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1. Introduction 

Methods for calculating generalised airforce coefficients on a harmonically oscillating flat plate wing in 
subsonic flow based on linearised theory, have been in the course of development for many years. The 
linearised theory is used to set up an integral equation relating the unknown loading distribution to the known 
upwash distribution on the wing. Basically two methods have been in the course of development for solving the 
integral equation numerically. In the one the loading distribution is replaced by a distribution of concentrated 
loads on certain lines and is known as the doublet lattice method, whereas in the other the loading distribution 
is replaced by an approximation which is continuous over the wing except in the neighbourhood of its leading 
edge and is known as the lifting surface method. There are also methods which are not based on the 
above-mentioned integral equation, for example the vortex lattice method. In this paper we concern ourselves 
exclusively with the lifting surface method. 

The lifting surface theory of Multhopp 1 was for steady flow and required the loading to be approximated to 
by a polynomial in the wing coordinates ~: and r/multiplied by a function of ~¢ and ~ which took into account the 
known singular behaviour of the loading at the edges of the wing. This approximation to the loading was 
substituted into the integral equation to get an approximation to the upwash, and this approximation to the 
upwash was equated to the known upwash at a set of points on the wing equal in number to the number of 
unknown coefficients in the expression for the approximation to the loading. A set of linear equations for the 
unknown coefficients was thus obtained and this set could be solved. The approximation to the loading was 
then known and an approximation to any required generalised airforce coefficients could be obtained from it. 

Multhopp's method was extended to low-frequency harmonic oscillations in Ref. 2 and to general- 
frequency harmonic oscillations by, among others, Acum 3, Richardson 4 and Davies 5. It was found, however, 
that in all these methods, in which the chordwise integration was carried out first, the spanwise integral was 
evaluated numerically by too coarse a method and this resulted in inaccurate estimation of the approximation 
to the upwash at points near to the leading and trailing edges of the wing with consequent loss of accuracy in the 
results for generalised airforce coefficients. Garner and Fox 6 refined the method of numerical integration of 
the spanwise integral and applied their refinement to the case of low-frequency harmonic oscillations. Long 7 
applied this same refinement to the case of general-frequency harmonic oscillations. Zandbergen, Labrujere 
and Wouters 8 also refined the method of numerical integration of the spanwise integral in a manner somewhat 
different from that of Ref. 6 and for the particular case of steady flow. Lehrian and Garner 9 then extended the 
refinement of Ref. 8 to the case of general-frequency harmonic oscillations. A method in which the spanwise 
integral is evaluated first is that of Hewitt and Kellaway 1°. The numerical integrations in Ref. 10 are all carried 
out accurately so that no refinements are necessary. 

All the above methods require that the approximation to the upwash be equated to the known upwash at a 
set of points on the wing, their number being the same as that of the unknown coefficients in the expression for 
the loading, and then these unknown coefficients may be determined. There are other methods of determining 
these unknown coefficients and one of these methods is discussed by Davies 11. In this method the coefficients 
are determined by equating integrals involving the approximation to the upwash to corresponding integrals 
involving the known upwash. This process, theoretically, leads to the generalised airforce coefficients being 
obtained with the highest possible precision for a loading approximation of a particular form. The said 
integrals are evaluated numerically for the present paper, but the number of integration points may exceed the 
number of unknown coefficients in the expression for the loading. If the number of integration points equals 
the number of unknown coefficients in the expression for the loading then the method of equating the 
approximation to the upwash to the given upwash at a set of points on the wing is retrieved. Furthermore the 
refinement of Garner and Fox 6 is used in evaluating the spanwise integral in the integral equation, although 
this is modified to some extent in that the parameter q which determines the number of spanwise integration 
points may depend on the location of the upwash point concerned. 

The process is described in detail in the present paper. A program has been written in ICL 1900 FORTRAN 
to calculate, by using this process, the generalised airforce coefficients and the loading distribution for a wing 
oscillating harmonically at general frequencies in subsonic flow. The procedure for using the program is 
described in Ref. 17. Calculations, using the program, have been carried out for swept tapered and rectangular 
wings. The results obtained are given here and their convergence is studied. 

2. Theoretical Considerations 
2.1. Preliminary Formulae 

We refer points of space to an inertial right-handed Cartesian coordinate system Oxyz where O is the origin 
of coordinates and Ox, Oy, Oz are the axes of x, y, z coordinates, positive z being upwards. We introduce a 



thin wing W into the space and consider it to be vibrating in such a way that the position of any material point 
on the surfaces of W is near to a fixed point which is the mean position of that surface point. We consider a flow 
of fluid in the space about the wing W, which at large distances ahead of the wing is uniform and horizontal with 
speed V in the direction of the positive x-axis. We then have the problem of determining the flow about the 
vibrating impervious surfaces of the wing W and we take this to be potential flow except across the wake 
surface which extends as a sheet of vorticity downstream from the trailing edge of W. Once the flow is known 
the pressure forces acting on the wing can be determined. 

When the wing W is very thin and is vibrating in such a manner that all the points on its surfaces are always 
very near to the plane z = O, the governing equations of motion of the fluid may be linearised. Let the 
orthogonal projection of the mean positions of the material points on the surface of W on to the plane z = 0 
define the area S, which we shall call the wing planform. Then, as far as the aerodynamic problem is concerned, 
the wing is replaced by the area S in the plane z = 0 and the boundary condition of the fluid not penetrating the 
surfaces of W is replaced by given fluid speed distributions normal to the top and the bottom surfaces of the 
planform area S. The wake becomes a flat surface in the plane z = 0 extending from the trailing edge of S to 
infinity. 

There are two material points on the surfaces of W, one on the top and one on the bottom surface, whose 
mean positions have an orthogonal projection onto the point (x, y, O) of the planform area S. Let the 
components, in the direction of the positive z-axis, of the displacement of these points at time t from the point 
(x, y, O) on the planform area S be denoted by Z+(x, y, t) and Z_(x, y, t) respectively for the point on the top 
surface and for the point on the bottom surface of W. According to linearised theory, the fluid speed 
W+(x, y, t) normal to the top of the planform area S and measured positive upwards is given by 

W+(x, y, t)= vOZ+,x,( y, t) ~ 3Z+(x, y, t) (1) 
Ox 3t 

Similarly the fluid speed W_(x, y, t) normal to the bottom of the planform area S and measured positive 
upwards is given by 

W_(x, y, t)= v oZ_(x, y, t) ~ oZ_(x, y, t) (2) 
Ox Ot 

The perturbation velocity potential in the fluid can be split up into the sum of two constituents, one of which 
is symmetric about the plane z = 0 and the other of which is antisymmetric about the plane z = 0. The speed 
distribution normal to the planform area S, corresponding to the symmetric velocity potential constituent is 
the same in magnitude but opposite in sign on the top and bottom of the planform area S, whereas the speed 
distribution normal to the planform area S, corresponding to the antisymmetric velocity potential constituent 
is the same in magnitude and sign on the top and bottom of the planform area S. Corresponding to the 
symmetric velocity potential constituent there is no net pressure loading across the planform area S but 
corresponding to the antisymmetric velocity potential constituent there is a net pressure loading across the 
planform area S, and, by the principle of superposition, this is the total pressure loading across the planform 
area S. This pressure loading will give rise to generalised airforces on S and these can be taken to be the 
linearised values of the corresponding generalised airforces acting on the wing W. Accordingly, to determine 
these generalised airforces we need deal only with the antisymmetric velocity potential constituent. 

Let us now write 

Z+(x, y, t)= Z(x, y, t)+ Zl(X, y, t) (3) 

and 

Z-(x, y, t)= Z(x, y, t)-Zl(X, y, t). (4) 

The function Zl(x, y, t) describes the wing thickness distribution, which will not normally be changing with 
time, whereas the function Z(x, y, t) describes the position of the camber surface, which will be changing with 
time. The antisymmetric velocity potential constituent depends exclusively on Z(x, y, t) whereas the symmet- 
ric velocity potential constituent depends exclusively on Zl(x, y, t). Since, as stated above, we need deal only 
with the antisymmetric velocity potential constituent we may disregard the thickness function Zl(X, y, t) 



henceforth, and consider only the displacement constituent function Z(x,  y, t). The corresponding upward 
component of the fluid velocity normal to the planform area S on its top and bottom is W(x, y, t) where 

W(x, y, t) = V OZ (x, y, t) + OZ (x, y, t) 
Ox 3t (5) 

The quantity W(x, y, t) is called the upwash on S. 
For a vibrating wing the displacement function Z(x,  y, t) can be given as a linear combination 6f 

independent modes of oscillation. Thus we can write 

Z(x,  y, t )= l ~, (k(X, y)ba(t) (6) 
k = l  

where l is some typical length of the planform S, (k(X, y) is the modal function and bk(t) is the generalised 
coordinate for the mode number k, both of which are non-dimensional. The modal functions (k(X, y), 
k = 1, 2 . . . . .  need to be a complete set of functions for (6) to be valid, in general, and to be of practical value 
the summation in (6) must be truncated to a finite number of terms. This truncation may entail an error but if 
the number of terms retained is sufficiently large the resulting error is negligibly small. 

The generalised coordinate bk(t) is a real function of time t, which we shall assume to consist of a linear 
superposition of harmonic constituents 

Gk(to ) e i~°t + G'~(to ) e -i~°t (7) 

over a range of values of circular frequency to, where b*(to) is the complex conjugate of the complex number 
bk(tO). Since our aerodynamic problem has been linearised we may take 

bk(t) = bk(w) e i°'t (8) 

to carry out the determination of the generalised airforces at the circular frequency to. The generalised 
airforces for the problem when 

bk(t) = b*(to) e -'°'' (9) 

are the complex conjugates of those for bk (t) given by (8). The generalised airforces corresponding to the real 
function bk (t) given by the expression (7) are then the real quantities obtained by adding the two complex 
conjugate generalised airforces corresponding to (8) and (9). 

If we substitute for Z(x,  y, t) from (6) into (5) and use the expression (8) for bk(t) we get 

P 

W(x, y, t )= V E ak(x, y; u)l~k(o~)e i°'' (10) 
k = l  

where P is the number of terms to be retained in (6), 

ak(X, y; V)= l 3~k(X, Y)+ iV&(X, y) 
3X (11) 

and 

tol 
V (12) 

is the frequency parameter corresponding to the circular frequency ~o. 
Corresponding to the upwash 

Wk(x, y;  .)tZ (to) e (13) 



in the mode number k, there is, across the planform area S, a normal pressure force per unit area in the 
direction of the positive z-axis, called the aerodynamic loading at the point (x, y, 0) of the planform S at time t. 
We can write this loading in the form 

pV2lk(X, y; u, Moo)bk(w) e"" (14) 

where p is the density of the fluid in the uniform flow far upstream of the wing and M s  is the Mach number 

V 
Moo = - -  (15) 

a 

where a is the speed of sound in the uniform flow far upstream of the wing. 
On using the governing linearised partial differential equation for the perturbation velocity potential, the 

boundary condition of prescribed upwash on S, and the condition of no loading on the wake, we can set up an 
integral equation relating the upwash on S to the loading on S (see Ref. 5). For the mode number k this takes 
the form 

1 I I  ( ) / ak(x, y; u)=4--- ~ lk(Xo, Yo; u, Moo)K x ix° ,  Y-YOl , u, Moo exp -iu(x-xo)~l 1 dxodyo 
S 

(16) 

where, for subsonic flow, 
oo 

f e- i , ,u / l  
l ' p '  d 

( - x + M ~ R ) / ( 1 - M ~ )  

and 

du 
(u2+y2)  

+12Moo(Moox+R) ~ iu(-x+MooR~ 
R(x2+y 2) e x p t - T \  ~ _ - - ~  ) J  (:7) 

R = ff{x 2 + (1 - M2)yZ}. (18) 

For dynamical analyses of oscillating wings in an airstream we need to know the generalised airforce 
coefficients Qik(V, M) which are given by the expressions 

Moo 1 O,k(U, ) = ~  t l  (~(xo, Yo)lk(xo, Yo;u, Moo) dxodyo 
S 

(19) 

in the linearised approximation. It is the main purpose of this paper to discuss the numerical evaluation of 
Ojk(u, Moo). 

2,2. Approximate Solution of the Integral Equation 

The integral equation (16) does not have a unique solution, but if we impose the condition that the loading at 
the trailing edge of S vanishes then, generally, the solution becomes unique. As a consequence of imposing this 
condition the loading acquires a certain behaviour near the edges of the planform S and this behaviour is 
known. We shall seek an approximate solution of the integral equation (16) which has this known behaviour 
near the edges of the planform S. 

We introduce parametric coordinates on the planform S by means of the formulae 

= c- y){x - xL(y)} 

Y 
S 

= c yo) {Xo - xL(y0)} 

Yo 
~?o = -  

S 

(20) 
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where s is the semi-span of the planform S, c(y)  is the chord length and xL(y) is the x coordinate of the leading 
edge at the spanwise position y of the planform S, as shown in Fig. 1. 

The integral equation (16) may now be written as 

Olk(X,y;p)=4_~ T i~lc(yo) T a ' ~ °  fol -iu lk(xo, Yo; ~,M)K(XlX°,Y--lY°, ~,M~)exp {-T-(X-Xo)} d~o. 
(21) 

We now take an approximation ~k(Xo, Yo) to lk(Xo, Y0; u, Moo) which is given by the formula 

o) l (-ivxo~ ~ ~ Ak.ip~o-17~)-14~oOx/~_r12o. t~(xo, y =c--~o)eXp\-- - f - - ]  i=1p=1 "' (22) 

The approximation fk(Xo, Yo) to lk(Xo, Y0; u, Moo) vanishes at the trailing edge of S and has the required 
behaviour near the edges of S. The values of the coefficients Ak;i.p are such that the simultaneous linear 
equations (33) are satisfied. 

The approximation ~'k (X0, YO) in formula (22) has been expressed in terms of n chordline base functmns" ~:oi-1, 
i = 1, 2 . . . . .  n, and of m spanwise base functions rig -~, p = 1, 2 . . . . .  m. The formula (22) will be put into a 
different form, which is more convenient for numerical evaluation than is the formula (22) which involves 

~i-1  p-1 merely simple monomials ~o ~o • 
The points 

= ~ [ 1 - [  [2 i -1  '~] cos =) J' i = 1, 2 . . . . .  n (23) 

are a set of n distinct points in (0, 1). We form interpolation polynomials h~")(~o), r = 1, 2 . . . .  , n, based on 
these points. These interpolation polynomials are given by the expressions 

fi [ ) 
i=1~¢£r --~i / 

r = 1, 2 . . . . .  n (24) 

and have the property 

(n) (n) hr (id, )=3,, (25) 

where ~ri is Kronecker 's  delta 

1 r = i (26) 
6ri= 0 r¢i. 

The function (~-1, i = 1, 2 , . . . ,  n, can be expressed as a linear combination of the h~")(~:o), r = 1, 2 . . . . .  n, 
because these are a set of n linearly independent functions each of degree (n - 1) in ~:o. 

The points 

are a set of m distinct points in ( -1 ,  1). We form interpolation polynomials g~'°(rlo), s = 1, 2 . . . . .  m, based on 
these points and given by the expressions 

_(m'TNY __(mH, p=l \Hs --'qp / p#s 
s = 1, 2 . . . . .  m (28) 



which have the property 

g~')('0(p~)) = 6sv (29) 

where 8w is Kronecker's delta. The function rig -~, p = 1, 2 . . . . .  m, can be expressed as a linear combination of 
the g~")('0o), s = 1, 2 . . . . .  m, because these are a set of m linearly independent functions each of degree 
(m - 1) in "00. 

Therefore/'k (Xo, yo) of formula (23) can be expressed in the different, but equivalent, form 

o) l ( - ivxo)  B h (")re" (")" " " - ~ ° 4 1  
fk(Xo, y :C--~O) exp \ 1 ] r=l~' s=l ~ k; . . . .  kgo)gs ~'0o)~]-~o --'092 (30) 

where the unknown coefficients Ak;i,p of formula (22) have now been replaced by the new unknown 
coefficients Bk; .... which are linear combinations of the Ak;i.p. We need determine only the coefficients Bk;,,s 
in order to know the function ~'k (Xo, Yo). 

The n distinct points ~:~"), i 1, 2, . ,  n, in (0, 1) and the m distinct points (m) = ..  "0p , p = 1 , 2  . . . . .  m, in (-1,  1) 
have the advantage over other choices in that simple expressions, concerning integration, which have been 
developed in Appendix A, may be used in the ensuing part of the Report. Other choices of points may be just 
as good as far as the numerical accuracy of the final results is concerned, but it is possible to have an 
unfortunate choice of the points ~:o in (0, 1) and 7/0 in ( -  1, 1) resulting in ill-conditioning of sets of simultaneous 
equations and the numerical accuracy of the final results is poor when only a moderately small number of 
significant figures is used in the calculations. 

If we use the approximation/'k (Xo, yo) from (30) for Ik (X0, Yo, u, M~) in the integral equation (21) we shall get 
a corresponding approximation ~k(X, y) to  the upwash function ak(X, y; v)which is given by 

s -  
Otk(X' Y)=lr~=l  s=l ~ Bk;,.~U,.~(x, y; u, Moo)exp ---7- (31) 

where 

t +1 g m)(no)14i_ _  dno K X-Xo y - y o ;  U"s(x' Y; u'M~)=--4"~ 1 1 ' I u, Moo d~o, 

r = l , 2  . . . . .  n ; s = l , 2  . . . .  ,m.  (32) 

Following Ref. 11 we determine the unknown coefficients Bk; .... r = 1, 2 . . . . .  n; s = 1, 2 . . . . .  m, from the 
set of mn linear simultaneous equations 

1 g(Pm)('0)x/1 - "02 d'0 hln)(1 -~:) {O~k(X, y; V)--(~k(X, y)} exp ~--/-) d~: = 0, 

i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  m. (33) 

The corresponding approximation 0jk to the generalised airforce coefficient Oik is then obtained from 
formula (19) on replacing Ik(Xo, Yo; v, M~) by/'k (Xo, Yo) and is 

O,k=  I I yo)r (xo, yo)dxodyo. 
S 

(34) 

If we substitute for ~k (X, y ) from (31) into (33) then we can write the set of mn linear simultaneous equations 
(33) in the alternative form 

l r=l s=l 
i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  m, (35) 



where 

Ok;i,P = f_~l g~m)(r/)'/i~ r/a d r / f ]  h'")(1-~:)~/-l_~ ~ ak(X, y; v)exp ({-~) d~:, 

i = 1 , 2  . . . . .  n ; p = l ,  2 . . . . .  rn, 

and 

(36) 

Then, it follows from (28) that 

and 

c ( - y ) = c ( y )  

X L ( - - y ) = x L ( y )  

(k(X, - -y)= K(k(X, y) (40) 

where K = +1 for the case in which all the modes are symmetric and K = - 1  for the case in which all the modes 
are antisymmetric. 

We note, from formula (27), that 

n ~"-).+1 = -@") ,  p = 1, 2 . . . . .  m. (41) 

from (32) that 

= 

Ur, m-s+l(x ,y;v ,  Moo)=U, , s (x , - y ;  v, Moo), r = l ,  2 . . . . .  n ; s = l , 2  . . . . .  m, (43) 

because the kernel function K(x,  y; v, M )  is symmetric in y, and from (37) that 

~i.m-p+ 1 ;r,m-s+ 1 = ~bi,p;,,s, i = 1 , 2  . . . . .  n ; p = l ,  2 . . . .  , m , r = l ,  2 . . . . .  n ; s = l , 2  . . . . .  m. (44) 

From (40) and (11) we get that the reduced upwash function O~k(X, y; v) satisfies 

ak(X, --y; v)= Kak(X, y; V), (45) 

and then, from (36), we get that 

Ok',~,m-p+a=KOk;i,p, i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  m. (46) 

Because of (44) and (46), the coefficients Bk;,,~, r = 1, 2 . . . . .  n; s = 1, 2 . . . . .  m, which satisfy the set of mn 
linear simultaneous equations (35), must satisfy the relations 

Bk;r,,,-,+1=KBk;r,s, r = l , 2  . . . . .  n ; s = l ,  2 . . . . .  m. (47) 

(38) 

(39) 

s = 1, 2 . . . . .  m, (42) 

I '  i 1 , / '  $i'P;"'= 1 g(P")(~l) l"~L--n2dn h~n)(1-~) -I-L---~ U ' ' ( x ' y ; v ' M ° ~ ) d ~ '  

i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  m , r = l , 2  . . . . .  n ; s = l , 2  . . . . .  m. (37) 

We assume that the wing planform S is symmetric about the x - z  coordinate plane and that the modes of 
oscillation are either all symmetric modes or all antisymmetric. Then we must have 



and 

We  now define the integer mH by means  of the formula  

rnH = ¼{2m + K - K( -1)"} .  

We  note,  f rom (46) and (47), that  when m is an odd integer and r = - 1  we must  have 

Ok;i, ml.l+ 1 = O, 

(48) 

(49) 

Bk,r,m,,+l = 0. (50) 

For  all values of  m and K, only mH values of the Bk:r.s are therefore  unknown and consequent ly  the set of mn 
linear s imultaneous equat ions (35) may be replaced by the set of mHn linear s imultaneous equat ions 

S ~  mH 
- ~ ~p.,~Ck.,s=Ok:~.p, i = 1 , 2  . . . . .  n ; p . =  1 ,2  . . . . .  mH, (51) 
I r = l s = l  " ' "  " '  

Ck;r.~=2Bk; .... r = 1 , 2  . . . . .  n ; s = l , 2  . . . . .  mH--1 ,  

2Bk;r, mH /n even 

2Bk; . . . .  m odd,  K = - 1 ,  

Bk; . . . .  m odd,  K = +1,  r =  1, 2 , . . . ,  n, 

where 

(52) 

(53) 

and 

Ck:r,m,, = 

~xfi.p;r.s=~(l[li, p;r,s I(i~i,p;r,m-s+l) , i = 1 , 2  . . . . .  n ; p = l ,  2 . . . . .  mn, r = l , 2 ,  . , n ; s = l , 2 ,  . , m n .  (54) 

Fur thermore ,  the set of m n n  linear s imultaneous equat ions (51) may be written as the matrix equat ion  

~[*][ck] = [ok] (55) 

where [~]  is a square matrix of order  mHn × m n n  consisting of e lements  which are the quantit ies ~i,,;r.s, 
i = 1, 2 . . . . .  n ;  p = 1, 2 . . . . .  mH; r = 1, 2 . . . . .  n ;  s = 1, 2 . . . . .  rnn, [Ck] is a column matrix consisting of the 
mHn elements  Ck, .... r =  1, 2 . . . . .  n;  s = 1 ,2  . . . . .  mlx, and [Ok] is a column matrix consisting of the m n n  
elements  0k;~,p, i = 1, 2 . . . . .  n ; p = 1, 2 . . . . .  rnn. The  a r rangement  of the elements  Ck;,.~ in the column matrix 
[Ck] is immaterial  and so is the a r rangement  of the elements  Ok,~,, in the column matrix [Ok], but once these two 
arrangements  have been specified the a r rangement  of the elements ~ , , ; , . ,  in the square matrix [~]  is 

determined.  
To be definite we may specify the following a r rangement  for the elements  in the matrices [Ck], [Ok] and [q~]. 

The  column matrix [Ck] has the e lement  

Ck, .... r = l ,  2 . . . . .  n ; s = l , 2  . . . . .  mn, 

in the n ( m H - s ) +  rth row. The  column matrix [Ok] has the e lement  

Ok;i,p, i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  mH, 

(56) 

in the n ( r a n - p ) +  n - i  + 1st row. Consequent ly  the square matrix [~]  has the e lement  

~i,v;r.s, i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  mH, r =  1 ,2  . . . . .  n ; s = l , 2  . . . . .  mH, 

(57) 

in the n (mH - p )  + n - i + 1st row, and n (mH - s ) +  rth column. 

(58) 

10 



2.3.  Eva luat ion  ot  the  Genera l i sed  Forces  

If we substitute for fk(Xo, Y0) from equation (30) into formula (34) we get 

~/k  $ n 

--7r_~1 ~" Xj;r, sBk;r,s  
s = l  

where 

f? fl Xi;,.~ = g~m)(no)41- n~, dno (j(Xo, yo) 
1 

[ - iuxo]h( , ) r t  , /-1-~o d ~ 
e x p [  1 ] , t~o)V---~o ¢o, 

r = l , 2  . . . . .  n ; s = l , 2  . . . . .  m. 

(59) 

(60) 
On using (40) and (42) in formula (60) we get the relations 

Xj;,,m-s+l = KX,.;r,s, r = 1 , 2  . . . . .  n ; s = l , 2  . . . . .  m. (61) 

Therefore,  from (59), on using (47), (52), (53) and (61), and noting that K 2 = 1 we get 

S n m H  

Oik~--';rZlt = s=lZ Xj;r, sCk;r,s. (62) 

The formula (62) may be written as the matrix formula 

S 
[(~jk] = flXj][Ck] (63) 

where [Xj] is a row matrix of mnn elements, with the element 

~'i;,.~ r = 1, 2 . . . . .  n; s = 1, 2 . . . .  , mH, (64) 

in the n ( m ~ - s ) +  rth column and [Ojk] is the matrix of order 1 × 1 consisting of the one element (~jk. 
If we solve the matrix equation (55) for the column matrix [Ck ] and insert the result into formula (63) we get 

[ 0 j k ]  = [ ) ( j l [ x I Y ] - l [ 0 k ] .  (65) 

Let  us now write 

1 / iv (.m)\ 
~j;r,s = H~n)G~m) exp kTxr, s )xj; .... 

1 _ [ - i u _ ( n , ~ ) \  
olk;,,.=/_/~.,OG(o~)expk l xi, p )t&;i,p, 

y ( m )  _ ( m )  
s --  Srls  , 

x(n,m)__ C{" (m),~(n).~_ x t (m),~ 
r,s - -  t y s  )~r  L t Y s  ), 

-(n,m)__ At ,  ( m ) \ / t  (n) (m) 
Xi,p - - c t Y p  )~, ' - -Sei  ) q - X L ( Y p  ) ,  

r = l , 2  . . . . .  n , s = l , 2  . . . . .  m, 

i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  m, 

and 

s = l , 2  . . . .  ,m,  

r = l , 2  . . . . .  n ; s = l , 2  . . . . .  m, 

i =  1,2 . . . . .  n ; p  = 1,2 . . . . .  m, 

i = 1, 2 , . . . ,  n, 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

where 

and (see Appendix A, formulae (A-13) and (A-32)) 

H,°)= fol h,°)(¢)7-~ d ¢ 
27r 

- (2n + 1) (1 _ ~n)),  
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G~ m)= ~ g~ "°(n)41-nz  dn 

7r 
- (m + 1 ) [1 -  (@'°)2], p = 1 , 2  . . . . .  m. (72) 

If we use the numerical integration formulae (A- 16) and (A-35) with n integration points chordwise and m 
integration points spanwise to evaluate Kj;r,~ and Ok,~,p from formulae (60) and (61) respectively we get 

I-iv (.,,.1"~ 
Xj,,,~- ~ ~ Hl"'G(v")h~")(~}"))g~")(n~"))(i(x}~ ''), Y(p"))expl--~-X,.p ) 

i=1 p = l  

r r ( n ) f ~ ( m ) . l  (n,m) (m)x I - i v  ( . . m ) .  
= 1"1r ( J s  ~] t  X . . . .  Ys ) exp ~--~x~,, ), r = l , 2  . . . . .  n ; s = l , 2  . . . . .  m, (73) 

and 

~_ ~ ~ Lr(")~_(m)r.('Ote(n',_O"),_("),^ t=.(m,,O .(").~,)exp (/2~.~")) 
Ok;i,p l l r  U s r t i  t g r  ) lgp Uqs  )°tk~,'~'r,s , y s  , , 

r = l  s = l  

-.(,O--.(,~) t,=(n,-O [ i~' -(,,,m)'~ 
= n ,  up  ak,~i,, ,y~m);, ' )exp~Txi. .  ) ,  i = 1, 2 . . . . .  n ; p = 1, 2 . . . . .  m. (74) 

On substituting from (73) and (74) respectively into (66) and (67) respectively we then get 

ys j, r = l , 2  . . . . .  n ; s = l , 2 ,  . , m ,  (75) 

and 

~ [~.(n,m) ak;i,p--,~kt~i.p , Y(pm); u), i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  m. (76) 

The formulae (73) and (74) are only approximate formulae, but they may be very good approximations to 
the correct values at high values of n and m if c(y), ak(X, y ; U) and (j(x, y) are continuous functions with only a 
few undulations over the planform S. There are instances, e.g. control surface rotation, in which their accuracy 
is not as good as may be desired unless n and m are unpractically high. If it is considered that the 
approximations (73) and (74) are sufficiently accurate then formulae (75) and (76) may be used for (i;r,, and 
O~k:i,p respectively instead of the expressions (66) and (67) with l'j;,,s and Ok;i.p being obtained accurately by 
numerical integration of the integral relations (60) and (36) using formulae which are much more accurate than 
formulae (73) and (74), or, indeed, by carrying out the integrations analytically if this is possible. 

Let [(i] be the row matrix of mHn elements with the element 

(j. .... r = 1 , 2  . . . . .  n ; s = l , 2  . . . . .  mH, (77) 

in the n ( m , - s ) +  rth column. Let lag] be the column matrix of mun elements with the element 

ak;i.p, i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  ran, (78) 

in the n ( m . - p ) +  n - i  + 1st row. Let [E] be the diagonal matrix of order mHn x mHn with the element 

/ - i v  (,, m)\ 
/-/(,") a ~') exp ~ --'/-- X ~,; ' ) ,  r = 1 , 2  . . . . .  n ; s = l , 2  . . . . .  m , ,  (79) 
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in the n ( r a n -  s )+  rth row and column. Let [D] be the diagonal matrix of order mnn × mHn with the element 

/-~")G~ '') exp (iv -0,,,,0~ 
tTX,,, 1, i = 1, 2 . . . . .  n;p  = 1, 2 . . . . .  mH, (80) 

in the n(rns - s -p )+n- i  + 1st row and column. Then we can write formula (66) and (67) as the equivalent 
matrix formulae 

Ix;] = [(d[E] (81) 
and 

[Ok] = [D][ak] (82) 

respectively. On substituting from (81) and (82) into (65) we get 

[(~Sk] = [(s][El[~]-'[D][ak] (83) 

which is the final formulation for the approximation (~ik to the generalised airforce coefficient OSk. 
Suppose that there are P modes of oscillation corresponding to the index k in the summation on the right 

hand side of (6) taking the values k = 1, 2 . . . . .  P, only, just as in formula (10). Let [(] be the matrix of order 
P x mnn obtained by arranging the row matrices [(s],/" = 1, 2 . . . . .  P, sequentially one below another. Let [a] 
be the matrix of order rnnn x P obtained by arranging the column matrices [ak], k = 1, 2 . . . . .  P, sequentially 
one alongside another. Let [(~] be the square matrix of order P x P which has the element [0/k] in the ]th row 
and kth column, j = 1, 2 . . . . .  P;  k = 1, 2 . . . . .  P. Then we get immediately from formula (83) 

[(~] = [(][EI[~]-'[D][a]. (84) 

2.4. Evaluation of the Loading 

We can obtain the approximations [k(Xo, Yo), k = 1, 2 . . . . .  P, to the loading distribution lk(XO, Yo; u, M) in 
the mode k of oscillation directly from formula (30). By using the definitions (52) and (53) in formula (30) in 
order to replace the coefficients Bk;r,s by Ck;,.~ we get 

- - '  zz°"  . I,-<+. fk(x°'Y°)=2c(yo) exp s=l k; . . . .  tgo) s tr#o)~/ s¢ ° l - r / o  (85) 

where 

k(mH)(_ ~__(m)/_ \+to (m)/ _ ,~ s t , tos-  ~s t qo) gs t--,to), s = 1, 2 , . . . ,  ran. 

The relations (42) and (47) have also been used in obtaining the formula (85). 
Let [F(xo, yo)] be the row matrix of mnn elements with the element 

(86) 

12 {-ivxo~h(,Ote ,kO,,~), , / i - - - ~ : o 4 F  2 
sc(yo)eXp\ l ) ~ tso) ~ t i l o ) V T  - n o ,  r = 1, 2 . . . . .  n; s = 1, 2 . . . . .  rnn, (87) 

in the n ( m s -  s) + rth column and let [fk (X0, Y0)] be the matrix consisting of the single element/'k (Xo, Yo). Then 
we can replace the formula (85) by the matrix formula 

1 s  
[fk (X0, Y0)] = ~  7 [F(xo, y0)][Ck]. (88) 

If we obtain [Ck] from formula (55) and express [Sk] in terms of [ak] by means of formula (82), then we can 
write, instead of (88) 

ffk(xo, 1 Yo)] = ~[F(xo, yo)][~]-l[D][ak] (89) 

which is a formula for determining fk (Xo, Yo). 
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In particular, if we put in formula (89) 

. ( n a n ) )  
Xo  -~" .'~ i,p 

yo=y(pm) J 
(90) 

. ( . . - o  y~,-)  are defined in formulae (68) and (69), with i and p replaced by r and s, we get where xi.p , 

i f  l ~ ( n , m )  l r r - , ,  (n ,m)  ,kt-~,.o , y(-O)] =~irtxi.o . y(pm))][.]-l[D][ak]. (91) 

rm- ( - . ' )  y(v"))] has only one non-zero element, namely the one in the We note that the row matrix t--,xi,p , 
n (mH -- p) + ith column. This fact comes from applying the properties (25) and (29) of the functions h ~")(~o) and 
g~m)(rto) to the functions k~mH)(r/o) of (86) and the elements (87) of [F(xo, yo)]. 

Now let ilk] be the column matrix of mHn elements with the element 

f k g ~ ( n ,  rn ) • (m)'~ t~a, ,yp  ), i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  mH, (92) 

in the n(mH - p ) +  ith row and let iF] be the matrix of order mHn x rnHn whose n(mH - p ) +  ith row is the row 
it:(- (~.m) y(pm)). Actually, according to the above, the square matrix iF] is a diagonal matrix. It can be matrix _ ,~,p , 

written as the product of diagonal matrices 

iF] = [H][E] (93) ' 

where the diagonal matrix [E] has been defined immediately before expression (79) and [H] is the diagonal 
matrix of order rnHn x mHn with the element 

l 2 1 
- -  b(m')[~(m)~'/1 - ~ ' 4 1  _ [@m))2, 

sc(y(pm)) M(")gT(m)'~p**i ~ p  ~'tp J V  ~i i:(~) 
i = 1, 2 . . . . .  n ; p = 1, 2 . . . . .  mH, (94) 

in the n ( m H - - p ) +  ith row and column. 
From equation (91) for i = 1, 2 . . . . .  n; p = 1, 2 . . . . .  mH, we then deduce the matrix equation 

ilk] = ½[H][E][~I-~[DI[ak]. (95) 

If we solve equation (95) for [~]-l[D][ak] and substitute the result into formula (89) we get 

ilk (X0, Y0)] = [F(Xo, yo)][E]-I[H]-I[[k] (96) 

which is an alternative formula to formula (89) for determining [[k(Xo, Yo)]. Formula (96) is useful if one 
f l~(n,m) computer program is constructed to evaluate the rnHn values 'kt~i,p , y~")), i = 1, 2 . . . . .  n ; p = 1, 2 . . . . .  m . ,  

for each value of k from equation (95) and a second computer program is constructed to evaluate fk (Xo, YO) at 
; ~(,,, ,) y(pm)), i = 1, 2, n" p = 1, 2, . ,  mH, for each given values of Xo and yo using these mHn values 'kt~i.~ . . . . . . . .  

value of k in formula (96). 
We notice that the matrix product [E] [~] - I [D]  occurs both in formula (84) for the generalised airforce 

coefficients and in formula (95) for the loading at the loading points. It was to achieve this that the product 
formula (93) for iF] was introduced. 

If [[] is the matrix of order mHn x P obtained by arranging the column matrices ilk], k = 1, 2 . . . . .  P, 
sequentially one alongside another, and if [[(Xo, y0)] is the row matrix of P elements obtained by arranging the 
elements lk(Xo, Yo), k = 1, 2 . . . . .  P, sequentially one alongside another, then we get immediately from 
formulae (95) and (96) the formulae 

[l'] = I[HI[E][~I-~[D][a] (97) 

and 

[[(Xo, yo)] = [F(xo, yo)] [E]- l [H]- l [q .  (98) 

14 



3. Numerical Integration 

The quantities t#i,p,,.~ defined in formulae (37) as double integrals, are to be evaluated numerically, and we 
do this by evaluating the double integrals using the Gaussian numerical integration formula (A-16) over N 
chordwise points ~: in (0, 1) and the Gaussian numerical integration formula (A-35) over M spanwise points ~7 
in ( -1 ,  1). This process leads to the formula 

N M 
LT(N)/'2-(M)L" ( n ) I d ( N ) ' ~ ( m ) I ~  (M)'~r r [ ~'(N'M) M®), 

I= i  1=I 

i = 1 , 2  . . . . .  n ; p = l , 2  . . . . .  m , r = l , 2 , . . . , n ; s = l , 2  . . . . .  m, (99) 

where (see Appendix A) 

~.(m_lr~ [ 2 1 - 1  \ ]  
, -~.Ll-~os ~T-h--Tf~)j, 

and 

n~ ' )=  cos 3"~r 

= 2N+e~r i (  1 _ (y)) ,  

G('~)= I_~' g(Y)(n)V1-n~ drl 

M +  1 [1 - 07 ], 

~ ( N , M )  C / (M)Wl e(N)~+ x [ ,  ( M ) $  I j  = l y j  )k - -  g I  ) L k y J  ) ,  

l = 1, 2 , . . . ,  N, (100) 

3 = 1, 2 . . . . .  M, (101) 

I = 1, 2 . . . . .  N, (102) 

J = 1, 2 , . . . ,  M, (103) 

I = 1 , 2 , . . . , N ; J =  l , 2  . . . . .  M ,  

y y )  = ~.(y). 

We define the integer M~ by means of the formula 

M~ = ¼{2M+ K - ( - 1 ) ~ } .  

Then, if we use the relations (41), (42) and (43) in (99), and use the definitions (54) we get 

(104) 

(105) 

(106) 

where 

, , , J . l  I 1 2 r j  / ~ i  ~ I  ] j . . , p , j  A 
I=1 J = l  

×{U,.,(~(.N.m), y(M,; , ,Moo)+ "-(~m) y( ' ) ;  KU,.m-~+ILxt)" , v, Mo~)}, 

i = 1 , 2  . . . .  , n ; p = l ,  2 . . . . .  rnH, r =  1, 2 . . . . .  n ; s = l , 2  . . . .  ,mH, 

(m)/  (M)\.a_ (m)/  __(M) x 
L e j = g p  t r D  ) - K g p  ~,--¢lJ ] 

( (m),, (M)x t_Kg p g p  t r l M ~ )  T "  _(m),,  _ ( M ) ~  ~-- 'I MH) 
I (m)/ (M)~, 

, Sp L - - q M H )  Lp v t ,  - ~gp (~TMn]-- ~(m)[ _(M), t 

(g (e")(O) 

J < M H  

M even 

M o d d ,  x = - 1  

M odd, K = +1. 

(107) 

(lOS) 

(lO9) 
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We may now write for the matrix [~], appearing in formula (55), 

[~] = [LI[UI (110) 

where [L] is the matrix of order mHn x MHN with the element 

1 L.Ir(N)f,,(M)L(n)[I..(N)'xlr • . • • • . , ~,~t ~J  nl tgz )~p.,:, i = 1 , 2 ,  . , n , p = l , 2 ,  mN, I = l , 2  . . . . .  N ; J = I , 2  . . . . .  Mn, 
(111) 

in the n ( m n - p ) + n - i + l s t  row and N ( M H - J ) + N - I + l s t  column, and [U] is the matrix of order 
MHN x mHn with the element 

U,  [g (N ,M)  . ( M ) . I ]  M~ + I ¢ . U  - ( N , M )  Moo), 1=1 ,2 ,  , N ; J = I , 2 ,  ,MH, ~,~t , a  , y ~  , , oo) , , m - s + ~ ( X r a  , y ~ M ) ;  V, • . . . . .  

r = 1, 2 . . . . .  n; s = 1, 2 . . . . .  rnn, (112) 

in the N ( M H -  J)+ N - I  + 1st row and n ( ran-s )  + rth column. 
We note that the matrix [~] given by (110) is non-singular only if MHN >1 men. We shall take MH i> mE and 

N ~  > n so that this condition is satisfied and then [~] can be inverted to give [xlr] -~ required in formula (65). 
Now, from (32), we get 

12 i.~1 (m) x/ 2 
g~ '(no)'41 - r~ o i(.)(j: Moo) dr/o (113) 

U~"(x'y;v'MOO)=-~ J-1 (*/-r/o) / ~ , ~ ,  r / ,  r / o ;  ~', 

where 

1 (y--yo)2101 ~ / ' i - ~  ( X ~ X o  y--Y0 ) 1~'°(~, r/, r/o; v, M~) - ~ ~ h~")(~:o) K , ~ - ,  v, Moo d~:o. (114) 

To evaluate Ur,,(X, y; V, Moo) from (113) we write, following Ref. 12, 

12 f- g~'°01°)41 2 +1 _r/Ox 
U~,s(x' Y ; u' Moo) : 7 , (r/- r/o) ~ 

x { I~.)(~, r/, r/o; v, Moo)- l~")(~, r/, r/; v, Moo)- (r/o - r/ )[O+oI~n)(~, r/, r/o; v, Moo)] .o =. }dr /o+ 

12 [,~-1 g~mI(r/o) lx/i'~_ r/g 
--r(')r# " Moo) "~" 2 * r  k".~, r/,  ~ ,  p ,  J_ dr/o S 1 (r/-- r/0) 2 

2 ] t.+~ g~)(r/o)~/1 2 
l" [O0__r(n)t~: Moo) "0o=7) --1 (T/- r /0;  r/o dr/0. s2[0r/o *, , . ,  r/, r/0; v, (115) 

Now 

(r/2~lo)2{I~")(~'r/'r/°;v'Moo)-I~")(~'r/'~t;v'Moo)-(~7°-r/)[O@o I~'O(~'Tl'r/°;v'Moo)] (116) 

becomes logarithmically infinite when r/o = rt, so that a numerical integration process for evaluating directly 
the first integral on the right hand side of formula (115) must not have an integration point at rio = ft. Also it is 
not easy to estimate the accuracy of such a numerical integration. We can replace the function 
I~n)(~,r/,r/o; v,M~) in the first integral on the right hand side of formula (115) by a function 
~")(~:, r/, r/o; v, Moo) so that numerical integration of the resulting integral is straightforward using a Gaussian 
numerical integration process and analytical integration of the difference between the two integrals can be 
carried out. This is achieved by using the known analytical behaviour of I~n)(~ :, r/, rto; v, Moo) for r/o near to r/ 
(see Ref. 5, Appendix 4). 
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We introduce the functions [~(")(~:, n, no; v, Moo) by means of the formulae 

_ ~(,o v, Moo)+F(2)(~, ; Moo)(n-no)21ogln-no],  r = 1 , 2 , . ,  n, (117) I~'°(~ :, n, To; v, Moo)- I ,  (~, n, no; n v, . ,  

where 

l ( s ~21-(l-M~)d(h~"(~)~/T---~+ 2iu~h~"'(~)~ P-Zg(~, n ; u, Moo) = - - ~ \ - ~ ]  [ a¢; \ ¢ / 

-(iv)2c2~) r*h~")(~°)~o ° d~° Jo . . . . .  r= 1,2, n. (118) 

The lowest order logarithmic contribution to/~,")((, 7, To; u, Moo) is then completely separated as the second 
term on the right hand side of (117). It follows that the function 

if F a  Moo)- I~")(~, 1 ) 

r = 1, 2 . . . . .  n (119) 

is finite when n o = n  if x{(y) and c"(y) are finite. The function (119) is then finite for all To in ( -1 ,  1) and 
therefore is straightforward to deal with as part of an integrand of an integral which is to be evaluated using a 
Gaussian numerical integration process. 

If we substitute for I~")(~, n, r/o; v, Moo) from (117) into the first integral on the right hand side of (115) we 
obtain 

U,.s(x, y; v, Moo) = ~-~ j_112 f+l g~,,)(no)4i-L-__n~(n_no)2 { I~')(s e, n, To; v, Moo)-I~")(~, 7, 7", v, Moo)- 

+ F(2)(~,7; v , M . )  g~"°(no)logln-nol  141-----n-~-~2dno+ 
1 

12 I ;  1 g~"°(n°) 
+-~I~")(~, 7, 7; v, Moo) - -  J 1 -  nZo d~Io- 

s ~ ( q - T o )  

12F O (n) +1 g~,.)(n0)/l_noZ dn0" 7[0--~ 0It (~'n'n°;/J'M°°)]-qo=.f-i (n-no-----~ (120) 

It is observed that the third and fourth integrals on the right hand side of (120) are principal value singular 
integrals. 

The first integral on the right hand side of (120) may be evaluated numerically by means of a Gaussian 
numerical integration. The obvious formula is the one with x /1 -  no 2 as weight function, but we shall find it 
necessary to use also other weight functions in order to justify the final form (156) for U,,s(x, y~M); u, Moo) in all 

circumstances. These weight functions are ~/(1 - 7o)/(1 + To), 4(1 + 7o)/(1 - To) and 1 / x [ ] ~ -  ~o. If we use A 
integration points, the application of the Gaussian numerical integration corresponding to each of these 
weight functions gives the result 

1 (n -- no) 2 | *, ,s, 7, 70; u, Moo)- I~")(~ :, n, n;  v, Moo)- (To - n)  I~")(~ :, 7, To; u, Moo) dno 
~qO:'0 

h fro) (A) (A) 2 
_ "n" v g '  ( ( . ) { 1  - ( ( . )  }l ~")te r(A). v, Moo)- 

(121) 
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r(A) The  values of PA and sp , P = 1, 2 . . . . .  A, for the different weight functions may be obta ined from equat ions  
(A-86),  (A-88),  (A-91) and (A-94) of Appendix  A. 

For  the weight function ,}1 - r/o 2 these values are 

and 

PA = (A+ 1) (122) 

~.-(A) = ,/77) P 

prr 
--cos (vv ) , 

For  the weight function ~/(1 - rio)/(1 + rlo) these values are 

PA = (A + 1) 

and 

~.(A) = 7/~2A) 
p 

( 2pTr~ 
= c o s  \ 2 3 / + 1 / '  

For  the weight function ~/(1 + r/o)/(1 - ~/o) these values are 

PA = (A + ½) 

and 

~-(A) = "17 (22A-)1 P 

{2p-1 \ 
= cos ~ - - ~ i -  7r J , 

For  the weight function 1 / ~  r/o 2 these values are 

p = 1, 2 . . . . .  A. (123) 

and 

(124) 

p = 1, 2 . . . . .  A. (125) 

(126) 

p = 1, 2 . . . . .  A. (127) 

PA = A (128) 

p = 1, 2 . . . . .  A. (129) 

( ( A ) =  _ (2A-1) 
112p-1 

[2p-1 \ 
= cos  v T g -  ) , 

Formula  (121) is, in general ,  only an approximate  formula but  for  the weight function x/1 - r / ~  it would be 
exact if the function ( !19)  were a polynomial  of degree < ~ 2 A - m  in r/o. For  the weight functions 
~/(1 - r/o)/(1 + r/o) and x/(1 + r/o)/(1 - rio) it would be exact if the function (119) were a polynomial  of degree  
~ < 2 A - m - 1  in "0o and for the weight function 1/~/1--~7~ it would be exact if the function ( 1 1 9 ) w e r e  a 
polynomial  of degree  ~<2A - m - 2 in rio. However ,  since the integration weights are positive numbers  and the 
function (119) is finite for  all r/o in ( - 1 ,  1), the right hand side of (121) will converge to the exact value of the 
integral on the left hand side of (121) as A tends to infinity. We can take A to be large enough for formula (121) 
to be sufficiently accurate for  all practical purposes.  

We note  that the form of the right hand side of (121) can be used only if 

• ~ ( A )  "1/~ ~p , p = 1, 2 . . . . .  A, (130) 
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but if this is not the case the right hand side of (121) is easily modified and the resulting formula involves the 
;.(A) or the second derivative (O2/Ori2)f~")(~ :, ri, rio; u, M~o) for rio = s .  f appropriate value of p. 

We can further write 

I f "  g~m)(rio) log In - nol41 - rig drio 
1 

i 1 F = {g~")(no)-g~")(n)}logln-nold1-riZodno+g~")(ri) l og ln -no ld l -n2odno  
1 -1  

7/" A (m) (A) (m) (A) 2 + 71" (m) 2 1 
=Kp~=l{gs ( (p ) - -gs  (ri)}loglri-~'(~A)l{1-(G)} ~-g, ( r i ) { r i - ~ - l o g 2 }  (131) 

where one of the above Gaussian integration formulae with A integration points has been used to give 

I • "  {g~")(rio)- g~'°(ri)} log Iri - nol,/1- rig dno 
1 

7T A 
= PA ~>~, {g~')(~(J')) -  g~")(ri )} log 1,7 - ~'(pA)[{ 1 - (~.~A))2}. (132) 

The formula (132) is only approximate but since the integration weights are positive numbers and the 
function {g~m)(ri0)- g~m)(ri)} log [ri - rl0[ is finite for all rio in (-1,  1) the right hand side of (132) will converge to 
the exact value of the integral on the left hand side of (132) as A tends to infinity. We can take A to be large 
enough for the formula (132) to be sufficiently accurate for all practical purposes. Actually, the integral on the 
left hand side of (131) can be evaluated analytically, but it is simpler to get its value from the expression on the 
right hand side of (131), and then the accuracy is consistent with the accuracy of formula (121). 

On substituting from (121) and (131) into (120) we get 

7r 12 A 
u,,,(x, y; ~, M o a = ~  s 2 , ,= ,  (,7 _ G , , ) ~  x 

X [i~")(s ¢, ri, ((pro; u, Moo)+ 4"!(~:, ri; u, M~o)(ri -((pA))2 log Iri -G~)I] + 

12 . . [  i "+1 g~")(no)V~- 2 A no d --~--~ "-" g~" ) ( ( (A) ) {1  - (~.~A))2}] 
rio j-  

l 2r 0 (.) 

f+l (m) (A) (A) 2 g~m)(rio)41-~2 rr A g~ (sr~_~'~'){l_((p)}]+ 
× 1 (7/-rio) d r i ° -  P--AA .~1 (r/-sr(p A)) J 

+7~F~"),(~¢, ri ; I ~ -  v, Moo)g~("°(ri)['~(riTr 2_½_log 2)_~A p~=llOg Iri _ ((pA)l{l_ ( ( ( p A ) ) 2 } ] ~ r  A 

q'r 12 ~. ~(m)g~'(A)~'fl--(Y(A)'~2]" 
st tsp ~t* tsp s Ji(,)(x ._ ;.(A). M~o)+ 

- - P A S  2 7"" ~ - " " ~  r tb,'I/~p ,V ,  p=l tri - 6v ) 

12 [ I -  g~m)(ri0)~/1 -- ri2 A (m) (A) (A) 2 + '  ~ ,n" r g, ( (p){1-(~ 'p  ) } ]  
(") v, Moo) ~ (ri _ 7/0)2 a r io -  ~ L 7 ~ ( A - - ~  f - + s  -~I" (sc'ri'ri; / -AP =1 t r i - - ~ p  J J 

2 [ f._+ 1 A (m) (A) (A) 2 g~)(rio)X/1-ri~ ~r g~ ( ( p ) { 1 - ( ( p  )}]  
r (e. ri. ,o;  d,7o-  f I 7 j s2E0rio ̀ '  .o=. 1 (~ - ~ o )  

t2 [ - (GA))2}] • 
( m )  7"/" 2 1 77' ~ log +~F(~")(~C's rI; v, Moo)gs (ri) ~(ri --~--logN)--~A Iri--((pA)l{1 

p=l  
(133) 
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A g a i n ,  

+4 g~"}(no)41 - n~ dno 
f--1 (T~ -- T~0) 2 

+4 (m)  (m) (m), 
r {gs (no)-gs (n) - (no-n)g ,  (n)}4TT~_~ ~ + 

= J-1 ( ~  _ ~1o)2 - ~ o  arto 

+4 41 _~/2 dr/o- g~r")'(r/) f+l  ,/1 -r/2 drto 
+g~")(r/) t-4 07 - r/o) 2 J-~ "(n - no) 

A f_(m)l~,(A)\ (m)z x z~(A) 
- ~ v ~g' t*. ) - g "  t n ) - t , ~  -n)g~}'(n)} 
-- VAA p/"= 4 (-"~ ~ {1 -- (c~A))2} - 

- 7rg~m)(~/) - 1mlg~"°'(rt) (134) 

where the principal value singular integrals J-4 { - n S ) / ( n -  no) ~ dno and _ x/O(1- n~o)/(n-To)dno have 
been replaced by their respective values -Tr and 7r~7. Similarly 

+4 (m) 2 
I-4 g~ (no)41-n0 ~ 

a , o  

+4 {g~m)(r/o)_g~)(r/) } ~T-~- ~odrlo + g~")(rl ) I_T 1 x/1- rl~ • 
: f - - 4  (--~ ~--~0) -- (--~ -To) a~° 

= r r  ~ {g~"n)(({pA))--g~')('r/)}S 1 
PA p  =I (1"/ -- ~..(A)) 4 -- (~,.(pA))2} + rrr/g~")(rl). (135) 

In equations (134) and (135) one of the above Gaussian integration formulae with A integration points has 
been used to give 

+1 (m) (m) 
f {gs (~lo)-gs (n)-(no-n)g~)'(n)}4-i-£n2dno 
J-4 (n - no) 2 

7r A {g~m)(({pm)_g~,~'(~7)~(~!A)_rl)g~.O,(rl) } {l_(({pA,) 2} 
(136) 

and 

+1 {m) {m) 
f {gs (V/o)-g, (n)}/ l_r /2dr l  ° 
J-1 (-'~ ~"1~--~ 

7r A {g~')(({pA))_g~m)(n)} Sl 
: PA p~=l "17 -- ((pA) l ± __ (~-{A))2}. 

The function g~m)'(r/) is the derivative with respect to r/of g~m)(r/). The formula (136) is exact if 

(137) 

A~>½m-1 (138) 

for weight function x / l -  r/2, if 

A~>½m -½ 

for weight functions x/(1 -no)/(1 + no) and ~/(1 + r/o)/(1 -no),  and if 

(139) 

A~>½m (140) 

for weight function l/x/1 -rl~. 
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The formula (137) is exact if 

for weight function ~ ,  if 

1 1 A~>sm - ~  (141) 

A~>½rn (142) 

for weight functions ~/(1 - 7 o ) / ( 1  + To) and ~/(1 + 7 o ) / ( I  - To), and if 

1 i A>~m +~ (143) 

for weight function 1/~/1 - n ~. 
Hence, if one of the conditions (141), (142), (143) holds, as appropriate to the weight function used, then 

both formulae (134) and (135) are exact and we can substitute them into the right hand side of (133) to get an 
alternative formula which is precisely equivalent to (133), 

r l 2 A ~(m)/~.,(A)~f.f /~,(A)'~2-j 
V gs tbp ) lX -%p  )li( , , )r  e U'(x'Y;v'M~°)=-E'-Jp2~".A~ ( n - ~ A ) )  z " ts'n'~'(Pa~;v'M=)- 

(") , M o o ) g ( s ~ ' ( n ) 1 +  ,.., - rr-5I, (C n, n" v, 
s ~=, (7 - Ga~) ~ J 

1 - ( G  ) } ]+  s/--~[O~Oo{I~'O(~ , Moo)g~')(no)}].o x [ r /  1 A {  (A) 2 

12 
(m) X +.rrs-~F(.'°(¢,r/; v, Moo)g, (r/) 

1 A 1 

G'~l x {1 - (&Y}J  x[  ½(r/z-½- l°g 2 ) -  fi-AA p~=l log If/-- (144) 

and this is the numerical integration formula that we use for evaluating U,,, (x, y ; v, M) .  However, we need the 
values U,,, (x, y; v, M )  only for 

Y = y~M), J = 1, 2 . . . . .  M, (145) 

in order to evaluate the elements (112) of the matrix [U], and these values of y correspond to 

n = n~ M>, J = 1, 2 . . . .  , M. (146) 

With the values of r/given by (146) a simplification of the expression (144) occurs with certain special values of 
A, these s Ap_~ial values of A being specific to the weight function ~/1 - no •, 40 "7o)/(1 +To), 4(1 ÷ r~0)/(1 - T0) 
or 1/,/1 - n ~  being used. In fact we have (see Appendix B) 

n(M) 1 4 {1-- (Sr~A)) 2} 
J -'b-- z . .  (~  ,.(a)~=0 (147) 

r A p = l  ( n J  - -gp  1 

1 A {1-(G~)) 2} 
1 + ~  Y = e~ (148) [ ~  (M) ~.(A)'~ 2 

A p = l  [llJ - - ~ p  ) 

Any positive integer M, any positive integer J, 1 <~ J ~<M, and weight function 1/~/i --r/~. 
n the following five cases: 
Ease (i) 
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Values of A are given by 

A = a ( M +  1) (149) 

Case (ii) 
where a is any positive integer. 
Any odd positive integer M, any even positive integer J, 

Values of A are given by 

2 ~< J ~< M -  1, and weight function 

A = ½(2a - 1 ) (M+ 1) (150) 

where a is any positive integer. 
Case (iii) Any even positive integer M, 

,/1+7o/1-no. 
Values of A are given by 

any even positive integer J, 2 ~< J <~ M, and weight function 

A =½(2a - 1) (M+ 1)-½ (151) 

where a is any positive integer. 
Case (iv) Any even positive integer M, any odd positive integer J, 1 <~J<~M-1,  and weight function 

41 " 7 o / i ÷ n o .  
Values of A are given by 

A = ½(2a - 1) (M+ 1 ) -~  (152) 

Case (v) 
where a is any positive integer. 
Any odd positive integer iV/, any odd positive integer J, 1 ~< J ~< M, and weight function l~i--L-- 7 ~. 
Values of A are given by 

A =½(2a - 1)(M+ 1 ) -  1 (153) 

where a is any positive integer. 
If we substitute from (147) and (148) into (144) for the values of y given by (145) we get 

Ur,s(x, y(Y); v,M ) 
£ _,m,,.,A,,, 1 

.Tr gs tap )l - t a p  )~r(~)te 7(y),~-(a). M~) 
PAs2p=t  ~75 - 6 p  ) 

12 1 2 . ( n ) . ~  (M) ( jM) ;  (m) (at) , ~ ( n ) . ~  (M) (m) (M) 
u, Moo)g~ (75 ) Mo~)g~ (Ts ) x  --'a'FA ~ l r  (¢, 7.~ , -err~-fl~r (¢, 7s  ; ~', 

x '  o i A [~((7, ) - ~ - 1  g 2 ) - K p ~  log ×{1 
J (154) 

(m) (M) It is to be noted that the quantity [(O/O7o){I~")(~, 7(Y >, 70; ~', M~,)gs (7o)}],~o=n , does not occur in formula 
(154). 

Formula (154) is valid for the following cases: 
Case (i) Any positive integer M and any positive integer J, 1 ~< J ~< M, when A is given by (149), PA is given by 

r(A) (128) and ~e , p = 1, 2 , . . . ,  A, are given by (129). 
Case (ii) Any odd positive integer M and any even positive integer J, 2 ~< J ~< M - 1, when A is given by (150), 

PA is given by (128) and y(A) ~p , p = 1, 2 . . . . .  A, are given by (129). 
Case (iii) Any even positive integer M and any even positive integer Jr, 2 ~< J ~< M, when A is given by (151), P; 

is given by (125) and (~), p = 1, 2 . . . . .  A, are given by (127). 
Case (iv) Any even positive integer M and any odd positive integer J, 1 ~< J ~< M -  1, when A is given by (152) 

PA is given by (124) and ~r(p A), p = 1, 2 . . . . .  A, are given by (125). 
Case (v) Any odd positive integer M and any odd positive integer J, 1 <~ J <~ M, when A is given by (153), PAi 

given by (122) and ;.(A) se , P = 1, 2 . . . . .  A, are given by (123). 
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By using formula (A-55) we can put the result (154) into yet a different form, in which we do not have to 
distinguish between the cases (i), (ii), (iii), (iv) and (v). If we put 

/~r= q ( M +  1 ) -  1 (155) 

then the result (154) can be expressed in the form 

U,,s(x, y~W); v, Moo) 

12 _ +1 v M ,-(-0, ~) -  f g(p ~)( r /° )gl - r /2  
= 7  ~ I~)(~'r/(Y)'r/(M); ' oo)g" U/p ) J . ,  (~o_r/(M))2 dr/o+ 

p = l  

12 
(m) (M) 71" (M) 2 1 

+~-~F(9(sc,~/(j');p, Moo)gs ( 'r/.r)[~((r/,t ) -~- log2) -  

t'q.J - u p  ) log InS~-n~)l +1 g.~)(no),/1-n~ 
p = l  1 (r/o_ r/~M))2 dr /o .  (156) 

If q is a positive even number then we put 

q=2a ,  (157) 

where a is a positive number, and formula (156) follows directly from case (i) above. 
If q is a positive odd number then we put. 

q = 2a - 1, (158) 

where a is a positive number. Formula (156) then follows immediately from case (ii) above when M is any odd 
positive integer and J, 2 ~< J ~< M -  1 is any even positive integer, from case (iii) above when M is any even 
positive integer and J, 2 ~< J~< M is any even positive integer, from case (iv) above when M is any even positive 
integer and J, 1 ~< J ~< M -  1 is any odd positive integer and from case (v) above when M is any odd positive 
integer and J, 1 ~< J~< M, is any odd positive integer. 

The formula (156) is precisely the formula derived by Garner and Fox 6 and now it has been demonstrated 
that the numerical procedure converges and provides a value for Ur.s(X, y~M); V, M~) which is correct when q 
becomes indefinitely large. Garner and Fox 6 considered quasi steady flow only but their formula is valid for 
general frequencies of harmonic oscillation and was applied to this case by Long 7. For a given value of q the 
corresponding value of a is obtained from (157) when q is an even positive integer and from (158) when q is an 
odd positive integer. The number of integration points A is determined then from (149) when q is an even 
positive integer and from (150), (151), (152) or (153) when q is an odd positive integer. 

- ~  z - ( N , M )  Moo) from formula (156) can be taken individually for The value of q used in evaluating ur.~ txr.~ , y(Y); v, 
r r z - ( N . M )  each combination (r, s, 1, J), that occurs, as a value which gives adequate accuracy for Ur.s tx ~.J , y~) ;  v, M~). 

- / - ( N M )  It is to be observed that a higher value of q is needed for a given accuracy in Ur, s(Xr.Y , y~M); v, M~) as the 
point g~,M) approaches the leading edge or trailing edge of the planform than is otherwise needed. In our work 
that follows we shall take q to depend only on I and denote it by qx. This will enable us to take higher values of q 
for points ~.(N,~ -~X.J near the leading or trailing edges of the planform than for others further away from the 
leading or trailing edges, if we so desire, without unduly complicating the arrangement of the calculation, but 
we note that a more general variation of q could be taken. 

We would like to mention here that Zandbergen, Labrujere and Wouters in Ref. 8 take 

A = a ( M + I ) - I  (159) 

where a is any positive integer, and use the weight function x/1 - r/2 for the numerical integration in formula 
(121). Provided that condition (130) holds, their final formula is our formula (133), but, as we have indicated, 
this is precisely equivalent to (144) if condition (141) holds. 

In this case 

p l"/p = COS (160) 
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and 

" (161) 

It therefore follows that the condition (130) is not satisfied when 

r /=  r/(M) (162) 

for one value of p = 1, 2 . . . . .  A. The formula (121) must then be modified to read 

+~ g~)(r/o)41 - n 2 
f-1 (n~)_r/o): {E"(¢, r/~), no; ~,,Moo)- W)(~, n~ ~), n~M); ~,,Moo)- 

(M)  (9 ( . )  r /o  ; 

_ ( m ) : ~ ( A ) x f  1 t' ~-(A)\2"I , 
"$T ~. gs I,{,p )1. --t,~p ) j ' J  ),(A). Moo) 

= K  i r/(?',' ", 
Sp , 

p = l  
p~aJ  

- I~")(~ :, r/(M), r/(Y); v, Moo)- 

7/" 2 
+__~(m)rr(ALt I /.r(A),12/f 3 ~(~),,, v, M~o)] (163) 

and correspondingly the formula (133) must likewise be modified. The second derivative 
[(32/0r/o2)[~")(s c, r/~ M), r/0; u, Moo)]no=GM, as well as the first derivative [(O/Or/o)I~")(£, r/~M); r/0; u, M~)]no=n~M, 
appear in these modified formulae, in contrast to formula (156), where neither derivative appears. That the 
second derivative appears for all J = 1, 2 . . . . .  M, is a direct result of A having been given the formula (159), 
and it is only when A has this formula that the second derivative appears for all J. 

The modified formula (133) would be exact with the A integration points given by formula (159) if the 
function (119) were a polynomial of degree 2 a ( M +  1 ) - m - 2  in r/o. The formula requires the values of 
"~(n ) (M) . . . 
I ,  (~, r/: , r/o; v, Moo) at the a ( M + l ) - I  Integration points r/0=((p A), p =  1,2 . . . . .  A, together with the 
values [(O2/Or/2)l~n)((, r/(M), r/O; /-', Moo)]no=n(y) and [(O/Or/o)I~')(~, r/(M), r/o; v, Moo)]no=n,y) , i.e. a(M+ 1)+ 1 
values in all. 

On the other hand, if we take A to be given by (149) and use the weight function 1/lx/-i-Z---r/2 for the numerical 
integration in formula (121), then the formula (154) is valid and would be exact if the function (119) were a 
polynomial of degree ~ 2 a ( M +  1 ) - m  - 2  in r/o. The formula requires the values of I~")(s ¢, r/(Y), ((pA); V, Moo), 
p = 1, 2 . . . . .  A, where ((A)is given in formula (129), and I~")(~ :, r/(Y), r/(Y); u, MoO, i.e. a(M+ 1)+ 1 values in 
all. We conclude that formula (154) for case (i) above is of comparable accuracy with the modified formula 
(133) for the same value of a, although less work is required in the evaluation of (154) than in the evaluation of 
the modified formula (133). All the same, the modified formula (133) is somewhat better conditioned than 
formula (154) because the absolute values of the quantities 

1 - (((pA))2 
( r / ( M )  ~-p(A))2 (164) 

attain greater values in (154) for a given value of a than they do in the modified formula (133). 
We note further that formula (154) for case (i) above with a = 1 is the formula used by Hsu 13. Also the 

modified formula (133) with weight function ,]1 - r/~ and with a = 1 in the formula (159) for determining A is 
the formula suggested by Multhopp in Appendix V of Ref. 1. 
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If M = m and q = 1 so that M = M = m, then formula (156).is the formula for U,..,(x, y~) ;  v, Moo) which is 
normally used in lifting surface theory. The corresponding value of A and the weight function for the 
integration formula (121) are those appropriate to case (ii), (iii), (iv) or (v) above, whichever has to be used, and 
this depends on whether the numbers M and J are even or odd. The numerical integration formulae (121 ) and 
(131) are not of good accuracy in this case because the value of A given by any one of the formulae (150), (151), 
(152) or (153) is not large enough. The numerical integration formulae (134) and (135), on the other hand, are 
precise. Consequently the formula (156) may not give good accuracy for U,.s(x, y~M); v, Moo) in this case. A 
significant improvement in accuracy for U,v:.(x, y~M); v, Moo) should be obtained if q is increased to 2, and this is 
equivalent to using Hsu's formula ~3. By taking the value of q high enough we can obtain Ur.~(x, y~) ;  v, Moo) to 
any accuracy that we like. 

If now we take 

q = qt, I = 1, 2 . . . . .  N, (165) 

and 

M,r = qz (M+ 1) -  1, I = 1, 2 . . . . .  N, (166) 

then, analogously to formula (156) we have the formula 

M,,o) ,tXKr" , ySU); v, 

12 
*-n I, g I  , r /(M),  r/(pMr); V, lV*oo)gs t r / p  ) ~  

p=l 

IZ -1 (Mx)/ \ ~  12 
gv tr/o) ~ - r / o .  + ,  F(,)~(N) r/(j~); . .  , (m), (M)~ 

1 (r/o_r/~M))2 ar/o s 2 r t~r , V, Moo)gs tr/.r j x  

where 

X [2(( r /~))2-½-10g 2 ) -  ~'(M)tr/J -'lp-(~')x2 l°g ]r/(ff)- r/(pv')] x )  
p=l 

xf_  1 g(pV')(r/°)4i" r/2 - "] 
(r/o_ -r/oJ, 

Quite analogously to the derivation of formula (167) we derive the numerical formula 

" ~ ( ~ )  M~) U,,.,-.+I( ,,5" , y~M); v, 

_ 12 x~ I(,,)r~N) r/(FP; - T p ~ ,  r tg, , r/5 M), v, Moo)g~,+,(@M')) x 

X I )  1 g(Mr)(r/O)'X/1 -- r/02 dr/o + 
1 

2 1 
, ¢ r , ( n ) l ~ N )  _ ( M ) .  (m)  (M)  -'--~rr t~x . UJ , v. Moo)g,.-,+l(r/j )× 

× [2((B (J~))2- ½- log 2) - ~ t,m'-(m) - xlp- (M')'2 log ] r/(Y)- B (p~')] × )  p=l 

+1 g Mx)(r/o)X/1_ rig dr/o]. x I-, 2 

(167) 

(168) 

(169) 
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Then, on making use of (42), we get from (167) and (169) 

Ur I - ( N M )  -(N,M) (M) ~tx~Y , y(jm); , • v, Moo)+tcUr, m-s+l(XU ,Ys ;v, Moo) 

12 
= -'2 ~I ,, (m)z (M~)\_ (m)/ ( M r ) x x r ( n ) z T ( N )  ( M r ) "  Moo) x tg~ trip )±Kgs t - r  h, )Pr tgz ,~7 (M), v, r i p  , 

S p=l 

i t-lg(pM,)(nO)41_n ~ 12 (m) (M) (m) 
X 1 (nO--'I~(JM)) 2 dno+-~(g~ ( r t , )+xg,  (--~TJ(M)))/¢r")(~:,,~N) rt(y); v, Moo)x 

x[~r.. (m),2 ~ 1o ~ MI z (M) _(M~r),t2 ~ ( M )  _ ( M I )  ~ 
[~ttn~. ) - ~ -  ~2 )~  E tnJ - , . ,  j log ,iJ - . p  i x 

p = l  

×I_~lg(pMD(r/o)X/1--r/02 j ] 
an0j, (170) 

which is the formula we use in getting the elements (112) of the matrix [U] appearing in equation (110). 
We note that 

7/" (M) 2 1 g((n, ) - -log 2)- log I,¢#)-n(y,)l × 
p = l  

g(y,)(,o) 1,5-z no X x (no-n(Y)) 2 -dr/o, (171) 

appears to converge to zero as ql ~ oo, as far as one can judge from numerical results, but the present author 
has not succeeded in proving this analytically. If this is true then we could miss out the coefficient of 
F~")(~ N), rl~M); u, Moo) in formula (170) and still get convergence to the correct value as q~ ~ oe, but we must 
expect the convergence to be slower than that of formula (170). 

To apply formula (170) we must still evaluate ~,)(~N), rl(j ~ ,  rt,(M')', v, Moo) numerically from (114) and the 
process for doing this is described in Appendix C, where the use of Chebyshev polynomials is recommended 
and illustrated. 

Examples 

We give, in this section, a selection of results of calculations carried out on four planforms. The 
a " ' 
pproxlmatlons Qjk to the generalised airforce coefficients Qik (u, Moo) are obtained from formula (84) and the 

approximations f£(Xo, Y0) to the loading functions lk(x0, Yo; v, Moo) in the mode k of oscillation at points 
(Xo, y0) on the wing planform are obtained from formula (98). 

The four planforms considered are a tapered swept wing of aspect ratio 2, a tapered swept wing of aspect 
ratio 6, and rectangular wings of aspect ratios 2 and 8. Diagrams of these planforms are given in Figs. 2, 3, 4a 
and 4b. 

The tapered swept wings have trailing-edge motivators as shown and each is taken to oscillate in rotation 
about the hinge line at its leading edge. The loading in this mode of oscillation has a logarithmic singularity at 
the hinge line, but, despite this, an approximation to the loading in the form (22) is permissible, except in the 
immediate neighbourhood of the hinge line, and the corresponding approximations to the generalised airforce 
coefficients obtained from formula (34) should be acceptable. The, approximations (75) and (76) are not valid 
for the motivator mode so that we must use the exact expressions (66) and (67) together with the associated 
formulae (60) and (36). 

4.1. Tapered Swept Wing of Aspect Ratio 2 

The planform of this wing is illustrated in Fig. 2. The x coordinate xL@) of the leading edge at spanwise 
position y is given by the formula 

XL(y) = x/31Y[ --s<~y<~s, (172) 
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and the chord length c(y) at spanwise position y is given by the formula 

c(y)= 4 (2x/3 + 3)-~-~ (4x/-3 - 2) - s < - y < ~ s .  (173) 

The leading edge and trailing edge of the wing have a discontinuity of slope at the centre line of the wing and, 
in order to enhance the convergence of the numerical results, it is necessary to change the shape of the leadin~ 
and trailing edges of the wing so that there are no discontinuities of slope. This change of shape is made in the 
region --YR <~ Y ~< YR, where 0 < YR < S, and is known as rounding of the leading and trailing edges in the 
neighbourhood of their central portions. It is desirable to arrange that x/2(y) and c"(y) are continuous, as well 
as xt(y), x[(y), c(y), c'(y), because a more accurate numerical estimate for Ur.s(x, y; v, M~) of formula (113) 
is then obtained. The change of shape is achieved by taking 

x " "  LtY)=I YRIA I --YR <<- Y <<- YR (174) 

and 

[ 4(2V~ + 3 ) - ~  (4x/3-2)/*(I ) 

s , /~  y~ 
c(Y) = l~ (2  3 + 3)--~-(4ff3-  2)[A [ 

- Y R  <~ y <~ YR 

yR~<ly[~<S 

(175) 

where 

Y 
A = - -  (176) 

YR 

and f(h) is an arbitrary even function of ,~ with continuous second derivative f"(,~ ) in - 1 ~< a ~< 1 which is such 
that 

f(1) = 1, (177) 

f'(1) = 1, (178) 

fl'(1)= 0. (179) 

The origin of coordinates at the apex of the tapered wing is, in general, not on the rounded leading edge of the 
modified wing. 

Here we shall follow Hewitt 1° and take 

5 15  2 5 4 1 6 f(a)=re+r~a -rex +rea .  (180) 

Further we shall take 

yR = sin (or )  s -i6 =.0.1950903 

and we shall take the typical length I to be the geometric mean chord ~ of the planform, i.e., 

l = ~ = s .  

(181) 

(182) 
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The motivators shown in Fig. 2 are known when the coordinates (X1, Y1) and (X2, II2) of the inboard and 
outboard extremities respectively on the leading edge of the motivator on the starboard side of the wing are 
known. These coordinates are given by 

X,  = ¼(3 + 2~)e, (183) 

-!~7 (184) Y 1 - 2  , 

Xz = ~(9 + 4x/3)g, (185) 

Y2 = e. (186) 

All the edges of the motivators are straight and the port motivator is the mirror image of the starboard 
motivator in the plane of symmetry of the wing planform. 

The leading edge of the starboard motivator has the equation 

x = xH(y) YI~<Y ~< I72 (187) 

and the leading edge of the port motivator has the equation 

X=XH(--y) -Y2<~y<~-Y1. (188) 

The explicit form of the function xH(y) may be obtained from the information given above. 
Three modes of oscillation are considered. These are specified by giving the functions (k(X, y), introduced in 

formula (6), for k = 1, 2 and 3. These functions are taken in this example to be 

sr,(x, y )=  1, (189) 

x 
(2(x, y ) = - ,  (190) 

c 

and 

c3(x, y)= (x -,.(y)]mx c : - x H ( y ) ) [ H ( y -  Y1) + H ( - y  - Y 1 ) - H ( y -  Y z ) - H ( - y  - Yz)] (191) 

where H(x) is Heaviside's unit function 

H ( x ) =  {0 x < 0  (192) 
1 x > 0 .  

Approximations 0q to the generalised airforce coefficients Oq(v, M) have been evaluated for i = 1, 2, 3;- 
j = 1, 2, 3, when 

v = 0 . 3 2 5 0 6  and Moo=0.78060. 

We write C)q in the form 

Oq = O~j+ ivQI; (193) 

where Oi'j and t~l} are real quantities. 
The numerical values of 0~, 0~'~, i = 1, 2, 3; j = 1, 2, 3, obtained with m = M  and 

q1 = q, I = 1, 2 . . . . .  N, (194) 

for a selection of values of the parameters m, n, N and q are given in Table 1. Examination of Table 1 reveals 
that the 01i and ()~'} need a fairly high value of q in their evaluation for them to be reliable for a given set of 
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parameters m, n and hr. As n and N are increased with m = M =  15 the values ()~i and (~'~ seem to converge. 
This behaviour is illustrated graphically inFigs. 5a to 5r. The convergence with increasing q and increasing n 
and N appears to be best for the motivator mode of oscillation, mode 3. 

Approximations ~k(X, y) to the loading also have been evaluated for k = 3 for the above values of ~ and Mo~. 
We write ~k(X, y) in the form 

/'k(x, y)=/'~(x, y )+  i[~(x, y) (195) 

where/),(x, y) and [~(x, v) are real quantities. 
Numerical values of l'3(x, y) and/~(x, y) are given in Table 2 for m = 15, n = 10, M =  15, N =  10, q~ = 8, 

I =  1, 2 . . . . .  10. The coordinates (x, y) have been transformed to the coordinates (~:, r/) by means of the 
transformation (20). The loadings [;(x, y) and [~(x, y) are given at the set of chordwise lines 

/(9-/)zr~ 
n = n1 = c o s / - - i - - 6 - J  ] = 1, 2 . . . . .  8. (196) 

The locations of the hinge ~ = (at(r/) at the chordwise lines within the motivator span are given by the following 
set of numbers: 

]= 4 5 6 7 8 

~ j = 0 . 5 5 5 5 7  0.70711 0.83147 0"92388 0.98079 

~a-(rb) = 0.74654 0.73387 0.71750 0"69853 0.68158 

Curves of/'~ (x, y) and [~(x, y) for a range of values of ~: along each chordwise line ~7 = */i, ] = 1, 2 . . . . .  8, are 
given in Figs. 6a and 6b. The curve for each value of r /has  its own origin, which is marked. 

It is to be noticed that/'~(x, y) along a chordwise line within the motivator span has a deep minimum near to 
the hinge line. The actual theoretical real part of the loading becomes infinite like log 1(-~:H(rl)[ at the hinge 
line. Curves for both/'~(x, y) and/'~(x, y) have a number of undulations along them and this is due to the 
truncation of an infinite series, implied in formula (22), for a function which has a logarithmic singularity at the 
hinge line. 

4.2. Tapered Swept Wing of Aspect Ratio 6 

The planform of this wing is illustrated in Fig. 3. The x coordinate XL(y) of the leading edge at spanwise 
position y is given by the formula 

1 1 XL(y) = g(#-3 +~)]y] --s<~y<~s, (197) 

and the chord length c(y) at spanwise position y is given by the formula 

c(Y)=-~Jyl+½s -s<~ y<-s. (198) 

Here again, as with the tapered swept wing of aspect ratio 2 we round the leading and trailing edges in the 
neighbourhood of their central portions. The functions XL (y) and c (y) above are thereby modified to the forms 

, , f](43+½)ynf(a) -YR <~Y <~YR (199) 
XLty)=~½(43+½)YRIX I yR <~lyl~s, 

and 

where A is given by formula (176). 

I s 1 J'~ -gyRf(A) -YR ~< y < YR (200) 
L~ --~YRI I YR <-]Y]<~S, 
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In this example we shall follow Zandbergen, Labrujere and Wouters 8 and take 

f(x)=½+a2-½1,~l 3. (201) 

We shall again take yn to be given by formula (181) and the typical length I to be the geometric chord ~ of 
the planform, i.e., 

l = ? = ½s. (202) 

The motivators shown in Fig. 2 are known when the coordinates (X1, Y1) and (X2, Y2) of the inboard and 
outboard extremities respectively on the leading edge of the motivator on the starboard side of the wing are 
known. These coordinates are given by 

X1 = ( ~ -  nt- 1-~0) c , (203) 

6~ 
Y1 = - -  (204) 

5 '  

/ 7 4 7  91 \ 
X2 = ~-]--0- + ~ -6 )  e, (205) 

21g 
Y2 = - -  (206) 

10" 

All the edges of the motivators are straight and the port motivator is the mirror image of the starboard 
motivator in the plane of symmetry of the wing planform. The ratio of motivator chord to wing chord, in this 
example, is independent of the spanwise location of the chord and has the value 0.3. 

Three modes of oscillation are considered and these are again defined by equations (189), (190) and (191). 
Approximations 0~ to the generalised airforce coefficients O~j(u, M )  have been evaluated for i = 1, 2, 3; 

j = 1, 2, 3, when 

u = 3 . 1 5 6 9  and Moo=0.4. 

We write 0ij in the form (193). The numerical values of 01i, (~I~, i = 1, 2, 3;/' = 1, 2, 3, obtained for a selection 
of values of the parameters m, n, M, N and qi, [ = 1, 2 . . . . .  N, are given in Table 3. For all evaluations we have 
again taken all the q1 equal as in formula (194). 

Results for 0ij, i = 1, 2; j = 1, 2, for this same tapered swept wing of aspect ratio 6 with the same rounding of 
the leading and trailing edges and the same frequency parameter and Mach number have been presented by 
Lehrian and Garner  9. Lehrian and Garner 's  results have to be multiplied by - 6  to make them compatible with 
the present results because of their different non-dimensionalising factor in the definition of O~j. Their results, 
after multiplication by - 6 ,  are presented in Table 4. 

Lehrian and Garner  9 use an extension to oscillatory flow of the steady flow method of Zandbergen, 
Labrujere and Wouters 8. In their development of this method, the number of upwash points is equal to the 
number of basic loading functions, so that M =  m and N = n. The parameter a determines the number of 
spanwise integration stations to be used in the numerical evaluation of the spanwise integral in the integral 
equation much as the parameter q determines the number of spanwise integration stations to be used in the 
present method for the numerical evaluation of, effectively, the same spanwise integral. The amount of 
computation necessary to get results with q = 2a in the present method is comparable with that required in the 
method of Lehrian and Garner  and the results also may be expected to be of comparable accuracy, and this is 
borne out by examination of the respective results obtained. Lehrian and Garner  used effectively the same 
values (66) and (60) to obtain ~i;r.s as were used to get the present results but they used values of ak;~.v 
corresponding to the approximations (76) rather than those obtained from (67) and (36). The differences in 
results arising from this cause are expected to be small. 

In the present method we may take M>~ m and N>~ n. The effect of taking M >  m, N = n can be seen by 
A 

examining Table 3. The comparatively large differences in the values of Qii for m = 14 and m = 15 when 
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M = m are considerably reduced when M >  m. The differences in values of 00  for rn = 22 and m = 23 when 
M =  m are not so large as those for m = 14 and m = 15, but these differences also are reduced when M >  rn. 
The differences in values of 0q  for m = 30 and m = 31 when M = m are again smaller than are those for 
rn = 22 and m = 23. This is an indication that the results are converging as m increases, and that the 
convergence is more rapid when M >  m. 

4.3. Rectangular Wings of Aspect Ratios 2 and 8 

The planforms of these two wings are illustrated in Figs. 4a and 4b. The origin of coordinates is taken to be at 
the middle point of the leading edge. The typical length I is taken to be the wing chord c. Two modes of 
oscillation, heave and pitch about the leading edge, are considered. These are specified by the functions 
(k(X, y) introduced in formula (6) and defined for k = 1 and 2 respectively in equations (189) and (190), with 
~ = c .  

Approximations O~i to the generalised airforce coefficients Qo(v, Moo) have been evaluated for i = 1, 2; 
i = 1, 2 when 

v = l . 0 ,  M~o=0.8 and qx=32 ,  I = 1 , 2  . . . . .  N, 

for a selection of values of the parameters  m, n, M, N. We write 00  in the form (193). The numerical values A, 
obtained for Qo, "" Q~i, i = 1, 2; ] = 1, 2, are given in Table 5 for the rectangular wing of aspect ratio 2 and in 
Table 6 for the rectangular wing of aspect ratio 8. For both sets of results there is evidence of convergence as m, 
n, M and N are increased, although it would appear  that the convergence is more rapid with odd values of rn 
than with even values of m. We shall consider the values obtained for m = 19, n = 8, M =  19, N = 8 to be the 
best estimates of the values of Q~j, Q~j, i = 1, 2; J = 1-, 2. Values A, ,, ' " of Qgj, 0 0  are in close agreement  with these 
best estimates for smaller values of m, n, M and N. To quantify the closeness of agreement  of 00 with Qij we 
introduce a measure eij of percentage difference by means of the formula 

, - , A ,  ~,,2+ 2 , ' A v  o 2 ]  
100 × | t ~ o -  ~o)  v tw~j-  O,-j) eq = " ~ 2 ~ 2 ~  " J I_ (O~j) + v (Oi3 

(207) 

and the arithmetic mean e of e,-j over i = 1, 2; f = 1, 2, 

1 
e = 4[,ellz ..~ e 12 "1- fir21 -{- E22) .  (208) 

A selection of values eij for the wings of aspect ratios 2 and 8 are given in Tables 7 and 8 respectively. 
The values of 0ij are all in poor  agreement  with the best estimates Qii when n = 2. For m = 4, n = 2, M = 4, 

N =  2, the mean e is 10.9 for the wing of aspect ratio 2 and 10.1 for the wing of aspect ratio 8. The percentage 
differences do not change greatly when m, M and N are changed with n kept at 2, even when m, M and N are 
all increased substantially. 

There  is a distinct improvement  in the values of t~ij when n is increased to 4. For m = 4, n = 4, M = 4, N = 4, 
the mean e is 0.042 for the wing of aspect ratio 2 and 0.18 for the wing of aspect ratio 8. For m = 4, n = 4, 
M =  19, N = 8 the mean e is 0.032 for the wing of aspect ratio 2 and 0.27 for the wing of aspect ratio 8. Thus 
~ a n g i n g  (M, N)  from (4, 4) to (19, 8) with (m, n) kept at (4, 4) has caused a small improvement  in the values of 
Q0 for the wing aspect ratio 2 and a deterioration in these values for the wing of aspect ratio 8. This latter 
suggests that m = 4 is not large enough for the wing of aspect ratio 8. 

For rn = 9, n = 4, M = 9, N = 4 the mean e is 0.022 for the wing of aspect ratio 2 and 0.10 for the wing of 
aspect ratio 8. For m = 9, n = 4, M = 19, N = 8 the mean e is 0.018 for the wing of aspect ratio 2 and 0.08 for 
the wing of aspect ratio 8. Thus changing (M, N)  from (9, 4) to (19, 8) with (m, n) kept at (9, 4) has caused 
merely a marginal improvement  in the values of 0q. There  are no further distinct improvements  in increasing 
m to 14 or to 19 while keeping n = 4. 

Further  improvements  in the values of 00  are obtained when n is increased to 6. For m = 4 the percentage 
differences for n = 4 and n = 6 are of the same order, but for higher values of rn the percentage differences are 
lower for n = 6 than they are for n = 4 when M = 19. For m = 9, n = 6, M = 9, N = 6 the mean e is 0.032 for the 
wing of aspect ratio 2 and 0.12 for the wing of aspect ratio 8. For m = 9, n = 6, M =  19, N =  8 the mean e is 
0.001 for the wing of aspect ratio 2 and 0.000 for the wing of aspect ratio 8. Thus changing (M, N)  from (9, 6) 
to (19, 8) with (m, n) kept at (9, 6) has produced almost complete agreement  of the 0~i with the best estimates. 

For m = 14, n = 6, M = 14, N = 6 the mean e is 0.015 for the wing of aspect ratio 2 and 0.038 for the wing of 
aspect ratio 8. For rn = 14, n = 6, M = 19, N = 18 the mean e is 0.014 for the wing of aspect ratio 2 and 0.037 

31 



for the wing of aspect ratio 8. Thus changing (M, N)  from (14, 6) to (19, 8) with (m, n) k e ~  at (14, 6) has 
practically no effect on the values of 0ii. We may note that almost complete agreement  of the Qij with the best 
estimates has not been achieved with (m, n) kept at (14, 6), but, all the same, the percentage differences eij are 
very small. 

It is as well to remark here that our results have been obtained with q1 = 32, I = 1, 2 . . . . .  N, whereas results 
from earlier theories, such as those of Refs. 3, 4 and 5, are comparable with the results we would get by taking 

t = 1 ,  I = 1 , 2  . . . . .  N;  M ~ m  and N = n .  For r n = M = 4 ,  N = n = 4  and q 1 = l ,  I = 1 , 2  . . . .  ,N,  we get 
11 = 0 . 8 4 6 7 8 -  i3.2052, Q12 = - 3 . 2 8 5 8 - i 3 - 1 8 1 0 ,  021 = 0 . 9 0 4 9 2 -  i0.83073, 022=  -0 .51381  - i2.0731 

for the wing of aspect ratio 2 and 0 1 ~ = - 1 . 1 0 4 0 - i 1 3 . 6 2 7 ,  0 1 2 = - 1 6 . 4 8 4 - i 7 . 6 9 7 9 ,  02~=  
1 . 7 6 0 8 - i 4 . 5 7 6 9 ,  022 = - 4 . 5 2 8 3 - i 6 . 2 7 6 0  for the wing of aspect ratio 8. The corresponding percentage 
differences e~ i are e l l = 2 . 5 ,  e12=3.1,  e21=5.0,  e22=5.4  for the wing of aspect ratio 2 and e~l = 16.6, 
e12 = 17.7, e21 = 21-7, e22 = 26.3 for the wing of aspect ratio 8. The magnitudes of the egj are of the order one 
hundred times the corresponding values in Tables 7 and 8 where the qz are changed to q1 = 32, I = 1, 2 . . . . .  N. 
To get e~j of the same order as those in Tables 7 and 8 with qx = 1, I = 1, 2 . . . . .  N, M = m and N = n an 
undesirably large value of m would be needed when n = 4. The values of the 0~j with q~ = 1, I = 1, 2 . . . . .  N, 
m = M = 4, N = n = 4 are quite unacceptable for the aspect ratio 8 wing. 

To appraise the convergence of the results as M and N are increased we examine in Tables 5 and 6 the values 
of Olj, QI} when m = 4, n = 4. For the wing of aspect ratio 2 the convergence of all the Q~j, t~} is rapid for N 
fixed and M increasing through 4, 9, 14, 19. Then with M held at 19 the convergence is rapid for N increasing 
through 4, 6, 8. For the wing of aspect ratio 8 convergence of these quantities is on the whole slower. Thus, 
while ()~1, 0~'~ continue to converge quite rapidly, the convergence of 0~2, 0~2 for N fixed and M increasing 
through 4, 9, 14, 19 is less rapid, and to achieve convergence to five significant figures the value of M would 
have to be increased beyond 19 when N = 4, 6 and 8. Convergence to four figures, however, has practically 

A r  t !  • been achieved at M = 19, and also at N = 8 when M is held at 19. The behaviour of the other Qij, Oq IS 
intermediate between the behaviours of (~'lt, ( ) ~  and (~2,  Q~2. 

The same pattern of convergence may be observed with other values of m and n kept fixed while M and N 
are increased although there are more numbers available in any convergence sequence for the lower values of 
m and n. With M and N being increased while rn and n are fixed there are converged values of (~lj, ()I~ 
appropriate to m spanwise loading functions and n chordwise loading functions. Convergence with respect to 
m and n being increased then leads to the best estimates of these values. 

We may conclude, for both rectangular wings, that increasing n from n = 2 effects a substantial improve-  
"~ I ¢¢ ment in the results for Q, ,  0~i, i = 1, 2; j = 1, 2, even while keeping m fixed at m = 4, whereas increasing m 

from m = 4 and keeping n fixed at n = 2 hardly effects any improvement  at all. For practical purposes values of 
Qi), Qi'~, i = 1,2;  j = 1, 2, can be obtained to sufficient accuracy with n = 4 for both wings and respectively with 
m = 4 and m = 9 for the wings of aspect ratios 2 and 8. 

4.4. Discussion 

Results for the generalised airforce coefficients on a tapered swept wing of aspect ratio 2 show that a more 
refined numerical integration of the spanwise integral than the one used by Multhopp 1 must be used in order to 
obtain acceptable results. Values of M and N equal to m and n respectively were used for the results on the 
tapered swept wing of aspect ratio 2, but for a tapered swept wing of aspect ratio 6 values of M >  m were 
considered. For the tapered swept wing of aspect ratio 6 values obtained with M = 2 m  showed better  
convergence on the whole than did those with M =  m. In particular, the values of the generalised airforce 
coefficients for m = 15, n = 6, M = 30, N = 6 are, on the whole, closer to the values for m = 30, n = 6, M = 30, 
N =  6 than are those for rn = 15, n = 6, M =  15, N = 6. 

A comprehensive set of results for rectangular wings, of aspect ratios 2 and 8 respectively, illustrate the 
nature of convergence of values of the generalised airforce coefficients when m, n, M and N are increased. 
Generally, the effect of increasing the values of M and N is to give convergence of results for given m and n, 
and then the effect of increasing the values of m and n is to give the final converged results. 

5. Concluding Remarks 

In the lifting surface theory developed in this paper  the loading is represented approximately as a linear 
superposition of a finite number  of known linearly independent elementary functions, there being a 
combination of n chordwise by m spanwise of them, as in a number  of other theories. For given n and m, there 
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are N ~> n chordwise by M ~> m spanwise integration points at which the upwash is evaluated. The mathemati- 
cal analysis leads to the same kind of refined process of numerical evaluation of the spanwise integral in the 
integral equation as was introduced by Garner  and Fox in Ref. 6. 

The results obtained for generalised airforce coefficients, using the Garner  and Fox 6 refined process of 
numerical evaluation of the spanwise integral in a lifting surface theory are a considerable improvement over 
those obtained by a simple extension of Multhopp's steady flow method to oscillatory flow. The results 
obtained with N = n and M = m are so good, particularly for rectangular wings, that it is not easy to detect any 
further improvement obtained by taking N > n and M > m. Nethertheless results for the example of a tapered 
swept wing aspect ratio 6 do show evidence of a further improvement being obtained when M > m. Thus, for a 
given M, if one allows m < M it may be possible to use a lower value of m than if one insists on having m = M, 
and get results of comparable accuracy, with, incidentally, less storage space and execution time on the 
computing machine. 
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LIST OF SYMBOLS 

an 

A 

A(o 

A,.(A ) 

Jk;i,p 

bk(t) 

( ,,, ) 

5*(0) 
B 

B (:) 

B,.(A) 

U k ;r,$ 

c(y) 
C,(A) 

[Ck] 

k ;r,s 

dm 

[O] 

D,(A) 

[El 
E,(ol) 

E (A ) 
[(o,) 

fm 

F(a) 

F,.(A ) 

[F(xo, Yo)] 

b-~")(~ :, *7; ~', M~) 

g(a) 

gW(no) 
gJr ) (~7)  

G(oO 

Speed of sound in undisturbed main flow. Also a positive integer which deter- 
mines A from one of (149), (150), (151), (152) or (153) 

Defined by formula (A-19) 

The integral (A-75). Also a point within (0, 0o) 

Approximation given by formula (A-79) to the integral A 

Coefficients appearing in formula (C-46) 

Coefficients appearing in formula (22) 

Generalised coordinate for mode number k (see formula (6)) 

Quantity defining amount of harmonic constituent in bk (t) (see formula (7)) 

Complex conjugate of bk(o)) 

The integral (A-76) 

Approximation given by formula (A-83) to the integral B 

Coefficients appearing in formula (C-47) 

Coefficients appearing in formula (30) 

Chord length of planform S at spanwise position y (see Fig. 1) 

Coefficients appearing in formulae (C-44) and (C-45) 

Matrix appearing in formula (55) and defined immediately afterwards 

Coefficients defined in formulae (52) and (53) 

Defined by formula (A-38) 

Diagonal matrix with (80) as general diagonal element 

Coefficients appearing in formula (C-44) 

Diagonal matrix with (79) as general diagonal element 

The functions defined by formula (C-62) 

Coefficients appearing in formula (C-45) 

The function defined by equation (C-23) 

Defined by formula (A-73) 

Matrix appearing in equation (93) and defined immediately before 

The function defined by equation (C-30) 

The functions defined by equations (C-34) and (C-35) 

Coefficients appearing in equation (C-75) 

Row matrix with (87) as general element 

Quantities defined by formula (118) 

The function defined by equation (C-24) 

Set of interpolation polynomials defined by equations (28) 

Set of interpolation polynomials defined by equations (A-27) 

Set of interpolation polynomials defined by equations (A-62) 

The function defined by equation (C-31) 
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G.(o~) 

G~(A) 
G~ m) 

C~} ') 

h(a) 

hn(a) 

h~">(~o) 

h~')(~) 

[1t] 

H(a) 

H(x N) 

H? ) 

I 

I(~) 

11(~) 

I~)(s¢, 7/. no; u, M~) 

i~">(¢, n, n0; -, M~) 
j(a) 

J 

i f )  
j(~.l) 

j(r,2) 

j(r,3) 

k(~) 

k.(~) 

K 

zc ( ,~ ) 

KI(~) 

l 

tk(x, y; . ,  Moo) 

Uxo, yo) 

The functions defined by equations (C-36) 

Coefficients appearing in equation (C-75) 

Quantities defined in formulae (72) 

Quantities defined in formulae (103) 

Quantities defined in formulae (A-32) 

Quantities defined in formulae (A-67) 

The function defined in formula (C-67) 

The function defined by equation (C-70) 

Set of interpolation polynomials defined by equations (24) 

Set of interpolation polynomials defined by equations (A-8) 

Diagonal matrix with (94) as general diagonal element 

The function defined by equation (C-65) 

Quantities defined in formulae (71) 

Quantities defined in formulae (102) 

Quantities defined in formulae (A-13) 

Integral introduced in formula (A-14) 

Approximation to I 

Modified Bessel function of the first kind and first order 

Quantities defined in formula (114) 

Quantities defined in formula (117) 

The function defined in equation (C-22) 

Integral introduced in formula (A-33) 

Approximation to J 

Approximation to J 

Approximation to J 

Approximation to J 

Quantity defined in formul~ (C-9) 

The function defined in formula (C-67) 

The function defined by equation (C-71) 

The function defined by equation (86) 

Integral introduced in formula (A-68) 

The function defined by equation (C-66) 

Modified Bessel function of the second kind and first order 

Subsonic kernel function defined by equation (17) 

Typical length of the planform S 

Loading function introduced in expression (14) 

Approximation (22) to the loading function lk(Xo, Yo; u, M) 

Column matrix with (92) as general element 
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[/'k(,o, yo)] 
t,(D 
[L] 

Ll(a) 

t p , j  

m 

m H  

M~ 

M 

M H  

Mr 

M,(A) 

n 

N 

N,(A) 

q 

q~ 

Qik (v, Mo~) 

O,k 
[01 

o,,(n) 

R 

R (n) 

s 

S 

S (n) 
t 

T~(n) 

[u] 

U,,s(x, y; u, M) 

V 

W(x, y, t) 

Matrix consisting of the single element ~'k (Xo, Yo) 

Orthogonal polynomials of degree r in ~: satisfying equation (A-l) 

Matrix with (111) as general element 

Modified Struve function which is related to the Struve function ]Hl-,(ia) by 
means of formula (C-18). The function is defined by equation (C-21) 

Quantities defined in formulae (108) and (109) 

Number of spanwise loading functions (see formula (22)) 

Integer defined by formula (48) 

Mach number defined by formula (15) 

Integer defined by formula (155) 

Number of integration points spanwise for evaluation of ~bi.p,r,s from the numerical 
formula (99) 

Integer defined by formula (106) 

Set of N positive integers defined by formulae (166) 

Coefficients appearing in equation (C-74) 

Number of chordwise loading functions (see formula (22)) 

Number of integration points chordwise for evaluation of ~bi, p,,,s from the numeri- 
cal formula (99) 

Coefficients appearing in equation (C-74) 

Function defined in formula (C-15) 

Quantities defined in equations (122), (124), (126) or (128) 

A positive integer for determining/~r from formula (155) 

A set of N positive integers introduced in formula (165) 

Generalised airforce coefficients, defined by formula (19) 

Approximation (34) to the generalised airforce coefficient Qik(U, M~) 

Matrix appearing in formula (84) and defined immediately before 

Function defined by formula (B-46) 

Quantity defined by formula (18) 

Function defined by formula (B-39) 

Semi-span on the planform S 

Wing planform 

Function defined by formula (C-12) 

Function defined by formula (B-22) 

Time 

Orthogonal polynomials of degree r in r/ satisfying equation (A-56). Also 
Chebyshev polynomial defined in formula (C-43) 

Matrix with (112) as general element 

Quantity defined by formula (32) 

Speed of main flow. It is in the positive x direction 

Quantity defined by equation (5) 
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W+(x, y, t) 

W_(x, y, t) 

X, y, Z 

xL(y) 

lt (n ,m)  
r,s 

£(n,,n) 
i,p 

£(N,M) 
L J  

X 
y~m) 

y(y) 

Z(x, y, t) 

Zx(x, y, t) 

Z+(x, y, t) 

Z_(x, y, t) 

ak(x, y; u) 

~k(x, y) 

0/~ r) 

y = 0.5772156649 

&i 
8.(~) 

E 

eq 

&(x, y) 
((A) 

P 

r/0 

r/} 0 

[0k] 
0~ r) 

Ok ;i,p 

Quantity defined by equation (1) 

Quantity defined by equation (2) 

Rectangular cartesian coordinates of a point relative to a frame fixed with respect 
to the mean position of the wing 

x coordinate of the leading edge of the planform S at spanwise position y (see Fig. 
1) 

Quantities defined by formulae (69) 

Quantities defined by formulae (70) 

Quantities defined by formulae (104) 

Quantity defined by formula (C-10) 

Quantities defined by formulae (68) 

Quantities defined by formulae (105) 

Quantity obtained from equations (3) and (4) 

Quantity obtained from equations (3) and (4) 

Displacement from the plane of S of a point on the wing top surface 

Displacement from the plane of $ of a point on the wing bottom surface 

Reduced upwash function, defined by formula (11) 

Approximation (31) to the upwash function ak (x, y) corresponding to the approx- 
imation/'k (Xo, y0) to the loading function lk(Xo, Yo; u, M) 

Matrix appearing in formula (84) and defined immediately before 

Quantities defined by formulae (A-80) 

Quantities defined by formulae (A-84) 

Euler's constant 

Orthogonal polynomials of degree r in 7/satisfying equation (A-21) 

Kronecker's delta, defined in formula (26) 

Function defined by equation (C-32) 

Quantity defined by formula (208) 

Function defined by equation (C-33) 

Quantities defined by formula (207) 

Modal function for the mode number k as it appears in equation (6) 

Set of A points defined in equations (123), (125), (127) or (129) 

Parametric coordinate defined by formula (20) 

Parametric coordinate defined by formula (20) 

Set of m points in (-1, 1) defined by formulae (27) 

Set of M points in (-1, 1) defined by formulae (101) 

Set of r points in (-1, 1) defined by formulae (A-25) 

Matrix appearing in formula (55) and defined immediately afterwards 

Quantities defined by formulae (A-7) 

Quantities defined by formulae (36) 
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+l  
K ~  m l  

A 

~n(~) 

~n(~) 

~o 

P 
4, 

61 
r, 

[x;l 

XI r~ 

Xj;r,s 

I~i,p ;r,s 

~k~ i,p ;r,s 

Ca) 

For symmetric modes of oscillation 
For anti-symmetric modes of oscillation 

Number of integration points used in the numerical evaluation of the integral 
(121) 

Function defined by equation (C-68) 

Frequency parameter defined by formula (12) 

Function defined by equation (C-69) 

Parametric coordinate defined by formula (20) 

Parametric coordinate defined by formula (20) 

Set of n points in (0, 1) defined by formula (23) 

Set of N points in (0, 1) defined by formula ((100) 

Set of N points in (0, 1) defined by formula (168) 

Set of r points in (0, 1) defined by formula (A-6) 

Density of the fluid in the main flow 

Variable defined in equation (B-l) 

Quantities defined by formulae (A-26) 

Quantities defined by formulae (A-61) 

A row matrix appearing in formula (63) and defined immediately afterwards 

Quantities defined by formulae (A-60) 

Quantities defined by formulae (60) 

Quantities defined by formulae (37) 

Quantities defined by formulae (54) 

Matrix appearing in formula (55) and defined immediately afterwards 

Circular frequency of harmonic oscillation 

Indicates differentiation 

Indicates differentiation twice 
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A P P E N D I X  A 

Integration Formulae 

Integrand with Weight Function - , / (1-{~)/~ 

Let  lr(~:), r = 0, 1, 2 . . . . .  be the set of polynomials of degree r in ~r which satisfy the orthogonali ty relations 

fol lr(,)ls(,)~/~-~ d,= 8~ (A-l') 

where  8~s is Kronecker ' s  delta 

If we make  the change of variables 

in the integrand of (A- l )  we get 

from which it follows that  

= { 1 r = s (A-2) 
8,s 0 r ~ s. 

= ½(1 - cos 0) (A-3) 

Io ~ /1-c°s O)l~(1-c°s O)(cos ½0)2 dO = &s (A-4) 

1,(1 - c o s  6~ ~ 2  cos (r+½)0 
2 = cos ½0 ' (A-5) 

for this is a polynomial  of degree r in the original variable £ and both (A- l )  and (A-4) are satisfied. Since 
x/O(1 - £)/~:is positive for ~: in (0, 1) the polynomial  lr (~:) will have r zeros in (0, 1). Let  these zeros be denoted  by 
~:~o, i = 1, 2 . . . . .  r. The locations of these zeros are obtained directly from (A-5) and (A-3) and are given by 

• ( r )  __ 1 ( 1  i - 2 t l - c o s  0~0), i = 1, 2 . . . . .  r, (A-6) 

where 

(r) 2 i - 1  
Oi = 2r + 17r, i = 1, 2 . . . . .  r. (A-7) 

We define the interpolation polynomials h ~r)(~:) by means of the formulae 

k # i  

i = 1, 2 . . . . .  r. (A-8) 

These polynomials are of degree (r - 1) in ( and have the property  

They are given also by the alternative formula 

h ~.otc ~ _ l, (~:) 
' , s  J - -  t (r) (r) i = 1, 2 . . . . .  r. (A-10) 
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where the dash represents differentiation with respect to the argument of the appropriate function. By 
differentiating formula (A-5) with respect to 0 we easily establish that 

(_1), f2-~/7 (2r + 1) l'r(~l r)) 
sin O~ r) cos ½010" 

(A-11) 

Then, from formula (A-10), we get 

h I')(~:)- 2 ( -1 )  '+~ 
(2r + 1) 

• 1(,) ~.o !a(r) cos (r + ½)0 
- -  sin ~,i ,.u~ 2v i cos ½0 (cos 0 - cos 0 }r)): (A- 12) 

Therefore 

H~r'=Iolh}~'(,)~/Vd, 

~o ~" = ½0)  2 dO 

( -  1 )i+ x I ''~ [ cos  (r + 1 )0  + c o s  rO ] a(r) ~ -1,o(r) 
= (2r + 1) sin vi '~va 2Vi J0 (COS 0 -- COS O~ r)) dO 

-- --7]'(--1)i+1(2r + 1) sin 0~') c°s lo}r)[sin (ir---+14O l* s v, t - ~ j s i n  rO}'/q 

2 r r ( - 1 )  i+1 

( 2 r + l )  
(cos !,](,),z2~,, ) sin (r 31-1)o}r) 

-- ( 2 ~ I ) ( C O S  10}r))2 

27"/" 
- ( 2 r +  1) (1 - ~:I'))" 

(A-13) 

We are interested in the numerical evaluation of the integral 

l T- 
I=Io (A-14) 

where f(£) is an arbitrary continuous function of £ in (0, 1). If we take an approximation f~)(~:) to f(£) which is 
the interpolation polynomial of degree ( r - 1 )  in 

f ( r ) (~)= ~ (r) h(r) f (~,  ) ~ (~), (A-15) 
i=1 

we get a corresponding approximation I (r) to I which is given by 

r) (r) I (')= ~ ~ f($, ) (A-161 
i=1 

by replacing f(£) on the right of (A-14) by f(r)(£). Formula (A-16) is the Gaussian numerical integration 
formula for a weight function ~/(1-  ~:)/~: when r integration points are used. Because of the orthogonality 
relationship (A- 1) we have that the approximation I (r) is exactly equal to I whenever f(~:) is a polynomial in £ of 
degree ~<2r - 1. If f(£) is not such a polynomial then we can give an estimate for the error I - I  (') by using the 
following procedure. 
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We can show that the approximation I (') to I given by formula (A-16) is also given by the formula 

/"~ / 1 - c o s  0~{1 + ( -1 )  "+1 cos (2r+l)pO}, 1~x2 - - ~  

i(,)=12p o-~oolim Jo f~' -2 ] {~os(;--~l~-~ I cos~o) av, (A-17) 

where p runs through the positive integers. To show that (A-16) and (A-17) are equivalent formulae for 
continuous functions f(s¢), the range (0, It) of integration in (A-17) is divided into r subranges with each of the 
subranges containing one of the zeros 0 = 0~ '), i = 1, 2 . . . . .  r of cos (r+½)O internal to it. For each of the 
subranges a new variable of integration is introduced by translation of O so that the zero of the new variable is 
at 0 = 0~ ° in the ith subrange and Fej6r's integral (see Ref. 14) is thereby obtained for that subrange. Then, by 
applying Fej6r's theorem (see Ref. 14) to each of the subranges the result that (A-16) and (A-17) are 
equivalent formulae is obtained. 

From (A-17) we get 

I(') = lim [= _ / l - co s  .g){ _p) COS(2r+l)sO}(cosl02 /*'~ ~ 1+2  ~. (-1);(1 s ~ ) dO 
P - ~  do s = l  

t "'~ /1 -cos .0)  !0x2 ( - p )  I0 f ( 1 - c ° s 0 )  x =Jo 2 (cos2 , dO+l im ~ ( -1)s  1 s 
p-~oo s = l  2 

x[cos {(2r + 1)s -½}0 + cos {(2r + 1)s + 1}01 cos ½0 dO 

1 " i -  S 1 

=Io f ( , ) ~ / - ~ d ~ : + ~ i m  ~/~s=~ ( - 1 ) * ( I - p )  Io f ( , ) x  

• g 

= I +  p--.mlim ~/~ s=l~(-1)s(1-p) [a(2"+1)s-1+a(a'+l)s] (A-18) 

where 

1 @ 
a, = Io f(~)l,(~) d~. (A-19) 

The formula 

p 
I (') = I + lim rr ~ p-,o~ ~=1 (-1) [a(2,+1)~-1+ a(2,+x)~] (A-20) 

is equivalent to the formula (A-18) provided that the limit on the right hand side of (A-20) exists. The formula 
(A-18) is valid whether the limit on the right hand side of (A-20) exists or not. Taking the limit as p ~ oo in 
(A-20) corresponds to summing an infinite series directly whereas taking the limit as p + o o  in (A-18) 
corresponds to summing the same series by arithmetic means or by Ceshro's means of first order. 

The error I - I  (') may now be gauged from either formula (A-18) or formula (A-20). The coefficients a,  tend 
to zero as n tends to infinity, as is shown by an application of the Riemann-Lebesgue theorem (see Ref. 14) to 
formula (A-19) after changing the integration variable from ~ to 0. The error I - I  (') converges to zero as r 
increases indefinitely because the multipliers H}{ ) of formula (A-16) are, according to formula (A-13), all 
positive. 

The formula (A-18) is also valid for more general f(s c) than continuous functions, e.g. for f(~:) having a finite 
number of jump discontinuities for ~ in (0, 1), but in this paper we are interested only in continuous functions 
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Integrand with Weight Function ~/1---Z~ 

Let 'Yr (r/), r = 0, 1, 2 . . . .  be the set of polynomials of degree r in r/which satisfy the orthogonality relations 

i£-x Yr(r/)Y,(n) lvri-L-- n2 dr /= 6,~. (A-21) 
1 

If we make the change of variables 

in the integrand of (A-20) we get 

from which it follows that 

r /= cos ~b (A-22) 

I0 ~" y~(cos ¢)y,(cos tb)(sin ¢)2 de  = 6~s (A-23) 

sin (r___+__l)¢ 
v,(cos 40 = q :  

sin ¢ ' " T r  
(A-24) 

for this is a polynomial of degree r in the original variable r /and both (A-21) and (A-23) are satisfied. Since 
r/2 is positive for r/in (-1, 1) the polynomial %(r/) will have r zeros in (-1, 1). Let these zeros be denoted 

by r/~ ~), ] = 1, 2 . . . . .  r. The locations of these zeros are obtained directly from (A-24) and (A-22) and are given 
by 

where 

V}~)=cos ¢~'), ] =  1,2 . . . . .  r, (A-25) 

( r + l ) '  ] = 1 , 2  . . . . .  r. (A-26) 

We define the interpolation polynomials g}O(r/) by means of the formulae 

,/--r/(k 0 g}~)(~)= [l ( (~)  (~)3 ] =  1,2 . . . . .  r. (A-27) 
k = l  \ r / i  - - r / k  / 
k ~ j  

These polynomials are of degree ( r -  1) in 77 and have the property 

g ' 07 = ajk. CA-2 8) 

They are given also by the alternative formula 

y~(r/) (A-29) 
• Xnj )(r/- n}% 

where the dash represents differentiation with respect to the argument of the appropriate function. By 
differentiating formula (A-24) with respect to & and putting ¢ = ¢}~) we easily establish that 

y,l_(Ox ~ ( r + l )  
rt ' tS )= (--1) j+l (sin ¢~}r))2" (A-30) 

sin (r + 1)¢ 
sin ¢ (cos q5 - cos  ¢}r)). 

(A-31) 

Then, from formula (A-29) we get 

g)r)(r/) = ( -  1)~+l (sin ¢~,))2 
( r + l )  
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Therefore 

+1 

G~r)= I-i g~)(rt)41-rl2 d n  

= g}r)(cos ~)(sin ¢)2 de  

(-lY+1,. f re - cos  (r + 2)¢) -  ts,n ¢ 'b2 Jo = (cos 
(cos C - c o s  

¢r(-lY'+l.. (o.2rsinr¢~ ') sin (r+2)¢~') l 
- ~ ( s l n ¢ / )  [~n~( .o  ~-n-~-~5( D -j 

r r ( -1)  i, • -o-).2 
- ~ (sin *i ) cos (r+ 1)¢~ 0 

,/'r 
- ( r  + 1 )  ( s i n  ¢ ~ ) ) 2  

- (r + 1 ) [ 1  - 

de 

(A-32) 

We are interested in the numerical evaluation of the integral 

I? J =  f(n)~/1 - rl 2 d n  (A-33) 
1 

where f(rl) is an arbitrary continuous function of ~ in ( -  1, 1). If we take an approximation ¢+)(~ ) to f(~ ) which 
is the interpolation polynomial of degree (r - 1) in rl 

f(r)01)= ~ o-) (,) f(rh" )gJ (n), (A-34) 
i = l  

we get a corresponding approximation J(~) to J which is given by 

r io=  ~ G}Of(rl~O) (A-35) 
1=1 

by replacing fir/) on the right of (A-33) by/+)(rt). 
Formula (A-35) is the Gaussian numerical integration formula for a weight function 4 l - r t  2 when r 

integration points are used. Because of the orthogonality relationship (A-21) we have that the approximation 
j(o is exactly equal to J whenever f(r/) is a polynomial in r/of degree ~<2r - 1. If f(rt) is not such a polynomial 
then we can give an estimate for the error J - j ( o .  

Instead of formula (A-35) we can write 

_ f=  , ,[ sin (r + 1)pC\ 2 . . . .  2 
J(')= p--,oolim Pl Jo f(cos q~)~n ~ )  tsm O) d& (A-36) 

where p runs through the positive integers. That (A-35) and (A-36) are equivalent formulae for continuous 
functions f(r/) is demonstrated if we divide the range (0, ~r) of integration in (A-36) into r subranges with each 
of the subranges containing one of the zeros ¢ = ¢~r), ] = 1, 2 . . . . .  r, of sin (r+ 1)¢ internal to it, and then 
apply Fej6r's integral formula (see Ref. 14) to each of the subranges. 
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From (A-36) we get 

J( ' )=l im f(cos~b) 1+2 f 1 -  cos2(r+l)s~b (sin~b)2d~b 
p~OO s = l  

Io ( ;)Io = f(cos~b)(sin~b)2dqb+lim f 1 - s  f(cos~b)x 
p ---> oO s = l  

x[sin {2(r + 1)s + 1}<b - s in  {2(r + 1)s - 1}~b] sin ~b d~b 

= f(n)41 - ~/2 dr/+ 
1 

+lim,_.~o N/2 s ~= 1 ( l - p ) I _  tl f('q)['Y2(r+l)s(rl)--'YZ(r+l)s-2]x/1--rl2 drl 

=J+p--.o~lim Y.= 1 -  [d2(r+l)s-d2(r+l)s-2] (A-37) 

where 

dm= f (n )~ /m(n )41-n  2 dn. (A-38) 
1 

We can write, instead of (A-37), the formula 

J ( ' )= J+  x]r-~lim f [d2(r+l)s-d2(r+l)s-2] 
v 2 p - ~  s=x 

(A-39) 

provided that the limit on the right hand side of (A-39) exists. The formula (A-37) is valid whether the right 
hand side of (A-39) exists or not. 

The error J - J ( ' )  may now be gauged from either formula (A-37) or (A-39). The coefficients dm tend to zero 
as m tends to infinity, as is shown by an application of the Riemann-Lebesgue theorem (see Ref. 14) to 
formula (A-38) after changing the integration variable from r / to  ~b. The error j _ j ( r )  converges to zero as r 
increases indefinitely because the multipliers G} ') of formula (A-35) are, according to formula (A-32), all 
positive. 

The formula (A-37) is also valid for more general f(r/), e.g. f(r/) having a finite number of jump 
discontinuities for rt in (-1, 1), but in this paper we are interested only in continuous functions f(rt). 

We are also interested in the analytical evaluation of the integral 

1 (1'~ - -  "17 (kr)) 2 d17"  (A-40) 

Let us write 

+' g~)(n)~/1--o 2 1 I )  1 yr('r/)41-'r/2 

1 I+_'{ 1 1 i} 
= , ( r )  ( r )  "~r(~j ) ( : - - n j  ) 1 (n- -~)  (~"---n} r) Yr(r/)~/1-r/2dr/" (A-41) 

Now, we have 

+~ yr(rl) 41 - ,12 = 2",/2~ I 0 1  = (cos(_~s ~ ~ r ~ b  - cos (r + 2)~b ) d 

= ~]c  (sin rff-s in (r+2)~0) 
v 2 sin 0 

= - 2 4 ~  cos (r + 1)0 (A-42) 
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where 

~" = cos O. 

On changing ( to r/~') in (A-42), and consequently, on changing 0 to ~b} ') we get immediately 

+i l',(r/) 4 1 _ n  2 I-1 (~---~}.')) d r / = -  2v~--~rcos (r+ 1)4} "). 

If we substitute from (A-42) and (A-44) into (A-41) and use (A-30) we get 

I_ g~')(r/) lvfi-Z r/ dr/= +1 2 lr(-1)/[1 _ tr/(.,h21 (cos (r+ 1)0-cos (r + 1)~b} ")) 
( r / - ( )  ( r + l )  L ' , ' J  ((_r/~,)) 

Hence, if 

we get from (A-45) 

and if 

we get from (A-45) 

( = n ( ~  ~) k#i 

i +l g}')(r/)X/1 __r/Z ~ [ 1  -- (r/~')):] __ (__1)S+k], 
1 ( r / - - r / i  r)) dn=(r+l)(r/}')-r/(k'))[1 

g" = ,q~') 

i g}')(r/)x/1 _r/2 Ir(-1)s-_, , . . . r A  (r+l)O] 
(r/_r/},)) dr/= (r+l)  ti tr/s )l[d4COS 

1 ~r=n([) 

~r(-1)]. (r/~o)2][d/(_~Oc_~ssO;(~_~dl~O]~,. o") 
- ~7 ~ - i 5  [ ' -  = , 

=0. 

Also from (A-45), on differentiating with respect to ~, we get 

I- 2 -J(( f / l  g}')(r/)41-r/2 +~ g}')(r/)41-r/ dr~ = dr~ 
1 (,7 -¢ )~  1 (,7 - D  

_ Ir ( -1 )s+ l  [1 _ (r/~o)21 (cos (r + 1 )0  - cos  (r + 1)~}  ° )  
(r + 1) ( ~ -  n~')) 2 

" ( r+ l )0  1 
+ ~.(_l)S[1 _ (r/},))z] Smsi n 0 " ( ( -  r/}'))" 

Hence, if 

we get from (A-50) 

+1 g}~)(rt)~/1 Z r/2 ~r[1 -(rt}')) 2] rl - 
1 (n-~(k°)  2 dr/= (,) (,) 2t (-lY+k],  

(r+l)(r/s --r/k ) 

(A-43) 

(A-44) 

(A-45) 

(A-46) 

(A-47) 

(A-48) 

(A-49) 

(A-50) 

(A-51) 

(A-52) 
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whereasif  

we get from (A-50) 

I; ' g}')(r/)~/1 - r/2 
1 (r/_ r/}r))2 dr/ 

7 r ( - l y  I" d2 
- 2-~5 . . --(r/Sr))2][~-~'ff COS ( r+ I)4'] C=.,p 

[ l d l d  ] 
_ T r ( - l y  _(r/~,))21 si 4' 4' ~,=n<; , 2 ( r + l )  [1 d4' sin d4' c ° s ( r + l ) &  

=2(-ly+'[1-(r/}'))2][(r+ 1)cos(r+ 1)4' sin(r+ 1)4'] 
(sin 4')2  ; n7,7 

71" 
= - ~ ( r + l ) .  

(A-53) 

(A-54) 

Collecting together the results (A-52) and (A-54) into one formula we get 

i;lg}r)(r/)x/l__r/2 dr/ =1 -2  (r + l ) k - - ]  

1 (r/_r/p)2 ~ ~P-(r/~'~Y] [ 1 - ( - l y + q  k#] 
L(r + 1)(,77 )-  ~ ) ) 2  

(A-55) 

|ntegrand with Weight Function 1/1,/~---~ 2 

Let T,(r/), r = 0, 1, 2 . . . . .  be the set of polynomials of degree r in ,7 which satisfy the orthogonality relations 

÷l dr/ 
T~(r/)T~(r/) 2 &," (A-56) 

1 x/1 - r /  

If we make the change of variables 

n =cos  ¢ (A-57) 

we get 

f0 ~ Tr(cOS ¢)Ts(cOs ¢ )  d e  = 3rs, (A-58) 

from which it follows that 

r = 0  

T, (cos 4') = 
cos re r # 0 

(A-59) 

for this is a polynomial of degree r in the original variable r /and both (A-56) and (A-58) are satisfied. Since 
l / x /1 - r /2  is positive for r/ in ( -1 ,  1) the polynomial Tr(r/) will have r zeros in ( -1 ,  1). Let these zeros be 
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denoted by h,~ r), f = 1, 2 . . . . .  r. The locations of these zeros are obtained directly from (A-59) and (A-57) and 
are given by 

X~ ')= cos q~}') ] = 1, 2 . . . . .  r, (A-60) 

where 

2 ] -  (A-61) ~ ? =  1. 
2r ~r ] = 1 , 2 , . . . , r .  

We define interpolation polynomials ~}~)(r/) by means of the formulae 

g~%7) = ~ ( ~-x~')~ 
k = l  ~x~r)--X(k r-------~] ] = 1, 2 . . . . .  r. (A-62) 

These polynomials are of degree ( r -  1) in r /and have the property 

g~)(n ~)) = &. (A-63) 

They are also given by the alternative formula 

T~(~7) (A-64) 
W ( n )  = T,(x~,))(n-x} ~) 

where the-dash represents differentiation with respect to the argument of the appropriate function. By 
differentiating formula (A-59) with respect to ¢ we easily establish that 

/3 -  
T'r(X~ O) = (-1)/+1 ~/~  r 

sin aS')" 
(A-65) 

Then, from formula (A-64) we get 

g)°07 ) - (-1)i+1 sin ~}') cos r~b (A-66) 
(cos ¢ - c o s  Z~))" 

Therefore 

gi Lr/) l ~ _ r / 2  

fo 
- (-lY+I sin q~}') Io = cos r& d& 

r (cos ¢ - c o s  Z~ r)) 

- zr(-1)i+l sin rqg~ r) 
r 

qT 
= D °  

r 

(A-67) 

We are interested in the numerical evaluation of the integral 

i/ 1 dr/ 
K = f(rt) 2 

4 1 - n  

(A-68) 
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where fir/) is an arbitrary continuous function of r/in ( -  1, 1). If we take an approximation/'~°(r t ) to fir/) which 
is the interpolation polynomial of degree ( r -  1) in rt 

fO(i )gi 07), (A-69) 
/ = 1  

we get a corresponding approximation K ~° to K which is given by 

K( ')= ~ (~}rq(,f'} ~)) (A-70) 
/ = 1  

by replacing f(rt) on the right of ~ by f~r)(r/). Formula (A-70) is the Gaussian numerical integration 
formula for a weight function 1/41-rt 2 when r integration points are used. Because of the orthogonality 
relationship (A-56) we have that the approximation K (') is exactly equal to K whenever f(r/) is a polynomial in 
r/ of degree ~<2r- 1. If f(rt) is not such a polynomial then we can give an estimate for the "(') error K -  r,, . 

Instead of formula (A-70) we can write 

f0 = {1 + ( - 1 )  p cos 2rp4,} K (r)= lim ~ f(cos ~b) dq~ 
p+ 2p (cos rq~) 2 (A-71) 

where p runs through the positive integers. That (A-70) and (A-71) are equivalent formulae for continuous 
functions f(rt) is demonstrated if we divide the range (0, ~r) of integration in (A-71) into r subranges with each 
of the subranges containing one of the zeros ~b = @r), j = 1, 2 . . . . .  r, of cos r~b internal to it, and then apply 
Fej6r's integral formula (see Ref. 14) to each of the subranges. 

From (A-71) we get 

where 

f0 ,{ ( ; )  } K ( ° = l i m  f(cos~b 1 + 2  ~ ( -1 ) '  1 -  cos2rs~b &b 
p---~ oO 

S = I  

, f ( ' r t ) ~ +  lim 2 ~ ] - 2 - ' ~ 1 _ .  o s=,E ( - l f ( 1  s)f+_~f(rl)T2~.(rl)4.ll 2 

,(¢) = K + l i m  2x/~ 2 ( -1 )  1 -  f2~ 
p ~ o o  s = l  

+ 1  

We can write, instead of (A-72), the formula 

(A-72) 

(A-73) 

P 

K ( ° = K +  2x/~ lira ~ ( - l f f 2 ~  (A-74) 
P ~  s = l  

provided that the limit on the right hand side of (A-74) exists. The formula (A-72) is valid whether the right 
hand side of (A-74) exists or not. 

The error K -  K (') may now be gauged from either formula (A-72) or (A-74). The coefficients f,, tend to 
zero as m tends to infinity, as is shown by an application of the Riemann-Lebesgue theorem (see Ref. 14) to 
formula (A-73) after changing the integration variable from r / to  ~b. The error K - K  (r) converges to zero as r 
increases indefinitely because the multipliers (~o  of formula (A-70) are, according to formula (A-67), all 
positive. 

The formula (A-72) is also valid for more general fir/), e.g. fir/)  having a finite number of jump 
discontinuities for r / in ( -1 ,  1), but in this paper we are interested only in continuous functions fir/). 
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Integrands with Weight Functions ,/(1 + ~/)1(1-~1) and ~/ (1-~t) / (1  + rl) 

We obtain numerical formulae of integration for the integrals 

and 

a = I-1 f(r/) _ + dr/ (A-75) 

I ~: 1 - ~  
B = / ( n ) ~ ,  ,__ dr/ (A-76) 

1 , l - r ~  

by application of the numerical formula (A-16). If we make the transformation of variables 

~=½(1- r / )  (A-77) 

in the integrand in (A-75) we get 

A = 2  Io f(1-2~:)  dE. (A-78) 

Then, on applying the numerical integration formula (A-16), for weight function 4(1 - ~:)/~ with r integration 
points, to (A-78) we get the approximation A (o to A which is given by 

A(~) = 27r 
(2r + 1)j----~l (1 + a}'))f(a~ ")) (A-79) 

where 

a} ")= 1-  2~ 0 

g21-1 "~ 
= c o s  

If we make the transformation of variables 

~=½( l+r / )  

] = 1, 2 . . . . .  r. (A-S0) 

(A-81) 

in the integrand in (A-76) we get 

1 © 
B = 2 fj0 f(2s¢- 1) d~. (A-82) 

Then, on applying the numerical integration formula (A-16), for weight function x/(1 - ~) /~with r integration 
points, to (A-82) we get the approximation B (') to B which is given by 

B(,) = 2rr (2r-+-l) i--L~ (1 - fl~'))f(/~')) (A-S3) 

where 

j = 1, 2 . . . . .  r. (A-84) 

The approximation A (') is exactly equal to A and the approximation B (') is exactly equal to B whenever f(r/) 
is a polynomial in r /of  degree ~<2r - 1. If f(r/) is not such a polynomial then we can give estimates for the errors 
A - A  (r) and B - B  (~), which are based on formula (A-18). 
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Spanwlse Integration Formulae 

Finally, in this Appendix, let us consider several different evaluations of the integral 

J ="--1f+1 f(')X~'~--~ 2 d ,  (A-85) 

which are based on the numerical integration formulae (A-35), (A-70), (A-79) and (A-83). These integration 
formulae are required for justifying formula (121) of the main text. 

Straightforwardly we have the numerical estimate J(~) from formula (A-35), 

If we write 

r 
j , r ) _  _ E ~e,, !r)xrl__(,17~r))2]. 

(r+ 1)j=l f ir / '  )l (A-86) 

J= I_~lf(rl)(l +rl)~/ll~+~ drl (A-87) 

and apply the formula of integration (A-83) we get the estimate j(,,1) for J which is given by 

77" r j(r,1) -'[-~) =~' ~"-----~Jrlfl@2~O[ 1 , (2,),2~ = - tr/2i+l) I (A-88) (r 

since 

•(r)__ ~ ( 2 r )  
j - ,t2j+l ] = 1, 2 . . . . .  r. (A-89) 

If we write 

J = fin)(1 - n)  dn (A-90) 
1 - - '~  

and apply the formula of integration (A-79) we get the estimate j(,,2) for J which is given by 

- (r + ½)i~i It. 2i-111. ± - -  ("(22"21) 2] (A-91) 

since 

o,~r) = ~ (2r) ,tzi-1 ] = 1, 2 . . . . .  r. (A-92) 

f )  l dr/ 
J = /01)(1 - r/2) 2 (A-93) 

4 1 - r t  

If we write 

and apply the formula of integration (A-70) we get the estimate j(r,3) for J which is given by 

J(r '3)=""~ i ~/  2r--lxr I /_(2r--1),~21 r i=11t~12i-1)[ --~,'12i-1 ) J (A-94) 

since 

,l(~r) = ~(2r--1) 
,12j-1 ] = 1, 2 . . . .  , r. (A-95) 

Formula (121) of the main text is obtained by applying one of the estimates (A-86), (A-88), (A-91) and 
(A-94) for the integral appearing on its left hand side. 
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APPENDIX B 

Derivation of Some Identities used in the Main Text 

In this Appendix we derive the formulae (147) and (148) of the main text. In the derivation we shall use the 
transformation of variables 

r /=  cos q~ (B-l) 

and the numbers 

r/(r M)= cos J = 1, 2 . . . . .  M, (B-2) 

where M and J are positive integers. There are five cases to be considered. The method of derivation is 
basically that of Williams 12. 

Cases (i) and (ii) 

The function TA(r/) is defined by the formula 

Tn(r/) = Nf~ COS A ¢ A~>I (B-3) 

(A) in conformity with formula (A-59). The function TA(r/) is a polynomial of degree A in r / and  its zeros )(p , 
p = 1, 2 . . . . .  A, are given by 

)¢(A) cos (2p- 1"~ P = \ 2A ] p = 1 , 2  . . . . .  A, (B-4) 

just as in equation (A-60). We note that 

We can write for TA(r/) the alternative formula 

A 
(A) Xp = 0. (B-5) 

p=l  

A 

TA('r/)= TA II (rl-X(p A)) (B-6) 
p=l  

where TA is a constant for a given integer A. From (B-6) and the equation obtained from (B-6) after 
differentiation with respect to ~7 we get 

Tk(n) A 1 
TA(r/) = p~l 07 - X(/~)) ' (B-7) 

and on differentiating (B-7) with respect to ~7 we get 

Therefore 

A 1 TX(n) ( Tk(n)'~:=- E _ (a),:. (B-S) 
Ta(n) \ T A ( n F  .=~ ( n - x ~  J 

(A) 2 A {1-(x. )}_ v (1-n:) 

( 1 -  2" Tk(7/) + _  (B-9) 
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and 

2} 
p = l  (,~ __ j((A))2 ~ ( 1 - - 7 / 2 )  2r/ -1} 

--  p=l {(77 --x(A)) 2-[ (?7 --X(p A)) 
tt t 2 ' 

- "1 2,|TA(rt) /TA(r/)\  ] TA(r/) A 
- - t  - ,7  ) / T - ~ - ~ T - - - ~ ) }  ' ~ + 2 r t T - - - ~ -  ' (B-10) 

By making use of the formula (B-3) for TA(r/) we establish that 

T~(r/) = A sin A~b 
Tn(r/) cos A& sin (B-11) 

and 

T~(r/) l r t  2j{ A2 _ T~,(r/_.__~ ) &}. 
TA(n) (1 TA(rt) cos (B-12) 

In case (i) A is given by (see formula (149)) 

A = a ( M +  1) 

where a and M are any positive integers. Then, from (B- 11), we get 

T~(r/~)) A sin [JAzr/(M+ 1)] 
TA(rt~ M~) -- cos [JAzr/(M+ 1)] sin [J~/(M+ 1)] 

sin ( aJTr ) 
= A  

cos (aJTr) sin [Jzr/(M+ 1)] 

= 0  

for all positive integers J from 1 to M inclusive. 
In case (ii) A is given by (see formula (150)) 

(a-13) 

(B-14) 

A = ½(2a - 1)(M+ 1) (B-15) 

where a is any positive integer and M is any odd positive integer. Then, from (B-11), we get 

T~(r/~ ~)) sin (½(2a - 1)Jzr) 
TA(r/~M)) = A cos (½(2a - 1)Jzr) sin [JTr/(M+ 1)] 

= 0  (B-16) 

for all even positive integers Y from 2 to ( M -  1) inclusive. From (B-12) we then get, in cases (i) and (ii) 

T](r l(y )) A 2 
TA(r/(y)) -- {1 _ (r/(jM))2}. (B-17) 

Finally, on putting 

r /=  r/(Y ) (B-18) 

into formulae (B-9) and (B-10), using results (B-14), (B-16) and (B-17), and rearranging the resulting 
expressions, we get 

i A 
-X  .=, (n (Y -x(2 - o (B-19) 

54 



and 

1 2} 
1 + ~  p~l (r/~M)-- X~A))2 = A (B-20) 

in both cases (i) and (ii). It must be remembered however that in case (i) the quantity M is any positive integer 
and J is any positive integer from 1 to M inclusive, whereas in case (ii) the quantity M is any odd positive 
integer and J is any even positive integer from 2 to ( M -  1) inclusive. 

Formulae (B-19) and (B-20) agree with formulae (147) and (148) of the main text for cases (i) and (ii) if we 
take 

PA = A (B-21) 

because the X~ A), p = 1, 2 . . . . .  A, are the Gaussian integration points corresponding to the weight function 
1/41 - n  2. 

Case (iii) 

We define the function SA(rl) by means of the formula ':' 

SA07) = Cos (A+½)¢. (B-22) 

(A) For any positive integer A it is the product of x/1 + r/with a polynomial in r /o f  degree A and its zeros ap , 
p = 1, 2 . . . . .  A, are given by 

¢A)__ { 2p -- 1 \ 
p - c o s  =) 

which is in conformity with (A-80). We note that 

A 

2 (A)_ {. O~p --  
p = l  

We can write for SA(rl) the alternative formula 

p = 1, 2 . . . . .  A, (B-23) 

(B-24) 

A 

SA(r/) = SA 1-I (r/--a~pA))41 + r/ (B-25) 
p = l  

where SA is a constant for a given integer A. From (B-25) and the equation obtained from (B-25) after 
differentiation with respect to r /we  get 

Sk(n) A 1 1 
S a ( n l = ~ _ _ l ( n _ a ~ m ) ~ 2 ( - ~ ) ,  (B-26) 

and on differentiating (B-26) with respect to ~7 we get 

Therefore 

A S~(rt) (Sk(rl) '~2=_ • _la~A))2 1 (B-27) 
SA(n) \Sa(rl)] p=l (rl 2 ( l + n )  2" 

{1 - -  (O~ (A)) 2} S~k(Y/) + ZA..~ ix 
p=l (-~_---~pa))=(1-r/2)S--~v ) t. ~jr/ (B-28) 
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and 

A (A) 2 
V { 1 - ( a p  )} 2"[SX(rI) (SX(rl)'12~+" Sk(rl) (A+½). 
,-- 7 " ~  = - ( 1 - 7  )IS--~)--\SA(rl)/ I zrl S - ~ -  p=l t r t - - p  ) 

By making use of the formula (B-22) for SA(r/) we establish that 

Sk(n)=(A+½) sin(A+½)¢ 
SA(r/) cos (A +1)q5 sin ¢ 

and 

S~,(r/) 1 [ ,A+  1,2 SA0?) q~}. 
SA(n) (1----n=i/t ~) -- S~(n) COS 

In case (iii) A is given by (see formula (151)) 

A = 1(2a - 1)(M+ 1) - 1  

(B-29) 

(B-30) 

(B-31) 

(B-32) 

where a is any positive integer and M is any even positive integer. Then, from (B-30) and (B-31), we get 

sk(n~ M)) _ .  
SA(~/~M) ) - v ( B - 3 3 )  

and 

sx ( , f i  M)) (A+½) ~ 
SA(r/(j ~)) {1 - (r/(fl'n) 2} (B-34) 

for all even positive integers J from 2 to M inclusive. Finally, on putting 

r /=  r/(Y ) (B-35) 

into formulae (B-28) and (B-29), using results (B-33) and (B-34), and rearranging the resulting expressions, 
we get 

1 A {1_ (a(Ah2~ 
•(M) 1 E T 2 _ ~ , = 0  (B-36) 

(A+~)p=l t , t j  -o~p ) 

and 

1 A {1 _ (a(pA))2} 
1 + ~  ,~a (~(JM)-- a(A))2 = a + ½, (B-37) 

provided that M is any even positive integer and J is any even positive integer from 2 to M inclusive. 
Formulae (B-36) and (B-37) agree with formulae (147) and (148) of the main text for case (iii) if we take 

PA = A + ½, (B-3S) 

because the tA) ap , p = 1, 2 . . . . .  A, are the Gaussian integration points corresponding to the weight function 
x/(1 + rio)/(1 - rio). 

C a s e  {iv) 

We define the function RA(r/) by means of the formula 

RA0/) = sin (A + ½)¢. (B-39) 
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t~ (h) For any positive integer A it is the product of x /1-r i  with a polynomial in ri of degree A and its zeros vp , 
p = 1, 2 . . . . .  A, are given by 

/3(pA) = COS ( 2pzr \2A + 11 p = 1, 2 . . . . .  A, (B-40) 

which is in conformity with (A-48). We note that 

A 
o(A) _ i /-.Jp - - - -2 .  

p=l 
(B-41) 

We can write for RA(ri) the alternative formula 

A 
RA(ri) = RA ]-I (7/--/3(A))',/]"----- ri ( B - 4 2 )  

p=l 

where RA is a constant for a given integer A. 
By proceeding in exactly the same manner as in case (iii) from formula (B-25) onwards we derive the 

formulae 

ri(j~ 1 A {l_(fl(A)) 2} 
( i - ~  ½)p~=l ( - ~ J M ~ )  --'~0 ( B - 43 )  

and 

1 ~ {1- (/3(fl))2} A+½ 
t . ~ 2  = l + ~ p = l V q . r  - - p p  ) (B-44) 

provided that M is any even positive integer and J is any odd positive integer from 1 to ( M -  1) inclusive. 
Formulae (B-43) and (B-44) agree with formulae (147) and (148) of the main text for case (iv) if we take 

P A = A +  1, (B-45) 

because the/3~ A), p = 1, 2 . . . . .  A, are the Gaussian integration points corresponding to the weight function 

4 0  - r io ) / ( i  + rio). 

Case (v) 
We define the function OA(ri) by means of the formula 

OA(ri) = sin (A + 1)$. (B-46) 

For any positive integer A it is the product of ~ with a polynomial in ri of degree A, the polynomial being 
(h) a multiple of YA(ri) of formula (A-24). The zeros rip , p = 1, 2 . . . . .  A, of QA(ri) are given by 

rip = cos p = 1, 2 . . . . .  A, (B-47) 

just as in equation (A-25). We note that 

A 
Y~ ri(fl)= 0. (B-48) 

Io=1 

We can write for Qh(ri) the alternative formula 

A 
OA(n) = O~ ~ (n-n~))#i-n 2 

p=l 
(B-49) 
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where QA is a constant for a given integer A. From (B-49) and the equation obtained from 03-49) after 
differentiation with respect to r/we get 

O~(~7) A 1 ~7 
(~A(~7) = p~=l (T~--T/(A)) (1- -  T~2) ' (B-50) 

and on differentiating (B-50) with respect to r /we get 

O~.('q) (Ok(~)~ 2 A 1 ( l + n  z) 
Oa(~?) - \0- - -~}1  = -  y' - n 2 )  2" (B-51) p=l (n--n(A)) 2 (1 

Therefore 

- - - - - -  Q t  ( 1 -  (n(p*))2} = (1_ 2- A(T~) 
~e~ (n-n~ *)) n ) O - - - - ~ + ( A + l ) n  (B-52) 

and 

A (A) 2 tt t 2 t v {1-(np )} . . . .  2.[OA(rl) /OA(n)\ 1 ,, QA(rl) . .  
(B-53) 

By making use of the formula (B-46) for OA(r/) we establish that 

Ok(r/) cos (A + 1)q~ 
OA07) '(A + 1) sin (A + 1)d~ sin ~b (B-54) 

and 

O~(~?) Q~(~7) cos ~b}. (B-55) QA(V)- ( 1 1 2 i {  (A +1)2 Q--~)  

In case (v) A is given by (see formula (153)) 

A = l(2a - 1)(M+ 1) -  1 (B-56) 

where a is any positive integer and M is any odd positive integer. Then, from (B-54) and (B-55), we get 

O k ( n T ~ ) ) _ .  
QA (rl ~u)) - ,, (B-57)  

and 

Q" ~-(u)~ (A+ 1) 2 A ~ . I I J  ] 

OA07~ M)) {1 -- (rl~M)) 2 } (B-58) 

for all odd positive integers J from 1 to M inclusive. Finally, on putting 

n = n~ ~) (~-59) 

into formulae (B-52) and (B-53), using results (B-57) and (B-58), and rearranging the resulting expressions, 
we get 

~?(U) 1 A {1 __ (7/(pA))2} 
(A + 1) p~l 0?(Y ) -  rl(p A)) - 0 (B-60) 
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and 

(A) 2 
1 ~ {1--(~p )___)}-A+I (B-61) 

]~ "}- ( i  -I- " 1 - - - - ~  p = i  (,~ (h4) _ n (A))2 --  , 

provided that M is any odd positive integer and J is any odd positive integer from 1 to M inclusive. 
Formulae (B-60) and (B-61) agree with formulae (147) and (148) of the main text for case (v) if we take 

PA = A + 1, (B-5'2) 

(A) because the r/p , p = 1, 2 . . . . .  A, are the Gaussian integration points corresponding to the weight function 
14T:- "t7o. 
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APPENDIX C 

Numerical Evaluation ot the Fnnction I~){~, ~, ~/o; v, M~) 

Integration with respect to ~o 

In this Appendix we discuss the process for the numerical evaluation of the function I~")(~¢, r/, ~7o; u, Moo) 
from the formula 

I(/')(/d, rl, rlo;u, Moo)=l-'~-{Y-Y°'Zfol ~ / ~ o °  ( ) 4 7 r \ - - ~ ]  h~")(~:°) K X-Xo Y-Yo u, Moo d~o (C-l) 
l ' l ' 

where 

=1ix c(y) -xL(y)] 

~=--Y 
s 

~o = cTo)  Ix o - x~ (y o)] 

yo 
,r/o = - -  

S 

(C-2) 

(x y ) /2f°°  e_~./~ K ~, ~-; u, Moo = -x+M~n)/(1-M2) 
du Moo(Moox + R ) 

(uZ+y2) ~+12 R(x2Wy 2) 
-i t ,[-x + MooR~ I 

exp[  1 \ 1 - M  2 JJ 

(c-3) 

and 

n = ~/{x 2 + (1 - M~)y2}. (C-4) 

Formula (C-1) is identical with formula (114) of the main text. 
If r/0 = ~7 the evaluation of the integral on the right hand side of (C-1) is straightforward because, from (C-3) 

we have 

2 x o, 
y t t t ' l '  X>0,  (c-5) 

and therefore, 

'fo' (n) = 
t r  (~, 9~, '~ ;  b', M o o )  h~")(~:0) d~:0. (C-6) 

The integral on the right hand side of (C-6) can be evaluated analytically using formulae of Appendix A or it 
can be evaluated numerically. To evaluate it numerically, divide the range (0, ~:) of s% into a number of 
intervals of equal length and apply Gaussian integration formulae, using a small number of integration points, 
to the integral over each of these interva!s. In the interval abutting on Co = 0 the weight function 1 / ~ o  is used 
whereas in all the other intervals the weight function 1 is used for the Gaussian integration. The number of 
intervals of integration which it is necessary to take to obtain a given accuracy will depend on the number of 
integration points in each interval and on the value of n, and will need to be increased if n is increased because 
of the resulting increase in the number of undulations of the function h~n)(~0). The actual number of intervals 
required can be assessed by experience. 

If r/o# ~7 the range (0, 1) of ~:o in the integral on the right hand side of (C-1) is divided into a number of 
intervals, not necessarily of equal length, and Gaussian integration formulae using a small number of 
integration points are applied to the integral over each of these intervals. In the interval abutting on ~o = 0 the 
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weight function 1/x/-~o is used, in the interval abutting on ~:o = 1 the weight function Ix/i--Z-- ~:o is used whereas in 
an interval completely internal to the range (0, 1) of ¢o the weight function 1 is used for the Gaussian 
integration. At least two intervals of integration must be used to cover the range (0, 1) of ¢o for this scheme. If 
7/o is near to ~/the intervals of integration need to be shorter when ~:o is near to ¢ than when ~:o is far from ¢ to 
attain a given accuracy in the numerical integration because of the rapid change in values of [(y - yo)/l]2K[(x - 
Xo)/l, (y -Yo)/ l ;  v, Moo] and its derivatives with respect to ¢o when ¢o changes in the neighbourhood of ¢o = ¢. 
Also the nearer ~7o is to r / t he  more intervals of integration for ~:o in (0, 1) will be needed to attain a given 
accuracy. The number of intervals will dependon  n, the frequency parameter v and the Mach number Moo. 

Expansions for the Kernel Function 

To evaluate numerically the integraion the right hand side of (C- 1) when r/0 ~ 77, we must be able to obtain 
numerical values of 



Then formula (C-11) can be written as 

v, \ - l - / -  J0 e-'~fYl"/l - -  

We can show that S(a)  satisfies the differential equation 

} as(a) i 
[ d a  2 S ( a ) -  da = 

by inserting S(a) from (C-12) into (C-14). If we put 

du 
(u2+l)~" 

(cq3) 

(C-14) 

S(a) = aP(a), (C-15) 

substitute for S(a) from (C-15) into (C-14) and divide the resulting equation through by a 2 we get the 
differential equation 

P" 'a )  + l p ' ( a ) -  (1 + l ) p ( a )  = 4 (C-16) 

for P(a),  which we recognise as a modified form of Bessel's differential equation with a non-zero right hand 
side. This differential equation has the general solution (see e.g. Ref. 15) 

" / 7  . 

P(a)  = ~{ tLl (a )+  Clffa)+DKffa)} (C-17) 

where C and D are integration constants, Lffa) and K , (a )  are modified Bessel functions of order 1 and of the 
first and second kinds respectively and Lffa) is a modified Struve function which is related to the Struve 
function H-l(ia) by means of the formula (see Ref. 15) 

L,(a) = -H_ffia). (C- 18) 

For small values of lal we may write (see Ref. 15) 

L,(a) = a i (a )  (C- 19) 

Kl(a)  = 1-+ a[ log ( 2 ) + y ] j ( a ) - a f ( a )  (C-20) 

L,(a) = -2g(a) ,  (C-21) 
,77. 

where j (a ) ,  f ( a )  and g(a) are even integral functions of a which have the power series expansions: 

1 ~ i (a'~ 2r 
j(a) = -~ ,~=o r!(r + 1)!\21 (C-22) 

f ( a ) = l  ~ 1 ' 1 1 ~(a'~ z' 
,=or.(r+l).{~=o(s+l) 2(r + 1)1\2] 
Y. , - ~ Y. (C-23) 

and 

_ ~ 22rr!r! 2r 
g(a)  -- ,=0 (2r)!(Zr + 1)! a (C-24) 
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For real positive a the branch of log (a/2) which is real is taken in formula (C-20). Therefore, on using the 
above expansions, we get, for small values of a 

S(a)=½1rD-(ia)+¼7rCaZ+¼q'rDa2[y+log(2)-l]+o(a3). ,C-25) 

However, we can obtain an expansion of S(a), for small values of a, directly from the integral representation 
(C-12). In fact, for small real positive a, we can show that 

• 1 2 a 1 iTr S(ot)=l-(ta)+~a [y  + log (~) - ~ + ~ - ]  + 0(a3). (C-26) 

On comparing the expansions (C-25) and (C-26) we get immediately 

C = i (C-27) 

and 

2 
D = -- (C-28) 

q7 

for the values of the integration constants C and D introduced in formula (C-17). 
Having obtained the values of the integration constants C and D we can substitute for P(a ) from (C- 17) into 

(C-15) to get S(a) in the form 

where 

S(a) = F(a)+ iG(a) (C-29) 

F ( a ) =  l + [ y + log (2) ]a2f(a )-aZ f(ot ) (C-30) 

G(a) = 2a 2/(a)- ag(a) (C-31) 

are real functions of a for real positive a. 
We may also deduce from (C- 12) the following asymptotic expansions for F(a) and G(a)  of formula (C-29) 

for large real positive a. With the integer n i> 0 arbitrary we get 

and 

where 

(c-32) 
~ra _, 1 

1 
G(a) = Gn(a)+"~e.(a) (C-33) 

Ol 

(C-34) 

(c-35) 

(C-36) 

Fo(a) = 1 

" 1 f i  ( 4 -  ( 2 s  - 1) 2) n / >  1, 
F.(a)  = 1 +,=~i r!(8a) r s = l  

G, (a )=  1 ~ (2r)!(2r+l)! I>0. 
-~-,=o r!r!(2a) 2r n 
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The remainder functions 6n (ce), en(t~), for any n/> 0 have the behaviour 

60(~) = 0(1) (C-37) 

e.  (o~) = 0(1) (C-38) 

for a --> +oo. 
The same asymptotic expansions (C-32) and (C-33) may be deduced by using the asymptotic expansions of 

Ii(cQ, Kl (a )  and L~(a), as given for example in Ref. 15, in formula (C-17) for P(a)  with C and D given by 
(C-27) and (C-28) and substituting the resulting asymptotic expansion into (C- 15). It is, however, quite easy to 
get the required expansions directly from (C-12). 

The power series (C-22), (C-23) and (C-24) have to be truncated at finite values of r in order to be able to 
evaluate from them the values of the functions ] (a), f(c~) and g (a), and these finite values of r will depend upon 
the accuracy to which these functions are required and on the value of a under consideration. If we work 
numerically to a given number of significant figures the accuracy with which we can evaluate the sums of the 
truncated series will decrease as a increases. Thus, even though these power series expansions are convergent 
for any finite value of a, they cannot be used to give accurate values of the functions ](a), f ( a )  and g(a)  when cz 
becomes indefinitely large, if we are limited in the number of significant figures used in the arithmetical 
operations. By working with a given number of significant figures there is a maximum value of a for which 
formula (C-30), with ](a ) and f (a )  obtained from the power series expansions (C-22) and (C-23) respectively, 
can be used to obtain F (a )  to within some prescribed accuracy e > 0. Similarly there is a maximum value of 
for which formula (C-31), with ](a) and g(a)  obtained from the power series expansions (C-22) and (C-24) 
respectively, can be used to obtain G(a)  with the accuracy e. The smaller a is, the fewer terms, in general, will 
be needed in the truncation of the power series expansions (C-22), (C-23), (C-24) to obtain F(c~) and G(c~) to 
within the accuracy e. 

For very large values of a we can use the asymptotic formulae (C-23) and (C-33) to evaluate the values of 
F (a )  and G(a).  Because of formula (C-32) we can, for given e >0 ,  find al(n, e ) > 0  such that 

 x@-o F ( a ) -  e F.(a) <e (C-39) 

whenever 

> al(n, e ). (C-40) 

If we take a l(n, e) to be the minimum quantity for which (C-39) is true under the condition (C-40) we find that, 
for fixed e, a 1 (n, e) decreases in general as n is increased from zero up to a certain value of n and then increases 
as n is increased beyond this certain value. The minimum value of al(n, e), for all the values of n, is then the 
minimum value of a for which F(a) may he obtained to within accuracy e from formula (C-32). This accuracy 
may be somewhat reduced if we work numerically to a given number of significant figures. The higher c~ is, 
beyond the minimum value, the smaller will the value of n need to be, in general, for (C-39) to be true. 
Likewise, because of formula (C-33) we can, for given e > O, find o~2(n, e ) >  0 such that 

I G ( ~ ) -  G.  (o~)1 < e (C-41) 

whenever 

a > o~2(n, e). (C-42) 

Again there is a minimum value of a for which G(a) may be obtained to within accuracy e from formula 
(C-33). 

The maximum values of o~ for which F(t~) and G(a) can be evaluated to the given accuracy from formulae 
(C-30) and (C-31) with/'(~), f ( a )  and g(ol) obtained from the power series expansions (C-22), (C-23) and 
(C-24) respectively, depends strongly on the number of significant figures used in the arithmetic, whereas the 
minimum values of a for which F(a) and G (a) can be evaluated to the given accuracy from formulae (C-32) 
and (C-31) is hardly dependent on the number of significant figures used in the arithmetic, provided that this 
number is greater than the number of significant figures required in the values of the functions. The functions 
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F(a) and G(a) cannot be evaluated to the given accuracy e, for all a in (0, oo), using formulae (C-30), (C-31), 
(C-32) and (C-33) as described above, if the number of significant figures used in the arithmetic is not 
sufficiently high. In other words, if we work to a given number of significant figures, then e must be greater than 
a certain lower bound in order that F(a ) and G (a) may be evaluated in the above manner to the given accuracy 
e for all a in (0, oo). If e is less than this bound then some other means of evaluating the functions F(a) and 
G(a) must be used, at least over the ranges of a for which the above method does not yield the required 
accuracy e. We shall expand the functions in series of Chebyshev polynomials rather than power series. 
Although e will still have to be greater than a certain lower bound in order that F ( a )  and G(a) may be 
evaluated to the given accuracy e, this lower bound should be less than the former lower bound, thus renderirlg 
the procedure involving expansion of fuctions in series of Chebyshev polynomials of wider application than 
that involving expansion of functions in power series. It may be true that with the number of significant figures 
available on a particular computing machine, functions may be evaluated to a sufficient accuracy for some 
applications using expansions in power series, but it would seem to be good practice to use another procedure 
which is capable of giving superior accuracy and is no more difficult to apply. 

Use of Chebyshev Polynomials 

The formulae (C-30), (C-31), (C-32) and (C-33) are valid for complex values of a provided the branch line 
of log (a/2) lies in the half-plane Im (a)/> 0, but we are here concerned only with real positive values of a. 
There are convergent expansions for j (a) ,  f(a) and g(a),  which are valid only for real a but which are more 
suitable for numerical computation than are (C-22), (C-23) and (C-24) when a is in some restricted interval 
(0, A ) where A is some positive finite number. We can also use expansions for F(a) and G(a) which are valid 
only for real a but which are convergent when a is in the restricted range (A, ~ )  as opposed to the expansions 
(C-32) and (C-33) which are asymptotic expansions. These convergent expansions in series of orthogonal 
polynomials are again more suitable for numerical computation than are the asymptotic expansions. Because 
of their simple properties we shall use the Chebyshev polynomials rather than other orthogonal polynomials, 
but it is well to remember that other orthogonal polynomials may be more appropriate to use in some 
circumstances. The Chebyshev polynomial T,,(x) defined by 

T,(x) = cos (n COS - 1  X) n = 0, 1, 2 . . . . .  (C-43) 

is a polynomial of degree n in x. Because/ '(a),  f ( a )  and g(a)  in formulae (C-30) and (C-31) are integral 
functions of a 2 we can write, for 0~<a ~<A, 

(A) o0 1 2 2 ;  - - 1  F ( a ) =  Z' D,(A)T, 2 a 2 - 1  + ~ a  log G(A)Tr 
r~O r~O 

(C-44) 

and 

O ( a ) = - c e  E' Er(a)Tr -1 +-~a C,-(a)Tr 
r=O r=O 

(C-45) 

where the dash'  on the summation sign ~ indicates that the quantity under the summation sign for r = 0 is to be 
multiplied by ½. The coefficients G(A), Dr(A) and Er(A) in the formulae (C-44) and (C-45) may be 
determined numerically for r = 0, 1, 2 . . . . .  for a given value of A by applying the method of Clenshaw 16. 

It is apparent from equations (C-32) and (C-33) that the function e F(o~)/,,/-£a is a function of bounded 
variation in 1/a and the function aG(a) is a function of bounded variation 1/a 2 for large o~. Hence we can 
write, for A ~< a ~< oo 

F (a )=4~ae  -~ Y/A,(A)T,  - 1  (C-46) 
r = 0  

and 

G ( a ) =  ---1 2' B,(A)T, 2 A 2 - 1  , (C-47) 
O~ r = 0  

65 



where, again, the dash' on the summation sign ~ indicates that the quantity under the summation sign for r = 0 
is to be multiplied by ½. The coefficients At(A) and Br(A) in the formulae (C-46) and (C-47) may be 
determined numerically for r = 0, 1, 2 . . . . .  for a given value of A by applying the method of Clenshaw 16. 

If we determine the coefficients At(A), Br(A), G(A), Dr(A) and Er(A) numerically for A = 7 we get the 
following results: 

Ao(7)= 2"57172} 

Aft7)= 0"032 21 

A2(7) = -0"000 32 

A3(7)= 0.00001 

(C-48) 

Bo(7)= 2"080 503 0" 

BI(7)= 0"043 102 0 

B2(7)= 0"002 271 0 

B3(7) = -0"000 790 2 

B4(7) = -0.000 144 5 

B5(7)= 0"000 075 0 

B6(7) = -0"000 002 4 

By(7) = -0"000 008 1 

B8(7)= 0"000 003 5 

B9(7) = -0.000 000 4 

B1o(7) = -0.000 000 4 

BIX(7)= 0.000000 3 

B12(7) = -0.000 000 1 

(C-49) 

Co(7) = 31.850 997 610 

Cff7) = 20.478 045 274 

C2(7)= 6.700 050 944 

C3(7)= 1.298 530 059 

C4(7) = 0.164 782 643 

C5(7)= 0.014 674 957 

C6(7) = 0.000 964 651 

C7(7)= 0.000 048 629 

C8(7)= 0.000 001 937 

C9(7) = 0.000 000 062 

Clo(7)= 0"000 000 002 

(c-5o) 
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D0(7)= 48.347 809 077 

D1(7)= 14.168 616 622 

D2(7) = -19.622 120 487 

D3(7)=-14 .015 111 195 

D4(7)= -3.981 038 753 

Ds(7)= -0 .646 707 438 

D6(7)= -0 .068 862 606 

D7(7) -0 .005 195 562 

D8(7) -0 .000 292 608 

D9(7) -0 .000 012 776 

D10(7) -0 .000 000 445 

Dl1(7) -0 .000 000 013 

(C-51) 

E0(7) = 156.661 749 51 

Ex(7) = 111.982 807 86 

E2(7)= 43.246 690 85 

E3(7)= 9.928919 83 

E4(7)= 1.474 963 03 

E5(7)= 0.151 515 57 

E6(7) = 0.011 328 83 

E7(7) = 0.000 641 65 

E8(7)= 0.00002841 

E9(7) = 0.000 001 01 

E10(7)= 0.000000 03 

(C-52) 

If we now use the values of the coefficients Ar (7), Br (7), Cr (7), Dr(7) and Er(7) from (C-48), (C-49), (C-50), 
(C-51) and (C-52) in formulae (C-44), (C-45), (C-46), (C-47), and neglect the remaining higher order 
coefficients, we can evaluate F(o~) and G (~) for any given value of a. By doing this for all the integers o~ from 0 
to 25, using 11 significant figures in the arithmetic, we find the values F ( a )  and G (a) of Table C-1 (overleaf). 

The function values tabulated in Table C-1 should all be correct to seven decimal places. To achieve this 
accuracy the coefficients A,(7) needed to be given only to five decimal places because of the factor ~ e -~ in 
formula (C-46), and the coefficients B, (7) needed to be given only to seven decimal places because of the factor 
1/o~ in formula (C-47). The coefficients C~(7), D~(7) and E,(7) could have been given to one fewer decimal 
place each, but there is not much gain in this because these coefficients reduce so rapidly as r is increased. 

It is also possible to evaluate F(a) to seven places of decimals for a = 7 from the asymptotic approximation 
4'-~--d~/2 e-'~F,,(a) with n = 5. For higher values of ~ the value of n required to get this accuracy may be less than 
5. However it is possible to evaluate G(a) accurate to only three places of decimals for ot = 7 from the 
asymptotic approximation Gn (a) and to get the highest accuracy for a = 7 we must take n = 2. Thus with the 
demarcation value A = 7 we must turn to some other formula, such as (C-47), in order to be able to evaluate 
G(~) to seven places of decimals for a I> 7. The asymptotic approximation Gn(a) cannot be used to evaluate 
G(o 0 to seven decimal places unless a > 17. 

If F(o~) and G(a) were required to higher accuracy than seven decimal places then the demarcation value A 
in formulae (C-44), (C-45), (C-46) and (C-47) would have to be taken to be some value less than 7, unless the 
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T A B L E  C-1 

a F(ot) G ( a )  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1.000 000 0 
0.601 907 2 
0.279 731 8 
0.129 469 3 
0.049 934 0 

0.000 
-0 .4 6 8  
-0 .4 6 7  
-0 .3 7 6  
-0 .291  

0.020 
0.008 
0-003 
0-001 
0.000 
0.000 
0-000 
0.000 
0.000 
0.000 
0.000 
0-000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

223 1 - 0 . 2 2 9  
063 5 -0 .185  
179 3 -0 -154  
243 0 -0 -132  
482 7 - 0 . 1 1 6  
186 5 -0 .1 0 3  
071 7 -0 .0 9 3  
027 5 -0 .085  
010 5 -0 .0 7 8  
004 0 -0 .0 7 2  
001 5 -0 .0 6 7  
000 6 -0 .0 6 3  
000 2 - 0 . 0 5 9  
000 0 - 0 . 0 5 6  
000 0 -0 .0 5 3  
000 0 - 0 . 0 5 0  
000 0 -0 .0 4 7  
000 0 -0 .0 4 5  
000 0 -0 .0 4 3  
000 0 -0 .041  
000 0 - 0 . 0 4 0  

000 0 
450 8 
289 0 
343 2 
743 6 
284 5 
609 1 
965 3 
881 5 
408 0 
692 7 
577 4 
324 8 
451 3 
629 2 
628 7 
283 7 
471 1 
097 1 
089 4 
390 6 
955 1 
745 8 
732 4 
889 7 
196 9 

number of significant figures used in the arithmetic were increased beyond 11. The coefficients A t ( A )  and 
Br (A) would decrease more slowly as r increased and the coefficients Cr (A), Dr (A) and Er (A) would decrease 
more rapidly as r is increased with this lower value of A than was the case with A --7. For high enough 
r e u ~ d  accuracy it will no longer be possible to obtain F (a )  from the asymptotic approximation 
47ra/2 e ~Fn (a) at the demarcation value a = A. 

The numbers of terms which need to be retained in the infinite series in (C-44), (C-45), (C-46) and (C-47) 
depend only on A and not on the value of a. On the other hand, the numbers of terms which need to be 
retained in the infinite series (C-22), (C-23) and (C-24) do depend on a and are very small when a is very 
small. Thus for very small a it is less work numerically to evaluate F(a)  and G(a)  from (C-30) and (C-31) using 
the series (C-22), (C-23) and (C-24) for j (a) ,  f(ee) and g(a) ,  than it is to evaluate F(a)  and G ( a )  from (C-44) 
and (C-45), but over the whole range (0, A) the formulae (C-44) and (C-45) are more economical. 

The numerical evaluation of the summations in formulae (C-44), (C-45), (C-46) and (C-47) is easily carried 
out by using the scheme described by Clenshaw 16. 

From (C-43) we get, on using elementary properties of the cosine function, 

To(x) = 1 (C-53) 

Tl(X) = x (C- 54) 

and the reduction formula 

T,+l(x) - 2xTn (x) + T,,-l(x) = O. (c -55)  
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Suppose now that we wish to evaluate k (x) where k (x) is given by the formula 

k(x) = Y: arT~(x). (C-56) 
r=O 

Clenshaw's scheme is to put 

b,,+z = 0 (C-57) 

bn+l = 0 (C-58)  

b,,-, = 2xb,,-~+ 1 - bn--r+2 "[- a.  _., r = 0, 1, 2 . . . . .  n. (C-59) 

Then 

k (x) = ½(bo- b2) (C-60) 

as may be shown by application of (C-53), (C-54) and (C-55). 
The function S(a) is now obtained from (C-29) and the result used in (C-13) to obtain J(x/l, y/l; v, M~) 

when IxI/lyl is not large. 

Procedures when Ixl / lyl  i~ Large 
2 3 . 

To evaluate J(x/l, y/l; u, M~) when X/ly[ is large and positive we replace 1/(u + 1) 2 m the lntegrand on the 
right hand side of (C-9) by its expansion as a power series in 1/u and integrate term by term to get 

x y ) , , , , (2r+l)! / lyl~ '+~= {vx~ 
(C-61) 

where 

E , (a )  =° t ' - I  1. oo _~dv 
J e ~-7, r = 3, 5, 7 . . . . .  (C-62) 

The expansion on the right hand side of (C-61) is convergent for X/ly[ I> 1 and, the larger X/[y[ is, the faster 
does the expansion (C-61) converge, i.e. the fewer terms in a finite truncation of it are necessary to get 
J(x/l, y/l; v, M~) to a given accuracy. We may arbitrarily choose to use the expansion on the right hand side of 
(C-61) for obtaining J(x/l, y/l; v, M~) when x/lyl i> 2. 

To evaluate E2r+3(a)we first use the recurrence relationships 

E2p+3(a)=[(2p12) (2p + j-~(2p + 1)] e-/" 

2 Oe 
(2p+2)(2p+l)E2p+ffa) p = 1 , 2  . . . . .  r, (C-63) 

to express E2r+3(a )  in terms of E3(ce). 

We may express E 3 ( a )  by means of the formula 

E3(a)  = ½o~:(log ol + 2 )  + H(°O-iaK(°O' (C-64) 

where the branch of the function log a which is real for a real positive is taken and H(a) and K(o~) are even 
integral functions of c~. We may deduce the power series expansions 

1 1 3 2 00 (__l)sCe2s 

H ( a )  = ~ -  ~(~- y )a  - ½a 4 ~ o  (s + 1)(2s + 4)! (C-65) 
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and 

K(a)= l + a 2  s=O ~ ( 2 s + l ) ( 2 s + 3 ) !  (C-66) 

from the integral representation (C-62) with r = 3 for E3(o~). 
For large values of a the power series expansions (C-65) and (C-66) are of little value. It is then better to 

represent E3(~) by means of the formula 

E3(a) = e-i'~Ih (a) + ik(a)}. (C-67) 

We may then deduce from (C-62) with r = 3 the following asymptotic expansions for h (a )  and k(a) for real 
positive a. With the integer n/> 0 arbitrary we get 

1 
h(a ) = h.(a ) + ~ l x , , ( a  ) (C-6S) 

OL 

and 

1 
k(a ) = k.(a ) + ~  u.(a ) (C-69) 

Ot 

where 

1 2 ~o (-lfa(__2f + 3)! h.(cQ = ~ a  2 = (C-70) 

and 

1 
(C-71) 

The remainder functions t~,,(a), vn(a), for any n/> 0 have the behaviour 

g . ( a )  = 0(1) (C-72) 

..(a)=O(1) 

for ce -. +co. 
Because H(a) and K ( a )  in (C-64) are integral functions of a 2 we can write, for 0 ~< ~ ~< A, 

(C-73) 

E3(a)=½a2[lOg(A ) irr ~, ,( )T,~--A--f- -(ioz)oo ,( )T,~---~- + ~ - ] + ~ 0  M, a [2a2 1) ~ ; N  a /2a2 1), (C-74) 

where the dash'  on the summation sign ~ indicates that the quantity under the summation sign for r = 0 is to be 
multiplied by ½. The coefficients M~(A) and Nr(A) in the formula (C-74) may be determined numerically for 
r = 0, 1, 2 . . . . .  for a given value of A by applying the method of Clenshaw 16. 

The functions aEh(o~) and ak(a) ,  where h(a) and k(t~) are defined in formula (C-67), are functions of 
bounded variation in 1/o~ 2 for large a. Hence we can write, for A ~< a ~<~ 

) ) e - i a  ~ ,  

E 3 ( a ) = " - T  ( ) ~--~---1 + i e - " y ,  Gr(A)Tr 1 (C-75) 
O/ r = O  O/ r=O 

where, again, the dash'  on the summation sign ~ indicates that the quantity under the summation sign for r = 0 
is to be multiplied by 1. The coefficients Fr(A) and Gr(A) in the formulae (C-75) may be determined 
numerically for r = 0, 1, 2 . . . . .  for a given value of A by applying the method of Clenshaw 16. 
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If we determine the coefficients Fr(A), Gr(A), Mr(A) and N~(A) numerically for A = 7 we get the following 
results: 

Fo(7) = +5.180 814 

F1(7) = - 0 . 3 6 0  529 

F2(7) = +0.041 133 

F3(7) = - 0 . 0 0 6  359 

F4(7) = +0.001 210 

/75(7) = - 0 . 0 0 0  268 

F6(7) = +0.000 067 

F7(7) = - 0 . 0 0 0  018 

F8(7) = +0.000 005 

F9(7) = - 0 . 0 0 0  002 

Flo(7) = +0.000 001 

(C-76) 

Go(7) = - 1 . 8 1 9  858 0 

G1(7) = +0.081 768 8 

G2(7) = - 0 . 0 0 7  181 8 

G3(7) = +0.000 926 5 

G4(7) = - 0 . 0 0 0  153 8 

G5(7) = +0.000 030 6 

G6(7) = - 0 . 0 0 0  007 0 

67(7.) = +0.000 001 7 

G8(7) = - 0 . 0 0 0  000 5 

G9(7) = +0.000 000 1 

(C-77) 

Mo(7) = +4.768 526 27  

Ml(7) = - 0 . 6 7 7  567 89 

M2(7) = - 2 . 0 8 9  539 69 

M3(7) = +0.398 136 24 

M4(7) = -0 .065  821 07 

M5(7) = +0.007 658 89 

M6(7) = - 0 . 0 0 0  634 37 

M7(7) = +0.000 038 88 

M8(7) = - 0 . 0 0 0  001 83 

M9(7) = +0.000 000 07 

(C-78) 

71 



No(7) = +7.151 718 43 

N1(7) = +2-201 177 93 

N2(7) = - 0 . 3 1 0  914 27 

N3(7) = +0.055 598 29 

N4(7) = - 0 . 0 0 7  412 33 

N5(7) = +0.000 704 63 

N6(7) = - 0 . 0 0 0  049 07 

N7(7) = +0.000 002 59 

N8(7) = - 0 . 0 0 0  000 11 

(C-79) 

If now we use the values of the coefficients Fr (7), G,(7), Mr(7) and N,(7) from (C-76), (C-77), (C-78), (C-79) 
in formulae (C-74) and (C-75), and neglect the remaining higher order coefficients, we can evaluate E3(o~) for 
any given value of a. By doing this for all the integers a from 0 to 25, using nine significant figures in the 
arithmetic, we find the values E3(ot) of Table C-2. 

T A B L E  C-2 

a Re E3(a)  Im Ea(a)  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

+0.500 
+0.018 
-0 .271  
- 0 . 1 6 8  
+0.058 
+0.163 
+0.093 
-0 .0 4 3  
- 0 . 1 1 2  
- 0 . 0 6 8  
+0.027 
+0.083 
+0.057 
-0 .0 1 5  
-0 .0 6 5  
- 0 . 0 5 0  
+0.006 
+0.051 
+0.046 
+0.000 
-0 .041  
-0 .0 4 2  
-0 .005  
+0.033 
+0.039 
+0.009 

000 0 +0.000 
117 6 - 0 . 3 7 8  
409 2 -0 .1 0 7  
342 2 +0.164 
929 6 +0.186 
769 9 +0.031 
301 2 - 0 . 1 1 0  
467 6 - 0 . 1 2 0  
298 8 -0 .021  
523 3 +0.077 
748 1 +0.089 
589 3 +0.021 
204 0 -0 .0 5 5  
793 7 -0 .0 7 2  
040 0 -0 .0 2 3  
651 5 +0.040 
772 4 +0.060 
729 4 +0.024 
076 9 -0 .0 2 8  
160 8 -0 .051  
447 3 -0 .0 2 6  
393 6 +0.019 
685 7 +0.044 
085 1 +0.027 
121 4 - 0 . 0 1 2  
811 7 - 0 . 0 3 8  

000 0 
5302 
735 2 
075 8 
434 0 
120 2 
845 2 
258 2 
174 8 
155 1 
804 8 
269 7 
431 2 
263 6 
107 1 
227 3 
467 0 
944 2 
863 5 
6162  
368 1 
961 0 
441 6 
298 5 
760 0 
304 3 

The function values tabulated in Table C-2 should all be correct to seven decimal places. To achieve this 
accuracy the coefficients F,(7) needed to be given only to six decimal places because of the factor e-i'~/a 2 
multiplying the first series on the right of (C-75) and the coefficients G,(7) needed to be given only to seven 
decimal places because of the factor e-i~/o~ multiplying the second series on the right of (C-75). 

It is possible to evaluate E3(a) only to three places of decimals for a = 7 using the asymptotic approximation 
hn (o~) to h (a)  and kn (a)  to k (a)  and to get the highest accuracy at a = 7 we must take n = 2 for evaluating both 
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h (a)  and k(ot). Thus with the demarcation value A = 7 we must turn to a formula, such as (C-75), in order to be 
able to evaluate E3(a) to seven places of decimals for a />  7. The asymptotic approximations hn(a) and k , ( a )  
cannot be used to get E3(a)  to seven places of decimals unless a > 17. 

We may now evaluate J(x/I, y~ l; v, Moo) from the infinite series (C-61) when S/ly [/> 2 if we use the relations 
(C-63) to express the E2r+3(vX/l), occurring in (C-61), in terms of E3(vX/I) and then evaluate E3(vX/l) from 
either formula (C-74) or (C-75) depending on whether v X / l < A  or vX / l>A .  

To evaluate J(x/l, y/l; v, Moo) when X/lyl is large and negative, we write; from (C-9), 

j(xy ) I f  au[X/~Yt du oo e-i~'lylu/t (u 2 + 1)~ 7'7; v, Moo = e- 'vlylu/l(u2+l)~- _oo 

= 2 vlYlK (vlYl]- f oo e'~'""/' du 
l 1\ 1 ] J'-X/lyl (U2+1) ~" (c-80) 

The evaluation of o~KI(CZ) for 0 ~< a ~< co has already been considered. The evaluation of 

I ?  eivlylu/l du 
X/fyf ( u 2 + l )  ~ 

for -X/lyl > 2 is carried out in exactly the same manner as the evaluation of J(x/l, y/l; v, Moo) for S/ly[> 2 
was carried out, apart from a change in the sign of the imaginary part. 
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TABLE 1 

Numerical Values of Approximations 0Jj, i = 1, 2, 3; j = 1, 2, 3, to the Generalised Aidorces on a Tapered 
Swept Wing of Aspect Ratio 2, Oscillating in Heave, Pitch and Control Surface Rotation with 1, = 0-32560, 

Moo = 0.7806 

, , ,  , ,  , ,  A, 072 "' O13 m n M N q Qll Qll  Q12 Q13 " " 

15 2 15 2 1 0.056 532 -2.4867 -2.4586 -4"5856 -0.59672 0.047442 
15 2 15 2 2 0.059 524 -2.5112 -2 .4806 -4.6469 -0.59274 0.058493 
15 2 15 2 4 0.059 303 -2.5094 -2.4791 -4.6423 -0.59301 0.058 082 
15 2 15 2 8 0.059 245 -2.5092 -2 .4790 -4.6412 -0.59296 0.058 138 

15 3 15 3 1 0.063 709 -2.5395 -2 .5066 -4.7566 -0.59599 0.092 102 
15 3 15 3 2 0.060 337 -2 .5124 -2 .4836 -4.6788 -0.58650 0.084 073 
15 3 15 3 4 0.061 863 -2.5223 -2.4921 -4.7058 -0.58572 0.083 562 
15 3 15 3 8 0.061 750 -2.5214 -2.4913 -4.7032 -0.58585 0.083 567 

15 4 15 4 1 0.072016 -2.5627 -2 .5224 -4.8710 -0.59746 0.081 139 
15 4 15 4 2 0.061005 -2.5217 -2.4921 -4.7037 -0.58622 0.087 618 
15 4 15 4 4 0.061 854 -2.5220 -2.4921 -4.7079 -0-58420 0.084 590 
15 4 15 4 8 0.061849 -2.5227 -2.4927 -4.7084 -0.58426 0.084 585 

15 5 15 5 1 0.069 369 -2-5493 -2.5125 -4.8268 -0.58719 0.085 382 
15 5 15 5 2 0.065 804 -2.5421 -2.5080 -4 .7790 -0.58680 0.082546 
15 5 15 5 4 0.060595 -2.5179 -2.4891 -4-6924 -0.58435 0-082547 
15 5 15 5 8 0.062 152 -2.5243 -2 .4940 -4.7140 -0.58371 0.085 162 

15 6 15 6 1 0.068 997 -2 .5496 -2 .5130 -4.8208 -0.58459 0.083 682 
15 6 15 6 2 0.067449 -2 .5440 -2-5086 -4-7980 -0-58530 0.082405 
15 6 15 6 4 0.061730 -2.5239 -2.4938 -4.7125 -0.58410 0.084 300 
15 6 15 6 8 0.061857 -2.5225 -2.4926 -4.7093 -0.58364 0.084845 

15 7 15 7 1 0.068 974 -2.5507 -2.5142 -4.8176 -0.58518 0.085 373 
15 7 15 7 2 0.065 972 -2 .5380 -2.5042 -4.7755 -0-58626 0.082964 
15 7 15 7 4 0.063 669 -2.5315 -2 .4996 -4.7419 -0.58488 0.084483 
15 7 15 7 8 0.061305 -2 .5207 -2.4912 -4.7021 -0.58346 0.085 272 

15 8 15 8 1 0.067 845 -2.5448 -2.5095 -4.7959 -0.58257 0.087 852 
15 8 15 8 2 0-065 255 -2 .5356 -2.5024 -4.7649 -0.58684 0.085 725 
15 8 15 8 4 0.064 781 -2.5348 -2 .5019 -4.7571 -0.58619 0.085461 
15 8 15 8 8 0.061416 -2.5218 -2-4921 -4.7052 -0.58416 0.084262 

15 9 15 9 1 0.067 288 -2.5435 -2.5087 -4.7863 -0.57992 0.086495 
15 9 15 9 2 0-065 524 -2.5388 -2.5053 -4.7699 -0.58603 0.086 130 
15 9 15 9 4 0.064664 -2 .5336 -2 .5010 -4.7544 -0.58664 0.085478 
15 9 15 9 8 0.062050 -2.5245 -2.4943 -4.7152 -0.58462 0.084989 

15 10 15 10 1 0.066940 -2.5415 -2 .5070 -4.7783 -0.57914 0.085 793 
15 10 15 10 2 0.065 865 -2.5382 -2.5045 -4.7711 -0.58455 0.085 210 
15 10 15 10 4 0.064066 -2.5307 -2.4987 -4 .7450 -0.58584 0.084 590 
15 10 15 10 8 0.062 761 -2.5272 -2.4963 -4.7258 -0.58466 0.084965 

15 2 15 3 1 0.058 199 -2.5305 -2.5003 -4 .6620 -0.59146 0.049011 
15 2 15 3 2 0.056910 -2.4996 -2.4713 -4.6048 -0.58893 0.043 323 
15 2 15 3 4 0.058 384 -2.5112 -2.4814 -4.6337 -0.58732 0.049 199 
15 2 15 3 8 0.058 298 -2.5103 -2.4806 -4.6313 -0.58745 0.048993 
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TABLE 1--(continued) 

A f  A ^ 

m n M N q Qll O~'a 0~2 A ,, Q12 Q~3 Q13̂  " 

15 2 15 4 1 0"066 883 -2"5526 -2.5159 -4-7788 -0-59040 0-072441 
15 2 15 4 2 0.056460 -2-5081 -2.4799 -4.6138 -0.58954 0.044034 
15 2 15 4 4 0.058345 -2 .5092 -2"4796 -4-6308 -0"58752 0.048 557 
15 2 15 4 8 0"058 262 -2"5101 -2.4806 -4 '6310  -0"58735 0"048 878 

15 3 15 4 1 0.071518 -2"5608 -2.5219 -4.8634 -0.59576 0"083 508 
15 3 15 4 2 0.060772 -2.5210 -2"4917 -4.6987 -0"58872 0-083986 
15 3 15 4 4 0.061712 -2.5211 -2.4914 -4.7036 -0"58510 0.081262 
15 3 15 4 8 0.061692 -2.5219 -2"4922 -4.7042 -0"58510 0-081363 

15 3 15 5 1 0.067 870 -2.5428 -2.5078 -4"8026 -0.59178 0.083 598 
15 3 15 5 2 0.065 649 -2.5406 -2"5070 -4.7738 -0.59044 0"082491 
15 3 15 5 4 0"060261 -2.5166 -2.4882 -4.6850 -0-58587 0.082 290 
15 3 15 5 8 0.061963 -2.5231 -2.4932 -4.7086 -0.58504 0.081277 

15 3 15 6 1 0"067 323 -2.5448 -2 .5100 -4.7963 -0"58833 0"083 298 
15 3 15 6 2 0"066 517 -2 .5394 -2"5053 -4.7812 -0.59007 0.081 535 
15 3 15 6 4 0-061439 -2.5229 -2.4932 -4.7058 -0.58691 0.082 380 
15 3 15 6 8 0.061634 -2.5213 -2.4917 -4.7031 -0.58509 0.081406 

15 4 15 5 1 0.069064 -2 .5449 -2.5081 -4.8175 -0.59207 0.082452 
15 4 15 5 2 0.065 842 -2 .5414 -2.5072 -4.7783 -0.59036 0.082 924 
15 4 15 5 4 0"060581 -2.5176 -2.4888 -4.6917 -0.58422 0.086010 
15 4 15 5 8 0.062 137 -2 .5240 -2.4938 -4.7134 -0.58434 0.084 148 

A !  A A t A A t ^ 

m n M N q Q21 O~l Q22 O~2 023 O~3 

15 2 15 2 1 -0 .083 903 2.7077 2.6375 5.7238 0.95694 0.050 595 
15 2 15 2 2 -0 .088 217 2.7098 2.6344 5.7720 0.95471 0.044 836 
15 2 15 2 4 -0 .087 931 2.7090 2.6340 5.7680 0.95500 0.045 119 
15 2 15 2 8 -0 .087 884 2.7086 2.6337 5.7667 0.95494 0.045 098 

15 3 15 3 1 -0 . 10036  2.7431 2.6537 5.9967 0.98120 -0 .028 454 
15 3 15 3 2 -0 .094451  2.7286 2.6470 5.9099 0.96384 -0 .027 201 
15 3 15 3 4 -0 -096970  2.7265 2.6419 5.9322 0.96210 -0 .026 717 
15 3 15 3 8 -0 .096806  2.7259 2.6415 5.9295 0.96234 -0-026 787 

15 4 15 4 1 -0 .11153  2.7054 2.6033 6.0884 0.97587 -0 .019808  
15 4 15 4 2 -0 .096315  2.7395 2.6555 5.9499 0-96552 -0 .033 136 
15 4 15 4 4 -0 .097049  2.7281 2.6436 5.9408 0.95943 -0 .030097  
15 4 15 4 8 -0 .097 155 2.7285 2.6439 5.9415 0.95952 -0 .029990  

15 5 15 5 1 - 0 . 10649  2.7071 2.6116 6.0428 0.96472 -0 .024649  
15 5 15 5 2 -0 .103 00 2.7259 2.6341 6-0109 0.96199 -0 .025 359 
15 5 15 5 4 -0 .095435  2.7354 2.6528 5-9339 0.95856 -0 .029318  
15 5 15 5 8 -0 .097 602 2.7283 2.6431 5.9469 0.95864 -0 .030893  

15 6 15 6 1 - 0 . 10664  2.7106 2.6148 6.0408 0.95871 -0 .025 191 
15 6 15 6 2 -0 .104 82 2.7152 2.6215 6.0219 0.95983 -0 .024 189 
15 6 15 6 4 -0 .097 225 2.7344 2.6495 5-9530 0.95930 -0 .029 144 
15 6 15 6 8 -0 .097 122 2.7291 2.6446 5.9437 0.95848 -0 .030833  
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TABLE 1--(continued) 

15 7 15 7 1 -0 .10655  2.7060 2.6104 6-0281 0.95920 -0 .028807  
15 7 15 7 2 -0 .10244  2.7191 2.6283 6.0024 0-96111 -0 .026344  
15 7 15 7 4 -0 .099 863 2.7280 2.6400 5.9760 0.96023 -0 .028 960 
15 7 15 7 8 -0 .096415  2.7320 2.6483 5.9398 0.95872 -0 .031418  

15 8 15 8 1 -0 .10487  2.7059 2.6125 6.0057 0.95623 -0 .032 553 
15 8 15 8 2 -0 .10172  2.7223 2.6323 5.9956 0.96328 -0 .030357  
15 8 15 8 4 -0.101 25 2.7229 2.6334 5.9867 0.96242 -0 .029 838 
15 8 15 8 8 -0 .096 685 2.7328 2.6488 5.9438 0.95905 -0 .030459  

15 9 15 9 1 -0 .104 17 2.7066 2.6140 5.9944 0.95113 -0.031 572 
15 9 15 9 2 -0 .102 14 2.7215 2.6310 5.9965 0.96176 -0 .030934  
15 9 15 9 4 -0 .10092  2.7222 2.6332 5.9836 0.96308 -0 .030 275 
15 9 15 9 8 -0 .097 600 2.7312 2.6460 5.9522 0.96010 -0 .030638  

15 10 15 10 1 -0.103 63 2.7053 2.6134 5.9838 0.94942 -0.031 183 
15 10 15 10 2 -0 .10247  2.7172 2.6265 5.9936 0.95880 -0 .029 849 
15 10 15 10 4 -0 .10007  2.7240 2.6360 5.9764 0.96142 -0 .029413  
15 10 15 10 8 -0.098 555 2.7286 2.6423 5.9602 0.96007 -0 .030257  

15 2 15 3 1 -0 .086 112 2.7368 2.6638 5.7803 0.94719 0.049 598 
15 2 15 3 2 -0 .083 509 2.7138 2.6440 5.7246 0.94308 0.056 959 
15 2 15 3 4 -0 .086 132 2.7129 2.6397 5.7488 0.94305 0.053 779 
15 2 15 3 8 -0 .086 013 2.7122 2.6392 5.7466 0.94319 0.053 965 

15 2 15 4 1 -0.101 25 2.6985 2.6083 5.9073 0.95868 0.041 854 
15 2 15 4 2 -0 .082 895 2.7257 2.6564 5.7324 0.94343 0.054 703 
15 2 15 4 4 -0 .085 998 2.7116 2.6387 5.7467 0.94308 0.053 934 
15 2 15 4 8 -0.085 955 2.7125 2.6396 5-7466 0.94290 0.053 571 

15 3 15 4 1 -0 .11063  2.7075 2.6079 6.0811 0.97631 -0 .026072  
15 3 15 4 2 -0 .095684  2.7389 2.6561 5.9385 0.96706 -0 .023 964 
15 3 15 4 4 -0 .096643  2.7268 2.6432 5.9319 0.96006 -0 .023 619 
15 3 15 4 8 -0 .096725  2.7274 2.6437 5.9325 0.96012 -0.023 528 

15 3 15 5 1 -0 .10436  2.7114 2.6190 6.0227 0.97059 -0 .028 846 
15 3 15 5 2 -0 .102 56 2.7245 2.6338 6.0014 0.96833 -0-024 178 
15 3 15 5 4 -0 .094744  2.7343 2.6529 5.9208 0.96194 -0 .023 842 
15 3 15 5 8 -0 .097 121 2.7267 2.6426 5.9362 0.95990 -0-023 570 

15 3 15 6 1 -0 .10406  2.7148 2.6224 6.0145 0.96499 -0 .027 106 
15 3 15 6 2 -0.103 23 2.7163 2.6251 6.0039 0.96726 -0 .025 185 
15 3 15 6 4 -0 .096636  2.7335 2.6497 5.9409 0.96343 -0-023 819 
15 3 15 6 8 -0 .096 583 2.7274 2.6439 5.9318 0.96011 -0 .023 699 

15 4 15 5 1 -0 .10638  2.7056 2.6100 6.0371 0.96894 -0 .024 067 
15 4 15 5 2 -0.103 05 2.7249 2.6329 6.0097 0.96737 -0 .025 570 
15 4 15 5 4 -0.095 427 2.7352 2.6526 5.9332 0.96108 -0 .031900  
15 4 15 5 8 -0 .097 576 2.7280 2.6429 5.9459 0.95930 -0 .029 343 
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TABLE 1--(continued) 

m n M N q O31 032 ~)33 ~)~3 

15 2 15 2 1 -0 .000  532 58 0.004 866 3 0.004 244 7 0.018 135 0.009 041 4 0.001 303 0 
15 2 15 2 2 - 0 . 0 0 0 5 9 2 2 8 0 . 0 0 4 1 9 3 7  0-0034781 0.017756 0 .0091158 0.0014741 
15 2 15 2 4 - 0 . 0 0 0 5 8 7 6 3  0-0042532 0 .0035454 0.017800 0 .0091126 0 .0014620 
15 2 15 2 8 - 0 . 0 0 0 5 8 7 5 5  0 .0042536 0 .0035460 0-017800 0 .0091126 0 .0014620 

15 3 15 3 1 - 0 . 00074741  0 .0030613 0-0017543 0.017798 0.014066 0 .0043153 
15 3 15 3 2 - 0 . 0 0 0 7 4 9 4 2  0.003 1098 0.001 8109 0.017860 0.013810 0 .0042523 
15 3 15 3 4 -0 .000 740 01 0.003 105 1 0.001 817 0 0.017 738 0.013 788 0.004 251 2 
15 3 15 3 8 -0 .000 741 ()4 0.003 107 0 0.001 817 5 0.017 756 0.013 795 0.004 252 5 

15 4 15 4 1 -0 .00076911  0 .0026327 0 .0012742 0.017394 0.012822 0 .0065538 
15 4 15 4 2 -0 .000 708 77 0.003 065 0 0.001 794 3 0.017 260 0.012 665 0.006 316 3 
15 4 15 4 4 -0 .000 707 38 0.003 016 3 0.001 750 8 0.017 127 0.012 543 0.006 240 2 
15 4 15 4 8 -0-000 708 01 0.003 010 7 0.001 744 0 0.017 130 0.012 548 0.006 242 9 

15 5 15 5 1 -0-000 716 63 0.002 941 1 0.001 653 3 0.017 273 0.010 740 0.007 433 1 
15 5 15 5 2 - 0 . 0 0 0 7 1 8 1 3  0 .0029346 0 .0016504 0.017209 0-010931 0 .0072010  
15 5 15 5 4 -0 .000 702 06 0.003 080 4 0-001 826 8 0.017 184 0.010 933 0.007 019 9 
15 5 15 5 8 -0 .000 702 45 0.003 014 8 0.001 760 3 0.017 076 0.010 929 0.006 996 0 

15 6 15 6 1 -0 .000  715 48 0.002 983 1 0.001 705 9 0.017 247 0.010 436 0.007 430 0 
15 6 15 6 2 -0 .000  717 90 0.002 984 1 0.001 700 7 0.017 290 0.010 667 0.007 376 3 
15 6 15 6 4 -0 .000  706 13 0.003 048 7 0-001 787 4 0.017 204 0.010 761 0.007 220 3 
15 6 15 6 8 -0 .000 702 07 0.003 028 9 0.001 775 5 0.017 097 0.010 784 0.007 146 8 

15 7 15 7 1 -0 .000 710 60 0.002 839 6 0.001 573 9 0.016 903 0.010 363 0.007 203 2 
15 7 15 7 2 -0 .000 719 90 0.002 968 9 0.001 684 5 0.017 291 0.010 565 0.007 331 6 
15 7 15 7 4 -0 .000711 16 0 .0030012 0 .0017314 0-017206 0.010594 0 .0072723 
15 7 15 7 8 -0 .000 701 44 0.003 055 0 0.001 802 3 0.017 136 0.010 590 0.007 197 7 

15 8 15 8 1 -0-000 697 83 0.002 835 8 0.001 591 7 0.016 684 0.009 960 5 0.007 092 5 
15 8 15 8 2 - 0 . 0 0 0 7 1 7 9 4  0 .0029388 0-0016583 0.017191 0.010416 0 .0072589 
15 8 15 8 4 -0 .000 713 29 0.002 978 8 0.001 705 2 0-017 200 0-010 406 0.007 282 0 
15 8 15 8 8 -0 .000 703 39 0-003 051 0 0.001 795 2 0.017 162 0.010 327 0-007 232 7 

15 9 15 9 1 -0 .000  694 17 0.002 788 0 0.001 551 2 0.016 526 0.009 701 3 0.007 078 1 
15 9 15 9 2 -0 .000  704 23 0-002 989 3 0.001 730 4 0.017 086 0.010 332 0.007 218 9 
15 9 15 9 4 - 0 . 0 0 0 7 0 9 9 7  0 .0030130 0 .0017445 0.017211 0.010412 0-0072798 
15 9 15 9 8 - 0 . 0 0 0 7 0 5 0 5  0.0030371 0-0017782 0.017166 0.010320 0 .0072514 

15 10 15 10 1 - 0 . 00068553  0 .0028116 0 .0015889 0.016437 0 .0095777 0 .0070437 
15 10 15 10 2 - 0 . 0 0 0 7 0 7 5 7  0.002 9156 0.001 6538 0.016 982 0.010 125 0.007 2219 
15 10 15 10 4 - 0 . 0 0 0 7 1 3 2 8  0.002 9864 0.001 7142 0.017 204 0.010265 0.007 2994 
15 10 15 10 8 - 0 . 0 0 0 7 0 6 8 6  0.003 0188 0-001 7568 0.017 164 0.010241 0.007 2728 

15 2 15 3 1 -0 .000 638 71 0.003 708 3 0.002 922 5 0.017 632 0.009 239 5 0.001 600 1 
15 2 15 3 2 -0 .000  530 33 0.004 772 9 0.004 151 8 0.017 972 0.009 043 1 0.001 396 2 
15 2 15 3 4 -0 .00058201  0 .0042713 0 .0035709 0.017786 0 .0091178 0 .0015050 
15 2 15 3 8 - 0 . 0 0 0 5 7 8 5 3  0 .0043098 0 .0036150  0.017807 0-009 1144 0.0014971 
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TABLE 1--(concluded) 

m n M N q 0 3 ,  

15 2 15 4 1 -0 .000787  12 0.002 6949 0.001 6943 0.017 780 0.009 4936 0.001 8010 
15 2 15 4 2 - 0 , 0 0 0 5 5 7 7 4  0.004 461 1 0.003 7965 0.017 825 0.009 1015 0.001 468 8 
15 2 15 4 4 -0 . 00057095  0.004 3908 0.003 7077 0.017 842 0.009 1025 0.001 4795 
15 2 15 4 8 - 0 . 0 0 0 5 7 7 1 6  0 .0043228 0 .0036300 0.017811 0.0091134 0.0014951 

15 3 15 4 1 - 0 . 0 0 0 5 7 8 9 0  0.004 4029 0.003 3170 0.017 892 0.014 239 0.004 3274 
15 3 15 4 2 - 0 . 0 0 0 7 5 9 4 4  0.003 095 1 0.001 7832 0.017 999 0.013 917 0.004 2805 
15 3 15 4 4 -0 .00074461  0.003 1020 0.001 8092 0.017 805 0.013 817 0.004 2668 
15 3 15 4 8 - 0 . 00074143  0,003 1289 0,001 8405 0.017 810 0.013 821 0.004 2665 

15 3 15 5 1 - 0 . 0 0 0 5 1 7 9 6  0.004 7906 0.003 7854 0.017 784 0.014 207 0.004 3308 
15 3 15 5 2 -0 .000667  89 0.003 6564 0.002 457 8 0.017 782 0.013 999 0.004 2993 
15 3 15 5 4 -0 -00078541  0.002 8796 0.001 5343 0.017 955 0.013 837 0.004 2744 
15 3 15 5 8 -0 .000734  17 0.003 1694 0.001 8904 0.017 784 0.013 821 0.004 2674 

15 3 15 6 1 -0 . 00055915  0 .0043729 0 .0033116 0.017567 0.014050 0 .0043059 
15 3 15 6 2 -0 .000614  17 0.004 0305 0.002 9006 0.017 729 0.014 025 0.004 3014 
15 3 15 6 4 -0 -00074938  0.003 127 3 0-001 8292 0.017 922 0.013 878 0.004 2796 
15 3 15 6 8 -0 -00074798  0.003 0839 +0.001 7864 0.017 817 0.013 822 0.004 2693 

15 4 15 5 1 -0 .000925  61 0.001 5229 -0 -000047544  0.017 482 0.012 581 0.006 6936 
15 4 15 5 2 -0-000 761 52 0.002 6748 +0.001 3300 0.017 315 0.012 733 0.006 3945 
15 4 15 5 4 -0 .00068951  0.003 1837 0.001 9396 0.017 185 0.012 642 0.006 235 5 
15 4 15 5 8 - 0 . 0 0 0 7 1 2 4 8  0.002 9805 0.001 7072 0.017 134 0.012 578 0,006 2356 
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TABLE 2 
A 

Numerical Values of Approximations 13(x, y)  to the Loading on a Tapered Swept Wing of Aspect Ratio 2 
when the Control Surface is Oscillating about its Hinge. 

m = 15, n = 10, M = 15, N = 10, ql = 8, I = 1, 2 , . . . ,  10, ~ = 0 .32560,  M~o = 0 .78060  

f~(x, y) 

,q 

0.00000 0.19509 0.38268 0.55557 0.70711 0.83147 0.92388 0.98079 

0-01 -0.00074 -0.00189 -0.04349 +0.03650 -0.07581 -0.43460 -0.95712 -1.39046 
0.03 -0.00755 -0.00257 -0.03097 +0.11061 +0.06418 -0.14523 -0.51628 -0.78938 
0.06 -0.00203 -0.00715 -0.01899 -0.10096 -0.21939 -0.39160 -0.68185 -0.63627 
0.10 +0.00095 -0.01028 -0.02427 -0.19141 -0.30860 -0.47131 -0.67715 -0.45242 
0.15 -0.00389 -0.01220 -0.04030 -0.07286 -0-12525 -0.29648 -0.44353 -0-24766 
0.20 -0.01010 -0.01618 -0.04694 +0.01337 -0.04112 -0.23565 -0.36681 -0.20765 
0.25 -0.01365 -0.02281 -0.04667 -0.03830 -0-16006 -0.37652 -0.48970 -0-28164 
0.30 -0.01568 -0.03045 -0.05097 -0.15836 -0.34213 -0.56731 -0-62918 -0.34285 
0.35 -0.01914 -0.03783 -9 .06600 -0.23743 -0.43422 -0.65711 -0-64111 -0.32812 
0.40 -0.02594 -0.04521 -0-08841 -0.22306 -0.40129 -0.62260 -0.53781 -0.27671 
0.45 -0.03603 -0.05410 -0.10946 -0-14912 -0.33515 -0.56491 -0.45755 -0.28526 
0.50 -0.04787 -0.06625 -0.12268 -0.10915 -0.38132 -0.62569 -0-55382 -0.42883 
0-55 -0.05963 -0.08251 -0.12996 -0.19997 -0.64113 -0-88676 -0.88252 -0-69828 
0.60 -0.07051 -0.10232 -0.14260 -0.46456 -1.10029 -1.30704 -1.34765 -0.98741 
0.65 -0.08130 -0.12396 -0.17616 -0.85816 -1.61686 -1.72711 -1.73382 -1.13935 
0.68 -0.08857 -0.13699 -0.21109 -1-10536 -1.86525 -1.89247 -1.82991 -1.11053 
0-70 -0.09407 -0.14550 -0.24070 -1.25281 -1-97644 -1.94227 -1.81539 -1.03474 
0-72 -0.10024 -0.15377 -0.27458 -1.37358 -2.03157 -1.93528 -1.73395 -0.91715 
0.75 -0.11093 -0.16571 -0.33037 -1.48342 -1.99595 -1.81480 -1.49554 -0.68112 
0"80 -0.13218 -0.18417 -0.41834 -1.42519 -1.63370 -1.37169 -0.90088 -0.24695 
0.85 -0.15446 -0.19936 -0.46281 -1.07807 -1.04704 -0.82157 -0.34836 +0.01419 
0.90 -0.16898 -0-20407 -0.42714 -0.61656 -0.53606 -0.43508 -0.12911 -0.02855 
0.94 -0.16326 -0.18677 -0.33586 -0.36251 -0.34633 -0.30926 -0.15724 -0.13087 
0.97 -0.13517 -0.14597 -0.23535 -0.29872 -0.30318 -0.23479 -0.12230 -0.06467 
0.99 -0.08648 -0-08813 -0.13772 -0.24236 -0.22438 -0.12760 -0.01873 +0.05462 

A 

l'~(x, y) 

0.00000 0.19509 0.38268 0.55557 0.70711 0.83147 0.92388 0.98079 

0.01 0.01419 0.03523 0.07638 0.17930 0.27935 0.37386 0.43515 0.40115 
0.03 0.00714 0.02440 0.04585 0.12139 0.17180 0.21293 0.24798 0.21555 
0.06 0.00999 0.01971 0.04192 0.05792 0.08133 0-11276 0.13914 0.10881 
0.10 0.01318 0.01935 0.03879 0.03238 0.05149 0.07843 0.09330 0.04887 
0.15 0.01402 0.02197 0.03377 0.04896 0.07269 0.08848 0.08465 0.02136 
0.20 0.01488 0.02428 0.03326 0.06320 0.08265 0.08761 0.06718 +0-00401 
0.25 0.01732 0.02573 0.03654 0-05840 0.06797 0.06633 0.03517 -0.01132 
0.30 0.02075 0.02720 0.03966 0.04474 0.04758 0.04179 +0.00530 -0.01997 
0.35 0.02408 0.02933 0.04023 0.03569 0.03774 0.02668 -0.01161 -0.02024 
0-40 0-02671 0.03194 0.03867 0.03661 0.03998 0.02041 -0-01733 -0.01658 
0.45 0.02868 0.03434 0.03698 0-04414 0.04510 0.01428 -0-02057 -0.01569 
0.50 0.03043 0.03582 0.03681 0.05087 0.04240 +0.00019 -0.02878 -0-02172 
0-55 0-03230 0.03608 0.03825 0.05021 +0.02626 -0.02396 -0.04388 -0.03413 
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TABLE 2--(concluded) 

P (x, y) 

,q 

0.00000 0.19509 0.38268 0.55557 0.70711 0.83147 0.92388 0.98079 

0"60 
0"65 
0"68 
0"70 
0"72 
0"75 
0"80 
0"85 
0"90 
0"94 
0"97 
0-99 

0.03428 
0.03598 
0.03660 
0.03674 
0"03662 
0.03587 
0.03282 
0.02731 
0.01949 
0.01210 
0.00646 
0.00281 

0.03532 
0.03391 
0"03285 
0"03203 
0"03110 
0.02935 
0.02503 
0.01820 
0.00883 

+0.00077 
-0.00378 
-0.00418 

0.03982 
0.03922 
0.03697 
0.03451 
0.03123 
0.02478 

+0.01028 
-0.00764 
-0.02550 
-0.03415 
-0.03140 
-0.02012 

0.03884 
+0.01652 
-0.00162 
-0.01546 
-0.03056 
--0.05515 
-0.09878 
-0.13810 
-0.15820 
-0"14672 
-0.11278 
-0.06734 

-0.00278 
-0.04098 
-0.06677 
-0.08478 
-0.10325 
-0"13119 
-0.17424 
-0.20113 
-0.19454 
-0.15865 
-0.11470 
-0.06932 

-0.05457 
-0.08622 
-0,10417 
-0-11552 
-0.12636 
-0.14154 
-0.16223 
-0.17022 
-0.15493 
-0.12400 
-0.09209 
-0.05866 

-0.06323 
-0.08347 
-0.09543 
-0.10336 
-0"11126 
-0.12283 
-0.13852 
-0.14048 
-0.11781 
-0.08496 
-0.06022 
-0,04003 

-0.04890 
-0.06159 
-0.06712 
-0.06985 
-0"07186 
-0.07357 
-0.07270 
-0.06537 
-0.05046 
-0.03775 
-0.03212 
-0.02534 
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TABLE 3 

Nmerical  Values of Approximations ¢~j, i = 1, 2, 3; ] = 1, 2, 3, to the Generalisefl Airforces on a Tapered 
Wing of Aspect Ratio 6, Oscillating in Heave, Pitch and Control Surface Rotation with v =3-1569, 

M ~ = 0 . 4  

m n M N q Qll O~l O~2. Q21 O~x 022 O~2 

14 6 14 6 12 37.780 -13.417 32.235 -25.150 55.368 -16.452 60.928 -35.208 
14 6 27 6 12 36-990 -13.526 31.155 -25-022 54.831 -16.602 59.937 -35.190 
14 6 28 6 12 37.148 -13.514 31.330 -25.046 54.959 -16.582 60.104 -35.201 

15 6 15 6 12 36.604 
15 6 29 6 12 37.108 
15 6 30 6 12 37.156 

-13.628 30.576 -24.988 54.702 -16.741 59.529 -35.275 
-13.606 31-040 -25.121 55.015 -16.653 59-968 -35.287 
-13.589 31.107 -25.118 55.035 -16.633 60.012 -35.273 

22 6 22 6 8 37.456 -13.633 31.312 
22 6 43 6 8 37.134 -13.645 30.919 
22 6 44 6 8 37.173" -13.642 30.962 

-25.232 55.391 -16.652 60.377 -35.380 
-25.166 55.074 -16.676 59.926 -35.327 
-25.171 55.105 -16.671 59.966 -35.329 

23 6 23 6 8 36.983 -13-684 30.708 -25.177 54-984 -16.737 59.762 -35.381 
23 6 45 6 8 37.168 -13.653 30.936 -25.180 55.111 -16.682 59.953 -35.342 
23 6 46 6 8 37.167 -13.645 30.945 -25.173 55.101 -16.673 59.952 -35.331 

30 6 30 6 8 37.186 -13.646 30.969 -25-183 55.128 -16.677 59.994 -35.347 
31 6 31 6 8 37.189 -13.663 30.952 -25.198 55.155 -16.694 60.002 -35.369 

m n M N q 0~3 0 ~ 3  ^! 0" ^t ^ At Q31 31 Q23 O~3 032 Q32" " 

14 6 14 6 12 -1 .9962 -0.36897 0.39310 -0.041884 -3.4483 -0.84922 0.67051 -0.14343 
14 6 27 6 12 -1.9856 -0.37948 0.38768 -0.040999 -3.4323 -0.85459 0-66562 -0.14118 
14 6 28 6 12 -1 .9867 -0.37862 0.38801 -0.041066 -3.4334 -0.85371 0.66577 -0.14132 

15 6 15 6 12 -1-9823 -0.39329 0.38081 -0.042441 -3.4224 -0.86763 0-65651 -0.14093 
15 6 29 6 12 -1.9693 -0-38541 0.38485 -0.042582 -3.4107 -0-85736 0.65844 -0.14201 
15 6 30 6 12 -1 .9634 -0-38517 0.38512 -0-042490 -3 .4100 -0.85704 0.65884 -0.14194 

22 6 22 6 
22 6 43 6 
22 6 44 6 

8 -1.9833 -0.39212 0.39046 -0.043107 -3.4242 -0.86718 0-66427 -0.14396 
8 -1.9788 -0.38920 0.38894 -0.042988 -3.4211 -0.86169 0.66146 -0.14347 
8 -1 .9792 -0.38908 0.38894 -0.042987 -3.4215 -0.86154 0.66140 -0.14346 

23 6 23 6 8 -1.9763 -0.39093 0-39053 -0-043204 -3.4188 -0.86521 0.66399 -0.14407 
23 6 45 6 8 -1.9791 -0.38918 0.38901 -0.042994 -3.4215 -0.86153 0.66144 -0.14348 
23 6 46 6 8 -1 .9790 -0.38916 0.38894 -0.042996 -3-4213 -0.86148 0.66129 -0-14347 

30 6 30 6 8 -1 .9790 -0.38933 0-38959 -0.042961 -3.4217 -0-86316 0.66308 -0.14360 
31 6 31 6 8 -1.9785 -0.38957 0.38934 -0.042982 -3.4212 -0.86319 0.66275 -0.14356 

A f  A tt 
m N M N q Q33Q33 

14 6 14 6 12 -0 .023448-0 .035733  
14 6 27 6 12-0"023851-0 .035654  
14 6 28 6 12-0"023865-0 .035641  

15 6 15 6 12 -0 .024078-0 .036449  
15 6 29 6 12 -0 .023986-0 .036189  
15 6 30 6 12 -0 .024001-0 .036180  
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TABLE 3--(concluded) 

A ~ I t  

m N M N q 033033 

22 6 22 6 8 -0 .023692-0 .037150 
22 6 43 6 8 -0 .023994-0 .036940 
22 6 44 6 8 -0 .024002-0 .036934 

23 6 23 6 8 -0 .023757-0 .037180  
23 6 45 6 8 -0 .024011-0 .036952 
23 6 46 6 8 -0 .024017-0 .036946 

30 6 30 6 8 -0 .023652-0 .037585 
31 6 31 6 8 -0 .023689-0 .037647 

TABLE 4 

Numerical Values, Evaluated by Lehrian and Garner 9, of Approximations 0tj, i = 1, 2; ] = 1, 2, to the 
Generalised Aidorces on a Tapered Swept Wing of Aspect Ratio 6, Oscillating in Heave and Pitch with 

l, = 3 .1569,  M ~  = 0.4  

m n a 0~1 041 ( ~  

14 6 6 37.745 -13.391 32.129 
15 6 6 36.413 -13.586 30.391 
22 6 4 37.370 -13.610 31.180 
23 6 4 36.841 -13.646 30.545 

A II 

Q12 

-25.110 
-24-871 
-25.169 
-25.084 

55.284 
54.398 
55.214 
54.737 

-16.399 
-16.664 
-16.610 
-16.675 

1 

22 

60.733 
59.203 
60.094 
59.438 

-35.123 
-35.087 
-35.270 
-35.230 
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TABLE 5 
A 

Numerica~ Values of Approximations O~j, i = 1, 2; j = 1, 2, to the Generalisefl A idorces  on  a Rectangular 
Wing of Aspect  Ratio 2 Oscillating in Heave  and Pitch with v = 1.0, M ~  = 0.8,  q: = q = 32, I = 1, 2 , . . . ,  N 

A, " A, 
m n M N 011 012 021 022 

4 2 4 2 0.90594 -3.0921 -2.9891 -3 .2292 0-79937 -0.77193 -0.43632 -1.8191 
4 2 9 2 0.90593 -3 .0920 -2.9890 -3.2291 0.79937 -0.77192 -0.43631 -1-8190 
4 2 14 2 0-90593 -3 .0920 -2 .9890 -3 .2292 0.79937 -0.77192 -0.43631 -1 .8190 
4 2 19 2 0-90593 -3 .0920 -2.9890 -3 .2292 0-79937 -0.77192 -0.43630 -1-8190 

4 2 4 4 0.91725 -3.1079 -3 .0054 -3.2545 0-81469 -0.77069 -0.42610 -1.8405 
4 2 9 4 0.91730 -3.1079 -3 .0054 -3 .2546 0.81475 -0.77069 -0.42608 -1-8406 
4 2 14 4 0.91730 -3.1079 -3 .0054 -3.2546 0.81475 -0.77069 -0.42608 -1 .8406 
4 2 19 4 0.91730 -3 .1079 -3 .0054 -3.2546 0.81474 -0.77069 -0.42608 -1 .8406 

4 2 4 6 0.91731 -3.1081 -3.0056 -3 .2547 0.81480 -0.77077 -0.42615 -1.8407 
4 2 9 6 0.91738 -3.1081 -3.0055 -3 .2547 0.81486 -0-77068 -0-42603 -1.8407 
4 2 14 6 0.91735 -3 .1080 -3.0055 -3.2547 0-81483 -0.77066 -0.42602 -1.8407 
4 2 19 6 0.91734 -3 .1080 -3.0055 -3 .2546 0.81481 -0-77065 -0.42601 -1-8406 

4 2 4 8 0.91742 -3.1083 -3 .0059 -3 .2550 0.81494 -0.77085 -0.42619 -1 .8409 
4 2 9 8 0.91735 -3-1080 -3.0055 -3 .2547 0.81483 -0.77065 -0.42600 -1-8406 
4 2 14 8 0.91728 -3 .1079 -3.0053 -3.2545 0.81475 -0.77060 -0.42597 -1.8405 
4 2 19 8 0.91723 -3.1078 -3.0052 -3.2543 0.81470 -0.77056 -0.42595 -1 .8404 

4 4 4 4 0.90950 -3-2618 -3.3188 -3.3228 0.96652 -0.84864 -0.49919 -2 .1919 
4 4 9 4 0.90957 -3-2618 -3.3188 -3 .3229 0.96660 -0.84865 -0.49915 -2 .1920 
4 4 14 4 0-90956 -3-2618 -3.3188 -3 .3229 0.96660 -0.84865 -0.49915 -2 .1920 
4 4 19 4 0-90956 -3.2618 -3-3188 -3 .3229 0.96660 -0.84865 -0.49915 -2-1920 

4 4 4 6 0-90972 -3 .2620 -3 .3190 -3.3232 0.96675 -0.84866 -0.49911 -2.1923 
4 4 9 6 0.90983 -3.2620 -3-3190 -3-3233 0.96681 -0.84858 -0.49900 -2 .1924 
4 4 14 6 0.90981 -3 .2620 -3 .3190 -3.3233 0.96680 -0.84858 -0-49901 -2.1923 
4 4 19 6 0.90981 -3 .2620 -3 .3190 -3.3232 0.96679 -0.84858 -0.49901 -2.1923 

4 4 4 8 0.90991 -3-2622 -3.3191 -3.3236 0.96694 -0.84873 -0.49909 -2.1927 
4 4 9 8 0.90987 -3 .2620 -3 .3190 -3 .3234 0.96686 -0-84858 -0.49899 -2.1925 
4 4 14 8 0.90983 -3 .2620 -3.3190 -3.3233 0.96680 -0.84857 -0.49899 -2 .1924 
4 4 19 8 0.90981 -3.2620 -3 .3190 -3.3232 0.96679 -0.84856 -0.49900 -2.1923 

4 6 4 6 0.90947 -3.2621 -3.3194 -3.3228 0.96684 -0.84890 -0.49963 -2.1928 
4 6 9 6 0.90958 -3.2621 -3 .3195 -3 .3229 0-96689 -0.84881 -0-49950 -2.1929 
4 6 14 6 0.90957 -3.2621 -3 .3194 -3.3228 0.96688 -0.84881 -0.49950 -2 .1929 
4 6 19 6 0.90956 -3.2621 -3-3194 -3.3228 0.96687 -0.84881 -0.49950 -2 .1929 

4 6 4 8 0.90966 -3-2622 -3.3195 -3.3232 0.96703 -0.84898 -0.49961 -2 .1932 
4 6 9 8 0.90963 -3.2621 -3.3194 -3 .3230 0.96694 -0.84882 -0.49949 -2 .1930 
4 6 14 8 0.90959 -3.2621 -3.3194 -3 .3229 0.96690 -0.84881 -0.49949 -2.1929 
4 6 19 8 0.90959 -3.2621 -3 .3194 -3-3229 0-96689 -0.84881 -0.49949 -2 .1929 

4 8 4 8 0.90966 -3 .2622 -3 .3195 -3 .3232 0.96703 -0.84898 -0.49961 -2.1932 
4 8 9 8 0.90963 -3.2621 -3 .3194 -3 .3230 0.96694 -0.84882 -0.49949 -2 .1930 
4 8 14 8 0.90960 -3.2621 -3 .3194 -3.3229 0.96690 -0.84881 -0.49949 -2 .1929 
4 8 19 8 0.90959 -3.2621 -3 .3194 -3.3229 0.96689 -0.84880 -0.49949 -2 .1929 
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TABLE 5--(continued) 

m n M N Qll 011 Q12 Q~2 021 Q22 

9 2 9 2 0.90653 -3.0924 -2-9891 -3.2302 0.79973 -0.77198 -0.43620 -1.8197 
9 2 14 2 0.90593 -3 .0920 -2.9890 -3.2292 0.79938 -0.77192 -0.43631 -1.8191 
9 2 19 2 0.90608 -3.0921 -2.9890 -3.2295 0.79946 -0.77194 -0.43628 -1 .8192 

9 2 9 4 0.91817 -3.1088 -3 .0060 -3 .2562 0.81539 -0.77081 -0.42596 -1 .8417 
9 2 14 4 0.91732 -3.1079 -3 .0054 -3.2546 0-81477 -0.77068 -0.42606 -1.8406 
9 2 19 4 0.91753 -3.1081 -3.0056 -3.2550 0.81492 -0.77071 -0.42604 -1 .8409 

9 2 9 6 0.91838 -3.1091 -3-0064 -3-2567 0.81567 -0.77085 -0.42590 -1.8421 
9 2 14 6 0.91738 -3.1080 -3.0055 -3.2547 0.81486 -0.77065 -0-42600 -1.8407 
9 2 19 6 0.91760 -3.1083 -3.0057 -3.2552 0-81504 -0.77068 -0.42597 -1 .8410 

9 2 9 8 0-91845 -3.1093 -3.0066 -3.2569 0.81577 -0.77086 -0.42588 -1.8423 
9 2 14 8 0.91730 -3.1079 -3.0053 -3.2545 0.81478 -0.77058 -0-42595 -1.8405 
9 2 19 8 0-91752 -3.1081 -3.0055 -3-2549 0.81495 -0.77060 -0.42590 -1.8408 

9 4 9 4 0.91062 -3.2623 -3.3187 -3 .3246 0.96719 -0.84853 -0.49870 -2.1931 
9 4 14 4 0.90966 -3.2619 -3.3188 -3 .3230 0.96667 -0.84864 -0.49911 -2 .1922 
9 4 19 4 0.90990 -3 .2620 -3-3188 -3 .3234 0.96680 -0.84861 -0.49900 -2 .1924 

9 4 9 6 0.91112 -3.2626 -3 .3190 -3 .3254 0.96760 -0.84844 -0.49846 -2.1938 
9 4 14 6 0.90997 -3 .2620 -3 .3190 -3.3235 0.96692 -0.84854 -0.49892 -2.1926 
9 4 19 6 0.91025 -3.2622 -3 .3190 -3.3239 0.96709 -0.84851 -0.49881 -2.1928 

9 4 9 8 0.91129 -3.2628 -3.3192 -3.3258 0.96776 -0.84844 -0.49840 -2-1941 
9 4 14 8 0.90999 -3-2620 -3 .3190 -3.3235 0.96693 -0.84853 -0.49891 -2 .1926 
9 4 19 8 0.91029 -3.2622 -3-3190 -3 .3240 0.96711 -0.84849 -0.49878 -2.1929 

9 6 9 6 0.91086 -3.2627 -3.3195 -3.3250 0.96766 -0.84869 -0.49896 -2.1943 
9 6 14 6 0-90972 -3.2621 -3 .3194 -3.3231 0.96699 -0.84878 -0.49941 -2.1931 
9 6 19 6 0.91000 -3.2623 -3-3194 -3.3236 0.96715 -0.84876 -0.49930 -2.1934 

9 6 9 8 0.91106 -3-2629 -3.3196 -3.3254 0.96784 -0.84870 -0.49891 -2 .1946 
9 6 14 8 0.90977 -3.2622 -3 .3194 -3-3232 0.96703 -0.84878 -0.49940 -2 .1932 
9 6 19 8 0.91007 -3.2623 -3.3195 -3.3237 0.96722 -0.84875 -0.49928 -2.1935 

9 8 9 8 0.91106 -3.2629 -3.3196 -3.3254 0.96784 -0.84869 -0.49890 -2 .1946 
9 8 14 8 0-90977 -3.2622 -3 .3194 -3.3232 0.96703 -0.84877 -0.49939 -2.1932 
9 8 19 8 0.91007 -3.2623 -3.3194 -3.3237 0.96721 -0.84875 -0.49926 -2-1935 

14 2 14 2 0.90593 -3.0920 -2-9890 -3.2292 0.79938 -0.77192 -0.43631 -1.8191 
14 2 19 2 0.90593 -3.0920 -2-9890 -3.2292 0.79938 -0.77192 -0.43631 -1.8191 

14 2 14 4 0-91732 -3.1079 -3.0054 -3.2546 0.81477 -0.77068 -0.42606 -1 .8406 
14 2 19 4 0.91732 -3.1079 -3-0054 -3.2546 0.81477 -0.77068 -0.42606 -1 .8406 

14 2 14 6 0.91738 -3 .1080 -3.0055 -3.2547 0.81486 -0.77065 -0.42600 -1.8407 
14 2 19 6 0-91736 -3 .1080 -3.0055 -3.2547 0.81484 -0.77064 -0.42599 -1.8407 

14 2 14 8 0.91739 -3.1079 -3-0053 -3.2545 0.81478 -0.77058 -0.42595 -1.8405 
14 2 19 8 0.91725 -3.1078 -3.0053 -3.2544 0.81473 -0.77054 -0.42593 -1.8404 
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TABLE 5--(concluded) 

m n M N 011 021 Q22 

14 4 14 4 0.90966 -3-2619 -3.3188 -3.3230 0.96667 -0.84864 -0.49911 -2.1922 
14 4 19 4 0.90966 -3.2619 -3.3188 -3-3230 0"96667 -0.84864 -0-49911 -2.1922 

14 4 14 6 0.90997 -3.2620 -3.3190 -3.3235 0.96692 -0.84854 -0.49892 -2.1926 
14 4 19 6 0.90996 -3.2620 -3.3190 -3"3235 0.96692 -0.84854 -0.49892 -2.1925 

14 4 14 8 0.90999 -3.2620 -3.3190 -3"3235 0"96693 -0.84853 -0.49891 -2.1926 
14 4 19 8 0"90997 -3.2620 -3.3190 -3.3235 0"96692 -0.84852 -0.49891 -2.1925 

14 6 14 6 0.90972 -3.2621 -3.3194 -3.3231 0.96699 -0.84878 -0.49941 -2.1931 
14 6 19 6 0.90972 -3.2621 -3.3194 -3.3231 0.96699 -0.84878 -0.49941 -2.1931 

14 6 14 8 0.90977 -3.2622 -3.3194 -3.3232 0.96703 -0.84878 -0.49940 -2.1932 
14 6 19 8 0.90976 -3.2622 -3.3194 -3.3231 0.96703 -0.84878 -0.49940 -2.1931 

14 8 14 8 0.90977 -3.2622 -3.3194 -3.3232 0.96703 -0.84877 -0.49939 -2.1932 
14 8 19 8 0.90976 -3.2621 -3.3194 -3.3231 0.96702 -0.84877 -0.49939 -2.1931 

19 2 19 2 0.90608 -3.0921 -2.9890 -3.2295 0.79946 -0.77194 -0.43628 -1.8192 

19 2 19 4 0.91753 -3-1081 -3.0056 -3.2550 0.81492 -0.77071 -0.42604 -1.8409 

19 2 19 6 0.91760 -3-1083 -3-0057 -3.2552 0.81504 -0.77068 -0.42597 -1.8410 

19 2 19 8 0.91752 -3.1081 -3.0055 -3.2549 0.81495 -0.77060 -0.42590 -1-8408 

19 4 19 4 0.90990 -3.2620 -3.3188 -3.3234 0-96680 -0.84861 -0.49900 -2-1924 

19 4 19 6 0.91025 -3.2622 -3.3190 -3.3239 0.96709 -0.84851 -0.49881 -2.1928 

19 4 19 8 0.91025 -3.2622 -3.3190 -3-3240 0.96710 -0.84851 -0.49882 -2.1929 

19 6 19 6 0.91000 -3.2623 -3.3194 -3.3236 0.96715 -0-84876 -0.49930 -2.1934 

19 6 19 8 0.91007 -3.2623 -3.3195 -3-3237 0.96722 -0.84875 -0.49928 -2.1935 

19 8 19 8 0.91007 -3.2623 -3.3194 -3.3237 0.96721 -0.84875 -0.49926 -2.1935 
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TABLE 6 

Numerical Values of Approximations Q~s, i = 1, 2; j = 1, 2, to the Generalised A ~ o r c e s  on a Rectangular 
Wing of Aspect  Ratio 8 Oscillating in Heave  and Pi~ch with v = 1.0, M ~  = 0.8,  ql = q = 329 1 = 1, 2 , . . . ,  N 

A ^ 

" 071 " " " "" rn n M N Qll Q12 Q~z Q21 Q~I Q22 022 

4 2 4 2 -1.2372 -15.939 -19.123 -9.5648 1.9318 -5.1566 -5.0567 -7.3567 
4 2 9 2 -1.2323 -15.956 -19.143 -9.5824 1.9402 -5.1633 -5.0615 -7.3746 
4 2 14 2 -1.2323 -15.956 -19.143 -9.5824 1.9402 -5.1632 -5.0614 -7 .3746 
4 2 19 2 -1.2322 -15.956 -19.142 -9.5824 1.9402 -5.1632 -5.0614 -7 .3746 

4 2 4 4 -1.1413 -15.986 -19.113 -9.7481 1.9823 -5.0979 -4-9262 -7.3833 
4 2 9 4 -1 .1294 -16.001 -19.125 -9.7725 1.9939 -5.0996 -4.9226 -7.4018 
4 2 14 4 -1.1289 -16.000 -19.123 -9.7724 1.9938 -5.0989 -4.9215 -7.4011 
4 2 19 4 -1.1288 -16.000 -19.123 -9.7724 1.9938 -5.0987 -4.9213 -7.4009 

4 2 4 6 -1 .1416 -15.991 -19.120 -9 .7490 1.9859 -5.0979 -4 .9246 -7.3876 
4 2 9 6 -1.1308 -16.005 -19.132 -9.7733 1.9946 -5.1018 -4.9255 -7.4048 
4 2 14 6 -1.1295 -16.002 -19.126 -9.7729 1.9941 -5.0999 -4.9228 -7 .4024 
4 2 19 6 -1-1290 -16.001 -19.124 -9.7727 1.9940 -5.0991 -4.9218 -7 .4016 

4 2 4 8 -1 .1363 -15.982 -19.100 -9.7464 1.9870 -5.0885 -4.9105 -7.3798 
4 2 9 8 -1 .1312 -16.007 -19.135 -9.7735 1.9958 -5.1022 -4.9255 -7.4065 
4 2 14 8 -1.1301 -16.003 -19.129 -9.7732 1.9946 -5 .1009 -4 .9240 -7.4039 
4 2 19 8 -1.1294 -16.002 -19.126 -9.7728 1.9942 -5.0998 -4 .9226 -7 .4024 

4 4 4 4 -1.9903 -16.192 -20.312 -8.3273 2.1285 -5.8804 -6.2842 -8.3902 
4 4 9 4 -1 .9848 -16.204 -20.325 -8.3398 2.1356 -5.8812 -6.2822 -8.4013 
4 4 14 4 -1.9849 -16.203 -20.324 -8.3387 2.1352 -5 .8804 -6.2812 -8.3998 
4 4 19 4 -1.9849 -16-203 -20.323 -8.3384 2.1351 -5.8802 -6.2809 -8.3395 

4 4 4 6 -1 .9886 -16-196 -20.316 -8.3284 2.1317 -5.8776 -6.2799 -8.3924 
4 4 9 6 -1.9838 -16.208 -20.331 -8.3452 2.1377 -5.8828 -6.2828 -8.4067 
4 4 14 6 -1 .9840 -16.206 -20.327 -8.3426 2.1367 -5.8808 -6-2804 -8.4029 
4 4 19 6 -1.9841 -16.205 -20.326 -8.3415 2.1363 -5.8800 -6.2795 -8.4015 

4 4 4 8 -1 .9886 -16.187 -20.303 -8.3155 2.1295 -5 .8654 -6.2657 -8.3761 
4 4 9 8 -1 .9834 -16.210 -20.332 -8.3453 2.1387 -5.8824 -6-2823 -8.4079 
4 4 14 8 -1.9838 -16.207 -20.329 -8.3440 2.1374 -5.8818 -6.2815 -8-4051 
4 4 19 8 -1-9840 -16.206 -20.327 -8.3426 2.1368 -5.8808 -6.2804 -8.4031 

4 6 4 6 -1.9935 -16.189 -20.310 -8.3134 2.1268 -5 .8806 -6.2905 -8.3868 
4 6 9 6 -1 .9884 -16.202 -20.325 -8.3306 2.1330 -5.8863 -6.2941 -8.4019 
4 6 14 6 -1.9885 -16.200 -20.321 -8 .3284 2.1322 -5.8845 -6.2919 -8.3986 
4 6 19 6 -1.9855 -16.199 -20.320 -8.3275 2.1319 -5.8838 -6 .2910 -8 .3974 

4 6 4 8 -1 .9929 -16.182 -20.298 -8.3024 2-1254 -5-8696 -6.2772 -8 .3728 
4 6 9 8 -1 .9880 -16.204 -20.326 -8.3309 2-1340 -5.8859 -6.2936 -8.4031 
4 6 14 8 -1.9883 -16.202 -20.323 -8.3297 2.1328 -5 .8854 -6.2930 -8 .4006 
4 6 19 8 -1.9884 -16.200 -20.321 -8.3285 2.1323 -5 .8846 -6 .2920 -8.3988 

4 8 4 8 -1 .9929 -16.182 -20.298 -8 .3024 2.1254 -5.8696 -6.2772 -8"3728 
4 8 9 8 -1 .9880 -16.204 -20.326 -8.3309 2.1340 -5.8860 -6.2937 -8 .4032 
4 8 14 8 -1.9883 -16.202 -20.323 -8.3297 2.1328 -5.8854 -6 .2930 -8.4007 
4 8 19 8 -1.9884 -16.200 -20.321 -8.3285 2.1323 -5 .8846 -6.2920 -8.3989 
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TABLE 6--(continued) 

A, 0 4 ,  A, " ra n M N Oll O12 0~1 0;2 

9 2 9 2 -1.2419 -15.950 -19.138 -9-5696 1.9332 -5-1624 -5.0659 -7.3735 
9 2 14 2 -1"2429 -15.938 -19.126 -9.5601 1.9311 -5.1573 -5.0601 -7.3650 
9 2 19 2 -1.2426 -15.941 -19.129 -9.5625 1.9317 -5.1585 -5.0615 -7.3671 

9 2 9 4 -1.1379 -15.998 -19.128 -9.7635 1.9904 -5.0986 -4.9264 -7.4075 
9 2 14 4 -1.1355 -15.980 -19.103 -9.7545 1.9869 -5.0901 -4.9160 -7.3939 
9 2 19 4 -1.1359 -15.984 -19.108 -9.7567 1.9878 -5.0918 -4.9181 -7.3969 

9 2 9 6 -1.1413 -16"006 -19"141 -9"7637 1.9920 -5.1028 -4.9320 -7"4133 
9 2 14 6 -1.1360 -15"982 -19.106 -9"7550 1.9873 -5.0911 -4.9173 -7"3953 
9 2 19 6 -1.1365 -15-986 -19.111 -9"7568 1"9882 -5"0927 -4.9192 -7"3983 

9 2 9 8 -1-1433 -16"010 -19.149 -9"7634 1-9938 -5.1046 -4"9339 -7"4170 
9 2 14 8 -1.1367 -15"983 -19.109 -9"7552 1.9877 -5.0921 -4.9185 -7"3967 
9 2 19 8 -1"1373 -15"987 -19.114 -9.7568 1.9885 -5.0937 -4.9205 -7.3996 

9 4 9 4 -2.0062 -16"200 -20"327 -8.3118 2.1204 -5"8855 -6.2962 -8"3944 
9 4 14 4 -2.0091 -16"184 -20-310 -8.2965 2-1165 -5.8790 -6-2889 -8.3802 
9 4 19 4 -2-0084 -16"188 -20"313 -8-2998 2-1173 -5"8802 -6.2902 -8.3831 

9 4 9 6 -2.0050 -16.207 -20.337 -8.3187 2.1236 -5-8886 -6.2991 -8.4031 
9 4 14 6 -2.0080 -16.187 -20.313 -8.3006 2-1180 -5.8793 -6.2880 -8.3835 
9 4 19 6 -2.0074 -16.190 -20.316 -8.3035 2.1188 -5.8803 -6.2892 -8.3860 

9 4 9 8 -2.0047 -16.211 -20.341 -8.3198 2.1253 -5.8894 -6.3003 -8.4068 
9 4 14 8 -2.0078 -16-188 -20.315 -8.3020 2.1187 -5.8803 -6.2892 -8.3856 
9 4 19 8 -2.0073 -16.192 -20.319 -8.3048 2.1194 -5.8814 -6.2905 -8.3882 

9 6 9 6 -2.0099 -16.201 -20.331 -8.3038 2.1187 -5.8921 -6.3103 -8.3980 
9 6 14 6 -2-0126 -16.181 -20.307 -8.2863 2.1135 -5.8831 -6.2997 -8.3793 
9 6 19 6 -2.0120 -16.184 -20.311 -8.2893 2.1143 -5.8842 -6.3008 -8.3819 

9 6 9 8 -2.0097 -16.205 -20.336 -8.3050 2.1205 -5.8928 -6.3113 -8.4016 
9 6 14 8 -2.0125 -16.182 -20.309 -8.2876 2.1142 -5.8840 -6.3007 -8.3813 
9 6 19 8 -2.0119 -16.186 -20.313 -8.2905 2.1149 -5.8852 -6.3021 -8.3839 

9 8 9 8 -2.0097 -16.205 -20.336 -8.3051 2-1205 -5-8929 -6-3114 -8.4017 
9 8 14 8 -2.0125 -16.182 -20.309 -8.2876 2.1142 -5.8841 -6.3008 -8.3813 
9 8 19 8 -2.0119 -16.186 -20.313 -8.2905 2.1149 -5"8852 -6.3021 -8.3840 

14 2 14 2 -1.2429 -15.938 -19.126 -9.5601 1.9311 -5.1573 -5.0601 -7.3650 
14 2 19 2 -1.2429 -15.938 -19.126 -9.5601 1-9312 -5.1573 -5.0601 -7-3650 

14 2 14 4 -1.1355 -15.980 -19.103 -9.7545 1.9869 -5.0901 -4-9160 -7.3939 
14 2 19 4 -1.1354 -15.980 -19.102 -9.7544 1.9869 -5.0899 -4.9157 -7.3937 

14 2 14 6 -1.1360 -15.982 -19.106 -9.7550 1.9873 -5.0911 -4.9173 -7.3953 
14 2 19 6 -1.1356 -15.980 -19.103 -9.7547 1.9871 -5.0903 -4.9162 -7.3944 

14 2 14 8 -1.1367 -15.983 -19.109 -9.7552 1.9877 -5-0921 -4.9185 -7.3967 
14 2 19 8 -1.1360 -15.981 -19.105 -9.7549 1.9873 -5.0910 -4.9171 -7.3952 
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TABLE 6--(concluded) 

14 4 14 4 -2.0091 -16.184 -20.310 -8.2965 2.1165 -5.8789 -6.2889 -8.3803 
14 4 19 4 -2.0091 -16-184 -20.309 -8.2963 2.1164 -5.8788 -6.2887 -8.3799 

14 4 14 6 -2.0080 -16.187 -20.313 -8.3007 2.1181 -5-8793 -6.2880 -8.3835 
14 4 19 6 -2.0081 -16.186 -20-312 -8.2997 2-1177 -5.8785 -6.2871 -8.3821 

14 4 14 8 -2.0078 -16.188 -20.315 -8.3021 2.1188 -5-8803 -6.2892 -8.3857 
14 4 19 8 -2.0079 -16.187 -20.313 -8.3008 2.1181 -5.8793 -6.2880 -8.3837 

14 6 14 6 -2.0126 -16.181 -20.307 -8.2864 2.1135 -5.8831 -6.2997 -8.3794 
14 6 19 6 -2.0126 -16.180 -20.306 -8.2855 2.1133 -5.8824 -6.2988 -8.3781 

14 6 14 8 -2.0124 -16.182 -20.309 -8.2877 2.1142 -5.8840 -6.3007 -8.3814 
14 6 19 8 -2.0125 -16.181 -20.307 -8.2865 2.1137 -5.8832 -6.2997 -8.3796 

14 8 14 8 -2.0124 -16.182 -20.309 -8.2877 2.1142 -5.8840 -6.3008 -8.3814 
14 8 19 8 -2.0125 -16.181 -20.307 -8.2865 2-1137 -5.8832 -6.2997 -8.3796 

19 2 19 2 -1.2426 -15.941 -19.129 -9.5625 1.9317 -5.1585 -5-0615 -7.3671 
19 2 19 4 -1.1358 -15.984 -19.108 -9.7567 1.9878 -5.0918 -4.9181 -7.3969 
19 2 19 6 -1.1365 -15.986 -19.111 -9.7568 1.9882 -5.0927 -4.9192 -7.3938 
19 2 19 8 -1.1373 -15.987 -19.114 -9-7569 1.9885 -5.0937 -4.9205 -7.3996 

19 4 19 4 -2.0084 -16.188 -20.313 -8.2998 2.1173 -5.8802 -6.2902 -8-3831 
19 4 19 6 -2.0074 -16.190 -20.316 -8.3035 2.1189 -5.8803 -6.2892 -8.3860 
19 4 19 8 -2.0072 -16.192 -20.319 -8.3049 2.1195 -5.8814 -6.2905 -8.3882 

19 6 19 6 -2.0119 -16.184 -20.311 -8.2893 2.1144 -5.8814 -6.3008 -8-3820 
19 6 19 8 -2.0118 -16.186 -20.313 -8.2906 2.1149 -5.8852 -6.3021 -8-3840 

19 8 19 8 -2.0118 -16.186 -20.313 -8.2906 2.1149 -5-8852 -6.3021 -8.3840 
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TABLE 7 

N m e r i c a l  Values of Percentage Differences eo, i = 1, 2; j = 1, 2, for a Rectangular Wing of Aspect Ratio 2 

m n M N El l  El2 E21 E22 

4 2 4 2 5-0 
19 2 19 8 4.6 

4 4 4 4 0.022 
4 4 19 8 0-012 
9 4 9 4 0"016 
9 4 19 8 0.007 

14 4 14 4 0.017 
14 4 19 8 0.009 
19 4 19 4 0.010 
19 4 19 8 0.006 

4 6 4 6 0.019 
4 6 19 8 0.015 
9 6 9 6 0.026 
9 6 19 8 0.000 

14 6 14 6 0.012 
14 6 19 8 0.010 
19 6 19 6 0.002 
19 6 19 8 0.000 

4 8 4 8 0.013 
4 8 19 8 0.015 
9 8 9 8 0-034 
9 8 19 8 0.000 

14 8 14 8 0.009 
14 8 19 8 0-011 

7.3 
6.8 

0.023 
0.014 
0-024 
0.011 
0.020 
0.010 
0"014 
0.010 

0.019 
0.017 
0.028 
0.002 
0.013 
0.013 
0.002 
0.002 

0.011 
0.017 
0.036 
0.000 
0.011 
0-013 

14"3 
13"3 

0.054 
0.036 
0"017 
0-022 
0.043 
0-029 
0.034 
0.020 

0"031 
0.025 
0.035 
0.000 
0.017 
0.014 
0.004 
0.000 

0.023 
0.025 
0.049 
0.000 
0.014 
0.015 

16"9 
16"0 

0.071 
0"055 
0.031 
0-034 
0"058 
0.047 
0"050 
0.033 

0.035 
0.029 
0-038 
0.000 
0-019 
0.019 
0.005 
0.000 

0.021 
0.-29 
0.051 
0.000 
0.015 
0.019 
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T A B L E  8 

Numerical Values o[ Percentage Differences e o, i = 1, 2; j = 1, 2, for a Rectangu|ar Wing of Aspect  Ratio 8 

m n M N Ell  El2 E21 E22 

4 2 4 2 5.0 
19 2 19 8 5"5 

4 4 4 4 0.14 
4 4 19 8 0.21 
9 4 9 4 0 '09 
9 4 19 8 0"05 

14 4 14 4 0.02 
14 4 19 8 0.03 
19 4 19 4 0.02 
19 4 19 8 0"05 

4 6 4 6 0.11 
4 6 19 8 0.17 
9 6 9 6 0.09 
9 6 19 8 0.001 

14 6 14 6 0.031 
14 6 19 8 0.031 
19 6 19 6 0.012 
19 6 19 8 0.000 

4 8 4 8 0.12 
4 8 19 8 0.17 
9 8 9 8 0.12 
9 8 19 8 0.001 

14 8 14 8 0-024 
14 8 19 8 0.031 

8.0 
8.6 

0"17 
0"25 
0"12 
0"07 
0"03 
0"05 
0.04 
0"07 

0"11 
0"18 
0"10 
0.001 
0"033 
0"033 
0.011 
0.000 

0"09 
0"18 
0.12 
0"001 
0"023 
0"033 

12"0 
12"8 

0"23 
0"36 
0"09 
0"09 
0"10 
0.11 
0"09 
0"09 

0"20 
0"28 
0"13 
0"000 
0"040 
0"037 
0.061 
0"000 

0"30 
0"28 
0"15 
0"000 
0.022 
0"037 

15"4 
16-1 

0.18 
0"28 
0"11 
0"12 
0"13 
0.14 
0"11 
0"12 

0"11 
0"17 
0"16 
0"001 
0.049 
0"048 
0"023 
0"000 

0"26 
0-17 
0"19 
0"000 
0"028 
0"048 
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