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Summary 

Details are given of an adaptation of Head's entrainment method to compressible flow which has been in use 
~in R.A.E. since 1967. This version is a simplification of an earlier application of the entrainment method in 
compressible flow, and one which is believed internally consistent and reliable over a wider range of Mach 
numbers than its predecessor. The main feature of the method is that it has been 'tied' to the fiat plate 
skin-friction correlation of Spalding and Chi, so that at least its accuracy in zero pressure gradient is assured. 
Other innovations are the introduction of a simple explicit two-parameter approximation to two more 
elaborate but implicit skin-friction relations, and the extension of the method to treat aerofoil wakes. 
Comparisons with experiment are shown to support these extensions. Finally, in Appendices, some further but 
as yet untried refinements of the method are presented and, in particular, a tentative treatment of 
compressible flows with heat transfer is given. 

* Replaces R.A.E. Technical Report 72079--A.R.C. 34 052 
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1. Introduction 

This Report describes an integral method for predicting the behaviour of turbulent boundary layers in 
two-dimensional and axisymmetric, compressible flows. The method has been in use at R.A.E. since 1967. It 
was developed in order to provide the kind of quick yet reasonably accurate predictions of boundary-layer 
growth that are needed in parametric studies of flow fields which contain significant viscous effects. A principal 
aim during its development was to achieve simplicity and internal consistency without sacrificing accuracy to 
any important degree. 

In recent years there has been much emphasis on the need for greater sophistication in predicting turbulent 
boundary layers. Nevertheless, there are many situations of practical importance--for example, attached flow 
about aerofoil sections of conventional design--in which the method described here is as accurate as most of 
the recent, more elaborate treatments. 

The present method was developed from that devised by Head 1 in which boundary-layer growth in 
incompressible flow was predicted by the simultaneous forward integration of the momentum-integral and 
entrainment equations. In a previous paper 2, the writer took the physical arguments which Head had put 
forward concerning the mechanism of entrainment and applied them directly to compressible flows. Hence, a 
prediction method was derived which differed appreciably from, and was considered superior to, an 
alternative treatment derived at the same time in which Head's original method was used in conjunction with a 
compressibility transformation. What is described here is a simplification of the better of the two methods of 
this earlier paper.* It makes no recourse to compressibility transformations, and has been formulated in such a 
way that, in flows with zero pressure gradient, the predicted skin friction agrees with that given by the empirical 
relation of Spalding and Chi 3. By this means, it is believed, a realistic first-order allowance for the effects of 
compressibility is assured. 

To make the method rapid without losing accuracy, explicit analytic approximations have been obtained to 
represent the fiat-plate skin-friction relation of Spalding and Chi and the skin-friction relation derived by 
Thompson 4 from his two-parameter family of velocity profiles. To treat wakes, the empirical expression for 
the entrainment coefficient is modified so that, far downstream of the trailing edge, the streamwise variation of 
shape parameter accords with that observed by Townsend 5 in the far wake of a circular cylinder. 

Comparisons between the predictions of the method and some experimentally observed boundary-layer 
developments are presented to illustrate its general accuracy, and also its shortcomings in more taxing 
situations. The potential and limitations of the method are discussed in the light both of these comparisons and 
of the 1968 conference at Stanford 6 on the prediction of turbulent boundary layers. 

The method described in the main text is restricted to adiabatic flow. However, an extension of the method 
to treat flows with heat transfer is given in Appendix A and a later development of the basic method, such that 
it predicts equilibrium flows more accurately, together with a simpler and probably more accurate skin-friction 
relation, are presented in Appendix B. Neither of these methods have been tested against experiment to any 
degree, which is why discussion of them is confined to Appendices. 

2. The Prediction Method [or Incompressible Flow 

2.1. Basic Equations 

We are concerned either with two-dimensional flows or with axisymmetric flows about a body of diameter 
2r. We define coordinates x and y along and normal to the surface, with corresponding velocity components u 
and v, we write density p and shear stress r, and denote conditions at the wall and just outside the edge of the 
boundary layer by suffixes w and e respectively. Then, provided the thickness of the boundary layer is 
negligible compared with r, the parameters which enter the analysis are: 

* After the preliminary draft of this Report had been written, Sumner and Shanebrook published a 
method 28 very similar to the present one and derived with the same intention of simplifying the author's 
previous method. The main difference between the two treatments is that the present one is explicitly 'tied' to 
the boundary layer on a fiat plate. 
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The parameters of greatest practical interest are the displacement and momentum thicknesses, and the 
skin-friction coefficient. The problem as posed here is; given the boundary-layer properties at some initial 
station and the distribution, downstream of that station, of free-stream velocity Ue, what is the corresponding 
distribution of O, 6* and Ct? Head's proposal I was that boundary-layer growth should be predicted by the 
simultaneous forward integration of the von Karman momentum integral equation, which in axisymmetric 
flows may be written: 

~xx ~ =  0 due Odr 
- ( H + 2 ) u e  dx r dx (2) 

and the entrainment equation, an expression for the streamwise rate of change of the mass flow thickness, 
which in axisymmetric flow may be written: 

d A A due A dr 
dx CE bl e dx r dx " (3) 

This last equation is, in fact, simply a rearrangement of the definition of CE given in equations (1). Writing 
A = H~O, and substituting for dO/dx from equation'(2), it may also be written as a rate equation for the shape 
parameter H~, 

o d H I = C E - H t ( @ - ( H +  1) O due~ 
dx lg e dx / '  

(4) 

in which form terms involving the body radius do not appear. 
To integrate these equations, it is necessary to express the parameters H, CE and C r in terms of/-/1, 0 and the 

local properties of the external flow. Head postulated unique relationships between the entrainment 
coefficient and the two shape parameters, and obtained empirical correlations in the forms H(H1) and C~(Ht). 
To determine the skin-friction coefficient, he employed the formula of Ludwieg and Tiilmann 7 which gives 
G(H, Ro), where Ro is Reynolds number based on momentum thickness. In the present method, essentially 
the same assumptions are made. The empirical relations used, which differ slightly from the ones originally 
used by Head, are given in the following sections. 

2.2° Skin-Friction Relations 

Although our principal concern is the prediction of boundary-layer growth in flows with pressure gradients, 
the present method has been formulated with the case of constant-pressure flow as a main reference point. 
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This class of flow has been widely investigated at both subsonic and supersonic speeds, and its properties are 
reasonably well established over a wide range of Mach numbers. Consequently, by 'tying' the method to 
constant pressure flows, a fairly realistic first-order allowance was built into it for the effects of compressibility. 

It was convenient to do this by introducing the properties of flat-plate boundary layers into the analysis in an 
explicit form. In treating compressible flows, the empirical correlation of Spalding and Chi was used to 
determine the influence of compressibility on skin-friction. Therefore, for consistency, their proposed relation 
between C I and R0 in incompressible constant-pressure flow was also adopted. However, since this relation 
did not allow C I to be expressed explicitly as a function of Ro, it was not in the interests of speed to use it 
directly in the prediction method. Instead, the table of C r versus Ro given by Spalding and Chi was curve-fitted 
with the simple relation 

0.012 
0-00093 (5) 

W° = log10 Ro -0"64 

which, for Ro up to 105, lies within ½ per cent of the tabulated values of C I. Suffix 0 denotes flat-plate properties. 
Then, taking the Clauser 8 shape parameter G to be constant at 6.8 on a flat plate, the shape parameter/4o 

was obtained as 

The variation of H0 with Ro, as given by equations (5) and (6), is compared in Fig. 1 with various other 
correlations derived from Refs. 3 and 4 (together) and 9, 10 and 11. Equations (5) and (6) are seen to be 
roughly an average of the other correlations. 

For flows with pressure gradients, C I is no longer a function of Reynolds number only. It is usually accepted, 
however, that only one further parameter need be introduced and, hence, that a unique relation may be 
obtained between C/, some shape parameter of the velocity profile, and Reynolds number based on some 
boundary-layer thickness parameter. The early formula of Ludwieg and Tillmann 7 was in the convenient form 
C4(H, Ro), but the later, more refined treatments by, for example, Thompson 4 and Nash and Macdonald 11 
have not yielded explicit relations for C i. For the present purpose an expression was sought which gave C I 
explicitly and which at the same time, introduced the properties Cio and H0 of the flat-plate boundary layer 
with the same value of Ro. In fact, it was found that values of C r and H normalised with respect to flat-plate 
values at the same Ro were well correlated by the simple expression 

C H 
(--~-L+ 0.5] ( - - -  0.4] = 0.9. 
\Go ] \ n 0  / 

(7) 

In Fig. 2 this relation is compared with the less direct ones put forward by Thompson and Nash and Macdonald 
(in each case defining (..So by equation (5) and accepting whatever value of Ho this produced). It will be seen 
that, except for values of H approaching separation, the form of the correlation comes near to eliminating not 

• only the differences between the two authors (e.g. at Ro = 105 and H =  1.28 Thompson's curves give C r as 
1.8 × 10 -3, Nash and Macdonald's tabulations as 1.7 x 10-3), but also the influence of Reynolds number. Near 
separation, no two-parameter skin-friction relation is wholly reliable because pressure gradients are usually 
large and have an appreciable effect on the shape of velocity profiles. At the same time, because it is small, skin 
friction in the vicinity of separation has very little effect on boundary-layer development. The discrepancies 
apparent in Fig. 2 for H/Ho> 1.6 were therefore thought to be relatively unimportant and, for all practical 
purposes, equation (7) was considered a satisfactory engineering approximation. 

2.3. Entrainment and Shape-Parameter Relations 

To complete the method for incompressible flow, relations were needed for C~ and H as functions of/-/1 
(and, possibly, of R0). Since Head's original paper, several workers had proposed alternatives to, or 
refinements of, his hypotheses concerning the entrainment and shape-parameter relationships. It was felt, 
however, that these proposals had not led to any prediction method which showed an appreciable all-round 
improvement over Head's original method. Hence, in deriving the present method, Head's proposals were 
followed as closely as the requirements of internal consistency would allow (in Appendix B, one possible way 
of refining the semi-empirical basis of the method is discussed). 



In the first place, his empirical correlation between CE and/-/1 was taken at face value. The expression 

CE = 0"0299(H1 - 3 . 0 )  - 0 " 6 1 6 9  (8) 

which has been given by Thompson 12 as a fit to Head's graphical relationship was adopted. It differs marginally 
from the relation used in Ref. 2, which was drawn from a different source. 

The empirical relation between H and/-/1 derived by Head was not however used. Instead, a relationship 
between H and /-/1 was derived by empirically distorting the curve of I-I(H1) obtained from a family of 
wake-like velocity profiles. If the wake function of Coles 13 is approximated by 1 - c o s  Try~8 (as was done for 
example in Ref. 14), and we consider boundary layers in the limit of infinite Reynolds number where the 
logarithmic inner law provides only a slip velocity at the inner edge of this wake profile, the resulting Coles 
profile family gives the relation 

H - 1  = H 1 - 2  =t=~(H1-2)2- 3. (9)* 

The form of this curve is qualitatively the same as those given by Thompson's 4 profile family, notably in that it 
has a minimum in Hi (at H = 1 +,f3, H1 = 2 + x/~ from equation (9)). It is also a fairly good quantitative 
approximation both to Thompson's family at high Ro and to experimental results. 

If, however, the prediction method had been completed by the use of equation (9), it would have had an 
unnecessary shortcoming; calculations in constant-pressure flows would not have reproduced the variation of 
Go and H0 with Ro given by equations (5) and (6), even if starting values were chosen to fit these equations. 
Therefore, the curve given by equation (9) was empirically deformed to produce a relation which, when used in 
conjunction with the entrainment formula of equation (8) and the skin friction law of equations (5) to (7), 
closely reproduced the zero pressure gradient behaviour specified in equations (5) and (6). As used during the 
calculation process this relation was written 

H = 1 + 1" 12(//1 - 2 - ' / ( / /1  - 2) 2 -  3) °'915 (10) 

for attached flows. At the start of a calculation the preferred course was usually to specify H rather than H1 ; to 
provide an initial value of/-/1 for the calculation, therefore, the following inversion of equation (10) was 
needed: 

/ 1.12 \1/0"91s /H-1\1/0.915 
H i :  2 +  + o.s/-ivi- ) . (11) 

In Fig. 3 the trajectory of H0 against CIo obtained from a calculation in zero pressure gradient is compared 
with the initially assumed trajectory of equations (5) and (6). Also shown for interest is the trajectory obtained 
by applying Head's original method in zero pressure gradient, which gives a flat-plate value for G of 7.4 
approximately. Clearly, the coupling of equations (5) to (7), (8) and (10) has succeeded in 'tying' the method to 
flat-plate behaviour throughout the range of Reynolds numbers of practical interest. Consequently, for flows 
with moderate pressure gradients which do not cause large departures from flat-plate conditions, the method 
for incompressible flow might be expected to remain fairly accurate at all Reynolds numbers. 

2.4. Treatment of Wakes 

After the basic method for attached boundary layers had been developed and tested, a simple modification was 
introduced to enable some estimate to be made of the development of aerofoil wakes. 

Consider first the flow downstream of a symmetrical aerofoil at zero incidence. If the definitions of equation 
(1) are retained--so that thicknesses are defined by integrations across half the wake--the forward integration 
of equations (2) and (4) may be smoothly carried on from the aerofoil surface, past the trailing edge and into 
the wake. The only change in equations (2) and (4) is that C I becomes zero everywhere downstream of the 
trailing edge. Whether or not the empirical formulae for CE and H can still be employed is another question. 
However, since equation (10) was only slightly different from the family of wake profiles of equation (9), and 

* The square root term is subtracted for attached boundary layers. 



since it was desirable that both H and/-/1 should be continuous through the trailing edge station, it was thought 
justified to retain equation (10) in the wake region. Accordingly, the only modification made to the method 
was to adjust the entrainment formula to take account of the more vigorous turbulent processes observed in far 
wakes. 

In constant pressure wakes with small velocity defect it has been shown by similarity arguments that, when 
viscosity can be neglected, the shape-parameter will tend asymptotically to unity at a rate 

8 dH= - A ( H -  1) 3 (12) 
dx 

where A is a constant. Measurements by Townsend 5 far downstream of a circular cylinder indicate a value of 
0.234 for A. If equation (10) is used to relate H and/-/1, to make equations (4) and (12) equivalent we thus 
write: 

CEFw = 0"435(H-  1) 0"907. (13) 

Rather than have the method 'switch' from equation (8) to equation (13) on passing a trailing edge, which 
would have implied a physically unrealistic, discontinuous increase in Ce, it was arranged for C~ to increase 
asymptotically towards its far wake value CE~v. Some measurements by Cook 15 downstream of a symmetrical 
aerofoil were used to estimate how rapid the increase should be. Entrainment in the wake Cew was defined as 
a weighted mean of the 'attached flow' value C E given by equation (8) and the 'far wake' value CEFW given by 
equation (13): viz. 

CEw = YCEFw + (1 -- y)CE. (14) 

From Cook's experiments, it appeared adequate to approximate the weighting function by 

XTE -- X~ 
~/= 1 -  exp \ 58rE / (15) 

where suffix TE denotes values at the trailing edge. 
Thus, for a symmetrical aerofoil at zero lift, the boundary layer calculation for one surface could be 

extended into the wake by carrying on the integration of equations (2) and (4) with C/set to zero and C~ set to 
CEw, evaluated from equation (15) using equations (8), (13) and (14). Alternatively, the momentum and 
displacement thicknesses could be defined as integrals across the whole wake. In this case, starting at the 
trailing edge, values of 0 and 8* in the calculation would be twice as large, shape parameters would remain 
unchanged, the length scale in equation (15) would be 2"58TE, and the first term on the right-hand side of 
equation (4) would be 2CEw, since account would now have to be taken of entrainment into both edges of the 
wake. Because of the symmetry, the two types of calculation would of course give identical results. 

When boundary layers on the upper and lower surfaces do not have the same properties at the trailing edge, 
as will usually be the ease if the external flow field is not completely symmetrical, either of the above 
approaches may be used provided some further degree of approximation is accepted. The most convenient 
course is usually to continue upper and lower surface calculations separately into the far wake, and then to 
obtain overall integral parameters at any station by adding together the appropriate upper and lower integrals. 
In so doing, the effect of any shear stress on the dividing streamline between the upper and lower patts of the 
wake is neglected. As this stress makes an equal and opposite contribution to the momentum integral 
equations for the two parts of the wake, its neglect may be expected to have only a second-order effect on 
overall parameters. The alternative course is to add together upper and lower thickness parameters at the 
trailing edge, and then perform the calculation for the total wake, treating it as if it were symmetrical. These 
two procedures give very similar results. In the limited comparisons with experiment that have been possible 
both procedures yield results which from an engineering standpoint are of quite acceptable accuracy. 



3. The Method for Compressible F~ows 

3.1. Basic Equations 

In compressible flow, the parameters which occur in the present method are defined as: 

displacement thickness 

momentum thickness 

mass-flow thickness 

shape parameters 

skin-friction coefficient 

and entrainment coefficient 

f= 0 = pu 1 -  u dy 
dO peUe \ 

Io pu h = ~eUe dy 

H=8*/O 

H1 = A~ 0 

e ay  OJo pe \ 

Tw 
G - - I  2 

~PeUe 

Io I rpeU~ e r pu  dy  

1 d (r&uJ~). 
rpeUe 

(16) 

The momentum-integral equation in axisymmetric compressible flow may be written: 

dO c_C_[ 0 du e 0 dpe 0 dr 
-~x = 2 - ( H + 2 )  Ue dx Pe dx r dx 

= C / _ ( H + 2 _ M e 2  ) O due 0 dr (17) 
z Ue dx r dx 

where M is Mach number, and the definition of CE, from equations (16), may be recast either as a rate equation 
for mass-flow thickness 

dA A due A dp e A dr 
-~x =CE Ue dx pe dx r dx 

= CE - (1 - M2e) A due A dr 
U e dx r dx (18) 

or, combining this latter with equation (17), as a shape-parameter equation 

0 dill  C E - H I ( ~ - ( H + I )  O due~ 
"-'~X = U e dx ]" 

(19) 

It may be noted that in this form the terms in density and radius are absent, so that equation (19) is identical 
with the equation (4) for incompressible flow. And, as in incompressible flow, the three unknowns for which 
auxiliary relations are needed during the integration of equations (17) and (19) are CI, C~ and H. These 
relations are given in the following sections. 

3.2. Skin-Friction Relations 

For compressible flow in zero pressure gradient, Spalding and Chi 3 introduced scaling parameters (written 
here Fc and Fn) such that the scaled skin-friction coefficient FcG and the scaled Reynolds number FRRo 



satisfied the Ct(Ro) relation which they had proposed for incompressible flow. Thus, the present analytic 
approximation to their relation, equation (5), could be written 

0.012 
FcCt° = loglo FRRo -0"64 -0"00093. (20) 

To evaluate Fc and FR it was convenient to introduce the temperature ratios 

Tr ., , T - 1 .  2 
R = ~ = 1 ± r - - ~  lw e 

and (21) 
w=Tw T.,( _ y - 1  2\ 

-~ee=Toe 1-v - -~M~)  

where r was the temperature recovery factor, and suffixes r, w and oe denoted recovery, wall, and free stream 
stagnation temperatures respectively. The empirical expressions which Spalding and Chi put forward for the 
scaling factors in their skin-friction relation could then be written 

F~= 
R - 1  

[arctan R -  W (2-R--_W~] 2 
(2x / '~R --~- l i  ) - a r c t a n  \ 2 ~  ' J  

and (22) 
FR = R°'772 W -1"474 

To incorporate this fiat-plate skin-friction law into a more general relation, applicable to flows with pressure 
gradients, it was necessary to introduce a dependence on the shape of the velocity profile. For this purpose it 
was assumed that in compressible flow the 'transformed' shape parameter n played an equivalent role, in 
characterising the shape of the velocity _profile, to that played by the conventional shape parameter H in 
incompressible flow. Thus, the value of H in zero pressure gradient was given by writing equation (6) 

/-Io = 1 / ( 1  - 6.8 ~ - -~)  (23) 

and skin friction in general compressible flows was obtained by writing equation (7): 

u 

( CI + 0.5] (--~-H - 0.4) = 0.9. 
\Cto ] \Ho ] 

(24) 

The use of these two equations undoubtedly involved some sacrifice in accuracy for the sake of simplicity. 
Equation (23) was probably the most suspect; recent experimental evidence of Winter and Gaudet10 suggests 
that it introduced a systematic error increasing with Mach number such that, at a Mach number of 2.8, H0 
would be underestimated by about 3 per cent. On the other hand, this equation was consistent with the 
adopted entrainment and shape-parameter relationships; given the latter it was, in effect, a direct result of the 
need to reproduce satisfactorily the skin friction and momentum thickness distributions which had been 
specified analytically for flows with zero pressure gradient. 

In Fig. 4 the skin-friction law as a whole, equations (20) to (24), is compared with some experimental results 
obtained in flow at M--  2, at virtually constant pressure, downstream of a region of shock and boundary-layer 
interaction (see Ref. 2). Skin friction was determined from Preston tube readings and H from pitot traverses 
across the boundary layer. This comparison broadly confirms the skin-friction law, particularly in respect of 
the variation of C I wi th/1  given by equation (24). At the same time there is some evidence to support the 
reservation expressed in the previous paragraph, in that the results are consistent with a slight underestimation 
of H0 by equation (23). 



3.3. Other Au.,dliary Relatioa~ 

To complete the method, relations were needed for/-), H and CE; these were obtained by making the 
simplest assumptions consistent with our (very limited) understanding of the structure of compressible, 
turbulent flow. 

In the preceding section we introduced the assumption that, to characterise the shape of the velocity profile, 
the 'transformed' shape parameter H might be regarded as the equivalent in compressible flow of the 
parameter H at low speeds. The arguments that led to this assumption (see Ref. 2) suggested, at the same time, 
that the parameter HI provided an indication of the character of the velocity profile which applied equally well 
to both compressible and incompressible flows. Thus, by substituting/-) for H but leaving/-/1 unchanged, 
equation (10) was written 

/-I = 1 + 1" 12(/-/1 - 2 - 4 ( H a  - 2) z - 3) °"915 (25) 

and its inversion, equation (11), became 

1.12 1/0-915 //_~_ 1\ 1/0.915 
(26) 

In Fig. 5 this relation is compared with the same set of experimental results, obtained at M- -  2, that was used 
in Fig. 4 to check the skin-friction relation. Agreement is satisfactory in that it is no worse--indeed it is 
somewhat better--than the agreement found by Head, for incompressible flow, between his graphical relation 
and the rather scattered experimental results from which it was derived. 

To evaluate the shape parameter H ( = 6*/0) from/-I, it was assumed that static temperature through the 
boundary layer could be adequately represented by the familiar quadratic expression 

T= Tw + ( T , -  Tw)--+(Te - T,) 
l,t e X bl e / 

from which it followed that 

Tw- T, H=TeH+g-1. (27) 

This is the same relation that was used in the second method of Ref. 2, where its limitations are briefly 
discussed. 

Finally, it was assumed that the relation between CE and Hx which had been adopted for incompressible 
flow could be carried over unchanged into compressible flow 

CE = 0" 0299(H1 - 3"0)-°'6169. (28) 

This assumption led to an appreciably simpler and more tractable method than was obtained in Ref. 2, 
where Ce was assumed to depend on a 'kinematic' shape parameter of the boundary layer. Estimates of CE 
from equation (28) were lower than those obtained from the earlier assumption. Nevertheless, as Fig. 6 shows, 
the difference between the two assumptions was not large compared with the uncertainties associated with the 
experimental data. In zero pressure gradient, if H1 varies slowly with x, its value should be very nearly 2CE/C I 
(from equation (19)). In Fig. 6, values of H1 measured in zero pressure gradient are compared with the 
variation of 2 C J C  I, according to various hypotheses, at a constant length Reynolds number. An earlier 
version of the figure, and a fuller discussion, were given in Ref. 2; the two lines added since then, a relation 
adopted by Bradshaw and Ferriss 16 and the one implied by the present equation (28), are seen to be almost 
identical. In the light of the previous discussion 2 of the experimental data in Fig. 6, the agreement with the line 
given by equation (28) is considered ample justification for the adoption of this relation unaltered in 
compressible flows. 
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3.4. Summary of Method 

In compressible flow, development of a turbulent boundary layer may be predicted in terms of the 
momentum thickness O and shape parameter/-/1, by simultaneous forward integration of the momentum 
integral equation, equation (17), and the entrainment-based shape parameter equation, equation (19). The 
other unknowns needed in these equations are evaluated as follows: 

/-t from equation (25), H from equation (27), CE from equation (28) and C I from equations (20) to (24). If 
some parameter other than/-/1 is used to specify the initial shape of the velocity profile (e.g. C I or H), the 
corresponding value of/-I  may be determined from whichever of the above relations is appropriate, and H1 
then obtained from equation (26). The choice of a relation between viscosity and temperature, needed for the 
evaluation of Ro, is left to the discretion of the user; as programmed at R.A.E., the method used Sutherland's 
relation. 

In adiabatic flows with significant pressure gradients, where accurate evaluation of H is important, the 
recovery factor is probably best taken as unity so that T~,/Te = T J T e  = Toe/Te. This assumption has been the 
one most commonly employed at R.A.E. The integration of equations (17) and (19) on a computer is quick and 
straightforward using a standard procedure of, for example, the Runge-Kutta type. Programmed in EMA, a 
typical calculation over a complete aerofoil and wake to a point two chord lengths downstream of the trailing 
edge occupied roughly five seconds of central processor time on an ICL 1907 computer. 

4. Comparisons with Experiment 

circumstances but which in certain cases, notably 'equilibrium' and 'relaxing' flows, was clearly not as accurate 
as those six more recent and sophisticated methods which were placed in the first division. In extending the 
method to compressible flow the most we can reasonably hope is that, in the process, its shortcomings have 
been neither added to nor aggravated appreciably. 

Fig. 7 compares measured values of shape parameter with predictions by Head's original method and by the 
present method for three incompressible flows which were manda~ry cases at the Stanford Conference. The 
small but significant differences between the two methods (not attributable to computing, differences, since 
formally identical computer programs and input data were used for the two sets of calculations) are typical of 
their relative performance over the whole range of Stanford cases. In some cases the original method is the 
more accurate, in others the present method; on balance, neither emerges with any clear superiority. 

Of the three cases shown, the Shubauer and Klebanoff flow is of the 'aerofoil' type in which Head's method 
generally works well--the underestimation of H towards the rear of the model in this flow is typical of the 'first 
division' methods also, and is due in some part to flow convergence in the experiment. The other two flows, 
Clauser's second equilibrium flow and Bradshaw's relaxing flow, illustrate the two situations in which Head's 
method is at its least accurate. 

Fig. 8 shows predictions by the present method of boundary layer and wake development, this time in terms 
of momentum and displacement thickness, for a two-dimensional lifting aerofoil at moderately high subsonic 
speed. The experimental measurements by Cook TM are seen to be predicted to fairly good engineering 
accuracy and, in particular, the sharp peak in momentum and displacement thickness at the trailing edge is well 
approximated. The method has been compared with a number of such subsonic flows and, on the basis of the 
generally good agreement found, is now being used iteratively 19, in conjunction with a method for the outer 
inviscid flow, as a prediction method for viscous flows over aerofoils. 

Fig. 9 shows predictions of shape parameter, momentum thickness and skin-friction coefficient for a waisted 
body of revolution tested at subsonic and supersonic speeds by Winter, Rotta and Smith 2°. From the two 
examples shown, it is seen that the variation of all the flow parameters, notably the large increase in 
momentum thickness and the reduction in skin friction at the waist, followed by a decrease in momentum 
thickness and appreciable increase in skin friction over the flared rear of the body, is fairly well predicted at 
M~ = 0.6, Fig. 9a. However, at M = 2.0 (Fig. 9b) the increase in skin friction over the rear of the body is 
considerably underestimated; this shortfall in C I is consistent with, and may be attributed to, the overestima- 
tion of H in this region. It may be noted that other published predictions (e.g. Refs. 16, 21) of these flows have 
shown a similar underestimation of the change in skin friction over the rear of the body at supersonic speeds. 

Finally, in Fig. 10, a comparison is made between the present method and the two earlier applications of 
Head's method in compressible flow developed by the author e. The experimental results are for a flow at 
M--2-0 downstream of a region of separation induced by an incident-reflecting shock of 8 degrees deflection. 
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As might have been expected, the present method lies between the two earlier methods, tending towards the 
preferred one of these two rather than towards that involving a transformation. This relaxing type of flow is of 
course one in which good agreement is not expected. However, for reasons given when making previous 
comparisons with this flow 2 it is not easy to assess from the evidence at low speeds how much in error a realistic 
extension of Head's method to compressible flows should be in this particular situation. Hence it is difficult to 
say from Fig. 10 which method is potentially the most accurate when applied to less severely disturbed 
supersonic flows. 

5. Condusions 

This Report provides a record of the version of Head's turbulent boundary-layer method that has been in 
use in R.A.E. and other centres since 1967. The method has been used for boundary layers and wakes in 
compressible fows with zero heat transfer (in Appendix A an untried extension of the method to flows with 
heat transfer is given). 

The present version has been derived by replacing the empirical relations originally proposed by Head by 
closely similar ones which explicitly 'tie' the method to the well-documented reference case of the boundary 
layer in zero pressure gradient. The empirical correlation of Spalding and Chi, for flat-plate boundary layers in 
compressible flow, is then used to tie the method to the flat plate for the full Mach-number range--up to 
M = 4.5, say, for which reasonably reliable skin-friction data are available. 

Wake flows are predicted by dropping the skin friction term from the equations and introducing a modified 
empirical relation for entrainment coefficient which tends, far downstream, towards that observed by 
Townsend in the far wake of a cylinder. 

Comparisons with experiments illustrate the accuracy of the method for engineering predictions over a wide 
range of flow conditions. At the same time, they show the order of the errors--significant but not gross--which 
arise when the method is used in particularly testing conditions. Although it is clearly not as accurate or as 
versatile as the most sophisticated of recent methods, the combination of simplicity, speed of computation and 
general reliability which it provides makes this version of Head's method a tool which still has many useful 
applications in the field of aerodynamics. 
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LIST OF SYMBOLS 

Entrainment coefficient (equations (1), (16)) 

Skin-friction coefficient (equations (1), (16)), fiat-plate skin-friction coefficient 

Specific heat at constant pressure 

Factors on C s and Ro in compressible skin-friction formuale (equations (22), (B-10)) 

Shape parameters (equations (1), (16), (A-2)) 

Shape parameters in zero pressure gradient 

Mach number 

Prandtl number 

Heat-transfer rate to the wall 

Non-dimensional wall heat-transfer rate (equation (A-l)) 

Body radius 

Temperature-recovery factor 

Temperature ratios in Spalding and Chi formula (equation (21)) 

Reynolds number based on momentum thickness 

Static temperature, stagnation temperature 

Velocity components in x and y directions 

Friction velocity (= r4~-Jp~) 

Coordinates along and normal to surface 

Density 

Boundary-layer thickness, displacement thickness, mass-flow thickness, momentum 
thickness (equations (1), (16)) 

Shear stress 

Weighting function (equation (15)) 

Denotes conditions at edge of boundary layer 

Denotes conditions at wall in adiabatic flow 

Denotes conditions at edge of 'thermal sublayer' 

Denotes conditions at wall 

Denotes conditions at the trailing edge 

Denotes conditions in the wake, and far wake 
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APPENDIX A 

Application to Compressible Flows with Heat Transfer 

In this Appendix a simple, tentative extension of the method to flows with heat transfer is put forward. It has 
not been tested against experiment, and is put forward here only because (1) integral methods applicable to 
flows with heat transfer are not numerous and (2) the basic framework of the method is thought capable of 
being adapted to keep abreast of advances in understanding of the physical mechanisms underlying the 
turbulent heat-transfer process. 

For flows with heat transfer, the boundary-layer development is calculated by forward integration of three 
simultaneous ordinary differential equations, the momentum-integral equation, the entrainment equation and 
the total-energy equation 

d rqw 
(Weuen2 O) = GZoe ,  

which can be combined with the momentum integral equation to give 

odH2--~-x = Q-H2[~ -O(H+ l) l due]'dx j (A-l) 

where Q = qJpeueCpToe is the non-dimensional rate of heat transfer to the wall and H2 is the total enthalpy 
defect shape parameter, given by 

o o  

H2 = Io pu ( l _ r 0 ]  dy 
peUe \ Toe/ 

(A-2) 

for a gas with Cp, the specific heat at constant pressure, constant. 
The empiricism in the method is introduced through the assumed family of temperature profiles. Two 

different forms of the Crocco integral (both cited by Rotta 22) are adopted, one matched to the boundary 
condition at the wall, the other matched to the integrated total enthalpy defect in the outer part of the 

boundary layer. 
The latter is simply the linear relation 

which is one way of writing Crocco's solution (for flow at constant pressure and wall temperature with a Prandtl 
number of unity) and is the limiting form at high Reynolds numbers for flows in which the temperature- 
velocity polar is linear outside a thin layer close to the wall (the contribution to the boundary layer defect 
integrals from the latter being neglected). 

The wall-region version of the Crocco integral is 

T o =  Tw+ 2Pr_.Q(u] +(1-Pr)(1-~ T---~ ] ( u )  a (A-4) 
Toe Toe cf \Ue /  \ l oc i  \Ue /  

which applies to the region in which shear stress and Prandtl number, Pr, are effectively constant and 
convection terms are negligible. 

If these two temperature distributions intersect at the edge of some thermal sublayer denoted by suffix s, the 
heat transfer coefficient may be obtained by combining them to give 

Cf Ue/s \Ue/  s 
(A-5) 

where it is now necessary to adopt some empirical criterion for determining the edge of the sublayer. 
There are strong parallels between this representation of the temperature-velocity polar and Johnson's 23 

triangular representation of the crossflow velocity polars in three-dimensional boundary layers. Indeed, 
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for want of an exhaustive search and correlation of the available experimental data, we postulate an 
equivalence between the junction points between the inner and outer parts of the crossflow and temperature 
polars, and suggest here the adoption of Johnson's proposal that this junction point occurs at a constant value 
of (u/u~)s = 14 (Johnson actually took it as 10x/2, and we shall follow him). 

Assuming that this argument can be carried over to compressible flow, provided u~ is based on density at the 
wall, we have 

= 10 
s U e 

= 10¢T~ Cr 
Te • (A-6) 

That this model of the flow is plausible may be seen by considering equation (A-5) for the case of an adiabatic 
wall (O =/-/2 = 0), when the conventional recovery factor r is given as 

77 
r = 1 - 100-~--~ CI(1 -Pr). (A-7) 

For (Tw/Te) Cf = 4 x 10 -3, a value typical of available turbulent boundary layer results in supersonic flow, and 
with Pr = 0.72, we find r = 0.888, which is again typical of available data on turbulent boundary layers in 
supersonic flow. 

In Fig. 11 some possible polars are sketched, together with the corresponding velocity profile. This figure 
illustrates the reasonableness of the assumption that the outer, linear part of the polar can be taken to apply 
across the whole boundary layer for the purpose of evaluating integral quantities. The cases sketched are: 
adiabatic flow (To = Toe over the outer part of the layer); the cooled fiat plate, for which Reynolds analogy 
holds approximately and OTo/OU = constant over the outer part of the layer = OTo/OUw~; a typical cooled 
nozzle wall, on which the driving temperature difference decreases with distance downstream of the throat and 
a more concave upwards polar is found than on a flat plate; and a flow in which locally Tw = Toe, but in which 
the boundary layer carries with it the result of passage over a heated surface somewhere upstream, with the 
result that there now is heat transfer from the boundary layer back to the wall. All these illustrations are of 
course schematic and conjectural. 

To complete the method we assume: 
(1) that the skin-friction relation of equations (20) to (24) can be used unaltered; 
(2) that Head's entrainment relation, equation (28), can be used unaltered; 
(3) that the IZI /HI  relations of equations (25) and (26) can be used unaltered; but that 
(4) the relation for the conventional shape parameter H, equation (27), derived from the widely used 

quadratic equation for temperature, must be replaced by an equation based on the temperature-velocity 
relation of equations (A-3) and (A-4). For simplicity, the contribution from the wall region is neglected in 
deriving this relation. Thus, assuming equation (A-3) to apply across the whole boundary layer, it is not 
difficult to show that 

H Toe - 
(A-8) 

Summary 

The boundary layer in compressible flow with heat transfer is specified by three independent integral 
quantities, 0, H1 and H~, and its development is calculated by the simultaneous forward integration of 
equations (17), (19) and (A-I). The unknowns in these equations are determined as follows: H from equation 
(25), C I from equations (20) to (24), Hf rom equation (A-8), CE from equation (28), Q or Tw/Toe, whichever is 
unspecified, from equations (A-5) and (A-6). 

The principal weakness of the method as specified here is the untried nature of the assumed temperature- 
velocity polar and, in particular, the simple criterion for determining the edge of the supposed thermal 
sublayer. Its principal virtue is that it treats arguably the three most important conservation equations for flows 
with heat transfer in such a way that large errors in prediction seem unlikely to be sustained over extended 
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lengths of flow. Clearly, the method needs testing, and, possibly, developing. It is presented here in its raw state 
on the chance that someone might find it sufficiently interesting to pursue further. 

Postscript 
Since this report was first written, the above method has been developed further 29. On substitution for 

(u/u~)s from equation (A-6), (A-5) may be written 

2BO_Q_u.~ T~ u, _ ( _Te] (u .~]  2 Cfue=l---T-~oe-H2(1-A-~ee ) C\1 Toe]kue/, (A-9) 

where 

- - =  V-~-e 2 Ue 

and the constants A, B and C can be derived from (A-5) and (A-6) as simple functions of Pr and (u/u~)s. 
The crucial step taken in the further development of the method has been to discard the interrelationship 

between A, B and C that follows from (A-5) and (A-6) and, instead, to treat them as independent empirical 
constants. Values for them have been derived by close matching of the predictions of the method to: (i) 
experimentally observed values of recovery factor in adiabatic, supersonic flow at constant pressure; (ii) the 
von Karman expression for Reynolds analogy factor in constant pressure flow over an isothermal wall 
(2St/C r = (1 -2 .77  u~/ue) -1, for a Prandtl number of 0.72); (iii) the heat transfer distribution predicted by a 
finite-difference method 3° for flow at constant pressure over a wall which is isothermal except for a single 
sinusoidal 'bump' in temperature. The resulting values for the constants are: 

and 

A =17,  

B =  14 

C = 5 5  

(A-10) 

Predictions of heat transfer using the method of this appendix, and equations (A-9) and (A-10) rather than 
(A-5) and (A-6), have been made 29 only with a later version of the entrainment method 24, the 'lag- 
entrainment' method derived from the turbulent energy method of Bradshaw etal75. Agreement with a range 
of experimental data, mostly at laboratory Reynolds numbers (Ro ~ 104), is good: full details will be published 
in the near future. 
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APPENDIX B 

Some Variations on the Basic Method 

B.1. An 'Equilibrium' Entrainment Method 

The method described in the body of this Report follows Head's original method fairly closely; in particular 
it incorporates without change the empirical relation which Head proposed between entrainment coefficient 
and the shape parameter H1. As a result the method performs similarly to Head's original method, giving fairly 
accurate predictions in pressure distributions typical of aerofoils but appreciably overestimating shape 
parameter in the 'equilibrium' flows studied by Clauser 18. 

Here, details are given of an entrainment method which works well in equilibrium flows, but which tends 
slightly to underestimate the trend towards separation in flows with adverse pressure gradients which increase 
m severity with streamwise distance. The method is a by-product of a lag-entrainment method 24 derived as an 
integral counterpart to the turbulent-kinetic-energy method of Bradshaw, et aL 25 Since it is tied to equilibrium 
flows, it has characteristics similar to a conventional mixing-length or eddy-viscosity method, and an indication 
of its probable accuracy may be obtained from the performance of methods of these two types at the Stanford 
Conference 6. 

For incompressible flow, the method is built around the equilibrium locus 

H - 1 -  6.55~/~_0.88__ * due 
H z ue dx' (B-I) 

which lies very close to that proposed by Nash 26 but is a little more convenient algebraically. Equilibrium flows 
which follow this locus are assumed to be flows with constant H (consistent with Rotta's z7 strict definition), and 
a unique relation between Ha and H is assumed. Then, from equation (4), in equilibrium flows 

0 dHa "~X =O-=-CE-HI(~-(H-t-1) 0 due] 
ue dx ]" (B-2) 

Writing equation (B-I) 

_CO ' H--' V 
dX /eq . . . .  H \ \ 6 . ~ ]  - -2}  (B-B) kUe " 

we have, from (B-2) and (B-3) 

C ~ = H , [ ~ + l . 2 5 ( H + l ) ( (  14-1 ~2_ C_/~] 
2 H \ \6 .55H]  2 ]J" (B-4) 

There is no reason why this entrainment relation should not be used with the shape parameter relation of 
equations (10) and (11). Formulated in this above way, the method is relatively insensitive to the particular 
H-/- /1 relationship used except when the boundary layer is close to separation. In fact, the 'lag entrainment' 
method from which it is derived incorporates a slightly different relation, 

1'72 
H1 = 3"15 + H _  1 - 0"01(H- 1) 2 (B-5) 

which has the merit of being simpler than equations (10) and (11), is thought to approximate boundary-layer 
behaviour in a sudden deceleration more accurately and, being monotonic for all H >  1, enables equations (2) 
and (4) to be integrated smoothly forward beyond separation without the method 'blowing up'. With this 
relation, it is convenient to take H rather than/-/1 as the independent variable, with dH/dx obtained by 
multiplying equation (4) by dH/dH1 (H). 

For consistency with the equilibrium locus (B-I) the method should incorporate the skin-friction relation, 
derived from that of Winter and Gaudet ao, described in the second part of this Appendix. 
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In compressible flow, it is assumed that the shape parameter relation equation (13) applies unchanged to H1 
and/1, and entrainment at equilibrium is defined by exactly the same equation, (B-2), as in incompressible 
flow. However, in compressible flow the equilibrium locus alters slightly. On an empirical basis, it has been 
suggested 24 that this be now written 

/-7"-1=6.557(~/_ 0 du~]( 1 M2e ° 8H Tx  (B-6) 

whence entrainment is given as: 

[? , r, ,v 
CE=H1 +1.25 l + 0 . 0 4 M ~ Z \ 6 . ~ !  - 2 J J" 

(B-7) 

B.2. A Slfin-Friction Relation Based on the Flat-Plate Relation of Winter and Gaudet 

In the later 'lag entrainment '24 method from which the above has been derived, the skin-friction relation has 
been tied to the flat-plate relation of Winter and Gaudet 1° rather than that of Spalding and Chi 3. 

Equation (24) is still used unchanged, 

( Cf + 0.5) (~oo- 0.4) = 0.9, (B-8) 
Cio 

but now we replace equation (20) by 

0.01013 
log10 FRRo - 1.02 

0.00075, (B-9) 

equations (22) by 

F~ = (1 +0"2M~)½ ( l ,  

FR 1 +0-056M~ z J 
(B-10) 

and equation (23) by 

/ ] o  = (B-11) 

These relations are of course limited to adiabatic flow. If the method of this Appendix were combined with that 
of Appendix A to predict flows with heat transfer it would be necessary to revert to the formulae of Spalding 
and Chi, equations (20) to (22). However, for consistency with equation (B-4) it would in this case still be 
necessary to replace equation (23) by equation (B-11). 
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