
(B-8) 

where 

fx x 1 t ¢ I = ~Al(x, y) dx.  
L 

In the program we work, not with A1 but with Ael given by 

Ael = sin 4' A1 

so that 

1 Aet 
Aut = ~ sin ~b (B-9) 

and 

I = ~  Aet(~b', y) d&'. (B-10) 

The integral (B- 10) is evaluated successively at each ~b, starting at the leading edge tk = 0, by Simpson's rule. 
Applying (B-3) to (B-8), we have 

OAvt OAv~ OAVttanA 021 - -  = tan AOAUt+tan 2 A OAut 
Oy O~ Ox 0~ 2 - 2  0~ Ox 
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so that for (B-2) we have 

021  t a n  AOA~t+ (1 + tan  2 A) OAul 
V 2 . A U  1 --~ ~ - -  2 _ OX " (B-11) 

The x-derivative in (B-I 1) is worked out from (B-5) and (B-9) as 

( 2 (l Ae  . ) OAut 2 0 1 A e t ] = ~ _ 4  
ax = c sin th 0-~ 4 si---~] -~----zaut cos ~b 

and the 4~-derivative is calculated as a central difference. 
The 0-derivatives in (B-11) are normally calculated from formulae (B-6), (B-7) with u = ~; with the 

exception of the last spanwise station used here. So far, we have assumed that the wing tip chord is finite and 
non-zero; then, except near the leading and trailing edges, the spanwise variation of near-tip doublet strength 
Al ought to be elliptic (Ref. 8 is recent work in indirect support of this observation) and so it would be better to 
effect numerical differentiation with respect to 

= 4 1 -  2 (~=y/s)  

rather than ~/or ~/= y. We then obtain the ~ derivatives at the last spanwise station using the relations 

O lOu 0 1 "q O 
0~1 s O~ Ov s ~/1-~12 Or' 

2 s 2 0 .  2 s2 0n 41-.  £ = ±[  °2 s 2 L l - y / 2  01., 2 (1-r/2)2a0-uv " 

For wings with rounded tips, Al would not show this elliptic behaviour and so we should then continue to use 
u = ~ for numerical differentiation. ,(Jordan has shown 9 that the lift distribution near a curved tip is partly 
constant and partly varies as (1 - ~/2)~ In (1 - r/2). The singularity is weak and may be ignored in our numerical 
calculations, compared with the constant term). 

We remark that formula (B-6) is also used to calculate the derivatives Ou/Os2, etc., on the thickness surface 
z = z, as set out in Section 4. 

APPENDIX C 

The Solution Rendered Uniformly Valid near the Leading Edge 

It is well known that in a region of a rounded leading edge ~ = 0, linear theory breaks down, predicting 
infinite values 0(~ -½) for ul, vl and wt; and Rl contains the second-order term u~ Ozt/Ox (equation (24)) which is 
0(~ -I) in a straightforward higher-order thin-wing theory. What happens numerically is that all these 
quantities, even when actually computed on the thickness surface z = z,, become large near the leading edge, it 
becomes very difficult to satisfy the boundary conditions and convergence is severely retarded in that region. 

Fortunately, there is a way out. Lighthill has shown 1° that in two dimensions, the velocity field, found by 
straightforward expansions in first- and higher-order theory, can be rendered uniformly valid, in both first- 
and second-order approximations, by shifting the whole field downstream through a distance lpL where pL is 
the leading-edge radius of curvature. Or, which amounts to the same thing, we may keep the velocity field fixed 
and move the surface upstream, which is more convenient as the sources and doublets which produce the 
velocity field can be left at the Ledger-Sells computing stations, and the velocity components calculated at 
different values of ~, which is easy to arrange in the case z ~ 0. 

For a swept wing, Weber 2 has shown further that the required leading-edge ~-shift (scaled with respect to 
the local chord) becomes (½pL/c)H where 

H = H0 = cos 2 An(0) at the apex, and ] 

H=/- /1  = 1/cos 2 Ao(~/) outboard. ~ ) (C-l) 
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A0(rt) is the leading edge sweep angle. The question now arises, how to pass smoothly from H0 to HI near the 
apex. In the program, we arbitrarily take a rational approximation 

H = h i l l ( n )  + noHo (C-2) 
'rl +no 

where rio is some positive constant at our disposal. In our early runs we determined rl0 by asking that H ( n )  
should be 1 percent away from its asymptotic value H1 at the mid-semispan n = 0.5. This yields, for a swept 
wing with H0 < 1 < Ha 

• 0.005H~(0.5) 
no-- H~(0 .5 ) -Ho"  (C-3) 

But we now prefer to choose no so that the surface corresponding to the C-shifts is unswept at the root ~ = 0, 
corresponding to a streamsurface through the leading-edge stagnation point• This gives 

dy[½pLH(n)] = tan A0 at = 0. n 

If the section geometry is constant, (½pL/c) does not depend on 77; thus, neglecting this dependence generally 
and writing c~ for (dc /dy)  at the root 

c,oHo + c o H 1 -  Ho s tanA0 
n o  - ( { o d e )  

co[H, (0) - Ho] 

so if Ao#O 

no = ( lpL/ c )-  , s tan Ao(0)-  c 'oHo " 
(C-4) 

(C-4) is expected to be more consistent near the apex than (C-3), without losing anything far outboard, in 
virtue of the asymptotic form (C-2). 

We remark that the radius of curvature pL is simply related to the limiting behavior of the basic source 
strength q~ near the leading edge. Let  us write 

d2; t 
e,s =qB sinq5 =2~x-  x . 2 ~ ) .  

Then, near the leading edge zt is approximately given by 

Zt 1 ! 
- -  = ~ ~etB ( 0 )  
¢ 

where etB(O) is the limit of etB as ~j--> 0. Hence 

=  6[e,B (0)]2• 
2c 

Finally, we note that the Lighthill theory is not intended to apply at the trailing edge ~: = 1, and that if the 
sections are simply translated upstream relative to the source and doublet distributions, then some sources and 
doublets will appear inside the actual flow field near the trailing edge, and moreover the values of singularity 
strengths at the interior grid points near this edge will be incorrectly calculated. To overcome this, the sections 
are considered as being linearly stretched from the trailing edge, so that a typical grid point with percentage 
chord s ~, and hence distant c(1 - ~ )  from this edge, becomes a point with percentage chord ~, distant c(1 - ~ )  
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from this edge. The linear stretching equated to its leading-edge value gives 

1 - ' ~ =  I + l P L  H 
1 - ~  c 

and hence 

= 1 - (1 - so)[1 + (lpL/C)H] 

so that ~ = --(½PL/C)H at the leading edge, and ~ = 1 at the trailing edge, as it should. The value of z input to the 
Ledger-Sells subroutine does not change. 

Preliminary versions of the program were run with and without Lighthill stretching, and it was found that 
without stretching, large and persistent residual errors, around four times their mid-chord values, could be 
generated at the first chordwise station (this is at ~: = 0.0381 when L = 8), but that these were reduced to 
around or even below the typical mid-chord values when Lighthill stretching was employed. For RA E Wing 
'A'  with a leading-edge sweep angle 36040 ' and a 9 percent R A E  101 section, the mid-semi-span ~:-shift was 
approximately 0.004789. Subsequent runs have suggested further that the residuals are not highly sensitive to 
the form of interpolation function H(7/). 

APPENDIX D 

Calculation of Line Singularities at the Root of a Swept Wing 

While the program was being developed, it was observed that the residuals in the boundary conditions 
tended to be comparatively large at the root section, and that these residuals were reduced only slowly as the 
iterations proceeded. In the case of the antisymmetric boundary condition (22) this is not surprising as the 
vortex lattice subroutine does not use information from the centre line (the root chord line), its downwash 
sensing points being perforce located outboard of this line for any distribution of panels over the half wing as 
described in Section 5; thus the root section residuals are not fed back for the second (and any subsequent) 
iterations. As a corollary, the doublet distributions l determined at each iteration have to be extrapolated 
towards the centre line somehow when input to the Sells subroutine for uz. Now if the lines of constant doublet 
strength (isobars) are kinked at the centre line, the upwash w~ exhibits a logarithmic singularity for y, z ~ 0, 
and it might be thought necessary to extrapolate with ' rounded isobars' (meaning here, lines of constant I) in 
order  to obtain sensible values of upwash on the root section and to increase the chances of small residuals. The 
difficulty here is, how to represent the resulting spanwise distribution of I in the form used by the subroutine. 
Sells 4 employs quadratic spanwise interpolation which is not really suitable for the type of distribution 
encountered near the apex of a thin wing, no matter how fine a grid is employed; and in one case (a 45 degree 
constant chord wing) it was found that when the ' rounded isobars' condition and the quadratic interpolation 
property were used to generate a root doublet  distribution from data on the next two outboard spanwise 
stations y = ]/2, Y = Y3, then near the apex the value of l at the root bore no sensible relation to the obvious 
trend given by the values still further outboard (y = Y4 . . . .  ). Thus, at and near the root the subroutine would 
have been working with unrealistic spanwise interpolations on the data for l, and the velocity field values 
output  could not have been trusted. 

The experimental results reported by Weber  and Brebner 22 on a constant chord wing of aspect ratio 5 
suggest that a quadratic extrapolation of the pressure difference (-ACp) due to life--which can be assumed to 
be a fair measure of ou r / - - t owards  the root t rom the values at the next three outboard stations, would be a 
good fit to the measured values over most of the chord, and would not be seriously in error near the apex. 
Clearly the 'isobars' would be rounded so near the root that the difference is insignificant and cannot be picked 
up by the subroutine. So we judge it better to extrapolate l in this way, and thereby to ensure that the 
subroutine at least makes sense of its input near the root. Some details of this and other extrapolations are 
given in Appendix F. 

The problem of the root  residuals in equation (22) still remains. Moreover,  there is a similar problem with 
the symmetric boundary condition equation (21). This might seem easier to deal with because here the root 
line is a collocation line on which equation (21) is to be satisfied iteratively. But in reality our method has a 
general drawback, which is that no distribution of sources and doublets can ever produce a kinked 
streamsurface outside of itself, whereas for a thick swept wing of constant section geometry the root section is 
always a ridge line. Thus it is mathematically impossible to satisfy the boundary conditions exactly at all points 
on the wing surface, and in particular near the root, with our planar distributions, and this fact makes itself felt 
in the slow convergence of both residuals Rt, R 1 on the root section. The best we can do is to reduce the 
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residuals as much as possible at the given grid points by our iterative scheme, and to hope that these residuals 
will not be too large in between the grid points, in particular between the root section y = 0 and the first 
outboard station y = I/2. 

Since the awkward residuals R ,  R~ occur along an isolated gridline y = 0, it is natural to attempt to reduce 
them by placing, not planar, but line sources and line doublets respectively, on the centre line y = z = 0. There 
is no need to cancel the residuals precisely, so it is sufficient to find approximations to those line singularities 
which will bring the residuals down to about the same level as those outboard. The iteration scheme is easily 
adapted. We calculate the current velocity field uc from the existing planar distribution. If it is not the first 
iteration, there is another velocity field u~-1) due to previously determined line distributions, and this is added 
to uc. Residuals are computed, and an approximate line distribution derived. The velocity field u~ ) due to this 
newly calculated line distribution is computed and added on, and the residuals are recomputed to continue the 
cycle. 

In order to avoid sudden spanwise jumps in the residuals, which might cause trouble for the Ledger-Sells 
subroutine in integrating the resulting planar distributions, it has been found best to input (to the line 
distribution calculation) the difference between the residuals at the root and at the second spanwise station 

/~ = R(~, Y1 = O)-R(~,  Y2) 

rather than the whole residual at the root. In this way one hopes to keep the recomputed residuals sufficiently 
slowly varying that the parabolic interpolation functions employed by the Ledger-Sells subroutine will be 
reasonably good approximations. 

Line Sources 

The potential due to a line source distributed on y = z = 0 with local strength 4~-Q(x) per unit length 
between x = 0 and x = c is 

~0 c Do(x ,  y, z)  = -  Q(x ' )  d x ' / r  (D-l )  

with 

r2=(x--  x')2-F y2 + z 2. 

The components of the induced velocity uo  = V ~ o  are given by 

iC t 
u o = Q(x')~-Zg ~-- dx' ,  (D-2) 

r 

and 

with 

vo  = yIo  (D-3) 

wo = z Io  (D-4) 

Io c )~' I o = Q ( x '  . (D-5) 

Suppose that we wish to estimate Q ( x )  to cancel a residual/~t(x, 0, z~) in the boundary condition (21), so that 
approximately 

Ozt Wo = - l~ t (x ,  0, zt). (D-6) 
uo o--- ~ -  
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To do this we have to estimate the integrals (D-2), (D-5). The latter is dominated by its behaviour for small r, 
i.e. near x' = x, and we write 

~ dx' ~ ~3 
Io = O(x) J0 ~ - +  Jo [O(x ' ) -  O(x)] . (D-7) 

Evaluating the first integral in (D-7), we find that wo from (D-4) is dominated by 

(The limits are values of x', of course.) 

Similarly the integral uo in (D-2) is dominated by 

fto = O(x (D-9) 
0" 

Substituting from equations (D-8) and (D-9) into (D-6), and writing out the expressions in full with z -- z,, we 
arrive at an equation for Q(x): 

1-x/c x/c I 
') c Lzdc t[ (1-x /c )Z+(zdc)2]  ~ ~ [(x/c)Z+(zdc)Z]:J- 

Oz,~. 1 1 , (D-am 

A simplified form of (D-10) is used in deriving slender-body theory. The second term on the right side is 
usually neglected, but we retain it here since it might become significant near the apex. Equation (D-10) is 
displayed in the form in which it is actually programmed, in terms of percentage-chords ~ = x/c (at y = 0) and 
the section geometry. 

Equation (D-10) defines Q(x) at discrete points x2, x3 . . . . .  XL. (Xl is reserved for the leading edge.) To 
calculate the integrals (D-2) and (D-5) precisely, we define Q(x) to be piecewise continuous in x2 <~ x <~ xL, and 
given by linear variation in each interval: 

x t - -  Xi-1 
Oi (x') = O(xi-a) + [O(x,) - O(xi-O] 

Xi -- Xi-- 1 

=QB+(x ' - -X)QA (3~<i~<L) 

(Xi -  1 ~ X' ~ Xi) 

(D-11) 

where 

and 

Q ( x i ) -  Q(xi-1) 1 
QA = Xi~-- X i---'--~- 

I 
Q B  = O ( x i - 1 )  - ( x i - 1  - x ) Q A .  J 

(D-12) 

Then (D-2) can be written 

uo = Qi(x' dx' 
i=3 x 1 r i -  

L 

= ~ ROl 
i=3 

(D-13) 
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with 

If ' )OA] -L~ Uo, = [ QB + ( x ' -  x dx' 
i-1 

= + Q A  ( r + x ' - x  
xi-1 r x i - i  

(D-14) 

Similarly (D-5) gives 
L 

Io= Z Io, 
i = 3  

(D-15) 

with 

ix, ¢ dx' Io, = [ O B + ( x  - x ) O a ]  r 3 
xi 1 

oo 
- -  - Q A  y 2 + z 2 [  r J . . . .  x,-1 

(D-16) 

It is found that when uo  is calculated in this way, the new residuals behave sufficiently smoothly chordwise 
and spanwise, and are acceptably reduced at the root, the near-apex and near-trail ing-apex stations lagging 
behind the rest. This is notwithstanding the discontinuous gradients in the representat ion (D-11); we turn to 
advantage the continuous nature of the induced velocity field in regions exterior to the line distribution. 

Line Doublets 

The potential due to a line doublet  distributed on y = z = 0 between x = 0 and x = c, with local strength 
47rD(x) per unit length, is 

• o =  

0 D(x') dx'/r. 
Oz 

The integral in ~ o  is the same as that for • o, with D(x) written in place of Q(x). It follows that the components  
of the induced velocity no  = V ~ o  are 

fO c ! a D ( x ' ) ~ - ~  dx', (D-17) biD = ~ Z  r 

0 
vo = y 7 - I o  (D-18) 

OZ. 

and 

wo = O (ZlD) (D-19) 

where 

f0  c t , dx 
In = D(x )--'T3. (D-20) 

r 

We have to estimate D(x) to cancel a residual l~t(x, 0, zt) in the boundary condition (22), so that approxi-  
mately 

az, -/~t(x, 0, z,). (D-21) UD O-'-'X - -  WD = 
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Employing the technique of equation (D-7), we find that uo and Wo are dominated by 

0 

=-D(x)rlL~ x ' - x  x ' - x l  c 

r ~-7-1o" 

Substituting into (D-21), we obtain the estimate for D(x)  

/~t(x, 0, z,) 
D(x)  = (D-22) 

1 x ' - x  x ' - x q  ~ a z , r z , q  ~ 

4 r v - 7 - J o - ~ t T J 0  

We now have to calculate all the integrals arising in equations (D-17) to (D-20). As in the line sources case, we 
may define a piecewise continuous linear function in x2 <~ x '<~ XL by 

Di(x') = DB + ( X ' -  x )D  A 

with DB, Da given by the analogues of (D-12) 

( X i - I ~ X t ~ X i ;  i = 3, 4 . . . . .  L) 

D ( x i ) - D ( x i - a )  
Da  = 

Xi --  Xi-1 

DB = D(xi-1) - (xi-1 - X)DA. 

With the help of equations (D-14), (D-17) can now be written in the form of equation (D-13) 

r o b  f 1 x ' - x l  q~, 
UD 

i = 3  x i -1  

Equations (D-18) and (D-19) can also be written in the form 

vo = y ~ O--~-I (D-24) 
i = 3 0 Z  Di 

where, similarly to equation (D-16) 

wo_- t [,o,+dz,d 
i = 3  

_ DB [X'--X] x~ 1"1] x~ 
I°-v-'f-'+~zZl r " --DA 

' y Z k J x~-x [Jr x ,_ ,  

O x, - 2DB rx, r  1"1 / J.~,-a (y2+z2)2 , -  ~,-1 yZ+z2 7 L ~ - ~ J x  , 1-1" 

(D-25) 
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As in the sources case, when UD is calculated thus and added to the existing u~, the new residuals are 
acceptably reduced at the root. 

The recomputation of the residual errors means that near the root  the calculations of surface derivatives as 
described in Section 4 have to be done twice for each singularity distribution: once on the velocity fields before 
the current line singularities are introduced, and once after. In an early run, we tried to avoid the first of these 
computations by dropping all the products with z~ in equations (14) to (19); but this did not represent the 
difference in root and outboard residuals sufficiently accurately, and the run did not converge so well at the 
root. The extra work is needed only on the first two spanwise collocation lines. 

A P P EN D IX  E 

Modifications for Subcdfica] Compressible Flow 

We briefly derive the Prandtl-Glauert  equations here, and then show how the velocity fields and boundary 
conditions are modified in order to make the problem soluble by source and doublet distributions. 

The density p is now a dependent  space variable, and is connected to the pressure p and the velocity U by 
Bernoulli 's equation: 

p 1 T "-- + -  U 2 = const. 
T - l p  2 

We can normalize p and U so that at infinity poo = 1 and IUoo[ = 1. Noting that the square of the free-stream 
speed of sound is 

vpoo ' 

poo M 2 

we have 

poo = 1 / v M L  

where Moo is the free-stream Mach number. Making use of the adiabatic equation of state, Bernoulli 's 
equation becomes 

1 2 1 1 
p~-i + ~ U  - + 

( V -  1)M2oo ( T -  1)M~ 2" 

Taking the gradient, there follows 

1 T 2 
- v . + u . v u = o .  (E- l )  

The equation of conservation of mass reads: 

Substituting for Vp from (E-l) ,  

V . ( p U ) - - p V . U + U . V p = 0 .  

v .  u - u .  ( u .  = o .  

At this stage we linearize about the free-stream conditions: assuming that all departures from the unit flow 
in the x-direction are small, so that (with U = Uoo + u) 

u 
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we have 

with 13 2= 1 - M ~ .  

fl2Ou+Ov+Ow 
~x ~yy ~z =0  (E-Z) 

We now transform into the affine (Prandtl-Glauert) space (~, y, z) with the affine velocity perturbations 
(fi, v, w) by the relations 

and 

and equation (E-2) becomes 

The equation of irrotational flow, 

transforms to the set 

and 

x = 2/3 (E-3) 

u = t~/fl (E-4) 

O(t Ov Ow 
- - + - - + - - = 0 .  (E-5) 
O~ Oy Oz 

 ,x.__row oo ow oo oul__o 
/Oy Oz'Oz Ox'Ox oyJ 

Ow/Oy -Ov/Oz = 0,) 

oalOz -owlo2  = 0 I 

ovlox-O~/Oy = 02 

(E-6) 

Equations (E-5) and (E-6) are the equations for incompressible flow in the affine space (2, y, z) and can be 
satisfied by introducing velocity potentials due to suitable source and doublet distributions. The physical 
velocity component u is then found from the affine component fi by (E-4). 

The boundary condition (5) transforms to 

u oOZw_ 
oo f i ) f l ~ x  + 0y (W°°+w)=0" (E-7) 

As in Section 3, this can be expanded in Taylor series about the thickness surface z = z,(2, y) and split into 
symmetrical and antisymmetrical parts 

where 

+Rt  + R~ = 0 

Rt Oo 0 z % 0 1  Oz~ . ~ Oz, . ~ Oz~ 

Rl 0o  0Z~ t_01 Oz~ _ OZs Oz, 
=-fl-- 02 13 ~'~+Qz~y--y + O 3 ~ y - O s  
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with 

and 

\ SOz 

Q2 . . . .  5 are as defined by equations (16) to (19). 
We remark that the basic first-order residuals are as in the incompressible flow problem: 

and 

10zt  Ozt 
R,B =-- - - - -  

13 O~ Ox 

10zs 
= -s in  (a + aT) + g -- 0-~ = --sin (a + aT) + OZ'--2. RtB OX 

The lifting-surface (vortex lattice) subroutine, on receiving the input Rt, outputs the affine doublet 
distribution l which is connected to the pressure coefficient -ACp in linearized thin-wing theory by the 
same relation as that between the physical and affine streamwise-velocity components in (E-4): 

Further, starting with the boundary condition (E-7) we can repeat the Maclaurin series analysis of Section 5 
and derive at the pth inner iteration: 

R (n'p+l) = R (n'p) - Aw  .F~2 2 _..~XAfi_ OZWoy Av"b" Zw~-~X-[--~y OAo\ 

. __~x ( Zw A fi ) + _~y ( Zw A V ) + /~_~ _ l ) _~x A \ O zw . 

so that 

R~..p+l~ 0 0 1 1) =-~x(ztAa,+ zsAfit)+-~y(ZtAo,+ zsAv,)+(--~-  R,, 

and 

These are the expressions (57) and (58) for incompressible flow, with the compressibility correction terms 

OZt OZs . ~ 
Re, = ~--~ Aft, +-~- AUl 

and 

, _ OZs . ~ OZt . 

R~t- O~ Aut 
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We must ensure that the expressions used are uniformly valid near the wing leading edge ~ = 0. We require at 
worst 

R, = 0(f--~), R, = 0(1). 

The expression Re, is satisfactory, but the second term in R~ is not. We introduce a Riegels-type factor and 
replace R~*l by 

Oz,  . ( O z , / a ~ ) A a t  

R~ = -~x :X~t-~ 1 + [(OzJO~)A~t] 2" 

Further, when computing line singularity distributions at the root, corresponding to equation (E-7) the 
appropriate boundary condition, in place of equations (D-6) and (D-21) of Appendix D, reads: 

Ozt 1 
5(OD)O~ [32 W(OD) =--R([)(X, O, z,). 

Finally, we need the standard relation between u 2 and the pressure coefficient Cp in adiabatic flow: 

[1 1 2 2 ~/(~,-1) + ~ ( y -  1)M~o(1-u )] - 1  
C p ~  1 2 

~3,M~ 

Also the absolute local Mach number M~oc is given by 

2 2 
u Moo 

M~o~ = 1 +½(Y - 1)M~(! --U2)" 

Following Lock TM, we define the critical pressure coefficient C* for flow normal to the local sweep line (in the 
physical plane) by the relation 

1 ~t ~-2 ,~:g [.~2 +3,-1.~ - l ' /  A 2  "1 "//(')'--1) ~ylv, oot_.p = _-7-7-T Moo cos2 A[ - 1 .  

APPENDIX F 

Extrapolat ions  for Planar Source  and D o u b l e t  Distr ibut ions  

As explained in Subsection 5.1, the loading I cannot be determined directly on the centre line y = 0 from the 
vortex lattice subroutine, and so we extrapolate using a quadratic in y based on the next three outboard 
stations y = Y2, Y3, Y4. The extrapolation is actually done on the loading function 

L(d:, Y) = l(x, y)c(y) sin ~b 

where ~b is the angular chordwise coordinate. Lagrange's formula is programmed in the form 

l(~, 0) = [/(f, Y2)c2nol +/(f, Y3)c3H02 + l(~, Y4)c4n03]/Cl 

where c, = c(Yn) and 

n0, = Yj+IYk+I/[(Y,+I- Yj+,)(Y,+~- Y~+I)] 

with i,/', k an arrangement (permutation) of 1, 2, 3. 
The distributions must also be extrapolated towards the wing tip. It is unwise 3'4 to compute u, and u~ at the 

spanwise station nearest the tip and so no information is available at that station for the source or vortex lattice 
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calculations. Yet we need q and I there to repeat the u, and at computations. As in linear theory 4 we assume 
that l depends on r / through the square root x/1 - 7/2 near the tip ~/= 1, and fit a quadratic through the two 
available values at Y~-2 and YM-~ and the zero at YM+~ (i.e. the tip). This gives 

/(~:, YM)= [/(~:, YM-1)hz(ho-h2)+ l(~, Y~-2)h~(ha- ho)]ho/[hlh2(hl- h2)] 

with 

hi = ( 1 _  2 YM-i/y2+1)~ i = 0, 1, 2. 

On the other hand, the source distribution q does not tend to zero at the tip for a wing with constant section 
geometry. For the sources we extrapolate from YM-3, YM-2 and YM-1 to YM in the ordinary variable y: 

3 

q(/5, YM)= Y. q(~, YM-,,)F, 
n = l  

where 

F,= (YM-- YM-i)(YM-- YM--k) 
( YM-, -- YM-j)(YM-i - YM-k) 

with i, j, k a permutation of 1, 2, 3. 
This last formula can also be used for l, should the chord c(T/) show elliptic behaviour at the tip. 
The Ledger-Sells subroutine also requires input data for q sin ~b or I sin ¢ at the leading edge ~ = 0 (both 

are finite there). The doublet function is readily obtained along with all the other values along the chordline 
from the vortex lattice output at the stations G. The source function is available directly from the residuals at 
the stations ~w, where z = z, # O, but the residuals cannot be calculated at the leading edge because zt = 0 there, 
and more especially Ozt/Ox is infinite. We could build in Ledger s other  subroutine for z = 0, to calculate ut, v, 
and the limit R, sin 4) from equation (23), but it is simpler to extrapolate e, = q sin ¢ parabolically to the 
leading edge from its values at the first 2 stations ~w. We also know that q = 0(~ -~) near ~ = 0, and it follows that 
3e,/0¢ = 0 at the leading edge. This leads to 

e,(O, y) = [4e,(~2, y) - e,(~:3, y)]/3.  (F-l)  

It has also been found advisable to use (F-l)  to extrapolate the input data ea3 in order  to compute the integral 
S °). The program was used to calculate the flow past a swept uncambered wing with a blunt-nosed section 
(compared with the quasi-elliptical sections of the RAE 100 series) for which elliptical behaviour was 
effectively confined to the first 5 per cent or so of the chord. The input data ea3 = qB sin ~b = 2(OzJOx) sin ~b is 
specified at L chordwise points, and for L ~< 12 only the first two of these points, at the leading edge ~b = 0 and 
at ¢ = rr/L, lie in the first 5 per cent of the chord. From this input, the program calculates values of N(1)(~:) as 
given by equation (59) with Rt = OzJ3x: 

1 f 10zt(~,, d~' 
= 7 "¢ ) 

1 f ~ et~(6')d&' 
-- G Jo o 

(F-2) 

If the values of ezB at the first three points on the chord are not numerically consistent with the condition 
0e,B/00b = 0 at ¢ = 0, the values of S (1) at these points are liable to quite serious error. This is not surprising 
because when this condition does not hold, the integral (F-2) shows a logarithmic singularity for ~b ~ 0. This 
error would influence the approximate second-order terms in the first iteration and would seriously affect 
convergence near the leading edge. So, even though an analytic expression for e,B(O) may be available, it is 
better to calculate its value from the other data so that this difficulty does not appear. 
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APPENDIX G 

Lock's Modification of the R A E  Standard Method 
• • • 1 3  The basic formula of the RAE Standard Method 6 for the velocity in incompressible flow may be written 

2 [cos a (1 + u, + uc) + u~ (1 + S (3) sec  A*m)] 2 + 0)t 5: Vc) COS Ot 4- Oa (1 + S (3) see A~t)] 2 
n - -  D 

+ ( 1 -  K22) (1 -1 )  sin 2 a cos2 a (G-l)  

where suffices t, c and a refer to thickness, camber and incidence respectively. 

8(3)(~)=~ rlrdz, 1 
Ldx (~:') 1 ~ ) 2 _ J  ~:_~, J0 

D = 1 + (Oz/ax) 2 sec 2 A* 

A* = (1 -IK21)A 

and the expression, 

A* = (1 -IKgI)A,. 

where Am is the local sweep angle of the maximum thickness line, has been privately suggested by Lock for use 
in the incidence terms u~(1 + S  (3) sec A*). It would not be right to use A* in the definition of D, which is the 
Riegels leading-edge correction factor and should therefore contain the local value of sweep angle. 

The vectors nt and ut (suffix l standing for c or a) are evaluated on the chordal plane z = 0. Although 
estimates for ut and vt are available from the original RAE Standard Method 6 (and quoted as equations (60) 
and (61) here), we are likely to achieve a worthwhile gain in accuracy by computing these using Ledger's 
subroutine 3 for z = 0. For similar reasons, we determine each ut from the vortex lattice solution with equation 
(62), and then evaluate each v~ with expression (63): 

vt = - ~  ut dx - ut tan A. 
I_ 

The integral is evaluated at the Weber points ~: = ~w using Simpson's rule, and then the differentiation is 
carried out along lines of constant ~: using 3-point Lagrange formulae in ~ inboard, but in ff l  - r/2 near the tip. 
Although so simple a process may be in error near the root particularly, where the vt rise quite rapidly from 
zero, it is unlikely to matter much since vc, v, enter (G-l)  through squares and products with vt. 

The results quoted in the main text were obtained with this simplified version, in which camber and 
incidence effects are represented separately by the plain vortex lattice technique. In a more sophisticated 
version, developed since, these representations are improved by evaluating the downwash field due to each 
representing doublet distribution 4 and iterating on the residual errors. 
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FIG. 1. Sketch of half wing and typical singularity plane. 
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I Start 

I ead number of main iterations NAF I 

I 
Read number of Weber (chordwise) points L 

i 

i 
I ~a~ nuo~er o~ s~a~w~ ~oo~ ~ i 

i 
I Read Mach number M I 

I Set Weber points in E chordwise I 

I 
I Read ordinates of spanwise stations I 

I 
I ead ordinates of any outboard crank stations 

I 
I Set planform data (for analogous wing if M > 0) I 

I 
[ Read twist distribution ~T I 

I 
Read thickness and camber distributions ztIc , Zs]C 

and chordwise derivatives 3zt/3x , 3Zs/3X 

I /'/'I , 3z t 3x, 3z s 3x Store z t Zs, 

I 
I Calculate arclength s I i 

Calculate 3zt/35 , 3Zs/3~ from cubic spline fits spanwise 

I Calculate arclength s 2 I 

i 
I Calculate Lighthill leading-edge ~-shifts I 

I Calculate K 2, dIK21/dy I 
I 

FIG. 16a. Flow diagram of computer program. Preliminaries. 
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I 

(Ledger-Sells calculations to be done 
at specified spanwise stations) 

I continued from Fig.16a I 

I 
Read integer MCN (= 0 or a number of spanwise stations) I 

I 
Is MCN = 0 

(Ledger-Sells calculations to be do 
at all spanwise stations) 

I 
I Road integers ~ K ,  EKe1, M--J I 

Read any further spanwise stations where output is required 

I 

I 

I 
~et ~(K) ° K (K = ,, MeN 1 

I 
I 

Read number of chordwise vortex lattice stations LV 

I Read incidence ~ (in degrees) ] 

I 
I Read integer IFRED - 0,| or 2 (see vortex lattice subroutine, Fig. 16h) I 

I 
I I Cubic spline fit z s chordwise 

I 
I Calculate basic downwash field a + a T - 3Z ]3X at vortex l a t t i c e  points]  

I 

I 
I ~ o ~  ~oum~r o~ ~nn~ ~era~on~ 1 

I 
I ~ 0 ~ ° ~ n ~ o r ~ . o n ~ o o n ~ e r ~ l  

I 
[ continued Fig.16c I 

FIG. 16b. Flow diagram. Preliminaries (continued). 
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I Continued from Fig.16b ] 

I 
[Call vortex(8~e latticeFip. 16h) subroutine ]] -1 ! Entl(se e 

i 

I 
Interpolate output doublet function to Weber points and store in E 'lb 

I 
Is IT = 0 ) @ 

I Extrapolate E to leading edge 

I 
I ~ x ~ o ~ a ~ °  ~ ~° n ° ~  ~ a ~  ~° ~°°~ J 

Is IT = 0 

Compute approximate C L, C M, Xcp 

I 
Is NP = NPF 

I o to inner iteration sequenc 1 (see Fig.16d) 

from doublet function '1 

Entry point(~ 
Csee Fig. 16d,g-) I 

IEntry point ( ~  
(see Fig. 16e)-[ 

I 
I Call Ledger-Sells subroutine 

(see Fig.]6e) 

FIG. 16C. Flow diagram. Operations on doublet or source functions. 
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Calculate 

Begin inner iteration sequence (see Fig. 16c) 

I NP = NP + I: inner iteration counter, I 

I 
I "~u~e °~'~ I 

I 
I 'c I alculate estimates for ut, v t on z = 0 

I 
ICalculate c(y) $9 ~ u£(E',y)d~' I 

I 
l.~ou~ u~,v~ on z:O I 

I 
ztu t + ZsU ~, ztv t + ZsV ~, ztu ~ + ZsU t, ztv ~ + ZsV t 

and extrapolate to leading edge 

I 
I ' ' Calculate R t, R£ " I 

I 
Add 2R t sin ~ to accumulated source function 

~re 

I 
I Interpolat~ R~ to vortexlatticestatioos 1 

I 
t Add R~ to accumulated vortex lattice input [ 

I 

~ - - - ~ "  Is NP = NPF 

Rt, R£ small enough ),, 

+ , " 7 "  

I 
t ...... Accumulated input to 

to vortex lattice subroutine I i vortex lattice subroutine 

! i 
Go to ® ~.Fig.16c,~ i 

~> 

FIG. 16d. Flow diagram. Inner iteration with Maclaurin series. 
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I Set 

i Ledger-Sells subroutine entered (see Fig.16c) I 

i 

i o o ~ u ~ o o ~ o ~  I ,,~ ~ ; i o u ~ u ~ o o ~ l  
! 

Interpolate u_ to remaining spanwise stations [ 

I 

1 

'" [ 

lif]e singularity velocity fields ~" I velocity field to u 

Is 

I 
accumulated source functions into E ] 

I 
I G° t° 0 ~Fig'~c~ I i continued Fig.16f I 

FIG. 16e. Flow diagram. Ledger-Sells and previous line singularity calculations. 
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I continued from Fig. 16e[ 

I 

(control index for line singularities) ] 

Calculate approximate line 
singularity distributions 

Calculate corresponding 
velocity fields on z = zt(x,y) 

I 
I Add to u or ~£ I --t 

Accumulate with previous line 
singularity velocity fields 

I 

I 

I 
I ~ o o ~ o  ~ - d ~ ,  ~o-~l~ ~om ~ o ~  ~ o n ~  ~o~mu~ I 

I 
I Calculate and invert resolution matrix ] 

I 
I Calculate residual errors Rt, R~ I 

l 

+ 
I continued Fig.  16g 

FIG. 16f. Flow diagram. Current line singularity calculations. 
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IAdd 

I Add 

I continued from Fig.16f ] 

I 

2R sin 0 to aec~ulated source function I 

I 
Interpolate R£ to vo~ex lattice stations i 

I 
R~ to ace~ulated vortex lattice input I 

I 
I ~ to vortex lattice sobrootino I 

I 
Icalculatoup.rao~lo.e~sor~aco~ressnroeo~-io~ontsco.~l 

I 
I ~,.o~,~o, 0~ I 

I 
I NA = NA + I 

I 
Is NA > NAF 

I ° ° t °® ~Fig.16°~ I 

I Print table o~ local Maeh numbor U~ M.> 0> I 

I 
Interpolate Cpu and Cp£ to any further spanwise stations required I 

FIG. 16g. Flow diagram. End of main iteration cycle. Results output. 
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IEntry point (see Fig.16e) I 

= 

I Read spanwise panel widths ] 

I 
I Release card reader i 

I Set vortex lattice points ehordwise ] 

C Is IFRED = 2 

+ 
I nvert matrix 

I 
Is IFRED = I 

[ Read matrix from magnetic tape ] 

I 
Release magnetic tape peripheral 

I 
Multiply matrix by column vector of input downwash field 

I 
i Calculate load function at vortex lattice points I 

I 
I ~o~u~n I 

FIG. 16h. Vortex lattice subroutine (called in Fig. 16c). 
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