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Summary.—The report describes in detail the methods by which the principles of vortex-lattice theory, introduced
in a previous report, R. & M. 1910, are applied to the calculation of the aerodynamic loading of wings by lifting-
plane theory. The scope of the paper is limited to the application of these principles to symmetrical incidence solutions
and symmetrical and anti-symmetrical wing twist solutions, for which standard solutions can be treated by
comparatively simple loading functions, The effect of discontinuity of direction of leading or trailing edge cannot
be avoided even in the simplest solutions, and it has been found necessary to include an investigation of this problem
in order to cover the prescribed usage of the method. Special standard functions tabulated in another report are
used to allow for the rounding off effects due to change of direction of leading or trailing edge. The general problem
of discontinuities is under investigation and will be dealt with in a later report.

"A comprehensive set of solutions for a delta wing is included in the report in order to show the convergence of
and relation between solutions of varying complexity, and to indicate which solution should be used in order to satisfy
the accuracy prescribed for any given problem. The case of the delta wing is not completely general, and the
exposition in respect to induced drag and yawing moment will be completed in a later report.

1. Introduction—~—In R. & M. 1910" an account has been given of the principles by which
- lifting-plane solutions for the aerodynamic loading of wings can be calculated by concentrating
the equivalent vortex sheet, including the wake, into a number of elements of line vorticity
arranged in a lattice and using numerical integration to compute the total downwash at
selected points on the wing surface. The present report, which is based mainly on experience
gained since publication of the previous report, has been written for the purpose of describing
in detail the methods used in carrying out the calculations. :

After standard and modified formulae, the scope of the work, and possible variations of the
lattice have been specified, the paper continues by describing in detail how the control points
—at which the tangential flow condition is expressed—are chosen on the wing surface; how
the equations in the unknown variables of the loading formula are formed and solved; and
how the properties of the wing are calculated from the known values of the coefficients in the
loading formula. _

Solutions of varying complexity are obtained by alteration of the chordwise or spanwise
spacing of the lattice, and, in order to give guidance as to the most suitable procedure for a
given problein, a large number of solutions has been worked out for a wing in the shape of an
equilateral triangle, the choice being made as representative of a sweptback wing of small aspect
ratio. It is now known that there are disadvantages in the use of pointed tips for theoretical
investigations, one of the main objections being that it is exceedingly difficult to define what
the accurate potential solution should be, and the form of the loading functions, in the region
of the tips. In the chordwise direction, for instance, it would be necessary for a mathematical
solution to define to close accuracy the position on the chord of the local aerodynamic centre
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in the region near the tips, whereas, then the chord tends to zero, even a large variation of local
aerodynamic centre in terms of the chord would have no appreciable effect on the general
properties of the wing.

The writer has drawn attention to this matter in another report?, and, from an examination
of solutions based on alternative functions, has concluded that the solutions given here, which
are based on formulae not strictly applicable to wings with pointed tips, are accurate as far
as overall effects are concerned, any error being confined mainly to uncertainties in the local
aerodynamic centre and lift coefficient in the region of the tips. Apart from this limitation,
the solutions serve the main purpose of giving a comparable set of solutions representative
of normal application of the method to sweptback wings without pointed tips.

1.1. The report is limited to a discussion of symmetrical and anti-symmetrical solutions tor
flat and twisted wings in straight flight without camber and without discontinuities other than
those of direction of leading or trailing edges. The general principles of vortex lattice theory
as described in the report are, however, of universal application, and later developments will
be concerned mainly with variations of loading functions and downwash tables, and with
methods for specifying artificial gradients for use in the tangential flow condition, in order to
. represent easily the effect of camber, flaps, or other devices.

It must again be emphasised that the work is primarily concerned with potential flow, the
basic aerofoil profile being a straight line with a two-dimensional value of dC,/de« = 2x. The
.question of correction factors to allow for the effects of viscosity is not dealt with in this report.
-+ In order to make the basis of the work quite clear, particular attention is directed to the fact
that the lattice is - used only as part of the process for finding the values of the unknown
coefficients in the formula for the vortex sheet, and that the properties of the wing are all derived
subsequently from the lifting plane solution represented by the vortex sheet.

2. Fovmula and Scope of Work.—The formula used previously for the vortex sheet representing
the wing surface and the wake is

ke
8V tana — V1 — 7' cot 30 [ay + by + cop® 4 din® + . ...]

+\’,1”“"lein@[“1+bl77+01ﬂ2+d1773+----] :
S VL — 9 sin 20 [a, + by + e+ dy® + .00 L. .. (1)

It will be appreciated that the success of the method depends upon obtaining a rapidly
convergent solution, and it is necessary to examine the limitations of the formula from this
point of view. It will be obvious that problems involving discontinuities of downwash, which
may be due either to abrupt changes in chord or spanwise incidence, or to deflected control
surfaces, will not fall within the scope of the formula. These discontinuities would normally
be absent in the primary consideration of the effects of incidence. There is, however, another
important discontinuity which cannot be avoided, that is, the sudden change of direction of
the leading or trailing edge which occurs with tapered wings, usually near the wing centre, and
occasionally along the span, and which is most marked in its effects for any wing when sweep-
back or sweepforward is present.

"~ An independent unpublished investigation.of the potential solution for the loading of two
infinite Vee wings has shown that, at a discontinuity of direction of leading or trailing edge,
the formula for the vortex strength should be suitable for expressing discontinuities or
irregularities in the following quantities or their rate of change:—(a) circulation, (b) induced
downwash, (c) local lift coefficient and (d) position of the local aerodynamic centre in terms
of the chord. The exact nature of each of these irregularities is difficult to define mathematically,
but it is believed that satisfactory results will be obtained by making some or all as nearly as
possible simple discontinuities in the rate of change of the function in the spanwise direction.
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2.1. The formula (1) is not suitable for the general representation of the four discontinuities,
and special additional loading functions, termed P functions, have been calculated and tabulated
in Ref. 7. These special functions are associated with distributions of induced downwash
calculated by lifting-line theory, which have a discontinuity of rate of change in the spanwise
direction, the choice being mainly influenced by the necessity for the satisfactory calculation
of induced drag and yawing moment. The P functions, which appear to fulfil their purpose
admirably, can be combined to represént a polygonal distribution of induced downwash with
corners spaced as small as 0-05 semispan, although when used with the 0-1 semispan spaced
lattice, the spacing of the corners requires widening to 0-1 semispan.

The revised formula for the vortex sheet which represents the wing surface and the wake
without discontinuities other than those of direction of the leading or trailing edge, is, therefore,
written as follows, the following modifications also being included:—(a) tan « is replaced by the
more accurate function sin « and (b) revised definitions for F,, F,, and F, are used:—

ke
8sV sin «

where F, = /(1 — 7% [@ + by 4 con® + don® +....] + po P
Fi=+/(1 — 7)) (@ + by + o’ + d> + ....] + pP
Fy— /(L — 1) [as + by -+ c® + da® + ....] + puP

and P is a combination of special functions to suit each individual problem, the origin of which
will be described below when specific problems are under consideration. A similar form, but
with sin « removed, applies for the zero lift solution.

— Fycot30 + Fysin® + Fosin20 .. .. .. .. .. (2

The term sfandard solution * will be applied to any solution derived from equation (2) which
excludes the P functions. Values of the standard loading functions up to »°4/(1 — 77 are
given for n = 0 (0-025) 1 in Table 1.

3. Standard Derived Formulae.—The method of derivation of the formulae for the circulation
and the lift coefficient is described in Appendix II. The ana1y51s leads to the following, which
are correct for an unlimited number of terms chordwise:—

K[4sV = n [Fy 4+ 3F)] O )

lns

AdC,[de = 5 [8a, + 4a, + 2¢o + ¢ + € + 0-5¢;, + 0-625g,

+ 0°3125g1 + 0-43754, + 0-21875¢,
+ 0-328125k, + 0-1640625%,]. .. .. .. .. .. .. (4)

Anti-symmetrical terms add nothing to the lift coefficient.

The formulae for rolling moment with unlimited terms chordwise and five anti-symmetrical
terms spanwise, is obtained in a similar way.—

Cr= — 555 by + 0+5b, + 0-5d, + 0254, + 0-3125,
£ 0-15625f, 4 0-21875k, -+ 0- 109375k,

+ 0-1640625j, + 0-08203125;,]. .. .. .. . .. .. (5)
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The position of the centre of pressure of the half wing symmetrical loading, in terms of the
semispan, unlimited terms chordwise and six terms spanwise, is -

32 N | -
-;'D, . P .. ‘. .. . . . . PN (6)
where N = 0-3 (@ + 3a) + 0-13(cy + %¢:) + 0-076190 (e, + Leu)
1 0-050794 (g, + 1g.) -+ 0-086941 (1, + 3iy)
1 0-028416 (ky + k) S )

and D =8 (a + %) + 2 (co + 3c1) + (&0 1+ 3&0)
+ 0-625 (go + $g1) + 0-4375 (4 + 441)
+ 0-328125 (ky + 1k.). .. .. .. .. .. .. .. (8)

Local aerodynamic centre, unlimited terms chordwise and spanwise:—

Fy 4 F, — }F
Fo -+ 3F,

The induced drag is calculated by using a simplification which follows from Munk’s Stagger
Theorem, and which can be readily demonstrated from the properties of the rectangular vortex.
The induced drag due to the vortex lattice on any wing is the same as if the bound vortices
were moved backwards or forwards until concentrated in a single line transverse to the wind
direction, and the lifting line formula can be applied directly if the circulation is expressed
by the terms of a Fourier series. The relation between the coefficients of the lifting plane
formula and the lifting line notation is given in Appendix 1. To obtain the induced drag, the
~values of 4,, 4,, ... 4,, are first calculated, and it then follows that

0-25 2 chord. .. . ce e . . )

| 1 ., [Snd,?
Cp; = nd ZnA,? or — C; [——AE (10)
The local lift coefficient per radian incidence is | |
Cor = 4n [Fy + $F4]/(c[2s) .. .. .. .. .. .. .o (11)

and per unit Cy, . _
Cpr = 4n [Fo + 1F.]/(c/2s) (ACr[d«). .. . .. . .. oo (12)

The formulae for special values of the local lift coefficient at the median section and at the tip
are given in Appendix IIIL.

The exact method of calculation of the yawing moment for a wing with combined symmetrical
and anti-symmetrical loading has not yet been worked out, but a first approximation is obtained
by calculating 4,, 4., ...4,, and using the following formula, the derivation of which from

- 7

lifting line theory is given in Appendix IV:—
2
C, = %S_ [84.4; + 54,45 + ... .. 27+ 1) Ayl + ... ] .. .. (18)

The pitching moment is derived from the aerodynamic centre, which, together with other
properties of the wing, is usually obtained by numerical integration, examples of which are
given below.

The complete integrals on which some of the formulae of this paragraph are based, are given
in Table 5. '

4



3.1. The formulae of section 3 apply to the standard solutions in which the P functions are
omitted. We now consider what modifications are necessary when the latter are included.
So wide a range is covered by the P functions that it will only be possible here to define the
methods by which the necessary modifications are made, but these will be followed by examples
which will make the process clear.

- The expressions for K/4sV and the local aerodynamic centre autbmatically include the effects
2.2
of the P functions. The value of dC;/da is increased by % n—Ss— Ty (po + %p2) for the sym-

202
metrical solution, the value of C, by — 1 E.S‘i T (po + 4p5) for the anti-symmetrical solution,
and the position of the centre of pressure of the half wing symmetrical loading is modified by
adding T, (po + 3p1) to N and Ty (po + 1) to D, where Ty, Ty, and Ty are given in Table 8
of Ref. 7 for the original P functions and can be calculated as in Table 46 for any combination
of P functions. The expressions for induced drag and yawing moment are only valid if the
addition of the P functions leaves the circulation unchanged, ¢.e., if p, + §p; = 0. The general

case will later be given special treatment.

4. Range of Solutions.—The solutions described here have been based on three layouts, defined
as the 21-vortex, 126-vortex, and 328-vortex respectively. An 84 layout, used frequently in
early work, may still be of value for straight wings, but for sweptback wings has been discarded
in favour of the 126, which has proved to be more accurate. The numeral indicates the total
number of vortices which represent the wing, and the patterns for the four solutions, some of
which have appeared in previous reports, are now collected together in concise form in Figs. 1
and 2.

The 21-vortex solution, known alternatively from the location of load line and control points
as a /% solution, is the simplest which it is thought advisable to use. This solution, although
defective in some respects, can be regarded as a true first approximation to lifting plane theory,
to which the more elaborate solutions are closer approximations. Although it is possible to
use a pattern lying between the 21 and 84 or 126, it will be seen from the work below that the
advantages of the latter are so marked that any intermediate solution would not be worth
consideration.

5. Position of Control Points.—The position of the control points on the wing depends upon
the layout to be used, as well as the circumstances of the problem. For the 21-vortex layout,
equivalent to the use of one term, cot @, in the chordwise direction, or F; = F, = 0, the control
points must be on the $-chord line in order that this solution shall fall into proper relationship
with the sequence of operations used to separate the chordwise continuous vorticity into its
separate line vortices.

A general description of the method, which is based on two-dimensional considerations, is
given in section 7 of R. & M. 1910. It can easily be shown that, with the continuous two-
dimensional chordwise loading defined by cot 1® concentrated to a line vortex at the }-chord,
the $-chord is the only position where the downwashes are the same for the continuous and
concentrated loadings.

For the 84 or other vortex patterns, each control point must be placed at the midpoint of
one of the rectangles of the lattice, giving three possible chordwise positions for the 84, five for
the 126, and 7 for the 328. Usually, the use of two or three chordwise terms in formula (1)
requires the same number of chordwise positions for the control points, and the recommended
positions are given in Table 4. It should be stated that errors in the computed downwash
appear first for those pivotal points which are located over the forward part of the wing, where
the intensity of loading is greater. For this reason, superior accuracy results from directing
the control points towards the rear of the wing, as with the 126-vortex lattice.
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5.1. The optimum location of control points in the spanwise direction has been determined
by experience. For any layout spaced at 0-1 semispan, no point at 0-5 chord or behind should
be nearer the tip than 0-8y, and no pomt forward of 0-5 chord should be nearer than 0-77.
If the spacing be halved to 0-05 semispan, the points may move to 0-9 and 0-8 respectively.
These limitations are due to the fact that, if points were placed nearer the tip, they would be
too near the edge of the lattice for a reliable calculation of downwash to result.

With the 21-vortex lattice it-has been found hitherto that the points can be placed at any
intersection of the §-chord with the centre line of a vortex. With the 84, 126, and 328 patterns,
there is an additional limitation which depends upon the loading functions used. ' For either
symmetrical or anti-symmetrical solutions which use the standard sequence +/(1 7%),
74/ (1 — %), n*4/(1 — %), ..., no control point should be placed nearer than 2 vortex Widths
spanwise to the point where there is a sudden change of direction of leading or trailing edge,
such as occurs at the median section of the wings of Figs. 1, 4. If the P functions are added,
or other special functions which serve the same purpose, the rounding-off effect at the discon-

tinuity is allowed for, and it is then desirable to place a control point as near the discontinuity
as possible.

'5.2. Following these principles, the recommendations for a symmetrical solution for a wing
with main change of direction at or near the centre are as follows:—With standard loading
functions 4/(1 — %%, n*4/(1 — %%, *4/(1 — %%, use n = 0-2, 0-5, 0-8 or y» = 0-2, 0-6, 0-8.
If more functions of the same kind are used, or if additional relations are required, a suggested
sequence is 0-2, 0-5, 0-7, 0-8; 0-2, 0-4, 0-5, 0-7, 0-8; or 0-2, 0-6, 0-7, 0-8; 0-2, 0-4, 0-6,
0:7, 0-8. When the P functions are added it is necessary to include points at n = 0 and
perhaps 0-1. Similar principles apply when the discontinuity is away from the centre, in all
cases the standard solution avoiding control points in the immediate vicinity of the discontinuity.

The procedure for the anti-symmetrical case is generally the same, but there may be a
simplification when the discontinuity is at the wing centre, for in this case the downwash is
zero at = 0 and the standard functions may give a satlsfactory solution.

A more general treatment of the problem will be made in a later report.

5.3. Tt should be stated that there are two main reasons why the spacing of the lattice,
defined in terms of chord and span, should be constant over the wing:—(a) the overall accuracy
depends to a certain extent on the averaging effect due to the use of a number of line vortices

arranged in a uniform pattern and (b) no control point could be located in the region of a change
of lattice spacing.

It is essential that the same number of chordwise points are used at each spanwise station
as, otherwise, experience shows that a false solution might result. The exclusion of the term
774\/ (1 — %% is not recommended on account of the possibility of error.

6. Formation of Egquations.—At each control point, the total downwash is calculated by
means of the lattice in terms of the unknown coefficients in relation (2), and is equated to the

local slope of the plate representing the aerofoil profile. A set of simultaneous equations is
thus obtained in the unknown variables. ’

The equations are formed in the following way. It is first necessary to construct a table .
of distances on which the calculations are to be based. For example, Table 6 gives these -
distances for the tapered and sweptback wing of Fig. 1; they are (a) the distance back, parallel
to the wind direction, of datum to leading edge, and (b) the chord, both expressed in terms of
the span, for = 0 (0-05) 1.

The datum is any convenient line transverse to the wind direction, in this case passing
through the apex of the wing. As the spacing is 0-1s, the value = 0-9625, at which the
corrector vortex is located, must also be included. If the lattice spacing had been = 0-05

the table would be the same except that = 0-98125, the revised position for the corrector
vortex, would be included.
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6.1. The procedure for the 21-lattice is given in Table 2. Consider the total downwash at
the control point 1 of Fig. 1, located at » = 0-2, due to the spanwise loading function
a4/ (1 — %) cot $6. Row 2 gives positions on the span; row 3 the distances back, in terms of the
semi-width of vortex, of the individual vortices, obtained from Table 6 by the formula 40a + 105;
row 4 the relative displacements of the vortices from point 1, located at $-chord, or [0-2, 9-550],
obtained by subtracting 9-550 from row 3; row 6 gives the downwash factors due to the
displacements of row 5, obtained by taking readings from tables of downwash for a rectangular
vortex (see Appendix VI) for the figures of row 4, the entry opposite 0-2 starboard being used
with table y = 0, those opposite 0-1 and 0-3 starboard with y = 2, and so on up to 0-9 port
and starboard. The entries for = 0-9625 require special treatment as they refer to vortices
which are only one-quarter of the standard width. In consequence, the figure of row 4, and
the value of the downwash given by the table must be multiplied by 4, and the y of the table
is obtained by adding 8 instead of 2 for a 0-1 interval, with an extra 5§ for the interval 0-9 to
0-9625, amounting to y = 93 and 61 for the port and starboard half wings respectively. Row 6
then represents the individual contributions of unit rectangular vortices spaced along the span.
The total contribution due to a given spanwise loading function is obtained by setting down
the loading function as in row 5, which represents /(1 — #?), and computing XE+/(1 — 7%.
The result is 0-73342, and after making allowance for factors which arise from the cot 3@
function, and the non-dimensional form of the downwash Tables, the tangential flow relation
gives for

ke

SV o = ayV' 1 — 7* cot 30, the equation 204, [0-73342] = 1,

.based on point 1, or, as usually written 0-73342a, = 0-05. The formation of the complete
equations is simply a matter of adding more functions and control points and proceeding in
the same way, the right-hand side for the plane wing solution being 0-05 for all points. If the
spacing were halved, giving 41 vortices, the method of procedure would be precisely the same,
excepting that the right-hand side would be 0-025 instead of 0-05.

1t is usually possible to arrange self-checking for most of the calculations. For example,
in Table 2, row 3 can be checked by comparing the horizontal sum with the expression
40Za + 10Xb, and row 4 by comparing the horizontal sum with horizontal sum of row 3 less
21 X 9-550. The integrals XE (load function) can be checked by comparing total sum of
integrals with X(XE) (Z load functions).

6.2. We now describe the procedure for forming the equations for the 126-lattice. In Table 3,
instead of the single row 3, we now have rows 2 to 7, which again represent the distances back
from datum, and are obtained from Table 6 by taking 40z 4 3-3b, 40a 4+ 100, and so omn.
In addition to these six, the distances back of the }-, - and £-points are also given in rows 8,
9, 10 for a purpose which will be described below. In manuscript, the latter three are usually
written in red to distinguish them from the other six. Now consider point 2 of Fig. 1, located
at # = 0-2 and §-chord, or [0-2, 10-300]. Rows 11 to 16 give the relative displacements of the
individual vortices from the point 2, and it will be noted that the full lattice is only necessary
for that part of the wing in the region of the control point, a reduction being made over the
field beyond this. The simplification is introduced in order to save work in integration; for,
beyond y = 8, there is very little loss in accuracy by taking the chordwise loading cot 46 as
concentrated at the }-chord point, sin @ at the 4-chord point, and sin 20 as twin loads of opposite
sign at the }- and #-chord points. : -

The downwash factors corresponding to the displacements are read from tables of downwash
as before, and lead to an array of downwash factors of which three possible variations are given
in rows 24 to 44 defined as 126/90, 126/86, and 126/74 respectively. The second number in
each instance gives the total number of vortices used in integrating the downwash for a control
point near the wing centre, when three chordwise terms are in use. With the chordwise terms
limited to two, cot 30 and sin @, the E3 row beyond the centre lattice is omitted, and the
numbers reduce to 78, 78, and 62 respectively. ’
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The required load function, say 4/(1 — 7%, is again put in row 28 and the preparation of the
three downwash integrals, corresponding to a, cot $0+/(1 — %%, a, sin @+/(1 — 7%, and
a, sin 204/(1 — 7% put in progress by the calculation of the nine integrals tabulated for the
three solutions in rows 47 to 5§7. The first six of these integrals relate to the full centre lattice
from 0-2 port to 0-6 starboard, while the other three cover the remainder of the lattice with the
simplified chordwise representation. It should be noted that the last integral, which is obtained
directly, is the difference ZE,4/(1 — %) — ZE;/(1 — 2?).

The first six integrals, therefore, give the downwash due to a load furiction /(1 — %% on
each of the six lines over the range n = — 0-2 to + 0-6, and the last three to 4/(1 — %) over
the remainder of the wing located on the -chord, the }-chord, and the difference -chord minus
#-chord. : :

4

6.3. It is now necessary to consider the representation of a chordwise loading function. The
method, based on two-dimensional reasoning, by which this is effected has been discussed in
R. & M. 1910, where it is shown, for instance, that the distributed vorticity defined by
k =V cot 3@ can be represented by a vortex of strength IzVc placed at the i-chord, or,
0-2734= Ve, 0-1172zVe, 0-0703xVe, and 0-0391xVc¢ placed at -, §-, &-, and Z-chord. The
underlying idea is that, as the line vortices are to be used for the calculation of downwash at the
midpoints of the lattice,the magnitudes should be such that the two-dimensional downwashes due
to the line vortices, which follow from the geometry, are the same as for the distributed vorticity,
which are usually known as mathematical functions. There is usually one fewer downwash
relation than the number of line vortices, and the equations are completed by the stabilising
condition that the total vorticity is correct. ‘

It is assumed that the same relation holds when the flow is three-dimensional. Up to now
the necessity has not arisen for any departure from this relation, the form of which would be
inversely proportional to a function of aspect ratio, in order to give the correct limiting condition.

In addition to cot 6, similar factors for sin @ and sin 2@ for this and other vortex patterns
have been obtained and are collected together in Table 7. A chordwise function, therefore, is
represented by choosing the appropriate factors from Table 7 and applying them to the integrals
of Table 3. For example, the coefficient of ,, corresponding to cot 48, for the 126/90 solution
is obtained by summing 0-2256(47) 4 0-1025(48) + 0-0684(49) -~ 0-0488(50) + 0-0342(51)
+ 0-0205(52) for the centre part of the lattice and adding 0-5(53) for the outer lattice; the
coefficient of 4,, corresponding to sin @, by 0-0273(47) 4 0-0456(48) - 0-0521(49) + 0-0521(50)
=+ 0-0456(51) + 0:0273(52) for the centre lattice with 0-25(54) added for the outer lattice;
and the coefficient of a,, corresponding to sin 26, by 0-0456(47) -+ 0-0455(48) + 0-0174(49)
— 0-0174(50) — 0-0455(51) — 0-0456(52) for the centre lattice with 0-125(55) added for the
outer lattice. After allowing for the factor, which is one half the vortex width in terms of the
span, this gives for the tangential flow condition

0-36011a, 4 0-218364, + 0-03113a, = 0-025.
By adding further loading functions and control points the equations can be built up as required

to the full number of variables.

6.4. It is again possible to arrange for most of the work to be self-checking. For example,
the columns opposite rows 2 to 7 can be checked by comparing column sum with 240a -+ 1208;
a long column opposite rows 11 to 16 by comparing the sum with the sum of the column above

“less 61 X 10-300; the integrals opposite rows 47 to 52, or 53 and 54, by comparing the sum

with % (2E)4/(1 — 5%); the integrals in row 55 by comparing the sum of all such integrals with
a total obtained directly from the chart; and the equations in the unknown variables by
comparing horizontal sums with other values obtained directly from the integrals 47 to 55.
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7. Normalisation and Solution of Equations.—If the number of equations exceeds the number
of variables, it is necessary to normalise the equations before solution. The process is shown
concisely for a hypothetical example in Table 8; further details can be obtained by reference
to Whittaker and Robinson® or other standard works.

Assume that five relations are known in x; to x;, %, being the unit root, or representing the
constant column. The first normalised equation, row 6, is computed as follows:—x;, = Xx,?
Ky = NXoXy, Xy = 2X1Xs, Xy = XXX, Lhe values x, = X%,°, %3 = ZXo¥s, X, = 2%,%,, are entered in
row 7, and x; = X#,® and %, = X, in row 8, and the equations completed by making the square
matrix x; to x; symmetrical about the diagonal A check on the accuracy is obtained from the
original equations by the following; He = XxH,, H, = Exgﬂl, Hy = 2x,H,, where H, is the
horizontal sum of row n’

The solution is carried out by elimination and proceeds in the order x;, #,, x,, the constant
column x, remaining until the end. The row with the greatest numerical value of x, is starred
“for elimination, which proceeds by the calculation of eliminating factors, for example 0-42495
being 6-512/15-324. The work is continued by entering the quantity (row 6 — 0-42495 row 8)
in row 9—an immediate check on accuracy being made by comparing H, with (H, — 0-42495H)
—and finishes at row 11, which gives 0-168x; — 0-245 = 0. The remaining variables are
evaluated by calculating the back solution, using in turn the starred rows, which give the
greatest accuracy. A final check is applied by calculating the residuals due to substitution
of the roots in the equations, in this case being practically zero to three places of decimals.
The residuals for the original equations 1 to 5 have also been calculated in order to demonstrate
the results to be expected in least squares solutions.

7.1. It is frequently necessary in connection with work on wing loading to vary the constant
column, whilst leaving the remainder of the equations unchanged. The new solution can be
found simply by following the procedure given at the lower part of Table 8, where a new x,
column has been treated by the same eliminating factors as the original column. This leads
directly to the revised relation 0-168x; — 0-222 = 0, and the remaining roots are calculated
from the back solution using the starred rows in the same way as previously.

8. Calculation of Wing Characteristics.—In order to demonstrate the means adopted to calculate -
some of the wing characteristics, a standard 126-vortex 6-point solution for the delta wing will
be used. The equations for standard solution 3 of Fig. 4 and Table 22, obtained by the use
of the 126/86-vortex layout as described in section 6, are given in Table 9. After solution of
the equations, and calculation of dC;/d« and yawing moment from relations (4) and (10), the
work proceeds by the calculation of Fy + $F,, F, + F, — 4F, (F, in this case being zero),
and the position of the local aerodynamic centre on the chord

Fo + F, —
Fo + %

Fo 4+ 1F, = 0-11573 4/(1 — 7% — 0-01590n%/(1 — 7% — 0-01022*/(1 — #?)
Fy 4 Fy, — 1F, = 0-14029 4/(1 — 7% — 0-099924%,/(1 — 7% + 0-066265%/(1 — #?).

0-25 fﬂfmn~m0%nwmm

These calculations are given in Table 11, to which reference is now made. Column (5) gives
the distance back, in terms of the span, of the local aerodynamic centre from datum, obtained
from Table 10 by taking [@ + & X column (4)]. Since column (2) is proportional to the wing
loading, column (2) X column (5) is proportional to the moment of wing lift about the datum..
Hence [ column (6) divided by [ column (2) gives the distance of the aerodynamic centre behind
datum in terms of the span. The integrations are carried out by Simpson’s Rule, and it should
be noted that there is a variation from the usual factors near the tip, designed to make allowance
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for the particular behaviour of the loading curve in this region (see Appendix V). The aero-
dynamic centre is at 0-5024 span or 1-160 mean chords behind the apex. The circulation
K|4sV is « (column (2)), and the {local lift coefficient C,; for unit C, is calculated from
. 4m (column (2)) divided by (¢/2s X (dC.[dx)). :

8.1. To find the effect of symmetrical linear wing twist, the equations are first converted to
zero lift by using the condition 8a, ++ 4a; + 2¢, + ¢; + €, + 0:5¢, - . ... = 0. The incidence
equations of Table 9 are changed to the corresponding wing twist equations for solution 17 by
the following conversions:—

a, Eliminated

a, @, — 0-5a,

cg € — 0-25a,

¢, ¢ — 0-1254,

e € — 0-1254q,

e ¢ — 0-06254,.

Since the local geometrical incidence is now «, 4 wing twist, the column for «, on the left-
hand side becomes — 0-025 and the column for unit root — 0-025 (twist), which, for linear
twist, is — 0-025y. The equations refer to one radian twist at the tip and the solution. is
given in Table 36. The calculations for ¢,, and other quantities are shown in Table 12. The
work proceeds exactly as for the aerodynamic centre calculations of Table 11, with the exception
that c,, is given by the expression

4 1
Con = — 22 [ (ol 6)an =
—1

64mst [ __ 64as" X(col. 7) (col. 6)
——S—Z—fo (col. 8) dn = — > o

It will be noted that the local aerodynamic centre, given by column (4), is discontinuous at
the point on the span where the circulation is zero. For a positive angle of twist and positive
load at the tip, the local aerodynamic centre usually changes from — oo on the inner side to
-+ o0 on the outer side. ' ’

8.2. The solution for uniform roll is obtained exactly as for symmetrical wing twist, excepting
that anti-symmetrical functions are used. The twist is taken as linear, and one radian at the
tip corresponds to V/ws = 1.

8.3. Composite induced drags for standard solutions are calculated by working directljf on
the composite circulation. For example, a combination of solutions 3 and 17, representing
incidence and wing twist for the delta wing, leads to the following formula for the circulation:—

K[4sV = = [(0-11573x; — 0-01306«,) 4/(1 — 7% + (— 0-01590«, - 0-06842&,) 724/ (1 — 7%
+ (— 0-01022«; — 0-032284,) 5* 4/(1 — %]
where «; and «, aré the incidence and angle of twist at the tip respectively. The formulae of
Appendix I give
A = = (0-11048x,)
4y = =x (— 0-00589; + 0-01105e,)
As = n (— 0-00064«; — 0-00202x,)
" Hence Cp; = nAZnA,?
= 7’4 (0-01231e;? — 0-00038«,x, -+ 0-00039¢,7)
10



For a given incidence «;, the induced drag is a minimum when,

0-00078x, — 0-00038x; = 0 or «, = 0- 4872% giving =4 (0-01222«; )
the absolute minimum bemg nA (0-11048)%7 or =4 (0-01221e%).

9. Solutions for Delta Wing.—Fifteen solutions are given for incidence for a delta wing,
equilateral triangle, and seven solutions for twist, with angle of twist linear. The former are
given in Tables 20 to 34 and Figs. 4 to 7 and the latter in Tables 35 to 41 and Figs. 4 to 7. The
solutions range from 2I1-vortex to 328-vortex, and all the necessary information as to the
derivation of the solutions can be obtained from the tables and figures. Where more control
points than variables are shown, the equations have been reduced by normalisation before
solution. We proceed directly to enumerate the solutions.

9.1. Incidence Solutions.—The first part of the work is connected with standard solutions,
and is concerned mainly with the effects of alteration of the number of control points and the
spacing of the lattice. The two 21-vortex solutions 1 and 2 given in Fig. 4 and Tables 20 and
21 demonstrate that three stations are sufficient to give good accuracy in the spanwise direction,
the addition of two extra stations making no appreciable difference. The succeeding solutions
3 to 6, given in Figs. 4 and 5, and Tables 22 to 25, show (a) that there is no appreciable difference
between the results for 6- and 9-points used with the 126-vortex lattice, (b) that the 9- and
12-point solutions with the 328-vortex lattice are in good agreement and (c) that the 126-vortex
6-point solution agrees quite well, except for the value of dc;/d«, with the 328-vortex 12-point
solution. From this we conclude that the validity of the 126-vortex 6-point solution for general
use as the standard solution is established, the only correction required being to apply a
factor to the value of de,/da.

These solutions have been treated in a general manner and do not include a special condition
applicable to a pointed tip. This extra condition is that the local aerodynamic centre at the
tip is at }-chord, which must apply if the reasonable assumption be made that the curvature
of flow at the tip remains finite. The effect of this condition is negligible as far as the wing
loading is concerned, the main effect being to improve the curve of local aerodynamic centre
plotted against #. An example of the application of the condition will be given below.

9.1.1. It is now necessary to consider what modifications are required to the standard solution
in order to allow for the effect of sudden change of direction of the leading or trailing edge.
That a modification is necessary can easily be demonstrated by forming more equations for
the standard solution in the region of the discontinuity, when it will be found that they are not
satisfied by the standard solution. The discrepancy is worst at the discontinuity, which can be
seen from Table 13, in which the standard equations for points 7 to 10 (see Fig. 6), have been
set down for the 126-vortex solution. The residuals after substitution of solution 3 are given
in the last column; they are greatest at the discontinuity and drop to about one-fifth the value
at 0-1 semispan or one vortex width away from the discontinuity.

It is obvious from the standard calculations that the effect of the discontinuity must be
small at distances away of 0-2» or greater, and the necessity for easy calculation of induced
drag and yawing moment leads us to the use of the P functions as mentioned in section 2. We
require an additional circulation function of which the corresponding distribution of w/V has
a peak at the discontinuity, and, if the argument be limited to two additional spanwise terms
suitable combinations of the P functions for the delta wing are P, and P, as shown in Fig. 8.
These functions are formed by addition of proportions of the P functions as indicated in Ref. 7,
the formula being

'Pa: ’\/(1 _772) - 10P500+9P:10
Pb:'\/(l—ﬁz)_SPsod‘f“LP‘szo-

As the 0-1 lattice in effect limits us to intervals of 0- is, and it is known that w/V should become
negligible at » = 0-2 or slightly greater, no other reasonable choice is available.
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9.1.2. As the use of both P, and P, implies to 10-point solution, the procedure is to reduce
to a single variable P which is a combination of P, and P,. This is effected by a subsidiary
calculation involving the six points 1, 2, 7, 8, 9, 10 only. - We require to find an additional
solution which will remove the discrepancies noted in the standard solution. It is, therefore,
assumed that the formula for kc/8sV sin « is precisely as for the standard solution, relation (2),
but with the following additions:—

TOFoaddag,\/l—ﬁz‘!‘pagpa—i—pbgpb . .o . . . (14)
To F,add a,'V'1 — n* + puP, + pulbs. .. .. .. .. .. (1%)

The terms in @, and 4, are found to be necessary in order to balance the terms in P.

The additional loading functions are treated in the same way as the standard loading functions
and lead to the equations of Table 15 for the six points 1, 2, 7, 8, 9, 10. In order that the
downwash due to the six terms of these equations shall remove the discrepancies in the standard
solution, the constant column must be the same as the residuals obtained from Table 13, those
for the additional points 1 and 2, two of the standard equating points, being zero.

9.1.3. The values of the extra functions P, and P, together with combinations of the two
are given in Table 46, and are plotted with the corresponding downwash distribution in Fig. 8.
It will be noted that two sets of values are given, the first the true values, and the second special
values to be used with the 0-1 lattice. A full explanation of the derivation of the two sets is
given in Appendix VII.

9.1.4. The equations of Table 15 are representative of general practice when the discontinuity
isat = 0. When the trailing edge is straight as in the case of the delta wing, it appears that
the rounding-off effect of the discontinuity is mainly reflected in movement of the local aero-
dynamic centre, the circulation remaining almost unchanged. This effect will be demonstrated
below, but, if the fact be accepted, the equations of Table 15 can be simplified by using the
conditions that the circulation is unaltered, 7.e.,

a0 + 3" = P + $Pa = Pu + %}551- =0
The simplified equations are given in Table 17, and the solution in Table 26. As the solution
is intended only to round-off the standard solution, the revised figures for local aerodynamic
centre are used only as far as the point, in this case » = 0-5, where the new curve merges into
the original, after which the original curve is followed.

The ratio of p,o to py, is of the order 0-6 to 0-4, and, as the final answer is not very sensitive
to this ratio, the most useful combination of functions, having regard to other uses as well,
is taken to be P = 0-65P, + 0-35P,. The values of this function are given in Table 46,
and are plotted with the corresponding downwash distribution in Fig. 8.

9.1.5. The rounding-off equations can now be simplified by usihg the following additions:—
to Fo add a,v/(1 — 7% + poP |
to F, add a,'/(1 — 7% + $.P,

which, after use of the conditions for unchanged circulation,
@ + 3’ = po+ P =10

lead to the four equations of Table 18 for the points 1, 2, 7, 8 in the two variables a,” and p,.
The solution of these equations is given in Table 27. Again the values of K/4sV and C;, corres-
pond to those of solution 3, and the modified local aerodynamic centre is followed up toyp = 0-5
only. The position of the overall aerodynamic centre for solution 8 is at 1:183¢ behind the
apex, i.e., it is at 0-023¢ farther back than the standard solution.
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For the general case represented by solutions 14 and 15, the additional lift is
2.2
ACjde = 1 %S— 8 (a + 4a)") + 0-50888 (pu + 1pa) + 1:01517 (s + LPu)].

9.1.6. The form of the additional loading function being fixed, it is now possible to make a
complete revision of the standard solutions by solving a range of solutions up to 8 points. The
work is started by solving a 21-vortex 4-point solution with one control point at = 0, and
including in the loading functions the given function P. This selution, number 9, is given in
Table 28, and, by the practical rejection of the term in p,, provides additional confirmation that
the standard terms are adequate for a satisfactory solution. '

This is followed by an 8-point solution, number 10, in which points 7 and 8 are added to
the standard solution, and terms p, and p, to the standard loading functions. The value of
Po + %p; has the small value of 0-00538, confirming that the main effect of the rounding-off
at the discontinuity is to shift back the local aerodynamic centre.

Solution 11 has been calculated in order to show the effect of reducing the lattice from the
126/86 to 126/74 pattern (Table 8). The difference in the results is not great, but, in the opinion
of the computers who carried out the work, the simplification is not worth while. Solution 12
has been calculated with the same number of variables but with the addition of two extra control
points located at » = 0-7. The difference between the two solutions is very small and so
provides additional evidence of the accuracy of the eight-point solutions. Solution 13 is the same
as solution 10, but with the condition that the P functions alter the local aerodynamic centre
only and add nothing to the loading functions, 7.e., $, + 4p, = 0. This leads to seven
independent variables only, and, after normalisation and solution of the equations, the solution
given in Table 32 is obtained. There is very little difference between this and solution 10,
and, although no exact proof of the condition has been given, it is at least evident that it is
correct for all practical purposes.

9.1.7. To end the series of incidence solutions, solution 14 has been computed with the
additional condition that the local aerodynamic centre at the wing tip is at }-chord. This is a
special condition for pointed tips and it leads to a relation between a,, ¢, e, and p, derived in
the following way. For % = 1, (F, + F; — 4F,) | (F, + $F,) must be unity. Cancelling
the factor 4/(1 — %%, we are left with '

atat o+ (o), =0

or since P[4/(1 — n?) = T4, we have from Table 46,
6l1 _I—' Cl + 61 —!‘" 0'04303?1 = O.

The solution, although based on six independent variables only, does not differ greatly from
number 10, but the curve of local aerodynamic centre is perhaps the most accurate of any for
the delta wing.

Finally, the lifting-line solution has been calculated by standard methods and is given for
comparison as solution 15.

9.2. Wing Twist Solutions.—Seven solutions applicable to linear wing twist are given in
Tables 35 to 41. Solution 16 is the 21-vortex 3-variable standard solution, and is followed
by solution 17, a 126-vortex 6-point standard solution and solution 18, a 328-vortex 12-point
standard solution. These three solutions have been calculated in order to provide evidence
as to the accuracy of the standard solutions and they show at once that the spanwise stations
used are sufficient for an accurate estimate of the circulation. The 21-vortex solution, however,
should be avoided, if an accurate estimate of C,, is required, for it is evident that departures
from the z-chord position for the local aerodynamic centre are very much more important for
twist solutions than for incidence solutions.
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9.2.1. The rounding-off effect of the discontinuity is again assessed by methods similar to
those used for the incidence solutions. Solution 19 involves the six points 1, 2, 7, 8, 9, 10 of
Fig. 6. The additional standard equations for linear wing twist for the pomts 7,8, 9 and 10
are given in Table 14, together with the residuals after substitution of the standard solution 17.
The auxiliary equatlons are found to be entirely satisfactory if the same additional variables
as before are used, i.e., @', @', oo, Pars Pro, Pn- 10 order to transform to the equatlons apphcable
to zero lift, the zero lift condition relating to the new variables only is used, z.e., 8a, + 4a,’
—+ 0-50888p,, + 0-25444p,, + 1-01517p, 4 0-50758p, = 0.

9.2.2. The equations are given in Table 16 and the solution in Table 38. It as apparent from
this that a suitable ratio between the two functions is (pu. + $Pa) to (P -+ 1Pu) or 0-250
to 0-750. The solution is not very sensitive to this ratio and the combined function actually
used was 0-2P, + 0-8P, the values being given in Table 46 and Fig. 8. Using this function,
a simplified auxiliary solution number 20, using the six points, with equations given in Table 19,
was also calculated. Finally, the full eight point solution using the eight points 1 to 8 and
with P = 0-2P, + 0-8P, added to the standard loading functions has been calculated and
is given as solution 21, Table 40.

Finally the lifting-line solution is given in Table 41. A four point foundmg off solution for
points 1, 2, 7, 8 has not been calculated but there is little doubt that this would be entirely
satlsfactory

9.3. Discussion of Results: Incidence Solutions.—In Fig. 9, solutions 3 and 4 have been plotted
in order to demonstrate how close is the agreement between 126-vortex 6-point and 9-point
solutions. Similarly, in Fig. 10, two 328-vortex solutions with 9 and 12 points respectively
have been plotted and also show close agreement. Figure 11 is concerned with the effect of
the rounding-off terms on the 126-vortex solutions and includes the standard solution No. 3,
an 8-point unconditional solution number 10, an 8-point conditional solution number 14, and
a quick modification to the standard solutlon number 8. Finally, in Figure 12, solutions of
varying. complexity are compared. The loci of the local aerodynamic centre for lifting line,
standard and modified solutions are shown in Fig. 15.

A summary of the main characteristics of the incidence solutions is given in Table 42.

9.3.1. The following conclusions are drawn after a study of these solutions:—

(a) The spanwise distribution of local lift coefficient is in close agreement for all vortex
lattice solutions. This conclusion is valid for wings with straight trailing edges, but judgment
is reserved on the question whether the 21-vortex solutions will be equally accurate when a
sweptback trailing edge is involved. The 21-vortex solutions are valuable for establishing the
circulation and for the determination of the functions to be used for any particular problem.
The lifting-line solution is greatly in error.

(b) When the local or overall aerodynamic centres are required the 21-vortex solutions are
not sufficiently accurate.

(c) The 126-vortex 6-point solutlon is established as sufficient to give good accuracy for the
standard solution. The only appreciable error (see Table 42) is in de¢;/de, which, if solution 6
be accepted as the most accurate, must be increased by the factor 1-038. Slmllarly, dcy|de
for the 21-vortex solution number 1, must be increased by the factor 1-088.

' These corrections are in addition to these due to the rounding-off effects on the lift of
discontinuities, which, although negligible for this wing, may be quite appreciable when sweep-
back of the trailing edge is present.

(d) For the delta wing, and probably for any wing with a straight trailing edge, the effect
of the rounding-off due to the discontinuity, which is not allowed for in the standard solution,
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is to shift backwards the local aerodynamic centre in the region of the discontinuity, and to
leave the circulation and dc;/de practically unchanged. The overall shift backwards of the
aerodynamic centre is about 0-020t.  When the trailing edge is not straight there will be an
additional effect of change of circulation.

(¢) The additional loading functions necessary to allow for the discontinuity can easily be
built up from special functions given in another report. After a single combined function has
been established, the full modification to the 126-vortex solution involves an 8-point solution
the extra two points being located at the discontinuity. It is shown that the necessary
modification can be effected with good accuracy when the combined function is known by an
auxiliary solution involving only four variables generally and two for those cases where the
circulation is unchanged. If the combined function is not known, the additional work required
need not be great. As evidence of this conclusion, the simple solution number 8 agrees very -
- well with the 8-point solution number 10.

(f) The auxiliary functions required are remarkably consistent and it will be possible later
to predict those required for any problem. ‘

9.4. Discussion of Resulis: Wing Twist Solutions.—Selections from the solutions for wing
twist are plotted in Figs. 13 and 14. In Fig. 13 the three standard solutions of 21, 126 and 328
vortices respectively are plotted and the agreement between the latter two shows again that
the 126-vortex 6-point solution is adequate for obtaining an accurate standard solution.

Selections from the solutions after allowance for the effect of the discontinuity are plotted
in Fig. 14. Loci of the local aerodynamic centre for lifting line and other solutions are shown
in Fig. 15. A summary of the twist solutions is given in Table 43.

9.4.1. The following conclusions are derived from a study of these results:—

(a) The spanwise distributions of circulation per radian twist are in agreement for the three
standard solutions, but the use of the 21-vortex solution may be invalidated on account of the
large error in ¢,,. There is good agreement in all respects between the 126- and 328-vortex
solutions, from which it is deduced that the 126-vortex 6-point solution will give an accurate
standard solution. '

(b) For the delta wing—and it is not yet known whether this result is general—the effect
of allowing for the discontinuity at the median section is to leave the local centres of pressure
unaltered but to increase the circulation per radian twist. This effect is the reverse to that
experienced with the incidence solutions.

(c) The additional loading functions necessary to allow for the discontinuity are built up from
the standard functions of Ref. 7 in the same way as for incidence solutions. A solution with
accuracy almost equal to a full 8-point solution can be obtained by a simple auxiliary solution
as in the case of incidence solutions.

(d) For the delta wing—and again, generality cannot be assumed—an approximate correction
‘é(f) the standard solution can be obtained by multiplying K/4sV and ¢,, by a factor, of the order
of 1-06. .

(e) The lifting-line solution is subject to serious errors, c¢,,, for instance, being about 50 per
~ cent in excess of the vortex lattice values.
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equations; and to Misses S. D. Brown, P. I. Bond and W. M. Tafe for bearing the responsibility
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11. Conclusion.—This report has demonstrated the general principles of the use of vortex-
lattice theory for the special case of the delta wing. Examples of application to wings with large
sweepback, including the special methods to be adopted for the general determination of 1nduced
drag and yawing moment, will be dealt with in a later report.

APPENDIX 1 _
Relation Between Lifting-line and Lifting-plane Notation

The Glauert or lifting-line notation is

K d .
4sV sin & ,El A4, sin ng

and the corresponding lifting-plane notation is

K
IV ena — * o+ 25 ,
= [(@ + @) V(1 — 7°) + (b0 + 302) 2 /(1 — %) + (0o + 3¢c1)
A=)+ (Rt ) 0 V(=) ]
Since # = cos ¢, standard formulae give (Hobson p. 106)®
sin ¢ = V1 — g

sin 2¢ = 2 V1 — #*

sin 8¢ = V1 — 2 (49" — 1)

sin 4¢ = VI — #* (8° — 4n)

sin 5¢ = V1 — * (169* — 12»* 4 1)

sin 66 = V1 — ¢* (320° — 32¢° + 6n)

sin 7¢ = V1 — 7* (64n° — 80n* + 249* — 1)

sin 8¢ = V1 — 5* (1289”7 — 1927° 4 805> — 8y)

sin 96 = VI 7 (2567° — 448y° 4 2407* — 407 + 1)

sin 10§ = T — 7* (5127° — 102457 -+ 6727° — 1607° -+ 10n)

sin 11¢ = V1 — 52 (10249* — 2304%* - 1792y° — 5604* 4 605> — 1).

Equating the two expressions gives the following:—

A4, = nm[do + a1 + 160 + $01 + F60 + Tléel + €28 + o8& + 123% + ¥t + Fsko
+ 183ch]
Ay = m [$by 4 16, + 1o + 3+ Eh + & de + 55 + ssdo + &l
As =z [16o + §a1 + e + FHor + &8+ 558+ g + 155t + AR + 5k
Ay == [%do + ﬁdl + %fo -+ ﬁfl + 6—74]% + ﬁ‘gkl + %jo + 'ﬁg’gjl]
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= 7 [{560 + d56 + &8 + 1558 + to + 135h + Thizh 1+ whashl
n [efo + dofv + deho + the + Hado + 185si]

= 7 [§28 + TEs& T+ it T+ sl + 1hizhe + skl

g =— T [‘1‘%—8‘}"0 + %@kl + 61_4_7.0 + 1%—3_7'1]

Ay = 7 [zhgte + 51zt + 1ozahe + zoashi

10 = T [‘5—;{‘2‘]‘0 + 1—0%1‘,7.1]

Ay = 7 [g5zko + sozshl.

I

@

T o

R

The following are the relations between ¢ and 5 :—

V(= 7 = sin ¢

74/ (1 — 9% = £ sin 2¢
V(1 — 7% = % (sin ¢ + sin 3¢)
V(1 — 7%) =} (2sin 24 + sin 49)
V{1 — 7% =% (2sin ¢ 4 3 sin 8¢ + sin 5¢)
V(1 —n*) =3 (5sin 2¢ + 4 sin 44 -+ sin 6¢)
V(L —7%) = ¢ (5sin ¢ 4 9sin 3¢ + 5 sin 5¢ + sin 74)
7'/ (1 — 7% = 1z (14 sin 2¢ + 14 sin 4¢ 4 6 sin 64 - sin 8¢)
V(1 — 7% = 3ks (14 sin ¢ + 28 sin 3¢ + 20 sin 5¢ - 7 sin 7¢ -+ sin 94)
V(1 — %) = 5}2 (42 sin 2¢ + 48 sin 4¢ -+ 27 sin 64 + 8 sin 8¢ + sin 10¢)
V(1 — %) = 1dsg (42 sing + 90 sin 3 + 75 sin 5¢ + 35 sin 7¢ + 9 sin 9¢ —+ sin 114).

APPENDIX 1II
Caleulation of Lift Coefficient: Standard Solution

ke . . .
m = FOCOtgg -+ F151n@ + F251n2@

The circulation K = f

—cf2

or ‘—g—————ﬂ‘rm cot 36 dx—l——f sm@dx—]——f sin 260 dx.
8sV sin « el e
¢/2

But x/c = { cos @, therefore (1/c) J‘ cot $0 dx = %f cot 10 sin @ 4O = = /2.
0

—cf2

/2 /2
Similarly, (1/c) f sin @ dx = /4 and (1/c) f sin 20 dx = 0.

—c/2 —cf2

K K .
Hence TV ona O sy PeT radian = = (F, + 1F,).
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The element of lift on any chord is p VK dy, or total lift = f pVK dy.

ch

Hence, - or 5% — f Kdy = 52 (F 4 1F) dn.

After substitution of the integrals (see Table 5), this becomes

c dc;  n®s?

e or /== 5= (8a, + 4a, + 200 + ¢ + ¢ -+ 0-5¢, + 0-625¢, + 0-03125¢g,

+ 0-4375:, + 0-21875:, + 0-328125%, + 0-1640625%,).
This formula is independent of the shape of the wing.

. APPENDIX III
Calculation of Local Lift Coe]ﬁcieﬁt

The local lift coefficient ¢;; = leVT—Zi = ? sin o (Fy 4+ 3F,;). At the median section where

8zs .
n = O, F(] - ao, Fl - 611, a.nd CLL = T SIN « (ao + %‘“1).

The local lift coefficient at ‘the tip, when this is rounded-off by a circle of radius R, is calculated
as follows. At a distance of dy from the tip, ¢/s = 4/(8Rdn/s.).

Also, as g — 1, VI — * = 4/[1 — (1 — dp)?], and
Crp = 8_0-”3 sin « A/[1 — (1 — dn)?] [ay + ay + (8o + 3b1) 4 + (co + $c) n* + ... 1.

Hence, at the tip, where n = 1,

¢ = 4m \/(;—3) sin « [@, + 3a; + 0 + 30y +¢o + Fc2 + ... 1.

APPENDIX IV

Calculation of Yawing Momenis by Lifting-Line Theory

Yawing moments are due to two factors, (a) the effect of the symmetrical downwash on the

anti-symmetrical loading and (b) the effect of anti-symmetrical downwash on the symmetrical
loading,
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For the lifting-line loading per radian

K/4sV = X4, sin ng,

the yé.wing moment is N = f pwKs cos ¢ dy,

and ¢, = [JV+S5 f pwKs cos ¢ dy

2

= 4?3 f cos ¢ 2A, sin nd Xnd, sin ne dé
0

from which the following value for the yawing moment coefficient is derived

Co =5 [3A,Aq + 5Auy + TAA A . 4 20+ 1) Ay + . ]

APPENDIX V

 Ona Modification to Simpson’s Factors

The Simpson factors 1, 4, 1, are based on the assumption that the curve through three points
can be represented by y = ax + bx*. If dy/dx is infinite, this assumption is invalid, and the
use of the factors 1, 4, 1, leads to errors in the integration.

The Simpson factors can be modified to allow for dy/dx being infinite in the following way:—
let the three ordinates be y,, 1, ¥., where dy/dx is infinite at y = y,. Lety = K, 4 K;x'/*
+ K,x** and hence

Z—«; = LK '* - 3K, a0,

The area is f ydx = Kyx, + 3K,%,°7 + 2K,x,°?
o

Let the area be 1 (ayys + @y1 + @5Vs) %, where @, + a; + a, = 6. Substituting for y,, 3, and
y,, and noting that x;, = 4x,, the solution of the equality gives a, = 0-675, a;, = 4-525, a, = 0-800
which take the place of 1, 4, 1, the value a, being used at the point where dy/dx is infinite.

The following table is an example of the integration of 4/(1 — %?) dx from x = 0 to 1. The
true integral is /4 or 0-7854 and the superiority of the modified formula is clearly demonstrated.
Professor Bickley® has pointed out that the use of these factors is only justified when the
conditions at the vertical slope are in agreement with the assumptions made, and has generalised
the analysis to suit a varying range of tip conditions.
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Modified
% /(1 — 2?) Simpson Simpson
~ factors factors
0 1-0000 1 1
0-1 0-9950 4 4
0-2 0-9798 2 2
" 03 0-9539 4 4
0-4 0-9165 2 2
0-5 0-8660 4 4
06 0-8000 2 2
0-7 0-7141 4 4
0-8 0-6000 2 1-800
0-9 0-4359 4 4-525
1-0 0 1 0-675
Integral Value
True 0-7854
Simpson 0-7817
Simpson
modified 0-7854

APPENDIX VI
Tables of Complete Downwash for a Rectangular Vortex

The tables of complete downwash are constructed from the formulae published by Glauert®,

and given in Fig. 3. The origin and location point of the vortex is the midpoint of the bound
" vortex AA’, and the non-dimensional co-ordinates are x* = xfy,, positive forwards, and
y* = yly,, positive towards the starboard side, where y, is the semi-width of the vortex.

The function tabulated is the total downwash 2=w/V for three line vortices AA’, AB, and
A’B’, each of strength K = 2Vy,. The tables are constructed for specified values of y*, with
x* as the running co-ordinate, the configuration of the lattice making it necessary to include
only the sequences y* = 2(2)88, and 13(8)173. For y* = 0, the function becomes infinite as
x* — 0, and, in this region, the tables would be unsuitable for interpolation or for being converted
to a critical form. On the recommendation of the Scientific Computing Service Ltd., the
tables for y* = 0 with x* small have, therefore, been modified by tabulating the complete down-
wash less a part 2/x*, an artifice which removes the infinity and restores the tables to a readily
usable form.

Straight tables derived from key tables computed by the Scientific Computing Service Ltd.,
and critical tables derived by interpolation from the straight tables, have previously been used
and circulated. "As the use of the tables is now firmly established, it has been considered well .
worth the expense of having the critical tables recomputed to greater accuracy and consistency.
This work has been undertaken by the Mathematics Division of the Laboratory, and the tables
are now to be published as a separate report.* They were computed by a direct process, Glauert’s
formula for w in terms of x*, ¥* being inverted analytically to give x* in terms of w and y*.

The opportunity has been taken of simplifying the use of those tables for the series
y* = 13(8)173, which are associated with the corrector vortices and will be referred to as
subsidiary Tables, by tabulating four timies the downwash against } #¥. It should be noted
that the stars have been omitted in the latest Tables. :
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APPENDIX VII

Variations of Functions in Accordance with Their Uses

It is convenient as well as reasonable to use lifting-line theory as a measure of the accuracy
of the vortex lattice calculations. The convenience lies in the fact that exact integrals of
induced downwash can readily be obtained from which the accuracy of the corresponding vortex
lattice values can be assessed. If the accuracy of the lattice for lifting-line calculations is
established, it is reasonable to assume that the accuracy will also be satisfactory for lifting-
plane theory, which is, after all, only an extension of lifting-line theory.

By a comparison of integrals as indicated above it has been proved that the standard loading
functions when used with the lattice of 0-1 semispan spacing lead to accurate integrals of down-
wash. If, however, the P functions, which are much less regular than the standard functions,
are used with the 0-1 lattice, greater inaccuracies than can be tolerated oecur in the 1ntegrals
of downwash. This dlfﬁculty could be overcome at the expense of considerable labour by
decreasing the spacing of the lattice, but a simpler method, involving a minimum of work, is
to retain the 0-1 spacing and vary the functions in such a manner that the integrals of down-
wash will be correct. The function will then have two sets of values, the first the true values
to be used in analysing the properties of the wing subsequent to the establishment of the formula
for the vortex sheet, and the second special values to be used with the lattice to obtain correct
integrals of downwash.

The second set of values is found in the following way, the argument applying to the standard
lattice of 0-1 semispan spacing. The lifting line is set out by the standard lattice as shown
i Fig. 16, and the downwash factors obtained by the standard method demonstrated in Table 2.
The relative distances are all zero, and the downwash factors follow the simple sequence 2-0000,
23 —1),2[1/2n + 1) — 1/(2n — 1)], etc., with a modification for the end corrector vortices.
The downwash factors are shown in Table 44; if then, K, to K, are regarded -as the unknowns,
the induced downwash can be expressed for points O to 8 as equations in the unknown quantities,
as in Table 45. The constant column depends upon the distribution of downwash it is intended
to represent, and the 0-1 spacing limits the argument to polygonal distributions with similar
spacing. For example, the equations of Table 45 referring to the function P, will have a constant
column — 1 for point 0 and zero for the remaining points, while the column for P, will be — 1
for point 0, — 0-5 for point 1, and zero for the remainder. After the application of a factor
which occurs in the analysis, the two columns appear as in Table 45. In order to reduce the -
number of variables to 9 it is assumed that the values of K, and K, coincide with the true values.
Solution of the equations leads to the values defined by the term ‘0-1 lattice values’ which
are given for P, and P, in Table 46 against the true values, and are also plotted in Fig. 8.

It should be added that, the equations having been solved by elimination, it is an easy matter
to compute the solution for any additional constant column by following the method described
in section 7.1.
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Table |.

N Mumerical Values of Loading Functions.
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TABLE 2. FORMATION OF EQUATION FOR 21 VORTEX LATTICE.

y PORT STARBOARD
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TABLE 3 FORMATION OF EQUATION FOR 126 VORTEX LATTICE.
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E -

59

m ' W/ PER RADIAN WiV PER RADIAN w/V PER RADIAN

m 40 % Q36011 a, Z0% 0-36011 o 40 X 0-3§520 a,

62| 40 % 021836 2 40% 0-218%6 @, 40 % 0-2I755 2,

63 40 A0-03113 Q2 A0 X 0-0BI22 Qy 40 X 0-0B124 az

il

126/90 126/86 126/74




Table 6

Table of distanceg For wing of Fig. |

(o)

Table 4
Chordwise location of pivotal poinks
Latlice | oS el B
21 vortex * 34 chord
% 3/, chord
84vorbex | ¢ .| ¥ ¥%,34 chord
% % 3¢ ] 5’4, yz, % chord
% 6. chord
126 vortex | ¢ # %, % chord
3 3 % |3, %, % chord
# " 34 chord
520 vorbey | ¥ % %, 3, chord
¥ w % | %, %2 ,%chord
Table §

/
Table of integrals fﬁ"/l"?]z dmn andf’n”Jl-nzdn
(-] -,

n Integral [ | Integral J|
0 /4 7/2

i /3 ]

2 /16 /8

3 2/15 0

4 /B2 7/16

5 8/10s 0

6 57/ 256 57/128
7 16/315 0

8 77/ 512 77/256
9 128/ 3465 o
1o 217/2048 217/1024
X 256/ 9009 0

®
7”7 Dakum bo L.E. Chord
0 0 0- 2500
0-08 0:0175 02438
010 00350 02575
015 00525 0:2312
020 00700 02250
0:25 0:0875 02188
030 01050 0°2125
036 0-1225 0-2062
0-40 0+ 1400 02000
048 01575 01938
0:50 01750 01875
0-55 01925 01812
- 0°60 0:2100 01750
065 02275 0.1688
070 02450 01625
0-75 02625 01662
0-80 02800 01500
085 02975 01438
0-90 03150 01375
095 03325 0-1312
0:9625 03369 01297
1000 . 03500 01250




Table 7

Factors to represent chordwise funckions

as line vortices

Posikion
Solution | on chord cot 84, sin @ sina @
from L.E.
| lor2 point 0-25 05 0 0s 125
0+ 50 o 0- 25 o
_ 075 0 o - 00125

4 point 0-125 0:2734 00488 0.0732
0-379 01172 0:0762 0-0381
0-825 0.0703 0-0762 | ~0-0381
0-875 0-.0321 00488 -~ 00732

& point 00833 0.2256 0+0273 .0 *0456
02500 0-1025 00456 0 -0455
0+4167 00684 00521 0-0114
05833 0.0488 .| 040621 |=-o0.0174
0+7500 0.0342 0:0456 | —0-045%

' 09167 00205 - 0+027% ~0-0456

8 point 0-0625 0+1964 00180 0.0315
0.-1875 0-0916 0+0308 00385
0.3125 0.0635 0+ 0368 0-0276
044315 00480 0-0394 0+0099
0+5625 0- 0314 0-0394 | —0-0099
0-68715 0-0289 0°0368 | —0-0276
0-8125 0-0211 0:0308 |-—~0-0385
0+9375 0-0131 0-0180

~0-0315



Table 8
Example of normalisabion and  solubion

Before normalisation

x, X3z X3 X4 - Sum
) 1854 | -2-560 3-220 | ~)-000 1-514
2 | <8472 =-2:106 1-4804 =|+200 =0 -0-i59
5 1-618 | =1-498 0:292 | -1-400 - 1-088
4 1-307 |=0-860 |=-0-449 | ~(-G00 - 1+652
5 [v119 |=0'11% |=1:436 | -1-800 -2-332

Nowmalisation and solution

X x; Xy x4 Sum Check Factors
6| 11-398 |=11-729 8412 |=10:085 |=3.874 | =3-874 | 042495
7 (=11+729 | 13981 |=11-24 8:766 |=-0-223 | -0-222 | 0.73356
8| 6512 |-11-241 | 16-324 | -1-870 | 8726 | 6.725 3%
9| 8-831 |- 6952 0:000 | =9+260 | =7+581 | =7.562 3
lo] =6.952 5735 0+ 000 7394 6177 6+177 | 0-8249
il O~ 168 0000 0000 = 0245 = 0077 - Q0-077
Roots Row [Residuale
x| | 1-468 ] 0006
x Xy | 00478 2 | ~0.033
Xy |-0- 147 3 | o0-054
X4 | 1-000 4 |=~0-0%2
5 0 002
[ 0+000
7 | o-o00
8 =0+ 00/}

Solution with additional  comstant column

;jmiﬁ:;ﬁn Eg%a? Fackors | ax, |Factors| x4 Rooks
=1°200 |1<10°236 |0 42495-8°952| 3% |-0-222 xi | |+321
-]+ 300 Q-38010- 753466f 7-163|0-8249 X3| ©0-382
-1-400 ||-3-022] Xg(=0-106
=l- 400 Xg| 1000

| -1-600




Table 9 Equations For 6 point solution For & delta wing_

Solution 3 Incidence
Point g o, co c, e, e, 1 Sum
| 023801 006849 |~0-01590 |~0:00408 (~-0:00972 |=0°00329 |~002500 De 24854
z 0-20883 O<1141y |- 0-0403% |-0-01619 |~001866 |~0-00804 |~0:02500 021466
3 0-28320 001214 0-32032 0-06821 0+24082 0-05951 |-0°02500 P=95920
:4- 0-27181 0- 156764 029745 016036 0-20951 018328 -0%02500 | = | «i 8502
5 024921 0-03580 0-15%43 004476 0-04852 001599 |-0-02500 051561
<] 0 2;’)258 (i1 ) 012927 007082 002352 001620 |-0-02500 ¢ +57866&
Solution 17 Linear wing Ewist .
Point a, <5 c, 2, e, A, ) Sum
§ = 0:0505) |=0-~07540 |~0+.03380 |~0+039497 |[-<0°01816 [-0°02500 |-0-00500 -0+24734
2 ' 0+00269|~0-09260 |~0:04230 |~0:04476 |-0+02140 |-0°02500 |~0*00500 022107
3 -0+)12946| 0-24552 0+03281 0+20542 | 004181 |~0°02500 [~-0°02000 035510
4 P«02170| 0-22950 0+ 12639 0+ )7553 009629 |-0°02500 |~0-02000 | = ) 060441
5 - (08526 0-09290 Q01450 0018286 | 000085 'b'02500 -0 01500 000125
& 001483 007510 004174 |-0+p0557 000166 [-0+02500 |(-0-01500 0+ 08376
S ' olr|d¢l-lowlo|a|lolo|w|iolrit|l=lo|le|lc|a 10
ol TIEISIEIRIEIEI8I8 S8R 2|R|E 8|80 288
5 2le|=| R T |8le)8)8 0 | FIRIn IR 0 TI2IT1S5
9 O |o|c|lo|lec|a|éd(s|elcic|c|olesloclo|lolalo|dlale
I
o o .
S -
o w ns mliwo|o V(||| |0 o~ -
A L nlel8lS|e]|a nle|&mlm 3 g Qe S S| ® g R 8
=g f o t|loiin|=|®|lo|F|lo|m|r{~lO|lo|t|a. ™|~
N 3 5 c Ol |-~ t:l nIiM Mg | T O VO[O0 I~No]|©®
v v . . - 3 » * . . . o i 4 . . » . .
‘:) 4‘%'0 o|la|a|d|S|{d|ala|d|alald|d|als|s|d|d|ald|e
g |93 |
il ~
_U .
B3 wioiwiao|lw|olw|jio(Wl o IOVl O |O o |n|lo
o OQ|l=l=|NjNn|WM|M|¢|T |l O][OI~I~]|® ‘3 o |lo | o
& P . ) A L] * L4 * ” . L4 - . Y - * ” * L] - .
_—6 A~ [~} L] [~ o A~ () o QO [~ o (=] i3 o o < (= L~ Q [} -
}9 .




Table || Caleulabion of wing prepertjes For delbn wing , solution 3

D@ ® | @ [ B ] & [ o] ®] & 0]
7 |Feth Fi [ForFi-iF, 02801 | arb(#)| (@) X (8)| Fackors| K[#5v | C/25 | CHi Fer
[ 0-11587 0 1403 0-303 0-262 | 0-0%064 [} 0-364 | O- 9680 0670
008 01155 04398 0-303 0292 0:0338 + 0363 08227 0-701
010 | 0-1150 | 0.1366 | 0301 | 0-321 | 0.0%70 | 2 0361 | 07794 | 0736
0-15 | 0-1141 | 0.1365 | 0-299 | 0.350 | 0.0399 | 4 ©.358 | 0-7361 | 0775
0-20 |.0-1i28 | 01336 | 0-296 | 0-378 | 0.0427 | 2 0.35¢ | 06928 | 0-8I2
0025 | 0.1110 | 0-1300 | 0:295 | 0.407 | 0-0452 | 4 0.349 | 0.6495 | 0.863
0:30 | 0:1090 | 0-1957 | 0-288 | 0435 | 0-0474 | 2 0342 | 0'6062 | 0-897
035 | 0-106¢ | 0-1209 | 0284 | 0-463 | 0.0493 | 4 0334 | 0-5629 | 0.944
040 | 0-j035 | O-1165 | 0279 | 04l | 0.0509 | 2 0325 | 0.-5i96 | 0-994
045 | 0:1001 | 01096 | 6274 | 0.520 | 0-0521 | 4 0314 | 04763 | 1049
050 | 0-0962 | 0- 1034 | 0.269 | 0.540 | 0.0629 | 2 0.302 | 0-4330 | |-109
055 | 0.0919 | 0.0970 | 0-264 | 0570 | 0.0532 | + 0289 | 03897 | 1176
0:60 | 0-0869 | 0-0903 | 0-260 | 0:-610 | 0-0530 | 2 0.273 | 0-3464 | |-252
0.65 | 0-08\+ | 0-0835 | 0.256 | 0-641 | 0.0522 | 4 0266 | 0.3031 | 1 .34
0.70 | 0-0753 | 0-0766 | 0-254 | 0-672 | 0.0506 | 2 0.237 | 02598 | {-447
0:75 | 0-0685 | 0-0695 | 02854 | 0-T04 | 0.0442 | 4 0215 | O-u65 | 1579
0-80 | 0.0608 | 0-0621 | 0.25 | 0'737 | 0-0448 | 2 0491 | 0.1732 | 1752
0.85 | 0.0521 | 0.0541 | 0-260 | O-770 | 0-0401 | o-les | 01299 | 2-002
0-90 | 0.0419 | 0-0448 | 0-267 | 0-903 | 0-0336 | | 800 | 0-132 | 0.0866 | 2.415
0:95 | 000290 | 0-0325 | 0:280 | 0-635 | 0-0243 | 4.525 | 0-091 | 0.0433 | 3.348
100 | 0 P 0298 | 0-865 | 00000 | 0-675 | o 0

@.C =2 6154/52058 = 0.56024 Span = I'|60 T behind apex € < 0.4330 Span

Tabkle 12 Calculakion

of wing_.propertice

For solukion 17

(1) (2 (3) (4) (5) (@) %) ()
7 Rtz F | RtR-3F | 9950 | a+p@ [ (2 x(8) |Factors |F/Zs¥ |

0 |~0-01307 |-0-0046& | 0-089] 0.0772 |-0+.00101 | ] ~0:04 1!
0-05 |~0-01288 |-0-00452 | 0-0877 | 0-1154¢ |~-0-00142 | 4 -0-0405
010 |-0-01233 [-0-0041]| 00883 | 01515 |[-0-00187 | 2 -0+0%87
O- 15 [~0-01142 |~0-00348 | 0- 0751 | 0-1852 [-0-00212 | 4 -0.0359
0-20 |-0-01018 |-0-0025! -] 0-06(& | 0-2169 |-0-00220 | 2 ~0-0320
0-25 |—0-00864 |-0-00!37 | 0-0396 | 0-2422 |[-0-00202 | 4 ~0:027]
0:30 [-0-00684 |(-0-00004 | 0.-0015 | 0-2607 |-0-00!76 2 -0-0215
0+35 |-0-00484 | 0-00142 |~0-0733 | 0-2618 |—0-00127 | 4 -0-01%2
040 |-0-0027! 0-00298 |-0:2749 | 0-2036 |-0-00085 | 2 ~0.008%5
0+45 [=0-00048 | 0-0045® [—2.-3%0& |~0-748% | 0-00036 | & -~0-0015
0-50 0:00175 | 0:00618 | 0-9829 | 0-9153 | 0-00143 | 2 00055
C-55 0-003%0 0:-007648 0-432% 0-6682 0-0026! 4 0:012%
060 0+003590 000905 0.39 35 0-6524 0-00385 e 0-019s
0:65 | 000766 | 0-01019 0.3326 | 0-6637 0-00508 | 4 0-0241
0+70 0-00%07 0-01104 03043 0-6853 0-00622 2 00285
0:75 | 0-01006 | 0°0115] 0-2860 | 0-7114 0:.00716 | & 0:0316
[eX%-Y¢] 001050 001l S50 0-2738 07402 000777 2 00330
0.88 0-01028 0-01092 0:206506 07706 - 000792 4 00223
0290 0:0092% 0« 00952 0-2598 0-8012 000740 L-800 0-0220
[-X3 0004699 00071 0-2561 0-8338 000583 4525 00220
100 (o} 0 0-2537 08660 0-00000 0675 0

C""o = - 64 TTs*fl(cof 6) d7 = =67.021 0-12908 = =~ 0-1442
) o 60



Table 13

Additional equations for incidence solution

Point Qo a, Co < C e, [ Residusls,
7 0-31090 | O- 12395 |-0<05586 |~0+01042 |=0-00484 |-0-00185 |-0:02500 | 0-0050!
8 " 0-21707 | 012535 |-0'060!5 |-0-02601 |-0-0112i |-0-00511 |-0+02500 | 0-00i57
9 0+25475 | 0.08309 |-0-05115 |~0-0098/ |-0:00680 |-0°00242 |~0-02500 || 000199
10 0-20955 | ©O+11497 |-0-05562 |=0-02394 |~001587 |-0°00602 |-0°02500 | 0°00027
Table 14 7
Additional equations For linear twist solution
Point @, Co <, ;2 c, Ry I sﬁgls&%?g’_l‘s 7
7 -0'03150 |-0°11158 |-0:04928 |-0°04370 |-0-02128 | 0-02500 | © 0+00289
8 0 01482 |~0% 11442 |~0° 05514 |-0+03904 |-0-01867 | 002500 | © 0-00340
9 -0-04428 |~0° 09484 |-0" 04135 |-0- 03864 |-0°01842 |-0-02500 |-0-00250 || 0-00)17
10 001020 |-0° 10800 |~0-05013 |-0-04006 |-0-01912 |-0-02500 |-0-00250 §i 0-00i30
Equakions _ For %b%i}_ﬁfr% P FPumckions Imcidence
Poink Qo o/ Pao Pai Poeo P ‘ !
I ©+2380! | 0°06849 | 0° 0048/ | ©°0000% | 0-0l0I4 | 0:00053 | ©
2 ©0:2088% | O<1i4i1 | 000306 | 0-00244 | O-00G44 | 0-00807 | ©
7 0-31090 | 0-12596 | 013751 | 0.04548 | 0-15139 | 0-05247 | 0:0090| 20
8 Q21707 O- 12384 015504 | 0-07379 0° 15939 00775 | 0-00I37
9 0.2%473% 0-08309 0~ 00675 0-00144 0-07692 | ©0:023448 | 0.-00199
10 0-20943 011497 0+00354% 000280 | 0°08242 004079 | 0-00027
, Table 16
Equations for establishing P Functions  Lineaw wfng bwisk
Poink )/ Pao Pal Poo P L) !
f -0-05052 |-0-14659 |~0-07567 |~0-02006%|-0.0/477 |-0-02500 | ©
2 0.00970 |~0-12978 |-0-06%98 |-0-02006%|-0. 00818 |~0-02500 | ©
7 ~0:03160 |~0-06025 |-0-08340 | 011194 | 0-05274 |-0.02500 | 0-00289 | _
8 001482 | 0:0i696 | 0-00474 0-13184 | 006389 |=0-02500 | O-00340
9 ~0-04428 |~0' 15528 |-0-07938 0+ 04449 000753 |~0C-02500 | ©-CO} |7
10 0-01020 |=0 (2985 |-0+06384 | 009685 | 0.02780 |-0-02500 | ©-00130

% The aswwmmb 18 Fortuous




Table 17 Table 20 Solukbion 1 21 vertexX incidence

Solution 7 ao 0:11016  dc, fda=2:402 Cp=01392¢.2
Point oo Pao P I Co ~0101008 . 1116T behind apex
Co T0:01824 ) ol ac. 0-25 chord
| 0:10103 | o-00478 | 0-00947 | o ’ o -
y ] K/45V K/é,s\/
=0 O -0
2 001939 00182 0+0037| ] % per rad. CLu &l perrad. S
7 006300 0404645 0: 04645 00080
° 46 bl =0 0 0-346 | 0-666 |0-60| 0-262] |-239
~0:02963 | *Q0746 0:00 .
0-0074 406 | 0-00137 0s10| 0+344 | 0-735 |0-70| 0.226| I-450
9 0.0884%5 0003 0-02995 -00
’ 87 ? 0-00159 0-20| 0+338 | 0-812 |0+80| 0.181] 1.745
10 =0:0204| |-0.00217 0-000! 00
: 8% ooz7 0+30| 0-327 | 0-898 |0-90] 0.123] 2372
0-40{ 0-311 | 0-928 |0-95| po0sn| 3.253
0:50| 0-290 | 1+114 |t1-00] 0
Table 21 Solution 2 21 verkex inciderce
Table 18 a, 6-11029 de, fdw 2408
: C,-0°00836 Local a.c. 0-25 chord
M 2o-0:02035 Cou 041302 C*
Pdlﬂb Qf@l N po §
Table 22 Solution3 126 vortex incidence
} 0-1010% 000640 0
@, 0-09117 ¢, 0:06813 e, -0:08670
2 ~0-01939 |~0-00248 | © =0 a, 0.04912 ¢, ~0-16805 e, 0-15296
T 0 06300 0-046%2 0°-0090] chl_/ch\ =2+518  ac.|-160 ¢ behind apex
' Cp,=013%0¢, 2 '
8 =0-02963 | 0.00627 | 000137 ,
K/4-s v Local K/4 sV
7 per rad. Cou a.c. K oer rad. CLe L:":_f'
0 0-364 | 0+667| 0-303 [0-55] 6289 | 1-176] 0-284
005 0363 0701 0+303 ||0-8p 0273 12252 0260
o-10| 0361 | 0.736| 0-30t [|0-65| 0-286 | 1-341| g.256
Table 19 y
_— 0°15| 0-358 | 0-773| 0-299 [0-70| 0e237 | j.4a7| 0-254
0.20] 0-364 | 0+g12| 0+296 [|0-75| 0-215 | i1-572| 0-254
- 7
Peint 2, Po P %o I 0-25| 0-349 | 0+853| 0.203 |0+80]| 0°191 | 1.752| 0.255
! 7009082 |~0-04537 |~00269§ |-0-02500 | © 0-30| 0-342 | 0-897| 0-288 |0°85]| 0-164 | 2-002| 0-250
2 0-00970 [~0+04200 |~0+01934 |=0.02500 | 0
0-35| 0334 | 0-944] 0-284 [Jo-20} 0'132 | 24415 0-257
7 ~0-08180 | 0-07750 | 0+0165! |-0.02500 | 0-00289 -0
8 0-01482 | 0-10886 | 0-05206 |-0-02600 | ©-00340 | 0-40| 0.325 | 0-994| 0°+279 [0-95| 0-00; | 3.348| g.280
9 ~0+04428 | 0-0086Z | 0-0100% |-0-02600 | 0-C0}17 9-45| 0-314 | 1°048| 00274 | i*00] 0 _0-298
10 0+01020 | 0-01869 | 0-00923 |.0.02500 | ©-00,30 0-50| 0-302 | 1-109| 0-269




~‘i'dble« 23 Solutiorn 4

126 Vortex incidence

Q, 0-07¢io
o, 0-07%88
Qg 0'101972

de, /da = a-499
CpL = O 1388 C.8

Gy 012971
C| '0'&5304‘
€ -007759

@y -0 13419

[

I
s

0-84520
0- 05529

a.c. 1-168 & bahind apex

K/4sV

Table 85 Solution & 388 Vortex incidence

Qg 008324 Cy, 0-09280 @y - 0- 02256

‘a 0-07640 ¢, ~0°a4144 e, 0-12907

Q, 0-01789% € -0-05353 2, 0-00480
de_/dx =264 Q.c. 1-163 € bahind apex.

Col = 01328 C.8

K/4av c Local c Local
T lparrad| " o.C. n par rad. L a.c.
0 0-358 066a 0318 055 | 0-287 |+ 179 0-863
0-05 | 0358 0-6DC | 07311 000 | 0+872 | -858 0.358
0-10 | 0256 0731 04309 0-65 | 0-265 1349 0-854
0-15 | 0-353 0768 0-307 0-70 | 0-237 1-458 0351
0+20 | 0-350 ©+808 0-303 | 0-78 | 0.al6 1+593 0-35|
0:235 | 0'344 | 0-849 | 0-2392 | 0-80 | 0-12a |+778 0283
030 | 0338 0-8923 0-293 0-B& | 0-106 8-028 0-259
035 | 0-33) 024 0+288 090 | 6-133 a-45a 0208
040 | 0-328 0222 0+282 0-95 | o0-0®22 3406 0-284
045 | 0-3l2 1048 0875 100 | 0 0-300
©+50 | 0-300 4110 0269
Table 84 Solution & 388 Vorbex incidance

Q, 0- 080908 Cp Q11414 Qo= Q- 12499

a, 0-08015 ¢ ~0-2gid5 @, 0-asooe

o, 0-02236 Ca -0-00445 2a 0+04038

de/da =2606 ac i+168 & behind apex
Cp, =0-322 ¢ 8
K/dsV Local K/dav Local

7 par rad| v a.c. 7 per rad. Cue a.c
0 0-380 0olg74 0310 055 | 0+a%e 117 - | 0*aed
0-05 | 0+379 0708 0+309 | 0.0 | 0-280 | 24| 04858
0+10 | 0377 0+743 0-308 065 | 0.apa | 1+337 0-284
0+15 0274 0+780 0305 070 | 0-842° 1443 02588
080 | 0+26® | 0:918 0-302 075 | 0+.820 |'6ea 0-asa
025 | 0-363 04858 0-297 080 01906 1737 0-2606
0350 | 0-385 | 0-200 | 0280 085 | 0-168 1-990 0263
.0°35 | 0-3de 0-245 | 0-280 090 | 0-13@ a-414 0-275
0-40 | 0-33e | 0-293 | 0874 | 025 | 0026 3.372 0-802
048 | 0-324 1-048 | 0.268 .00 | © 0-317
0860 0311 1103

Kl4sV | o Local KfdsV | o Locail
7 por rad.| Tt ac | 7 par rad. Le o
o) 0~ 388 0-074 0310 0-55 | 0-397 14167 0-265
0+05 | q-38! 0-708 0310 | 00 | 0-28) 1-240 04860
0«10 | 0312 | 0744 0-308 005 | 0raed 1 «38G 0+as6
0-16 | 0°378 0-780 0-30¢ 070 | 0+843 1430 0-264
0-80 | 0370 0818 0-308 0-75 | o-281 1+861 0-364
0°85 | 0-304 | 0-868 0-298 080 | 0196 14736 0266
030 | 03857 | 0900 0-294 o886 | 0169 1-288 0202
0+35 | 0-348 09456 0-288 0-80 | ©°136 2-410 ora7a
040 | ©+337 0-293 0-282 0951 00956 | 3360 | 0287
0-45 | 0-326 17045 0276 1s00{ O Q-309
0-50 | 0-318 i-103 0-270
Table 86 Selubion 7 186 Vorlbex incidance

o 0701356 ‘de /da =258

Pag O° 12022 Coi = 01320 ¢ 2

pbo=0:08925

K/4sV - Local KldsV| o Local

1 per fad| kb o.c. T par rad| “-- a.c.
e} 0304 Or o7 0358 0565 | 0-2389 1 17@ Q204
0405 | 04363 | 0701 0+36] 00 | 0-a73 1-262 0+2e0
0+10 | 036! 0736 | 0-332 | 005 | 0-850 }434) 0-350
018 | 0358 0173 0-327 | o-70 | 0-837 1-447 0-354
0:20 | 0-354 o312 0317 075 | 0-ais 1-572 0+ asd
0-ag | 0-349 0853 0-309% | 0-80 | 0719l 1752 | c-as8s
030 | 0-34a 0-897 0+300 0-95 | 0164 8008 0-260
0-38 | 0-334 0944 0-2392 0-20 | 0-132 2415 0-867
040 | 0325 0294 0280 0-25 | oro9 3-348 0+Q80
0°48 | 0-314 0,949 | 0-a78 100 | © 0-2928
0+60'| 0-302 Q-109 | o-am .




i2e voerben incidenca

Toble 27 5solution @
a, 0:0i247 ac, [du = 2.518
a'-0°02494 Coq = 01390 ¢,
P, ~0°20912 a.c. 183 ¢ bekind apex
p, 041824 :
i Kpljrsr\;d CLL ‘;;:,.‘:c-ﬂ.'l i :e/ffa‘\a/d Cuu L:..L:'
0 0-364 | 02067 | 0:356 || 0-55 | 0:289 | 1+17¢ | 0s2¢4
0-06 | 0-363 | 070\ | 0-342 | 060 | 0-273 | 1°252 | 0+260
0-10 | 0-361 | 0736 | 04337 || 0°65 | 0-266 | [+341 | 0+256
016 | 0-358 | 0-773 | 0°326 ([ 0-70 | 0+237 | 1-447 | 0-254
020 | 0-354 | 0+gl2 | 0-3(& || 0-75 | 0:218 | I+579 | 0-254
0-25 | 0°349 | 0853 | 0-308 || 0-80 | 0-1B] | (752 | 0-255
0-30 | 0342 | 0-397 | 0°300 (| 0-85 | 0°!164 | 2002 | 06:260
0-35 | 0-334 | 0+244 | 0293 || 0-90 | 0-132 | 2415 | 0.267
0-40 | 0°325 | 0-294 | 0+286°|| 0'98 | 0+09] | B-348 | 0-280
0-45 | 0-3i4 | 1049 | 0-278 || 1-00 | © ‘| 0-298
0-50 | 0°302 | 1-109 | 0-272

Table 28 Solukion @ 2] vortex Iincidence

a, O0-11023 e, —0-0l82l dC [da = 2396

¢, = 0-010086 Py —0-00%350 Lecal a.c. 025 chord
7 :é‘:i;/ d| Cu 7 PKa/f :avd Cie

0 0°344 | 0664 | 06 | 0-262 | 1-260

Dol | 0°343 | 0:734 | 0°7 | 0-226 | 1-482

0<2 | ©0:337 | 0812 |08 | 0718 | 1747 .

03 | 0-326 | 0-898 | 0-9 | 00123 | 2+378

0-4 | 0311 | 0998 | 0°95| 0:098 | 3°2589

0°s | 0:289 | 111§ | |0 | O

de‘_/det z 2-90%

 Table 29
Solubion 10 126 vortex incidence

8 point unconditional

Qo 0°1064l e, =0°08009
a; ©0:0/879 g, 0:1576)
Co O° 06632 Po ~0« 22QB6

C) =0+ 14087 £ 0-45148
ac, 1180 C behind apas

K/ 4sV

" | pd et | S | | | R ew | e
© 0362 0+668 D« 354 055 Q.287 1476 0.-266
0:05| 0-36 0702 0:346 |0:G0| 0.272 1-243 0-261
0 10| 0-359 0:73¢ 0333 |0.65| 0+258 1.342 0-248
o-14| o0-3% 0:77% 0-322 |0-70| o0.256 I- 448 0-255
0+20| 0+352 04811 0312 (0-75| o0-214 1-581 0284
0+25| 0346 0852 0304 |o:80| o190 1:786 04256
0+30] 0-340° 0-896 ©0:297 |0+85| 0-I6% 2:005 0-249
0.35| 0.332 04942 0290 [0+90| o-13 2. 419 0267
0-40| 0.323 0-993° | 0-284 [0-95| 0-09] 3343 0-278
0.45| ©0-312 1-048 o277 |[1-00] o 0295
0+50 ©+300 1109 027}

. Table 30 .
Solubion TT 126 vortex Incidence
8 point unconditionsl, simplified (atbice
ap 0124638 € - 0+0948(2
Q, 001526 e 0+178%
Co 0+06476 Po = 0-20245
¢ =0: 17007 ? 05418l
dey, /da s 205896 ao. 1181T behind sipex

A I I Maa] e | e
0 0379 0674 0:364 |0-55| ©0-296 10471 0°26%
0-08| 0-378 0. 708 0:355 060} ©-280 1+24% 0248
010 0:37¢ 0742 0340 [0-65| o0.262 1352 0:254
0° 18] 0:372 0778 0327 |o0:70| o0-242 1436 04242
020 0-367 0:818 OBI6 |0.76) o0.220 1,565 025!
025 0-36| 0866 0-307 |0.80] 04195 14787 0-254
0-30| 0-354 0-89% 0.298 |0-85| 0-167 1+984 0:260
035 0-345 0944 0290 |0:90| o'I34 2394 0°270
0:40| 0338 0-994 0285 095 0:095 B-B22 0+285
0:48| ©-324 14047 0-276 |l«00| o 0307
o0 0-311 14108 0-269




Table 31

Solukbijon 12

126 vortex incidence

10_point_unconditional

a, 0710677 2, — 00761 d;de=b5w
a, 0-0148) e, 0-11852
¢, 0-0500I p, — 0+22200
¢ -0-12638 p, 0-45542

a.c. i+ 1 81T behind apex

AN IR Bioull IE B eidd NS B
0 0362 0 668| 0354 0:55]| 00287 [ 177} 02268
005| 0.361 | 0-701| 0346 [ 0:680| 0-272| 1-264| 0-264
0-10| 04359 | 0-736| 0-333 | 0:65| 0.256] 1+343| 0260
0e15| 0356 | 0-772[ 0-322 {070 0-236]| |°450| 0+257
0+20| 0:352 | 0-811| 0312 || 0-75]| 0-214| 1+582| 0256
g+25| 0+346 | 0-B5Z| 0-305 | 0-80| 00190 | 1756 0°256
0+30| 0-340 | 0-896| 0+298 | 0:85| De163| 2°005| 0-259
0-35| 0332 | 0-942] 0-29| || 090 0+131] 2-417|. 0265
G40 0+323 | 0-993| 0+285 | 0-95| 0-009t| 3°347| 0-274
D 45| 0¢312 | 1:048] 0+279 | j-00]| 0 0+287
0-50| 0+30) | 1-109] 0273

Table 32 Solution 13

126vorktex incidence

8 point conditional potz P =0

a, 010372 2, —0: 08947 de, fdog= 2512

a, D-02376 e, 0°16269 Cp'® 0-1390¢ ®

c, 006681 P, —0° 21006

c,~ 016669 p,  0+42010

a.c. 4183 € behind apex

K/4s v c Local K45V c Local

7 |perraa| - | alc 7 leerrad S+t | a.c.
0 0+363 | 0+666, 0356 | 0°55| 04288 1-175| 0-266
005 0+363 | 0+702| 0+349 | 0°60| 0°272] 1-25|] 0+26I
0-10| 0381 | 0+737| 0-336 | 0+65| 0:2556| |+339| 0+257
0-15| 0-368 | 0-774| 0:326 || 0-70| 0-236| | -445 0.255
020 0-354 | 0+813| 0-316 || 0+75| 0+214| 1:577| 0-254
0:25| 0348 | 0-854| 0-308 || 0°80| 0+190| 1'752| 0256
0+30| 0°342 | 0+897| 0-300 | 0:85| 0+163| 2:003| 0-26!
0:35| 0:334 | 0+944| 0+293 || 0.90| 0*132| 2.413| 0-269
0140} 0:324 | 0994 0+286 || 0.95] 0+091| 3361 | 0283
045 0313 1048 | 0278 l00| © 0303
0-50 0'301 | i-108]| 0e272




Table 35 Selution |4 126 verltes incidence
8 point eonditional:~ a, + ¢, + €+ 0-04306 p, =0 and p9+'/2p,'w o

@g 0-10495 ey = 005158 dC, [da =2:517

a, 0021 2, ©-0693

Co 004265 Pe =0-21402

€, =-0-10884 D, ©0.42804

a.c. 11856 & behind apex
7 |gereal Cu | EE | 7 |oftal cu |22
o 0-363 | 0.666 | 0-855 § 6-55 | 0.290 | 1-181 | 0:274
0:08 | 0-362 | 0-700 | 0-348 § 0.60 | 0-274 | 1'257 | 0:269
0.10 | 0:36] | 0:735 | 0.336 || 065 | 0.257 | 1.945 | 0:264
0-15 | 0-358 | 0778 | 0-325 || 0-70 | 0-237 | 14580 | 0:259
0-20 | 0-354 | 0:812 | 0:316 | 0-75 | 0:2156 | 1579 | 0:255
0:25 | 0545 | 0-854 | 0:309 § 0-80 | 0+190 | 1:747 | 0:25]
030 | 0-342 | 0:898 | 0-305 || 085 | 0162 | 1-987 | 0-249
0-35 | 0335 | 0-945 | 0.297 | 0-90 | 0130 | 2.-383 | 0-248
0:40 | 0-326 | 0-997 | 0-291 || 0-95 | 0.089 | 3-278 | 0.248
046 | 0315 | 1-062 | 0-285 ] 1:00 | 0 0-250
0:50 | 0-308 | 1-113 | 0-280

Table 84 Solution IS, lifting line solution for incidence

A, 04360 dc, jda = 3163
As —0'0625 €y = 01468 C2
Ag =0+0076 Leeal a.c. 025 eherd,
A, ~0- 0069 a.c. 1-085 & behind apex
K/4sY K/4sV
7 perrad, | St 7 perrad| Cii
] 0:498 | 0727 | 0-55 | 0.3%6 | 1.157
0:06 | 0-4% | 0763 | 060 | 0-333 | 1.215
0-10 | 0-492 0798 0-65 0-307 | -281
0-15 | 0-485 | 0-834 || 0-70 | 0-279 | 1.38¢6

0-20 | 0476 | 0868 || 0'75 | 0-247 | 1-440
0:-25 | 0-464 | 0903 | 080 | 0:210 1-536

0:30 | 0-450 | 0-938 4 0-85 | 0-1692 | 1 649
0:-35 | 0434 | 0-976 || 0-90 | 0-123 | 1-800.
040 | 00417 | 1-015 || 095 | 0-072 | 2107
045 | 0-398 | 1-088 [ 1-00 | 0

080 | 0-378 | 1.104




Table 35 Solutionie 2! vortex linear wing twist

a, —0-01295

Co

0-07107

e, — 003851

Ko —0-39713
Cmo — 00970

Locala.c. 0-25 chord.

" KlasV |K/agV RfasV|Kf4s v
per. rad |for G =-04 7 perrad|forC, =-01
0 -0+0407|~0-0420( 0:55|0:0132|0.0138
0+05(-0°040! |-0+0413| 0.60|0+0182 {00198
0:10|~0-0383|~0+0395|| 0-65| 00243 |0+ 0251
0:15|-0+0353|~0:0365/0-70[0+.0283|0+02092
0+20|-0-0313|~0:0323{0:75|0:0308|0-0318
0+25|~0+0263|-0+0272|{0-80|0-0316 |0- 0326
0-30|-0+0205|~0:0212[0+85/0+0303|0:0312
0.35|-0:0142|~0+0146|{0-90|0:0265(0.0273
0°40|-0°0074{~0+0076||0-95|0°0194|0-020i
0+45|-0-0004|-0+0004| 1+00 |0 0
0-50| 0+0066] 0+0068

Table 36 Solution 17 126vortex linear wina Ewist

a, —0:02148
a, 0-01683

— 0+ 03909
001363

[+]
L]

[
L4
o, — 03932
c

co 0-0833

e, - 002978 o — 0% 1442
U W Wb Pl T el g [P
0  |-0-0411[-0-0285|04089| 0+55|0:0123|0-0088| 0492
0.09|-0+0406|-0+0281 [0+088| 0.60(0+0185|0.0129] 0.384
0410 |-0.0387{~0-0263|0+083| 0+66|0.02410-0167| 0+333
016 |-0+ 0359 |~0-0249|04075|| 0170|0+0285[0-0198| 0-304
0+20|-0-0320|-0:0222|0+062| 0+75]0.0316|0-0219| 0°286
0+25 |-0-0271 [-0+0188|0+040| 0-80[0.0330(0-0228| 0214
0.30 |-0-0216|-0-0149|0+002|| 0+85|0.0323|0+0224| 0-266
035 |-0-0152|~0+01050-073]| 0-90]|0-0290|0+-0201| 0260
0-40 |~0+0085|~0:0059 [-0.275|| 0.95|0-0220[0.0:52| 0-256
04500015 *0'00|0—Z‘39|“ "90 0 0 O+ 254
0-50| 0-0055| 0-00380- 883




Teble 27 Seolubion 18 328 vortes linear wing twisk

a, =0'0220] c, 008385 ¢, -0 04057 ,—0-3944

o, 6061740 C, -0-01994 ¢, 000182 Cpm, —0- 464

@, 0-:00060 c,-00l14] €, 002032

Kj4sY |K[4sV |Localag K/&s\! Kf4sV Localax)
¥) per rad, [ForCmg-0l - 7 per rad. Fory -0
0 -0°0418 |-0-0286 | 0°092 || 0:$5 | 0°013% | 0:0094 | 0°540
005 |-0-0412 |-0-028] | 0:020 || 0:60 | 0:0200 | 0:013¢ | 0°42i
0+10 |-0-0398 [~0-026% | 0-084 | 065 | 650252 | 0:0172 | 0+360
0-15 |~0-0363 |~0-0248 | 0072 || 0-70 | 0<02%1 | 0:0199 | 0-320
020 [—0°032] |~0-0219 0.053 075 Q<0815 00215 0291
025 |-0-026% |~0-0184 | 0:022 || 0-80 | 0:0321 | 000228 | 0-267
0:30 |~0°0209 |~0+0(43 |-0:034 || 0-85 | 0:0300 | 0.0208 | 0-244
D35 [~0-0143 |-0-009%8 |-0°146 || 090 | 0-0266 | 0-0182 | 0-220
040 |~0+0073% |-0-0050 |~0-482 || 0-95 | 0°0183 | 0-0132 | O*193
045 |~0-0001 |-0:0001 |-Large || 1400 [0 |0 0°160
050 | 0-007| | 0'0048 | 0889

Table 38 Seolukion I 126 vortex linear wing kwisk

al 0.00238  py, —0-02343 Cp, = 0+1531

a! 0400020 Py, ~ 0:01339

Po, = 0100454 Increment oF o, 0.043%3

o, ~ 0000207 Total «, -0-3498

KfesV |Kji4sV |Localac. KjasV |K[4sV [Localac.
7 |per rod. [For Cp =-01 77 |per rad [For-C,, =01
) -000485 [-0:0306 ‘| 00088 |l 0-55 | 0°0140 | 00088 | 0494
0.-05 [-0:0470 |=0:0298 | 0:085 || 060 | 0:0205 | 0-0122 | 0334
0-10 |~0:0436 |-0:0274 | 02077 || 065 | 0.0261 | 0-0led | 0-333
016 |-0:033( |-00246 | 0e065 ||0:70 | 0+0305 | ©0:0192 | 0-364
0:-20 |-0+0337 |-0:0212 | 0:047 {|0:75 | 0:0336 | 60211 | 0°296
0-25 |~0:0279 |-0:0175 | 0-019 || 080 | 00349 | 0-0219 | 0-274
030 |-0°0215 |~0.0135 |[-0+02% |[0-85 | 00341 | 0-0214 | 0-266
0°35 |-0+0147 |-0+0092 [=0+127 || 080 | 0:0306 | 0:0192 | 0+260
[ 0.40 |-0-0076 |-0-0048 |-0:415 || 0-96 | 0-0231 | 0-0145 | 0.2606
0-45 |~0:0002 [~0:0001 |-Large || 1°00 | © 0 0+254
0.-50 | 0-0071 | 0.00485 | 0809




Table 3@  Solubion 20

26 Vortex lingar wing twist

og 000213 Inerement of &, 0:05743

o] 0-00080 Tobtal &g - 03558

Po-~0- 0041 Cmo = 011840

p, ©0-00728

Kf4sV| K/48V | Local Kl4eV | K/48V| Local
77 par rad forCmes-0l a.c. 7 par rad ForCp,e-0]  a.c..
0 “0+0487 [-0-03i16 | 0-082 | 0-55 | 0-014] | O+0022 | 0+49a
0-05 {=0+0478 |-0< D306 | 0-088 | 0-@O | 0-0805 | 0-0iIB | 0+384
0+10 |- 0+0438 |-0-0284 | 0083 | 005 | 0-0B0! | 0:0I&D | 0-333
0+15 |-0-0302 |-0-0a55 | 0°075 | 0-70 | 0-0306 | 0-QI99 | 0-304
0°20 | -0-0328 |.0-02/19 | 0-0868 | O-75 | 0-0337 | 0-0819 | ¢-as8e
0+85 |-0-0R7® |.0°0/81 | 0-040 | 0-80 | 0.0350 | 0-0827 | 0274
0-30 |-002i5 |-0-0140 | 0-00&8 | 0-85 | 0.034) | 0-022! | 0-2¢0
025 [~0-0147 [-0-0095{-0-073 | 090 | 0-030G | 0-0129 | 0-8&0
0:40 [=0:0075 |-0-0049 |-0-a756 | 0-95 | 0-08%2 | 0DIBI | 0-850
0-46 | -0“0002 |-0-000| |=-0+39] 1r00 | 0 0 0+254
080 | 0+007| | 00046 | 0-883 .

Table 40 Solutior 8l 1B Vortex linesr wing Ewist

Qg ~ 0-0iB2i @ ~0-03880 XKg =~ 03757

o 0010922 e, 0rcI12889 Crno =~ 015817

Co 0-08873 py = 0e02123

¢, -0-0a21® p, —0-00as8

K/4sV | K/48V| Local K/4sV | K45V | Locol
'Y par rad ForCmes0] . c. 77 par rad [forCmps-01 a.C.

Q.05
o010
015
0-20
0.8
0-30
035
0:40
0-45
0:50

~0:0484 {-0-0312
- 0+0470 [~0-0310
- 00436 |- 00287
-0+0320 |-0+0857
~ 00330 |-0.0R21
00277 |- 00183
-0-0314 |~ 0:014}
~0-0146 {- 00026
~ 00074 |- 0-0049
~ 0000 |- 00001
00071 | 0°0047

0117 055
0113 0+@0
0104 Q05
0-0%1 0«70
0072 075
O«Qd4c |- 0-80
0+002 085
~0-087 020
-0-350 0-925
- Large 1+00
0743

0:0140 | 0-00928 | 0-44
00304 | 00124 | 0°373
040260 | 00171 | O'328

Q-0304 | 00200 | o-30a -

0:0335 | o032l | o-286
070347 | 0+023% | 0-R73
0-0339 | O+023R% | 0265
040303 | 00200 | 0+260
0-08ag | O0I5l | 0+d5¢
0 0 0-353

Table 41 Solution 22 Lifting line, twisk solution

Az 00799
A, 00025
A, 00180

oo — 04235
Cppp — 002235

Locala.c.0:25 chord

K /45 v
Y, per rad

K/4s ¥V
Y pe(r rad

0 — 000954

0+55| 0+022%

@05 — 0 0935

060 | 040293

0-10] — 0.0880

065 0-035%

0¢15| —0-0790

0+T0!| 0.0410

0-20| — 0:-067%

0-75| 0-0480

0-25| — 00538

0-80| 0-0570

0+30{ — 0-0390

0-85(-0-0683

0351 —0-0243

0-90| 040796

0-40| — 00102

0-95| 0-081i9

0-45 0+0026

1.00] 0

050 0°0134




Table 42
Surmmary_ef incidence solubions

0l | Description. dey /o« a.c. Coé
| |21 vortex,3pt | 2402 1116 0:1392 ¢ 2
2 |21 vortex, Spt | 2-408 01392 €2
126 vortex, 6 pb . . . 2
3 sbandard 2:6,8 160 0-1390 €
126 vortex,9pt . . . 2
4 | ebandard 2°499 1168 0-1388 ¢
328 vortex,9pt | ... . ) 2
528 vortex,i2pb o 2
& | ctardard 2614 1163 0°1392 €L
- |126 vortex,6pl , . 2
7 sdldition 2:518 | 0:1390 €y
126 vortex, 4pt . . 2
8 acikdibion 2 518_ 1-183 01390 C; .
9 |21 vortex, 4pt | 2-396
10 | 126 vortex, 8pt | 2-503 1180
it 126 vortex, 8pt 2596 118l
i2 |126 vortex, iopt | 2-503 118!
I3 | 126 vortes, 8pt| 2-912 1183 0-1390 ¢,%
14 |126 vortex, 8pt | 2-517 1183 :
1§ |Lifting lime 3-16% i-08% 0: 1468 c.2
Table 45 ) o
Summary of wing _twisk solutions
Sol™- Dmripbnbn (- Crmo
1€ |21 vortex, Bpt | - 0°397 =0-097
- |126 vortex,Gpt ] oA
17 standard 0-39% 0= 144
328 vortex,1zpb | .
18 | stancmrd solution|” O"394 | -0¢ 146
126 vorbex,6pt ] i
9 addition 01350 . | -0189
126 vortox, 6pt , -
2l addibio;-: 0- 346 0134
an |26 vortex spt ~0°376 | -0-142

B solukion

23 L.'!Fbing line -0:424 | =0-224




Table 44.

Downwash factors for lifting line lattice.

& ) )
02@* Ko K, K, K, K, K K, K, K, K, Ko K, K, K, K, K, K, K,. Kq Kq K
POINT i
O |'5-0013|6.0062|5-0078| 50103 5-0140| 50202| 5-0317 | 50571 5-1333 | 5-6667| 20000/ 5-6667| 5-1333| T-0571| DO3I7 5020250140/ 5-0103 | 50078 5-0062| O-0013
1 50011 |5-0050) ’doosz 8-0078| 0:0103|5-0140Q| 5-0202 5-03|7' B5.0571| 51333 |5-6667| 2.0000| 5-6667| 5-1333 | 50571 |0:0317 | 0-0202| 5-0140 0-0103{5-0078{0-0017
2 |5.0009B0041|5.0050|5.0062| 5-0078|5-0103| G-0140,5-0202| 5-0317| 0-0571 |0+1333 5-6667 | 2.0000|5:6667/0+1333 |5:0571 | 00317 |5.0202| 5-0140|5-0103|5-0022
3 |50008,0:0035 6-0{34! 5-0050|0-0062|85-0078| 6.0103|6-0140 | 5-0202|5-0317 {00571 | 51333 B.6667|2-0000(0-6667 |5-1333 |B.0571 |5-0317 | 5-0202|0-0140 |5-0028
4 |50007|5.0030/5-0035|5.0041 |5.0050,5.0062|5-0078| 50103 | 5-0140(0-0202 50317 |5-0571|5.1333|5-6667 |2-0000/0-6667 |5-1333 |0-057110:0317 50202, 3-0040
5 |15.0006|0-0026|6-0030|G-.0035|5-0041 |5-0050|B-0062|5.0078| 5-0103|5-0140|5-0202 50317 |8:0571|0-1333 [0-6667 2-0006 5-6667(0-1333 [0-0571 |0-0317 |5-0058
6 |5-0005|0-0022|5.0026(5-0030|3-0035/5-0041 | 5-0050/5-006 2| 0-0078/0-0103 50140 |0:0202|5-0317 [5-0571 |[5-1333 56667 | 20000(0-6667 |0-1333 [5.0571{5-0095
7 |50005|5-0020|5.0022|5:0026|5-0030|0-0035|5-0041 5.00506-00625.0078[5:0103 |5.0140|5-0202|5.0317 [5-0571 |5+1333 |5+6667|2:0000|0-6667 {01333 o-0182
s |5.00045:0017 |5.0020|5:0022|5:0026[0-0030/5-0035 |5-0041|0-00505-0062/00078 30107 |5:0140|8.0202|0.0317 [5:0571 |5+1333 |5-6667 |2-0000|0:6667 |0:0476




Table 45 Eguskions for the determinmtion of & Ilatkice of vortices for
a given distribubtion of downwash
i B L B T N B e O e L N T v
o 2:0000| =1 +3334 | ~0-2666 | -0+ | 192 | =04 0634| ~0- 0404| -0+ 0280 | ~0.0206| -0.0 (56| -0+ 0124 | -0- 0026 0-15708 0-15708
I |-0+6667| |:8667-0-7238|-0.1050| ~0:0773|-0:045T|-0-0306|-0.0218|~0-0165| -0 0128|~0- 00280 0.07854
2 |~0-1333]-0-7238| 1:9683|-0.6869| -0+1473| -0-0674 ~0-0395|—-0-0264|-0-0190|=0-0i44] 0003} |0 Io]
3 =-0-0571|-0-1650|-0-6869 149860} -0+ 6770 -0+ 411 [~0+0633|~0:0367|~0-0243| -0-0175 ~0+0036| 0 (v}
4 |~0-03I7)~0+0T73|-0- 1475 |-0.6770| |+-9922|-0.6729|-0-1383| -0.0612 ‘-0-0352 ~0.0232|-0-0047 0 o
5 -O-OZO; =0-0957 |~0: 0674 =0+ 141 | |=0:6729| |:9950|-0-6708!~0-1368 ~0:060l |-~0:0343 ~0.0064|0 (o]
53 =0-0140| =0:0305 |~0-0395 | ~0. 0633 | ~0+1 383 ~0:6708| 1-9969|~0.6697|~0:1359 | -0-0593| ~0-01001{0 g
7 |-0-0103|-0-02(8|-0-026%|~0-0367|~0-06I2|~0- 1360|-0- 6697| |:9974 ~0- 6689 | -0-1353| ~0-0187 |0 o
8 [-0-0078)-0-0165|~0:0190|~0-0243|-0-0352|-0 0601 |-0- 1359 ~0-6669( 1-9980|~0-6684-0-04800. o |
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Tapble 486

True and special values of P Functions used
in Ehe analysis :

Table 48 conk.

Pa P b

K/

True OapLatt:icq.~ True O-iLakttice
0 014308 0°1578 024197 0+2518
0005 |0+12579 023047
0010 |0.09888| 00940 0-20726 | 0-2092
0-15 |0.08356 0-17952
0-20 |0-07366| 0-9726 0015307 01493
0.25 |0:06610 013523
030 | 0.05994| 00594 0012179 0-1206
0:35 |0-05467 0°11087
0:40 |0.05003| 0-0497 0510104 01004
0+45 | 0-04584 0209244
050 |0.04201| 000418 | 00846 0:0841
055 |0-03842 v | 0°07731
060 |0-03504| 00349 0°0704% 0-070!
0-65 |0.03176 0-06380
0-70  [0.02885| ©°0284 005733 0+0571
0«15 |0+02535 005089
080 |0+02209| 0°0220 0-04433 00442
0:85 |0:01866 0+03744
0490 |0.01480] 0-0148 0°02986 0+0299
0-95 |0-01028 002064
0+9625|0-00887| 0-0089 0-01778 0°0178
t-00 [4] 0 J
Tis 009992 0.19933
Tie 0 50888 1601517
T |0-01595 0.03229
Tzo |0-03182 0-06386

P=0-G5 Pa+ 035 Py |[P=02Pa +08 Fy

7 True Ost lakkice True Oe lattkice
] 017768 | 01907 0-22219 002330
Go 05 0- 16243 6-20953
0-10 0-13681 | 001343 018558 0- 1862
0415 011715 016033
0°20 0-10145 | 0-09%4 0° 15719 051340
0225 | 0-09030 0°12140
030 0-08159 | 0-0808 0+ 10942 0:1083
035 0007427 0-09947
0:40 g-06788 | 0°0674 009084 0-0802
045 006215 0- 08312
D50 005592 | 0°0566 0-07609 0-0757
055 |70°05203 0-06953 ‘
060 0204743 | 0°0472 006335 0° 0831
065 0°04297 005739
070 003862 | 00385 0-05157 0:0548
075 003429 6-04578
0+ 80 0002987 | 00298 0° 039238 0° 0398
0-85 0002523 0403368
0.7 602014 | 0°020 062687 0°0269
038 0-01391 0-61857
09625 | 0+0113% | 0+0120 0001600 ©- 0160
i.0000!| 0 o

Tig 013471 017945

S 0+ 58608 091391
19 002167 ©0-02902
Ta0 0.09303 0.05745
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Solutiom_| Incidence

Solukior 16 Wing_Ewist 6 load limes

Solubiot 4 Incidence

21 Vertex
3 Control poinks
3 variables:~ a,, ¢,, &

126/86 vortex

9 Control poinEs

9 varisbles 1~ 2o, &, , &3
Co.C5 €2, €0, @4, 22

0 02 05 08 kO

load lines

Selubion 2 Incidence
21 Yortex Solution 5 Incidemce
328 vorkex

5 Control poinks
3 Variables. - a,,Co, €

9 Control points
9 variables i~ a,, a,, @3
Co, € +C2, @, G, @2

o ®

of chord

e th

6 o203 a8 0708 10 +

6 load tines
8 load lines

Solution & Incidence

Solykien 3 Incidence
Selukion (7 Wing_Ewist : -
_ _ Solukiom 18 Wing_bwist

5
? 126/86 vorkax
_g 8 6 Conl:,rol points T, 228 v:r?zx -
71 6 variables:i-a,, a,, 2 12 Control poinks
& c, .2, ¢ 09 9 variables:- cs, 2, .
% Co, €11 Cg, Ry, @y 4 €3
59 i
™ 2
o & oo 09 10 ; 8 02 05 0708 O

FiG. 5.



Y12 th  of chord
~3

Solukion 7 Incidence
126/86 vorbex
6 Control peints
3 additional variables: a,, Pao, Poo
Solukion 19 Wing _Ewist
& Control points
6 adlditional variables: a,, p,,,
Pas+ Pbo+ Phys %o
Solukion 20 Wihg _Ewist
6 Control poinks
4 additional variables: a.,', Po»
Pi. %o

S
w4

Selukion 8 Ineidemce

126 /86 vortex
4 Control points
2 additiomal vatiables: a,, o,

Solukion 9 Incidence

21 vorkex
4 Control poinks
4 variables: a,,c,,2,, p,

Solut;_on 10,11,1%, 14 Incidence
Solution 2| Wing twist

126/86 Vorkex
8control pointe
8 variablesia,,a,c,,c

[+ ]
2,2, B.A

|
o 0

golution 12 lncidence

126/86 Vorte x
10control points
8 variblesia,a,c,c,

%, %Rp
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Summekrical P Funckions used in analysis.

w/V

: —-o——x—g&;—-x——o——-x——-—o—-—

o] : 10O

Corresponding curves of induced dowrwash

Y. © P=065 P, + 035 F, Incidence solukions

S 925 0 P=0:2 Py + 08P, Wingtwist Sokubiorts
i \ True, used in caleulabions
¥ \ —~——-Used i O¢lsemigpan latkice
. '
oo Oel \D\ I
"\
o ' 05 n 10

Combinakions of P Funckions

w/V

L} el Jrrermee s s e
[+] 05 n 1«0

Corresponding induced dewnwash

Fi1a. 8.
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F16. 9. Delta wing. Comparison of 126-vortex solutions for incidence.
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b
LD
§
9
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25
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F1c. 10. Delta wing. Comparison of 328-vortex solutions for incidence.
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Local aemdﬂnamic centre

06 3
2
o
v
0o 2
02 t —
/M’VD/ e Sclution 3, 126 vorkex 6pt standard solution
M’@ X Solution 10, 126 varbtex B8pt solubion unconditional
+ Solution M4, 126 vortex 8pt sohibion "condibional
0 Solukion 8, 126 vortex 4pk modification to skd solution
Q
7 % 025 0:50 0415 7 100
Fic. 11.
o6 3
4 /
] /
fod 2 /
§ 'In\q\
2 o, ' :
g - : / 3
5 - g
'D .
g <.L -0 > o s
3 1
go-z '
o
- - O Solubion |, 21 vortex + Solution 14 126 vorbtex conditional
X Solution 9, 21 vorbex O Solution 8 126 vortex skandard
© Solution 3,126 vortex modified
standard solution a Solukion 15 LiFting line solukion
A Solubion 6, 328 vorbkex
standard solution
09, 0-25 050 075 ] oo

F1c. 12. Delta wing. Comparison of various solutions for incidence.
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olifting ling and 2} varbex

solutions

© Solution 3:126 vorbex épainb

standard solution

XSolution 101126 vortax

] Pm‘nh spiukion

+ Chord line
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centre! Incidence solubion

OLIfting ling and 2/ vor-tex
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OSolution
skandard solukion

X Solubion 212 /26 vorte x

8 point  golukion

17:126 vortex 6point
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Lifting line
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FIG. 16. Lattice to represent lifting line-theory.

30

PRINTED IN GREAT BRITAIN



R, & M. No, 2591
(10,395)
AR.C, Technical Report

Publications of the
Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH
COUNCIL (BOUND VOLUMES)—
1934-35 Vol. I. Aerodynamics. Out of ;b;'mt
Vol. II. Seaplanes, Structures, Engines, Materials, etc. 40s. (40s. 84.)

1935-36 Vol. I. Aerodynamics. 30s. (30s. 74.)
Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 30s. (80s. 74.)

1936 Vol. 1. Aerodynamics General, Performance, Alrscrews Flutter and
Spinning. 40s. (40s. 94.)
Vol. II. Stability and Control, Structures, Seaplanes Engme% etc, 50s.
(50s. 104.)

1937 Vol. 1. Aerodynamics General, Performance Airscrews, Flutter and
Spinning. 40s. (40s. 104.)
Vol. II. St;(xblhty and Control, Structures, Seaplanes, Engines, etc. 60s.
61s.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews. 50s. (51s.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind
Tunnels, Materials. 30s. (30s. 94.)

1939 Vol. 1. Aerodynamics General, Performance, Airscrews, Engines. 50s.
{50s. 11d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments,
Structures, Seaplanes, etc. 63s. (64s. 24.)

1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing,
Stability and Control, Structures, and a mlscellaneous
section, 50s. (51s.)

Certain other veporis proper to the 1940 volume will subsequenily be
included in a separate volume.

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—

193334 1s, 6d. (1s. 8d.)
1934-35 - 1s. 6d. (1s. 84.)
April 1, 1935 to December 31, 1936. 4s. (4s. 44.)
1937 2s. (Zs 24.)
1938 1s. 64, (Is. 84.)
1939-48 3s. (3s. 2d.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL
TECHNICAL REPORTS, AND SEPARATELY—

April, 1950 R. & M. No. 2600. 2s. 6d. (2s. 73d.)

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH
COUNCIL—
December 1, 1936 — June 30, 1939. R. & M. No. 1850, 1s. 34. (Is. 44d.)
July 1, 1989 — June 30, 1945. R. & M. No. 1950, 1s. (1s. 134.) !
July 1, 1945 — June 30, 1946. R. & M. No. 2050. 1s. (Is. 13d.)
July 1, 1946 — December 31, 1946.  R. & M. No. 2150. 1s. 3d. (1s. 43d.)
January 1, 1947 — June 30, 1947, R. & M. No. 2250, 1s. 34. (1s. 44d.)

Prices in brackets include postage.

. Obtainable from
HER MAJESTY’S STATIONERY OFFICE

York House, Kingsway, LONDON, W.C.2 423 Oxford Street, LONDON, W.1
P.O. Box 569, LONDON, S5.E.1
13a Castle Street, EDINBURGH, 2 1 8t. Andrew’s Crescent, CARDIFF
39 King Street, MANCHESTER, 2 Tower Lane, BRISTOL, 1
2 Edmund Street, BIRMINGHAM, 3 80 Chichester Street, BELFAST

or through any bookseller.

S.0. Code No. 23-2591



