
t,.e) 

d 
z 

R & M No.3816 

P R O C U R E M E N T  EXECUTIVE,  MINISTRY 

Aeronautical  Research Council  

Reports and Memoranda 

OF D E F E N C E  

STRENGTH AND ELASTIC RESPONSE 

OF SYMMETRIC ANGLE-PLY 

CARBON FIBRE R E I N F O R C E D  PLASTICS 

by 

M.B. Snell 

,b 

London" Her Majesty's Stationery Office 

1978 

PRICE £5 NET 



STRENGTH AND ELASTIC RESPONSE OF SYMMETRIC ANGLE-PLY CARBON FIBRE 

REINFORCED PLASTICS 

by M.B. Snell 

Structures Department, RAE Farnborough 

Reports and Memoranda No.3816" 

July 1976 

SUMMARY 

Comparisons between experimentally determined strengths and the theoretical 

predictions using four simple failure criteria are presented for symmetric 

angle-ply carbon fibre reinforced plastics laminates under tensile and compressive 

loads. The effects of non-linearity and failing strain are considered, and a 

correlation is given between the non-linear behaviour of unidirectional material 

subjected to shear and the non-linear elastic response of balanced angle-ply 

test specimens under tension. 

* Replaces RAE Technical Report 76091 - ARC 37230 
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I INTRODU CT ION 

The weight-savings obtainable from the use of carbon fibre reinforced 

plastics (CFRP) combined with a longer-term potential for reducing manufacturing 

and in-service costs have prompted UK and USA aircraft manufacturers to consider 

its use in significant quantities both in current aircraft and in future projects. 

In the General Dynamics YF;6, for example, extensive use in the empennage of CFRP 

laminated skins yields weight savings over traditional materials of 30%. 

The stiffness of multi-directional CFRP laminates is adequately determined 
I 

using lamination theory and it is relatively straightforward to design a 

laminate having the best required combination of Young's moduli, shear modulus 

and PoissonVs ratios. In contrast, strength estimation for multi-directional 

CFRP laminates has hitherto been largely uncertain, although the recent use of 

various failure criteria has yielded reasonable agreement with experimental data 

for the strength of other composites, particularly glass/epoxy 2. The shapes of 

the stress/strain curves and consequent strains to failure are also largely 

unknown for CFRP angle-ply laminates. 

Several theories which predict failure of orthotropic material have been 
3-5 

recently proposed3-8; some are generalisations of the Von Mises distortional 

energy criterion, extended to allow for both orthotropy and different strengths 

in tension and compression, while others 6'7 are simple statements that the 

material will fail when the limiting stress or strain in any of the natural 

co-ordinate directions is reached. This Report considers four of the more 

relevant failure criteria and their application to CFRP laminates in angle-ply 

form. A comparison is made between the four theories and experimental strength 

data from tensile and compressive tests on CFRP balanced angle-ply laminates. 

Also reported is a correlation between elastic non-linearity of angle-ply test 

coupons in tension and the non-linearity which exists in the elastic response of 

unidirectional material under shear stress, and angle-ply elasticity equations 

are derived which relate the two. The variation of strain-to-failure with 

orientation for angle-ply laminates is given and a discussion deals with possible 

reasons for differences between the theoretically predicted values and the 

observed strengths of angle-ply laminates in which the ply orientations relative 

to the direction of the applied load are small. 



2 FAILURE THEORIES 

2.1 Quadratic interaction formulae 

2.1.1 The Hill/Tsai criterion 

An isotropic medium reinforced with straight unidirectionally-aligned 

fibres can be considered to possess isotropy of stiffness and strength about an 

axis parallel with the fibres. Azzi and Tsai 4 used this fact in deriving a 
8 

reduced form of Hill's 'plastic potential' , proposed in 1948 to predict the 

yield stress in anisotropic metals° The reduced form, known as the Hill/Tsai 

criterion, is expressed as 

2 2 2 2 
(O~ - O102)/F~ + o2/F 2 + o3/F 3 = 1 (I) 

where subscript 1 refers to directions parallel to the fibres, 

subscript 2 refers to directions normal to the fibres, but in the plane 
of the laminate, 

subscript 3 refers to shear in directions parallel to the fibres, F|, 2 

are the breaking strengths, and are either tensile or compressive 
according to the stress quadrant 

and F 3 is the breaking strength in shear. 

Equation (I) represents an ellipsoidal fracture surface in o I , o 2 , o 3 space, 

composed of four quarter ellipsoids disposed about the 03 axis. Sections 

parallel to the o I , 02 plane appear as four quarter ellipses coincident at 

their points of intersection with the o I and 02 axes but with discontinuous 

slope at these points. Representation in two axes is obtained by considering 

(o3/F3)2 term as a parameter the sole effect of which is to scale the the 

fracture ellipse so obtained. When the shear stress on the material, 03 , 

equals the fracture shear stress, F 3 , the ellipse is reduced to a single point 

at the origin, indicating failure by shear with no other stress components 

present. At values of 03 < F 3 , the theory allows additional stresses °l and 

°2 ' up to the ordinate and abscissa of the chosen point on the scaled fracture 

ellipse quadrant, before failure occurs. Thus any point inside the region 

enclosed by the fracture ellipse represents an allowable stress state and any 

point on or outside the bounding line represents failure of the material. An 

example of this criterion, applied to a high strength (HT-S) unidirectional 

CFRP laminate, is given in Fig. 1. 
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2.1.2 The Hoffman criterion 

Another modification to Hill's failure surface was proposed by Hoffman 3 in 

1967. To cater for the possibility of different strengths in tension and com- 

pression, Hoffman included linear terms in o I and o 2 . This gives a con- 

tinuous fracture surface with no discontinuity in slope at the axis intersections. 

For plane stress and transverse isotropy as before, Hoffman's criterion is 

Al(o~ - oio2) + A2o22 + A3Ol + A4o2 + A5o~ = 1 (2) 

-I 
where A1 = __(FITFIc) 

-! 
A2 = __(F2TF2c) 

A3 = (FIC - FIT)/(F]cF]T ) , 

A4 = (F2c - F2T)/(F2cF2T ) 

A5 = F 

subscripts T and C indicating tension and compression respectively. With 

no shear stress present (i.e. a 3 = 0), and for the same unidirectional material 

as before, this continuous ellipse is shown on Fig.]. 

2.2 Stress and strain limit theories 

2.2.1 Theory of maximum strain 

In the theory of maximum strain it is simply postulated that a material 

will fail when certain limiting values of strain are reached independent of the 

stress existing in the failure plane. This strain could arise due to mechanical 

or thermal effects. For most CFRP composites, however, little overall thermal 

strain will be expected and for convenience only mechanical strains are con- 

sidered here. 

The strain limits are obtained from uniaxial tests in the longitudinal 

(fibre) and transverse directions and from shear tests. These limits can then 

be applied under complex loading situations when the direct and Polsson's strains 

summate to give the total natural co-ordinate strains. Since the criterion is a 

simple statement that failure will occur when any of the natural co-ordinate 

strains reaches its limiting value, it can be written as 
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e = e 
1 I f  , 

e 2 = e2f 

and e 3 = e3f , 

(3) 

where subscript f indicates failure. The values of eif , i = l, 2, 3, may 

be obtained from uniaxial tensile, compressive and shear tests and, if linear 

stress/strain behaviour is assumed, the criterion may be written as 

eif = F./E. . (4) 
l l 

For a linearly elastic material equation (3) can be expressed in terms of 

stresses, enabling the failure envelope to be compared with the other criteria 

on the same graph. The familiar two-dimensional stress/strain equations are 

and 

~1 v12 
= 0 2 el  E l E 1 

Vl2 02 
= -- - - ~  + -- 

e2 E l 1 E 2 

(5) 

Substituting equation (3) in equation (5) gives 

and 

° l Vl2 
elf - E1 E 2 02 

~|2 02 
e2f - E| o| + E-~ 

and substituting equation (4) in the above result yields 

(6) 

and 

°l = FI + ~12°2 

E 2 
02 = F2 + ~|2 ~ o! 1 (7) 



Equation (7), which is independent of o 3 , gives two pairs of parallel lines 

which intersect to give a stress boundary in the o! , o 2 plane; this is shown 

in Fig.! for unidirectional material. 

2.2.2 Theory of maximum stress 

As might be expected, it is assumed in the theory of maximum stress that 

failure occurs when any component of the natural co-ordinate stresses reaches its 

limiting value. Although for a single ply this is likely to be catastrophic, for 

multi-directional laminates failure in the transverse direction can occur without 

overall collapse. The criterion is expressed as 

o I = F I , 

o 2 = F 2 (8) 

and 

o 3 = F 3 • 

Using the appropriate tensile or compressive strengths for unidirectional 

material, equation (8) is plotted on Fig. l, giving a rectangular figure with no 

interaction between the stresses and which is independent of shear stress, o 3 . 

2.3 Comparison of failure theories 

The four theories as applied to a high strength (HT-S) unidirectional 

laminate have been plotted on Fig. l for zero shear stress. For the two quad- 

ratic interaction formulae, the effect of the shear stress term, o3/F 3 , is to 

reduce the size of the ellipse while maintaining its shape. Ultimately the 

failure surface becomes a point at the origin, indicating failure by shear. 

These criteria are therefore of the distortional energy type where all deforma- 

tions causing a distortion of the material, but not those causing a shape- 

maintaining expansion or contraction, are considered to contribute to the total 

strain energy of failure. 

By contrast, the two limit criteria express no interaction between the 

direct and shear stresses and strains. They imply that the direct and shear 

failure stresses can each be approached independently with no loss of strength 

due to the presence of the other. In addition, the maximum stress theory 

expresses no interaction between the direct stresses, implying that the two com- 

ponents of direct stress can be increased to failure independently and without 

either mutual increase or reduction. The maximum strain theory indicates that 



direct stress interaction can either increase the failing stress when Poisson's 

strains tend to a mutual total strain reduction, or reduce it when they cause a 

mutual increase. 

In Fig.l it can be seen that, for a typical high strength (HT-S) composite, 

there are quite large differences in the failure envelopes predicted by the four 

criteria in all four quadrants. It is, of course, possible that no one theory 

adequately describes the strength of CFRP laminates under combined stresses. An 

experimental programme was therefore carried out to measure the strengths of 

balanced angle-ply CFRP laminates in tension and compression and to compare them 

with the strengths derived using the four failure criteria. 

3 APPLICATION OF FAILURE THEORIES TO CFRP 

3.1 Method of application 

The strength of multi-ply laminates using the four failure criteria can be 

determined only from a knowledge of the failure surface for a single ply under 

stresses acting in its natural co-ordinate directions. Hence it is necessary to 

find the stresses acting on each ply from a knowledge of its orientation and 

thickness and of the in-plane laminate loading; if bending stresses are present, 

a knowledge of ply positions will be required also. Lamination theory (LT) is 

used to find the laminate compliance matrix, [C] , from which the laminate 

strains due to a known set of loads can be found using the equation 

{e 0} = [C] {N} (9) 

where {e O} is the column matrix of mid-plane strain components 

and {N} is the column matrix of stress resultants. 

The mid-plane strain, arising from a set of stress resultants in the same ratio 

as the applied loads but at a level known not to cause failure, is found using 

equation (9). The strain in each ply natural co-ordinate direction is then found 

using the transformation 

{yn } = T{y} c (I0) 

where {y} is the column matrix of tensorial strain components, 

subscript n indicates natural co-ordinate direction of the ply, 

subscript c indicates laminate reference co-ordinates, 

IT] is the transformation matrix. 
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1 
n 2mn 

2 2 
m - 2mn 

2 
L-mn mn m - n 

where m = cos 8 

n = sin 8 and 8 is the angle of orientation of the ply. 

The natural co-ordinate ply stresses are then found using the equation 

{o} = [Q] {e} ( 1 1 )  
n c 

where {o} 
n 

and [Q] 

is the column matrix of natural co-ordinate stresses 

is the orthotropic Hooke's law matrix for the ply. 

The amplitude at failure of the known ratio of the three stress components 

can now be predicted for the individual ply using the four failure criteria. 

Under the combined stress system in which 

~2 = ~I ] 

and I (12) 
~3 = 8~I ' 

the Hill/Tsai criterion (equation (1)) can be solved for o]f , the maximum 

allowable level of this stress component, to give 

_i 

I ~ 
°If = 2 + ~ + " (13) 

F i F 2 

The other two stress components at failure, o2f and o3f are then obtained 

from equation (12) and the laminate failure loads are found using 

{N}f = p{N} (]4) 

where subscript f indicates failure and p = Olf/~ ] Hoffman's criterion, 

equation (2), is used in the same way. The maximum strain criterion is used by 

first finding the smallest of the three ratios 



I0 

qi = eif/ei ' 

and then obtaining the failure load from 

i = I, 2, 3 , (15) 

{N}f = qi{N} (16) 

where qi is the smallest of the three ratios in equation (15). Similarly, the 

maximum stress theory is used to find the smallest of the three stress ratios and 

hence the failure load. Subroutines for each of the four criteria were pro- 

grammed in FORTRAN and were used with the lamination theory program 2 to predict 

the laminate strengths. The complete strength prediction program is given in 

Sheets 1-10 at the end of the main text. 

For the case of balanced laminates with plies at several orientations, (i.e. 

±81 ' ±e2 etc.) the natural co-ordinate stress and predicted failure load must 

be found for a single ply at each orientation. Plies at +O and -8 have 

the same direct stress but shear stresses of opposite sign and therefore it is 

necessary only to predict strength from the ply with the +re orientation. For 

example, a laminate consisting of balanced groups of plies at ±e 0 ° 
l ' , ±@ 2 

would be analysed by considering the failure loads of +e 0 ° and l ' +82 plies 

only. In such cases it would usually be found that the plies in a single orienta- 

tion will fail before the others. Assumptions must then be made as to the effect 

of the failed group of plies on the strength of the laminate as a whole. In this 

Report only simple angle-ply laminates are considered in detail (i.e. ±8 only) 

and the laminate failure load is determined from the failure of any one ply. 

3.2 Theoretical strength curves 

The four theories were first used to predict the compressive strength of 

high modulus (HM-S) angle-ply laminates using strength and stiffness data for 

uni-directional material obtained from the 0 °, 90 ° and _+45 ° strength results of 

the present series of compression tests and a previously measured value of in- 

plane transverse tensile strength of 50MN/m 2, and curves were prepared which show 

the variation of compressive strength with orientation (see Fig.2). Similar 

curves were drawn to predict tensile strength of high strength (HT-S) angle-ply 

laminates (see Fig.7). As can be seen, the differences in the predicted 

strengths from the four theories are large, especially in the region between ±10 ° 

and ±35 ° . Furthermore, in the region between ±20 ° and ±40 ° where there is con- 

siderable shear acting, the differences between the quadratic interaction 
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formulae and the limit theories are greatly accentuated since the latter take no 

account of the effect of shear stress on failure. This was effectively demon- 

strated by running the Hill/Tsai subroutine with the shear interaction term 

deleted which, between ±25 ° and ±35 ° , gave results close to those of the maximum 

strain theory. 

In addition to the predictions of failure load, the two limit theories 

indicate the modes of failure. On Fig.3, which shows the variation of compres- 

sive strength with orientation according to the maximum strain theory, four dis- 

tinct modes of failure can be identified. Mode ! is compressive failure in the 

fibre directions which, perhaps surprisingly, is replaced at orientations of 

around 15 ° by a second mode indicating failure due to transverse tension; this is 

principally a result of the very high Poisson's ratio (>1.5) which exists between 

i]5 ° and ±35 ° for this particular material. Mode 3, between ±35 ° and ±75 ° , 

indicates shear failure and is succeeded by a fourth mode, transverse compression. 

In practice it is possible to identify only three separate modes from examination 

of the failure surfaces, since modes 2 and 3 are difficult to differentiate. 

The two interaction formulae can give only the distinction between a shear 

and a non-shear failure and give continuous curves rather than mode segments. 

4 EXPERIMENTAL COMPARISON 

4.1 Material fabrication 

The laminated boards were made from pre-impregnated sheets, nominally 

0.25mm cured thickness at 0.6 fibre volume fraction, supplied by Rotorway 

Components Ltd. The resin system used was ERLA46|7/DDM. Both high modulus 

(HM-S) and high strength (HT-S) laminates were fabricated using a method similar 

to that used by Collings and Ewins 9 and were cured between the heated plattens 

of an hydraulic press to a thickness close to that required for a fibre volume 

fraction of 0.6. The high modulus (HM-S) laminates were of 2mm nominal thickness 

and were made at 15 ° intervals from 0 ° to 90 ° with the balanced stacking sequence 

+e, -e, +e, -e, -e, +e, -e, +e The high strength (HT-S) laminates were made at 

5 ° intervals from 0 ° to 50 ° and also at 90 ° and were of Imm thickness and laid 

in the sequence +e, -e, -e, +e . 

4.2 Specimen design 

4.2.] Tensile specimens 

In tensile testing, the main requirements are a uniform stress field in the 

specimen gauge length, elimination of bending strains and the minimisation of the 
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three-dimensional edge effects I0 which occur in angle-ply specimens. Specimens 

were therefore chosen to be long enough to ensure a uniform stress field 

according to St. VenantVs principle; this also reduced the effect of any bending 

strains induced by the testing apparatus. Sufficient width is required in order 

that edge effects, extending inwards for approximately one specimen thickness, 

become an insignificant proportion of the stress field in the failure region. 

A minimum width of 20mm was considered adequate for the thickness of Imm. To 

allow full freedom of action for modes of failure involving shear displacements, 

some of the specimens had freely pinned ends and were loaded by steel links. 

This also eliminated any possible bending in the width. 

Failure was limited to the specimen centre by symmetrically grinding a 

waisted profile using a 200mm diameter grinding wheel. The basic strip width 

of 30mm was reduced to 20mm over a gauge length of 20mm. The tensile specimen 

geometry is illustrated in Fig.4. 

4.2.2 Compressive specimens 

In addition to the requirements for the tensile testing of coupon specimens 

given in section 4.2.1, compressive strength testing introduces the problem of 

instability which must be eliminated by the choice of a suitable specimen° For 

maximum resistance to overall buckling, encastr~ type end fittings were used, 

which effectively prevented any end rotation. The criterion used for buckling 

was the Euler equation factored by 0.9 (a 10% reduction) to allow adequately for 

transverse shear flexibility. The factored Euler equation is 

~t 3 
where I = 

12 ' 

is the coupon width, 

t is the coupon thickness 

and 

p = 3.6~2E~I (17) 
c ~2 

is the length between the end fittings. 

The variation in modulus (E X) with orientation made it necessary to reduce the 

length from 30nm at 0 ° to 5mm at ±90 ° orientation according to equation (A7). 

the failure position was controlled by sy~m~etrically grinding a circular arc 

profile which reduced the width by 5mm to 15mm. For each specimen length the arc 

radius was chosen so that the profile occupied a distance slightly greater than 

the built-in length. The compressive specimens are illustrated on Fig.4. 
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4.3 Testing and results 

4.3.1 Instrumentation and test facilities 

The complete load/strain history for the tensile specimens was plotted 

during the tests using an X-Y recorder. The strain-proportional input to the 

recorder was derived from the out-of-balance signal from a slngly-active 

Wheatstone bridge circuit with a foil strain gauge as the active element. The 

load-proportlonal input was obtained from an integral potentiometer, the wiper 

arm of which was connected to the load indicating needle of the mechanical test 

machine. Bridge excitation was 6V with a very low ripple component of <0.5mV 

peak-to-peak to eliminate oscillation of the X-axis pen. Input to the test 

machine potentiometer was I.SV. The mechanical tests were carried out on an 

Avery Universal Testing Machine of 100kN capacity. 

4.3.2 Test procedure and results 

The specimens were tested by steadily increasing the load up to failure 

over a period of about one minute. The load/strain curves recorded from the 

tensile tests were mostly smooth, although for some specimens small step-like 

irregularities in the curve were recorded due to the slower rate of response of 

the load sensor compared with that of the strain gauge. The modes of failure of 

all specimens were identified from visual examination of the failed surfaces. 

The test results are given in Tables ] and 2, and representative stress/strain 

curves are given in Figs.5 and 6. 

5 DISCUSSION 

5.1 Comparison of experimental and theoretical strength results 

Fig.3 gives the variation of compressive strength with orientation for 

balanced, high modulus (HM-S) angle-ply laminates at a nominal fibre volume 

fraction of 0.6. Agreement between experiment and theory is best for the maximum 

strain theory, with the interaction formulae underestimating the strength at 

orientations up to ±40 °. Exact agreement between experiment and all theories at 

0 ° and 90 ° is obtained since the experimental results at these orientations are 

used as input data to predict the strength at all other orientations. At ±45 ° , 

where strength is equal to twice the in-plane shear strength, agreement is also 

exact; the reasons for such agreement are dealt with more fully in section 5.3. 

The theoretical prediction of the four failure criteria for the tensile 

strength of high strength (HT-S) laminates is given in Fig.7 and the comparison 

between the maximum strain theory and experiment is given in Fig.8. Close 
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agreement cannot be demonstrated, except in the region of shear failures at 

around ±45 ° and of course at the end points (0 ° and 90o). However, some reasons 

why good agreement with the failure criteria was obtained from the compressive 

strength tests but not from the tensile strength tests can be suggested, which 

result from the practically available tensile specimens being of inadequate 

design (see section 5.2). Low strength values were obtained from the tensile 

specimens at small values of e because, at the high stress levels existing at 

failure, load was not transmitted adequately into the fibres. This was shown by 

the failure mode of these specimens which exhibited in-plane and interlaminar 

cracking without fibre failure° Load transfer from the test-machine wedge-grips 

into the specimen gauge length is by shear in the resin matrix and at the matrix/ 

fibre interface. This mechanism, compounded with edge effect, is inadequate to 

transmit the high loads required to fail the high strength (HT-S) fibres of the 

tensile specimens° By contrast the compressive specimens, being of high modulus 

(HM-S) fibres in which the fibres fail at about half the stress of the high 

strength (HT-S) fibres, require only half as much internal stress to achieve the 

fibre breaking loado Further, the load path for the low-orientation compressive 

specimens is principally through direct pressure on the fibre ends with a much 

reduced shear transfer requirement° The types of failure observed for these 

specimens indicate that the load transfer mechanism was adequate to achieve fibre 

failure° Agreement with a failure criteria based on single ply strength values 

was therefore possible and it was found that good agreement was obtained with 

the strengths and modes given by the maximum strain criterion. 

5.2 Tensile strength results, Tscissor action' and edge effect 

The measured tensile strength results are shown on FigoS, together with 

the theoretical prediction of the maximum strain theory, which was again found 

to give best agreement. No theory gave good agreement at small angles of 

orientation between ±5 ° and ±15 °, indeed at ±10 ° only about half of the pre- 

dicted value was achieved. Between ±20 ° and ±50 °, in a region largely of shear 

mode failures, agreement between the predicted modes and strengths and the 

measured results is good while at 90 ° agreement is of course exact, this being 

a value used in the prediction of the strength curve. 

Two reasons for the low strength results between +5 ° and ±15 ° _ can however 

be suggested, which, although they apply to both tensile and compressive 

specimens, are likely to be more significant for high strength (HT-S) laminates 

because of the higher internal stresses. When fibres are symmetrically angled 
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about the loading axis, the material becomes trellis-like in its structure and, 

under tensile load, rotations about the almost infinite number of intersections 

of fibres tend to cause a 'scissor action' type of twisting between the plies, 

so reducing the omientation angle. This is manifest in the very high Poisson's 

ratios of up to 2.0 which are predicted by lamination theory and are measured in 

practice. High transverse stresses and strains are inevitably induced which 

contribute to failure at relatively low laminate strain. Another cause of early 

failure may be the interlaminar stresses, Txz , Tyz and Oz (see Fig.9), 

which occur in the edge regions. The interlaminar shear stress in the edge 

region is reported I0 to rise rapidly with orientation and to have reached at 

least 75% of its maximum value (which occurs at ±35 ° ) in the region between ±15 ° 

and ±50 ° . Most of the failures at low orientation (i.e. < ±20 ° ) were of an 

indeterminate mode, but since considerable interlaminar separation and cracking 

were present it is probable that interlaminar stresses have adversely affected 

the measured strength. The edge effect would of course disappear in a specimen 

without free edges and the experimental tensile strength results between ±5 ° and 

±15 ° serve only as a lower bound to the true tensile strength of the material. 

Nevertheless the results are a useful indicator of the large reductions in 

strength which can result from the influence of a free edge. It was noticed that 

the failure stress of specimens twice the width of those described was slightly 

higher, indicating that edge effects were indeed affecting the results. The 

upper width limit, beyond which there is no further strength increase, is 

difficult to find in practice because of both the scale of specimen required to 

furnish sufficient aspect ratio for uniform stress and the sensitivity of such 

specimens to widthwise bending. In any case, the upper strength limit will still 

be influenced by edge effects and probably the only way to find the true strength 

is to use a specimen without free edges, such as a tube. 

5.3 Laminate stiffness, non-linearity and failure strain 

The strain gauging of the tensile specimens enabled a check to be made of 

the theoretical modulus using lamination theory for the various ply orientations 

and also gave the full stress/strain curves up to failure. The comparison 

between the theoretical and experimental moduli at low strain is given in Fig.10 

and the very good agreement is further evidence of the accuracy of the theory for 

small strains. Representative stress/strain curves given in Figs.5 and 6 show 

that from ±30 ° to ±45 ° non-linearity is marked and increasing. At high strain 

levels linear analyses are therefore inadequate to deal with laminates composed 

solely of plies at such orientations and deformations are always underestimated 
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for stresses above the linear region. The variation of the measured failure 

strain with orientation is given in Fig.ll, together with a possible theoretical 

comparison based on linear elasticity. As can be clearly seen, the non-linear 

effects greatly increase strains at failure and limit the application of the 

theory to the initial linear response. It was noticed that, for the four 

instances in which the load was released before failure took place, the non- 

linear curves were almost completely elastically recoverable with very little 

permanent strain. This indicates that the material is non-linearly elastic for 

the low strain rates considered and not visco-elastic as might be implied from 

the relatively high degree of non-linearity. It is possible that the non-linear 

effects are due to the non-linearity in shear and this is considered in detail 

in the following section. 

5.4 Correlation of an$1e-ply tensile and unidirectional in-plane shear response 

Earlier work 11 on unidirectional in-plane shear properties had indicated 

considerable shear stress non-linearity and, because of the high shear stress 

acting on planes parallel to the fibre directions of ±45 ° angle-ply tensile 

specimens, it was thought that the tensile and shear non-linearities might be 

directly connected. A theoretical analysis was carried out which enabled the 

complete tensile stress/strain curve to be plotted using unvarying values of 

El, E 2 and ~12 together with ordinates and abscissae from the experimentally 

derived non-linear shear stress/strain curve. A computer program, given in 

Appendix C, was written to calculate the results. Results identical to lamina- 

tion theory for the linear portion were obtained, providing a check on the angle- 

ply analysis. A summary of the more important results derived from the analysis 

follows, although the detailed derivations are given in the Appendix. 

For balanced angle-ply laminates the natural co-ordinate stresses can be 

expressed in terms of natural co-ordinate shear stress and strain by equations of 

the form 

o I = A1TI2  + A2YI2 

and I (18 )  

o 2 = B l r l 2  + B2Y12 , 

where the coefficients A! , A 2 etc. are functions both of the orthotropic para- 

meters El , E 2 and ~12 and of fourth order multiples of sin e and cos e 

(see the Appendix). On transforming equations (18) the laminate applied load 

becomes 
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= A7T + x 12 A8YI2 (19) 

The natural co-ordinate strains can be expressed as 

and 

e 1 = A3T12 + A4Y12 \ 

J e2 = B3TI2 + B4Y12 ' 

(20) 

and the laminate strain as 

= A5T + . (21) x 12 A6YI2 

Thus equations (19) and (21) can be used to predict the tensile stress/strain curve 

using the coefficients AI, A2, BI, B 3 etc., assumed constant and a measured 

shear stress/strain curve for unidirectional material. 

At e = 45 ° , the stresses cease to be functions of shear strain so that 

and 

which together yield 

2('o12E 2 + El)Z12 
= (22) 

°I E l + E 2 + 2~12E 2 

2E2(I + ~o12)T12 
= , (23) 

02 E l + E 2 + 2v12E 2 

= 2T (24) 
OX 12 

and 
2 

2(El - ~12E2 ) YI2 
= T + (25) 

Cx EI(E 1 + E 2 + 2~12E2) 12 2 

It is of considerable interest that the above equations can also be used to 

determine the initial value of G12 from the tensile test results. In the 

linear portion of the shear stress/strain curve, TI2 and YI2 are related by 

Strain transformation at 

GI2 = Tl2/Yl 2 • (26) 

6 = 45 ° results in 

YI2 = - ~ + c (27) x y 
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and since 

then 

= - v ~ (28) 
y xy x 

Y12 = ~x(1 + ~xy)  (29)  

Substituting equations (24) and (29) in equation (26) yields, 

x (3o) 
GI2 = ~ 2(1 + ~ ) 

x x y  

E 
x (31) or  G12 = 2(1 + ~ x y )  

It should be noted that this remarkable result, also obtained by a different 
12, 

route , although applicable throughout the whole elastic region, should only be 

used for the linear portion in the determination of the unvarying value of GI2 

(equation (26)). Equation (31)enables the in-plane shear modulus, G|2 , to be 

simply determined from a tensile test on a ±45 ° balanced specimen with two strain 

gauges attached for the determination of E and ~ . Although rough checks 
x xy 

of equation (31) using existing data have yielded reasonable agreement, rigorous 

experimental verification remains to be done. 

On the assumption that the three orthotropic parameters E l , E 2 and ~12 

do not vary with load (an assumption verified in practice), it is also possible 

to predict the tensile stress/strain curve for angle-ply laminates using the 

measured shear stress/strain curve for unidirectional material° This was done at 

0 = 35 ° using equations (19) and (21) and at 0 = 45 ° using equations (24) and 

(25) and the results are given in Fig.12. 

Throughout this analysis it has been assumed that the normal stress, ~2 ' 

and the parallel shear stress, TI2 , are independent. Although this is 

thought to be true as far as stiffness is concerned, evidence 13'14 exists which 

indicates that normal stress influences shear strength; compression tends to 

increase and tension to decrease the shear strength. The statement that in-plane 

shear strength, F12 , equals half the tensile strength, Fx ' at _+45 ° must 

therefore be qualified by the fact that normal tensile stress exists on the 

failure plane given by equation (23) as 

a 2 
0 .1  

z12 
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However this low percentage of normal tensile stress appears to have little 

effect on the shear strength |3 and it seems that the result, 

F|2 = F /2 , (32) 
X 

can be used to determine the in-plane shear strength of unidirectional material. 

5.5 Other associated results 

The accuracy of equation (31) in predicting the initial value of G12 

would be impaired if G12 were to be highly sensitive to changes in the 

independent variables. The degree of sensitivity was investigated by plotting 

equation (31) with E constant for a typical high strength (HT-S) angle-ply 
X 

laminate at ±45 ° . Fig.13 gives the result which shows that in the region of 

practical values of G12 , when 

varies between 5.3 and 4.7GN/m 2. 

be made if accurate values of G 

~xy varies between 0.7 and 0.9, G12 

Accurate measurements of v must therefore 
xy 

are to be derived. 12 

Further consideration of the complete curve shows that ~ decreases with 
xy 

G12 u n t i l ,  a t  Gi2 = 8"9GN/m2 ' ~xy = 0 ; f o r  g r e a t e r  v a l u e s  of  GI2 ' Uxy 

becomes negative. It is unlikely that these effects would ever be realised in 

practice, however, since the combination of high shear stiffness, high fibre 

stiffness and low transverse direct stiffness which is required would probably 

never be encountered. 

6 CONCLUDING REMARKS 

The variation of compressive and tensile strength with fibre orientation 

has been obtained both experimentally and theoretically for symmetric CFRP angle- 

ply laminates. It has been shown that, particularly in the case of tensile stress 

on high strength (HT-S) laminates, there is a large and theoretically unpredicted 

reduction in strength whenever the fibres are at small angles from the loading 

axis. The reason for using angle ply construction is to increase the shear and 

transverse stiffness and strength, but in so doing there is a large sacrifice in 

longitudinal strength. A better type of construction might be to use a propor- 

tion of fibres in the two principal loading directions to carry the direct loads, 

and a proportion of syrmnetric layers at ±45 ° to carry shear loads. 

It has also been shown that non-linearity and failure strain increase with 

orientation up to ±40 ° where they are a maximum and thereafter decrease, the 

response becoming linear at angles greater than about ±50 °. 
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Shear and tensile effects have been related, and a simple method of 

determining the shear modulus, GI2 , has been given. The correlation between 

the direct stress on symmetric angle-ply laminates with ply orientations of ±45 ° 

and the unidirectional shear stress should prove useful in shear property 

characterisation. 

Acknowledgments" 

Thanks are due to my colleagues, Dr. P. Bartholomew for assistance with the 

angle-ply equations and Mr. D. Purslow for the use of his shear data. 



A.I 

Appendix 

DERIVATION OF ANGLE-PLY ELASTICITY EQUATIONS 

Equilibrium 

Referring to Fig.9, the following equilibrium equations apply 

21 

a 2 2 
Ox = Cl cos e + ~2 sin 8 + 2T12 sin 8 cos 8 (A-I) 

a 2 2 
Oy = oi sin e + 0 2 cos e - 2T12 sin e cos 8 (A-2) 

a 
T = -- O 
xy I 

12(cos 2 . 2 sin e cos 8 + o 2 sin 8 cos e + T 8 - szn e) (A-3) 

where superscript a applies to the +8 ply direction. 

For the -e ply direction (superscript b), 

b 2 2 
o x = o I cos 8 + o 2 sin e + 2T12 sin 8 cos e , (A-4) 

and 

2 sin 8 cos 8 (A-5) b = o! sin 2 e + o 2 cos e - 2T|2 Oy 

b 
Txy = o I sin e cos e - o_z sin O cos 8 - T__I2 (c°s2 e - sin 2 O) (A-6) Q 

Adding equations (A-I) and (A-4) gives the relationship between the applied load 

and the ply internal stresses, 

2 2 
Ox = o I cos 8 + o 2 sin 8 + 2T12 sin 0 cos 8 , (A-7) 

and 

• 2 2 
Oy = Ol sln 8 + o 2 cos 8 - 2T12 sin 8 cos 8 = 0 (A-8) 

o = 0 . (A-9) 
xy 

A. 2 Compatibility 

Because there is an equal number of plies at -8 ° as at +e ° , shear 

strain Yxy is eliminated and so 

This leads to 

~xy 0 . 

2 
2 sin e cos e (- ¢I + ~2 ) + (c°s2 e - sin 8)yl 2 = 0 

(A- ] O) 

(A-] ]) 
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A.3 Elasticity 

The orthotropic elasticity equations, relating the natural co-ordinate 

stresses and strains, can be expressed as 

and 

° 1 ~21°2 
~1 - El E2 (A-12) 

~2 ~12~i  
- • (A-] 3) e2 E 2 E 1 

A. 4 Derivation 

Substitution of equations (A-12) and (A-13) in equation (A-f1) results in 

- 2/E I(I + vI2)OlSC + 2(v12/E 1 + I/E2)62S C = _ Yl2(C 2 _ S 2) (A-14) 

where S and C are abbreviations for sin e 

together with equation (A-8), enables ~I and 

TI2 and YI2 ' the results for which are 

and cos O . This equation, 

~2 to be expressed in terms of 

2SC~12 
o I = + 

(i  + ~ 1 2 ) E 2 c 2 +  S 2 

~12E2 + E 1 

By setting 

C2(C 2 _ $2)Y12 

2(1 + Vl2) I~12E2 + EI_~ 
El SC 3 + 2 EIE2 - $3C 

(A-15) 

E2(I + v12 ) 

~12E2 + E l 
= A , 

and 

'o 1 2E2 + E 

EIE 2 

1 + , o 1 2  

E l 

1 
= B 

= D , 
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equation (A-15) becomes 

~I = 

2SCT12 

AC 2 + S 2 

C2(C 2 _ $2)Y12 
+ 

2DSC 3 + 2BS3C 
(A-I 6) 

and further abbreviation yields 

~1 = AIT12 + A2YI2 (A-17) 

where A; = 

and A 2 = 

2SC 

AC 2 + S 2 

C 2 (C 2 - S 2) 

2DSC 3 + 2BS3C 

Similarly, 

~2 

which is abbreviated to 

S 2 
= 2SCT12 (C2 - $2)Y12 (A-18) 

C 2 + S2/A 2DSC 3 + 2BS3C 

where B! = 

and B 2 = 

2SC 

C 2 + S2/A 

$2(C 2 _ S 2) 

2DSC 3 + 2BS3C 

~2 = BITI2 + B2Y12 (A-19) 

Equations (A-17) and (A-19) are used to express the natural co-ordinate strain 

components el and c 2 in terms of T]2 and YI2 " Their substitution in 

equation (A-12) results in 

c; = A3TI2 + A4Y12 (A-20) 

where 

and 

A 3 = AI/E 1 - ~I2BI/EI 

A 4 = (A 2 - ~12B2)/E] 
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and 

e 2 = B3TI2 + B4YI2 (A-21) 

where B 3 = Bl/E 2 - Vl2Al/El 

and B 4 = B2/E 2 - Vl2A2/El 

The two natural co-ordinate direct strains are used to express the laminate 

strain in terms of T12 and 712 . Strain transformation yields 

2 2 
ex = e I cos 0 + e 2 sin 0 + Y12 sin O cos O (A-22) 

and 

2 2 
e = e sin 0 + e 2 cos 8 - Y]2 sin 0 cos 0 
y I 

(A-23) 

Hence equations (A-20) and (A-21) are substituted in equation (A-22) to give 

ex = (A3CC + B3SS)T12 + (A4CC + B4SS + SC)Y12 (A-24) 

which is abbreviated to 

= A5T I + ex 2 A6Y12 (A-25) 

where A 5 = A3CC + B3SS 

and A 6 = A4CC + B4SS + SC . 

Similarly, equation (A-23) yields 

e = (A3SS + B3CC)T12 
Y 

+ (A4SS + B4CC - SC)Y]2 • (A-26) 

Hence 

Y B5T12 + B6Y12 (A-27) 

where B 5 = A3SS + B3CC 

and B 6 = A4SS + B4CC - SC . 
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Equations (A-25) and (A-27) enable Poisson's ratio for the laminate to be deter- 

mined. For the straight line portion of the shear stress/strain curve 

where G|2 is constant, 

G12 = r12/Y|2 . (A-28) 

Equation (A-28), when substituted in equations (A-25) and (A-27), gives equations 

for ~ and ~ which yield the expression for Poisson's ratio, 
x y 

~xy ey/Ex = (B5GI 2 + B6) / (A5G12 + A6) " (A-29) 

The laminate stress is found from equation (A-4) by substitution of equations 

(A-17) and (A-19). This results in 

= A7T + A8~ x 12 12 
(A-30) 

where A 7 = AICC + BISS + 2SC 

and A 8 = A2CC + B2SS • 
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Table I 

ANGLE-PLY COMPRESSION STRENGTH (HM-S/ERLA 4617/DDM) 

Orientat ion 
+ -- + + -- + 

(degrees) 

0 

15 

30 

45 

60 

75 

90 

Fibre 
volume 
fraction 
(vf) 

All specimens 
fell between 
0.58 and 0.61 

Number of 
specimens 

Average 
strength 

(MN/m 2) 

605 

524 

265 

140 

175 

185 

152 

Mode of 
failure 

Longitudinal 
compression 

Longitudinal 
compression 

Transverse 
tension 

Shear 

Shear 

Transverse 
compression 

Transverse 
compression 

Table 2 

ANGLE PLY TENSION STRENGTH (HM-S/ERLA 4617/DDM) 

Orientation 
+ + 

(degrees) 

0 

5 

I0 

15 

20 

25 

30 

35 

4O 

45 

50 

90 

Thickness 

(am) 

1.1 

1 . 0 8  

1 . 0 8  

1. I  

1 . ]  

l . l  

1 .12 

1.1 

1.2 

1.1 

1.14 

1.1 

Number of 
specimens 

Average 
strength 

(MN/m 2) 

1017 

745 

536.4 

509 

426.8 

405 

339.7 

310 

140 

106.4 

70.2 

28.6 

Coeff. 
of 

variation 
% 

8.99 

6.64 

9.70 

8.31 

9.26 

2.79 

7.69 

3.04 

10.0 

4.98 

4.77 

8.73 

Response/failure mode 

Linear/tensile, shear cracks 

Linear/tensile, shear cracks 

Linear/brittle, indeterminate 

Linear/tensile 

Linear/tensile 

Non-linear/tensile 

Non-linear/tensile 

Non-linear/tensile 

Non-linear/shear 

Non-linear/shear 

Non-linear/shear 

Linear/tensile 
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E 

F 

G 
12 

P 

q 

t 

vf 

w 

~,8 

Y12 
E 

0 

(l 

"r12 
[cl 

[NI 
[T] 

[QI 
] 

[,fl 

SYMBOLS 

Young's modulus 

breaking stress 

shear modulus of unidirectional material 

specimen length between and fittings 

failure stress multiplier 

failure strain ratio 

strength specimen thickness 

fibre volume fraction 

strength specimen width 

natural co-ordinate stress ratios 

in-plane, fibre parallel engineering shear strain 

engineering strain 

angular orientation from the reference direction 

Poisson's ratio 

stress 

in-plane fibre-parallel shear stress 

3 x 3 compliance matrix 

3 × 1 column of loads per unit length 

3 × 3 co-ordinate transformation matrix 

3 x 3 matrix of orthotropic stiffness components 

3 × 1 column matrix of mid-plane strain components 

3 × | column of tensional strain components 

Subscripts 

I 

2 

3 

C 

c 

f 

n 

0 

T 

x~y~z 

fibre-parallel direction 

direction normal to the fibres, in the laminate plane 

refers to fibre-parallel shear 

compression 

indicates that terms are in laminate reference co-ordinates 

failure 

indicates that terms are in natural co-ordinate (1,2,3) directions 

refers to conditions at laminate mid-plane 

tension 

laminate reference co-ordinate directions 
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Program listing 

Strength 

MASTFR STRENGTH 
DTMFNS TON E11 (1 . : 0 ) ,  E 2 2 ( ' 1 0 0 ) ,  A N U 1 2 ( I O 0 ) ,  ANU2.1 ( 1 0 0 )  , G 1 2 ( 1 0 0 )  , T H ( t O 0 )  

1 , T H F T A n t l O 0 ) ,  THETAR ( 1 0 0 )  ,Q11 ( 1 0 0 )  ,Q12 ( 1 0 0 )  ,Q22 ( 1 0 0 ) , 0 6 6 ( ¶  0 0 ) ,  
2H (1AO) ,,011R f 1 O0 ,~ , ,ql  2B (1AO) ,,, ql  6 B ( 1 0 0 )  ,Q22B ( 1 0 0 ) ,  Q26B ( 1 0 0 )  • A ( 3 r  3 ) ,  
' ; B ( 3 , 3 )  , C ( 6 , 6 )  , 8 0 ( 1 0 0 )  , D ( 3 , 3 )  , A M A ( I O 0 )  eAA{3, ,3)  , C C ( & • 6 )  • R 1 ( 1 0 0 )  • 
4R2 ( 1 0 0 )  o R3 ( -100) ,  R 4 ( 1 0 0 ) ,  R5 ( 1 0 0 ) ,  R 6 ( 1 . 0 0 ) ,  R H ( 3 , 3 )  , A B ( 3 • 3 )  , B A ( 3 , 3 ) ,  
.RBB ( 3 , 3 ) ,  DB ( 3 , 3 ) ,  066P, ( 1 0 0 )  

DIMFNSION $ ( 3 )  , ES ( 3 )  , U ( I  00)  , T ( 3 e 3 )  , EN(3 )  , Q ( 3 , 3 )  , S N ( 3 )  
DIMENSION X ( l O O h ) , Y ( 1 0 0 0 ) , L X ( l O O O ) , L Y ( l O O O ) w T P ( 1 2 0 ) e T X ( I O 0 0 ) •  

1 T Y ( I O 0 0 )  
COMMONII~I IFT1 • FCI , FT2,  F('2 • F 1 2 / B 2 1 A E • H E ,  B E , 6 E ,  F E , C F • H A E • B I I E e H B E /  

1B31P ;/BJ. ISN ,  S I B 5 I X ,  Y, NXYIB61~51BTIENIB81EE1, EE2, EE3 
R E A D ~ I , q O )  FT1,  n-C1 ,, FT2,  F~.2, F1 2 
W R I T F ( 2 , 1 0 2 )  F T 1 , F C 1 , F T 2 , F C 2 , F 1 2  
R E A D r l , 0 0 )  S r l ) , S ( 2 ) , S ( 3 )  
W R I T F ( 2 , 1 0 2 )  $ ( : ) , S ( 2 ) ~ S ( 3 )  
PI = 8 . 0 * A T A N ( t  .0 )  
i)P = P I / 7 2  
NX¥ = P l / D P  
D1 = 1 / t ' F T I * F C 1 )  
D2 = I I ( F T 2 * F C 2 )  
D3 = ( F C 1 - F T 1 ) I ~ F C I * F T 1 )  
D4 = ( F r ? . - F T 2 ) / r F C 2 * F T 2 )  
05 = 1 / ( F 1 2 * F 1 2 )  
AE = D1 
HF = D l l 2  
BE = D2 
GE = D312 
FE = D4/2 
HHE = II(2*FTI*I'TI) 
RC = 8.(~*ATAN(I.0)/360.O 
TI = 0. I F+8 

T2 = 0.IE+10 
AM = 0 . 0  
DM = 0,(~ 
READ(1,100) NC 
DO qq NI = 1,NC 
R E A n ( I ~ I O 0 )  N 
DO ~ J = 1 , 3  
DO l, K = I,~ 
A(J,bC) = O.h 
B ( J , Y )  = O.u 
D(J,I~) = 0 . 0  
CONTTNUF 
TMA = 0 . 0  
TTH = 0 . 0  
~0 2 J = 1,N 
REAn(1,1Q4) F l l  , J )  , 1 " 2 2 ( J )  , A N U 1 2 ( J )  , G 1 2 ( J )  , R O ( J )  , T H ( J )  • T H E T A D ( J )  
AMA(,I) = RO(J)*TH(J)  
TMA = TMA+AMA(J; 
TTH = TTH + T H ( J )  
ANU21 ( J ) = A N L I 1 2 ( J ) * E ~ . 2 ( J ) / F l l ( J )  
DENOM = 1 . 0  - A ' I U 1 2 ~ J ) * A N U 2 1 ( J )  
Q l l r J ) =  E l l  ( J ) /pENOI ' t  
Q12( . I )  = A N I I ? I ( , I )  * E11(J ) / r )ENOM 
Q22(.o) = F2 / (J ) /DENa~M 
066~,I) = GI2~J) 
CON T I NU F 
H(1 )  = - T T H I 2 . 0  
DO 1 J = 1,r,I 
I F ( } H E T A D ( J ; )  13,10,14 
Q 1 1 r ~ J )  = 0 1 1 ( J j  
0121 t ( J )  = 0 1 2 ( J )  
Q 1 6 B ( J )  = 0 0 



2 

14 

16 

21 

Q 2 2 8 ( J )  = 0 7 2 ( J )  
0 2 6 R r J )  = 0 . 0  
0 6 6 B f J )  = 0 6 6 ( J ;  
T H E T A R ( . I )  = T H E T A D ( J )  
GO TO 1~ 
T H E T A R ( , I )  = ( 3 6 t ) . O + T H E T A ~ ( J ) ) * R C  
GO TO 1~ 
T H E T A R ( . I )  = T H E ' r A D ( J ) * R C  

U1 = 0 . 1 2 5 * ( ~ . * ( q l I ( J ) + Q 2 2 ( J ) ) ~ 2 . * Q 1 2 ( J ) + 4 . ~ Q 6 6 ( J ) )  
U2 = 0 . 5 * ( ~ 1 1 ( J ) - Q 2 2 ( J ) )  
U3 = O. 1 2 5 "  ( ' ~ 1 1 ( , I )  +Q22  ( J ) - 2 . 0 " Q 1 2  ( J ) - 4 .  O w Q 6 6 ( J ) )  
U4 = 0 . 1 2 5 * ( ~ 1 1 ( J ) + O 2 2 ( J ) ÷ 6 . 0 ~ Q 1 2 ( J ) - 4 o O * Q 6 6 ( J ) )  
U5 = 0 . 1 2 5 * ( ' ) 1 1 ( J ) + Q 2 2 ( J ) - 2 . 0 * Q 1 2 ( J ) + 4 . 0 ~ Q 6 6 ( J ) )  
A I  = U 2 * C O S ( 2 . 0 * T H E T A R ( J ) )  
A2 = U 3 * C O S ( 4 . 0 * T H E T A R ( J ) )  
A3 = O . ~ * U 2 * S I N r 2 . 0 * T H E T A R ( J ) )  
A4 = U 3 * S I N ( 4 . * T H E T A R ( J ) )  
Q l l ~ r J )  = U I + A I + A 2  
0 1 2 B ( J )  = U ~ - A 2  
Q 1 6 R ( J )  = - A 3 - A ~  
Q 2 2 f l ( J )  = U 1 - A I + A 2  
Q 2 6 B ( J )  = - A 3 + A 4  
0 6 6 B ( J )  = U 5 - A 2  
H ( J ~ I )  = H ( J ) + T d ( J )  
CTH = H t J + q ) * * 3  - H ( J ) * * 3  
A ( 1 , 1 )  = A ( 1 , 1 ) + Q 1 1 I ~ ( J ) ~ T H ( J )  
A(I,?) = A ( 1 , 2 ) ~ Q 1 2 B ( J ) * T H ( J )  
A ( 1 , ~ )  = A ( 1 , 3 ) , Q q 6 , 1 ( J ) * T H ( J )  
A ( 2 , ? )  = A ( 2 , 2 ) + Q 2 2 B ( J ) * T H ( J )  
A(2,3) = A(2,3),Q26B(J)*TH(J) 
A ( 3 , ~ )  = A(3,3)+Q66~(J)*TH(J) 
;F(N.EQ.I) GO T(~ 21 
STH = H ( J ÷ I } * H ( I + I )  - H ( J ) * H ( J )  
R I ( , I )  = Q 1 1 B ( J ) * S T H  
R 2 ( J )  = Q 1 2 ~ ( J ) * S T H  
R 3 ( J )  = Q 1 6 n ( J ) * S T H  
R 4 ( J )  = 0 2 2 R ( J ) * S T H  
R S ( J )  = Q26n(J)*STH 
R6(J) = Q66B(J)*STH 
B(I,1) = B(I,I)~RI(J) 
B(I,2) = B(I,2)+R2(J) 
R(I,~) = B(I,3)~R3(J) 
B(2,2) = B(2,2)*R4(J) 
B ( 2 , 3 )  = B ( 2 , 3 ) + R S ( J )  
B ( 3 , 3 )  = B ( 3 , 3 ) + R 6 ( J )  
CONTINUF 
D(I 1) = D(I,1)*Q11I}(J)*CTH 
D(I 2) = D(I,2)+Q121~(J)*CTH 
D(I ~) = D(I,3)~Q16B(J)*CTH 
D(2 2) = D(~,2) ~Q221~(,|)~CTH 
D ( 2  3)  = D ( 2 , 3 ) + Q 2 6 1 ~ ( J ) * C T H  
D(3 ~) = D(~,3)~'Q66'~(J)*CTH 
CONTINUF 
A(2,1) = A(1,2) 
A(3,~) = A(I,3) 
A(3,2) = A(~,3) 
B ( 2 , 1 )  = B(I,2) 
R ( 3 , 1 )  = B ( 1 , 3 )  
B ( 3 , ~ )  = B(2,3) 
D(2,1) = D(I,2) 
D(3,1) = D(I,3) 
D(3,2) = D(2,3) 
IF(N.EQ.I) GQ T[~ 22 
DO 7Q J = 1,N 

I F ( ~ B S ( ~ I ( J ) ) . G T . R M ( 1 , 1 ) )  R M ( 1 , 1 )  = A B S ( R I ( J ) )  
IF(~BSrRp(J~).G; ' .RMrl ,2))  R M ~ I , 2 )  = ABS(R~(J~ 



] F ( A R S ( R 3 ( J ) ) . G T . R M ~ I , 3 ) )  R M ( 1 , 3 )  w A B S ( R 3 ( J ) )  
I F ( A , S ( p ~ ( J ) ) . G ' : ' . R M ~ 2 , 2 ) )  R M ( 2 , 2 )  = A B S ( R 4 ( J ) )  
I F ( A B S ( R S ( J ) ) . G ' r .  R M ~ ' 2 , 3 ) )  R M ( 2 , 3 )  • A B S ( R S ( J ) )  
I F ( A R S ( R 6 ( J ) ) , G T . R M ~ , 3 ) )  R M ( 3 , 3 )  • A B S ( R 6 ( J ) )  

7~ CONTTNUF 
RM(2,1) = RM(I,~) 
RM(3,1) = RH(I,~) 
RM(3,2) = R H ( 2 , Z )  

2~ DO 72  I = 1 3 
DO 7 2  J =1,3 
IF(~BS(A(I,J)).I,T.AH) AM = ABS(A(I,J)) 
IF(ABS(D(I,J)).CT.Drl) DH = ABS(D(I,J)) 

7~ CONTINUF 
DO 71 I = 1 , 3  
DO 71 J = 1,3 
I F ( A ( I , J ) )  8 0 , 8 " t , 7 9  

70 I F ( A M / A t I , J ) . G T . T 2 )  A ( I , J )  = 0 . 0  
GO TO 81 

80 IF(A~IABS(A(I,J;).GT.T2) A~I,J) = 0.0 
81 IF (N.EQ. I )  GO Tq) 83 

I F ( R ( I , , I ) )  ~2,8~,85 
85  I F ( R M ( I , , I ) / n ( I , , I ) . G T . T 1 )  B ( I , J )  = O.O 

GO r ~  8~ 
8~ I F (RM( I , J ) /ABS( I~ ( I , , I ) ) .GT .T1 )  B ( I , J )  = 0.0 
83 I F ( n ( I , J ) )  84 ,71 ,86  
8 6  IF (D~ID(T ,J } .GT.12)  B ( I , J )  = 0 . 0  

GO Tn 71 
84 IF (D~/ARS(D( I , J ) ) .GT.T2)  D ( I , J )  = 0 . 0  
71 CONTINUF 

DO 5 J = 1 , 3  
DO 5 K = 1 , 3  
D(J,K) = D ( J , K ) / 3 . 0  
B(J,K) = R(J,K)*O.5 
C(J,K) = A(J,K) 
C(J,K+3) = B ( J , K )  
C(J+3,K) = r}(J,p.) 
C ( J + ~ , K + 3 )  = D ( J , K )  
CONTINUF 
WRITF(2,112) 
DO 3 J = I,N 

WRITF(2,116) J,LII(J),E22(J),ANUI2(J),ANU21(J),612(J),RO(J)oTH(J), 
1THFTAD(.I) 

3 CONTINUF 
WRITF(2,121) TTH 
WRITF(2,120) TMA 
DO ?~  I = 1,3 
DO 2Q J = 1,3 
IF(~(I,J)) 51,2(~,51 

20 CONTINUF 

IF(~rI,~).EO.Q.U.AND.A(2e3).FQ.O.O) 60 TO 50 
GO TN 51 

50 A1 = A ( I , 2 ) * A ( 1 , 2 )  
EXX = ( A ( 1 , 1 ) - A t / A ( 2 , 2 ) ) I T T H  
FYV = ( A ( 2 , 2 ) P A i / A ( 1 , 1 ) ) I T T H  
GXY = A(3,3)/TTH 
ANUXY = A(I,2)//.(2,/) 
ANUY~ = A(I,2)/X(1,1) 
WRITF(2,110) EXX 
WRITF(2,105) EYV 
WRITF(2,115) GX/ 
WRITF(2o111) ANHXY 
WRITF(2,113) ANUYX 

51 CONfINUF 
CALl  F M O V E ( A , A A , 9 )  
~AL I  PO~DEF MAT~NV(AA,9) 
CAll MUIT(AA,3, ,,S,I,ES) 



4 

9q 

9O 
102 
100 
101 

112 

116 
170 

12. I 
110 
105 
115 
111 
113 

CALL WRTT[ ( E S , 3 ~ I w S H S T R X V )  
E S ( 3 )  = F S ( 3 ) / 2  
O0 99  J = 1 , 1  
EFI  = E 1 1 ( 1 )  
FE2 = E ~ 2 ( 1 )  
FE3 = 6 1 2 ( I )  
U ( J )  = THETAR(J~ 
SO = S I ~ ( U ( J ) )  
CQ = C O ~ ( U ( J ) )  
CCO = CO*CO 
SSO = SO*SO 
SCO = SO*CO 
T ( 1 , 1 )  = COO 
T ( 1 , 2 )  = SSQ 
T ( 1 , 3 )  = 2 "SC0  
T ( 2 , 1 )  = T ( 1 , 2 )  
T ( 2 , 2 )  = T ( 1 , 1 )  
T ( 2 , ~ )  = - 2 *SCQ 
T ( 3 , 1 )  = -SCO 
T ( 3 , 7 )  = SCq 
T ( 3 , ~ )  = CCO-SSO 
0 ( 1 , 1 )  = 0 1 1 ( J )  
0 ( 1 , ? )  = 0 1 2 ( J )  

0 ( 1 , ~ )  = 0 
0 ( 2 , 1 )  = 0 ( 1 , 2 )  
0 ( 2 , 2 )  = O 2 2 ( J )  
0 ( 2 , ~ )  = 0 
0 ( ] , 1 )  = 0 
0(3°;) = 0 
0¢3,~) = 0 6 6 ( J )  
C A r t  W R I T E ( T , 3 , 3 e S H ' r  ) 
CALl M U I T ( T , 3 e 3 , E S w l o E N )  
E N ( ~ )  = F N { 3 ) * 2  
CALl ~ R I T F ( E N , 3 , 1 e S H S T R 1 2 )  
C A l l  M U I T ( O , 3 , 3 , F N r l e S N )  
CALl. WRTTE(SN,3,1,SHS|G12~ 
CE = D S * S N ( ' ~ ) * S N ( 3 ) - I . 0  
CZ = CE 
WRITF(2,102) D 1 , D 2 , 1 ) 3 p D 4 1 D S o A E e H E , B E e 6 E m F E r C E e D S  
CAll FAILURE STqESS 
CALL HII. L STRFSS 
~Alt MAX STRAIN 
CALl MAy STRESS 
CON[INUF 
STOP 
F O R P A T ( 6 ( E O . O ) , F O . O )  
F O R ~ A T ( 1 X , 1 1 ( E g . 2 m 1 X ) o E O . 2 )  
FORmAT(]O)  
F O R ~ A T ( I H O , 6 ( F I ~ . I O , 2 X ) )  
F O R V A T ( ? E O . I ) , F O . O , 3 E ~ . O F F O . O )  
F O R ~ A T ( t H 1 , 4 H L A I I I N A , S X , 3 H E q l e q l X o 3 H E 2 2 w l l X o 4 H N U 1 2 ' t O X ° 4 H N U 2 q e q O X ° 3  

I H G l ~ , q X , T H D E N S I T Y o 8 X , O H T H I C K N E S S e T X o S H A N G L E )  
F O R ~ A T ( ~ X , i 3 , 1 X , 8 ( F 1 2 . 5 , 2 X ) )  
FOR~AT(1HO,61HTOTAL MASSI I /N ]T  SURFACE AREA ( I . E . D E N S | T Y * T O T A L  THIC 

I K N E ~ )  = , E 1 7 . 1 0 )  
FOR~AT( IHO,27HLAM~NATE TOTAL T H ] C K N E S S =  , F 1 2 . t 0 )  
FOR~AT(qHO~' I .  AMINATE LONGITUO~NAL ST|FFNESS~ EXX = ' o E 1 7 . 1 0 )  
FORV~T(1HO, 'LAM~NATE TRANSVERSE STTFFNESS~ EYY = = e E 1 7 , ' 1 0 )  
FORVAT( IHO, ' LAM~NATE SHEAR ST [FFNESS,  6XV = ~ , E 1 7 , 1 0 )  
FOR~AT(1HO,=LAMINATE PR INCIPAL  pO|SSONS RAT|O,  NUXY = ° ~ F 1 3 . 1 0 )  
F O R ~ A T ( 1 H O , ' L A M I N A T E  TRANSVERSE PO|SSON5 RAT|O~ NUY~ = ~ F 1 3 . 1 0 )  
ENO 

SUBROUTTNF MAX STRAIN 
DIMPNSINN F N ( 3 ) , S ( 3 ) , S N ( 3 )  



13 
12 
15 
14 
17 
16 

1 

Z 

3 
? 

6 

5 

6 
8 

9 

10 
11 

102 

2O 

24 

3qO 

21 

2?. 

3Ol 
100 

COM~ONIR71FNIB8/EE1.EE2,EE31B41SN.SIBllFT1,FCl.FT2wFC2eF12 
F1 = A B ~ ( F N ( 1 ) )  
F2 = A B ~ ( E N ( 2 ) )  
E3 = A O ~ ( E N r 3 ) )  
FT1 = F T I / F E 1  
ECI : F C l l E F 1  
ET2 = FT21EE2  
FC2 = F C 2 / F E 2  
E12 = F 1 2 1 E E 3  
EM = - 0 . 1 F + ~ O  
T1 = 0 . I E + 1 0  
T2 = 0 . 1 F - 2 U  
RL = 0 . 1 F + 5 0  
I F ( E I . G T . E M )  EM = E N ( 1 )  
I F ( F 2 . G T . E M )  EM = E N ( 2 )  
I F ( F ~ . G T , E M )  EM : E N ( 3 )  
| F ( F 1 - T 2 )  1 2 , 1 2 , 1 3  
] F ( F M / E 1 . G T . T 1 )  E N ( 1 )  = 0 , 0  
| F ( F P - T 2 )  14,14,15 
IF(FM/E?.GT.TI) EN(2) = 0.0 
] F ( F 3 - T ? )  16,16,17 
I F ( F M / E ~ . G T . T 1 )  E N ( 3 )  = O.O 
CONr INUF 
CALl  WRITE(EN,3,1eSHSTR12~ 
IF(FN(1)) 1,2,3 
RI = EC1/EI 
GO TO 7 
R1 = RL 
GO TO 7 
R1 = E T I / F 1  
CONTINUF 
I F ( E N ( 2 ) )  4,5,6 
R2 = EC21E2 
GO TO 8 
R2 = RI. 
GO TO 8 
R2 = E T ? / E 2  
CONT]NUF 
I F ( F N ( 3 ) )  9,10,9 
R3 = E12/F3 
GO TO 11 
R3 = R|. 
CONTINUF 
I F ( R I . L T . R L )  RL : RI 
IF (R? .LT .RL)  PL = RZ 
IF (R3 .LT .RL)  RL = R~ 
W R I I F ( 2 o l 0 2 )  A1.A2,ASIeAS2~AS3,RI,R2,R]aHL,SM 
F O R ~ A T ( I X , I ~ ( E g , 2 , 1 X ) )  
I F ( R L . E Q . R I )  GO TO 20 
I F ( R I . . E O . R 2 )  GO TO ~1 
GO TO 22 
CONTINI IF 
3X = R I * S ( 1 )  
CONFINUF 
W R ] T F ( 2 , 3 Q O )  SX 
F O R V A T ( 1 X , ' F A I L I I R E  AT SX = e , E 1 7 . 1 0 )  
GO TO 100 
$X = R2-~(1) 
GO TO 24 
CONr INUF 
~X = R 3 , S ( I )  
WRITF(2,391) SX 
FOR~AT(1X,'SHEAR F A I L I I R E  AT SX = = , ~ 1 7 . 1 0 )  
CON[ INUF 
RFTbRN 
FNn 



. 

5 

6 

8 

9 

10 
11 

2n 

24 

300 

2~ 

2?. 

391 
11)0 

SUBROUTffME MAX STRESS 
D | N F N S I N N  S N ( 3 ) , S ( 3 )  
COM~ONIR4/SN,S/F~l/FT1,FC1oFT2eFCZoF12 
RI = 0 . t ~ ÷ 5 0  
T1 = 0 . t E - 1 2  
T2 = 0 . I E + 1 0  
SH = = 0 . 1 E ÷ 5 0  
AS1 = A R $ ( $ ~ ( 1 ) )  
AS2 = A R ~ ( S N ( 2 ) )  
A$3 = A R S ( S N ( 3 ) )  
T F ( A ~ I . 6 E . S M )  Sl l  = AS1 
] F ( A ~ 2 . ~ F . S H )  St! = ASZ 
I F ( A ~ 3 . G E . S M )  St1 = AS3 
i F ( S M - A R I . G F . T 2 )  S N ( 1 )  = O.O 
; F ( ~ - A ~ 2 . G E . T 2 )  S N ( 2 )  = 0 . 0  
] F ( $ M - A R 3 . G E . T 2 ~  S N ( 3 )  = 0 . 0  
CALL W R T T F ( S N , 3 , 1 e S H S [ G 1 2 )  
] F ( S N ( 1 ) )  1 , 2 , 3  
AI  = FCI 
R1 = A L I A S 1  
GO TO 7 
R1 = k t  
GO TO 7 
A1 = FT I  
R1 = A I / A S 1  
CONT~NUF 
| F ( ~ N ( 2 ) )  4 o 5 , 6  
A2 = FC? 
R2 = A21AS2 
GO TO 8 
R2 = RL 
60 TO 8 
A2 = FT? 
R2 = A21AS2 
CONTINUF 
I F ( S N ( 3 ) )  9o10,9 
R3 = F 1 2 / A S 3  
GO rn 1 t  
R3 = RL 
CONT~NUF 
WRITF(2,102) AI,A2oASI,AS2~AS3,RIaR2,R3,RLoSM 
FOR~AT(IX#I2(Eg.2aIX)) 
I F ( ~ I . L T . R L )  RE = R1 
[ F C R 2 o L T . R L )  RL = RZ 
I F ( R ~ . L T . R L )  RL = R3 
I F ( R I  . E Q . R I )  GO TO 20 
~F(R I  . E ~ . R 2 )  GO TO 21 
GO TO 2? 
CONTINUF 
SX = R I ~ S ( 1 )  
CONTTNUF 
W R | T E ( 2 w 3 9 0 )  SX 
F O R ~ A T ( 1 X , ~ F A [ L U R E  AT SX = ' , E 1 7 , 1 0 )  
GO TN 1nO 
~X = R2.5(I) 
GO Tg 24 
CONTINUF 
SX = R 3 ~ S ( 1 )  
g R T T F ( 2 , 3 9 1 )  SX 
F O R ~ A T ( I X , = S H E A ~  FA;L I IRE AT SX = ~ E 1 7 o 1 0 )  
~ONTINUF 
RFTIIRN 
FND 



I 
99 

2 

310 

311 
31?. 

321 

300 

320  

3Ol  
102 
322  

IO 

SUBRNUTINE FAIL(IRE STRESS 
DIMFNSInN S N ( 3 ) , S ( 3 )  
COMMONIB41SN,SIB2/AE,HE,BE,GE,FE,CE,HAEeHHEwHBE/B61D5 

4 1 B 1 / F T 1 , F C 1 , F T 2 , F C 2 , F 1 2  
CALl  WRITE(S,3ol,SHSIGXY) 
CALL W R I T E ( S N , 3 , 1 , S H S I G 1 2 )  
T(  = O . 1 E - 2 i )  
I F ( A R S ( ~ N ( 1 ) ) . L E . T 1 . A N D . A B S ( S N ( 2 ) ) = L E . T I )  GO TO 10 
SL = S N ( 2 ) I S N ( 1 ;  
SL I  = S N ( 3 ) / S N ( ) )  
qB = - ( ~ E + F E * S L )  
O1 = A E - 2 * H E * S L + B E * S L * S L + D S * S L ¶ e S L ~  
O2 = OB*QB+QI 
IF(Q?) 1,1,2 
WRITF(2,Qg) 
F O R M A T ( 1 X , ' C O M P I . E X  ROOTS TO QUA&RATIC') 
60 Tn 322 
OR = SQRT(Q2) 
IF(SN(1)) 310a310,311 
SMI = ( O R - Q R ) / Q 1  
60 TO 312 
SM1 = ( O B + O R ) / Q 1  
CONTINt lF  
RA = S M I / S N ( 1 )  
SMS = R A * S N ( 3 )  
I F ( A R S ( ~ M S ) - F 1 2 )  3 2 U , 3 2 0 , 3 2 1  
CONTINUF 
RAI = FI21ARS(SN(3)) 
SX = RAt*S(1) 
WRITF(2,3QO) SX 
F O R ~ A T ( 1 X , ' S H E A R  FA ILURE AT SX = ' , E 1 7 . 1 0 )  
GO TQ 322 
CONTINUF 
SX = RA*S(1) 
WRITF(2,391) SX 
FORMAT(1X,'FAILHRE AT SX = ',E17.10) 
FOR~AT(IX,I1(EQ.2,1X),EQ.2) 
CONTINUF 
WR[TF(2,102) SL,QB,qI,QR,SMI,RA,SMS,RAI,SX 
RFTIIRN 
FND 

10 
12 

13 

11 
14 

~UBROUTTNE H I L L  STRESS 
D I M F N S I n N  S N ( 3 ) , S ( 3 )  
CO~VNNIB41SN,SIF]2/AE,HE,BE,GE,FEeCE,HAE,HHEeHBEIB61DS 

1/R1/FT1oFC1,FT2,FC2,F12 
CALl WRTTF(S,3,1,5HSIGXY) 
CALL WRTTE(~N,3,1,SHSIG12) 
T( = 0.IF-20 
I F ( A B S ( ~ N ( 1 ) ) . L E . T 1 . A N D . A R S ( S N ( 2 ) ) . L E . T 1 )  60 TO Z l  
SL = S N ~ ? ) / S N ( 1 )  
~11 = S N ( 3 ) / S N ( I )  
I F ( S N ( 1 ) )  1 0 , 1 0 , 1 1  
| F ( ~ N ( 2 ) )  1 2 , 1 2 , 1 3  
PA = I / ( F C I * F C 1 J  
PB = I / ~ F C 2 * F C 2 ~  
PH = 1 / { 2 * F C I * F C 1 )  
GO TO 2~ 
PA = I / ~ F C I * F C I )  
PR = I / t F T 2 * F T 2 )  
PH = I / ( ? * F C I * F ( . 1 )  
6n TO 2N 
I F ( S N ( 2 ) )  1 4 , 1 4 , 1 5  
PA = 1 / ( F T I * G T 1 )  



8 

20 

I 
99 

2 

310  

311 
312 

37.1 

3~0 

3?0 

3 q l  
107 
3?2 

21 

PB = I I ( F C I * F C 1 )  
PH : l l t ? * F T I * F T I )  
60 TO 20 
Ph = I l C F T I * F T 1 )  
PB = I I ( F T 2 * F T 2 )  
PH : I I ( ? * F T I * F r l )  
CONTINUF 
01 : p A . ? * P H * S L ÷ P R ~ S L * S L ~ D S w S L I t S L 1  
I F ( ~ I )  1,1,2 
W R I T F ( 2 , 9 9 )  
FORPAT( IX ,oCOMPLEX ~OOTS TO QUADRA¥1C =) 
60 TO 3?2 
QR = SQRT(Q1)  
I F { S N ( 1 ) )  3 1 0 , 3 1 0 o 3 1 1  
SM1 : - o R I 0 1  
GO TQ 312 
SM1 = QRIQ1 
CONTINUF 
RA = S M I / S N ( 1 )  
~MS = R A * $ N ( 3 )  
I F ( A R S ( ~ M S ) - F 1 2 )  3 2 0 , 3 2 0 o 3 2 1  
CONTINUF 
RAI = F I 2 / A B S ( S N ( 3 ) )  
$X = R A t * S ( 1 )  
W R I T F ( 2 o 3 9 0 3  SX 
F O R ~ A T ( 1 X , ' ~ H E A ~  FAILURE AT SX = = o E 1 7 . 1 0 )  
GO TQ 3?2 
~ONTINUF 
SX = R A * S ( 1 )  
W R I ' r F ( 2 , 3 g l )  SX 
F O R ~ A T ( I X , ' F A I L U R E  AT SX = ' , E 1 7 o 1 0 3  
F O R ~ A T ( t X , 1 1 ( E 9 . 2 o l X ) , E q . 2 3  
CONTTNUF 
g R I T F ( 2 o l 0 2 )  S L , Q G , Q I , Q R w S M l e R A , S M S ~ R A I , S ~  
RFTtlRN 
FND 

,¢;URROUTTNE POSDEF M A T I N V ( A , M A M A )  INV 0 0 0 0  
C * * * * * * * * * * * * * * * * * * * * t *, * t * * e e w .~ '¢ ~ * ~ • INV 0 0 1 0  
C THF ,~IIPPOUTINF P INh$  Ti le INVERSE OF THE MA BY MA SYMMETRIC P O S I T I V E  INV 0020  
C O E r I N I r F  MATRIX [ A ] .  THE SURROUTINE REQUIRES.' INV 0 0 3 0  
C THF REAl AR~'AY A ( M A , M A )  CONTAINING THE COMPLETE MATRIX ( A ] .  l a Y  0 0 4 0  
C A T~ OVFRI4PTTTFN BY ITS INVERSE.  (MAMA=MAtMA) INV 0050  
C * * * * * * v, . . . . . . . . ~ * * ~ , .  * e w v, ~ * e * • t * e * * ~ I NV 0060  

REAl A(MAMA) 
TNTFGFR ROW,COL 
M A = N . I * ~ O R T ( 1 . 0 * ' H A H A )  
JI=VAMA-MA+I 
J2=(l 
DO I COI=I,J1,MA 
J2=.I?÷1 
DO I ROw=I.HA 
,I3=RQW÷COL-1 
R=O.N 
IF(J?.Ea.I.0R,RUW-J2.LT.O)GOT04 
J4=~OW 
DO 2 M=I,J2-1 
8 = B 4 A ( J 4 ) * A ( J 2 ~ J 4 " R O W )  

2 J4=J4÷MA 
4 IF(RQW-.12)I,3,0 

A ( J ~ ) = ( A ( J ~ ) - B ) I A ( C ( | L ~ J 2 - 1 )  
GOT01 

3 A ( J 3 ) = S ~ R T ( A ( J 3 ) - B )  
1 CONTINUF 

J2=~t 

INV 0070  
INV 0080  
]NV 0090  
INV 0 1 0 0  
INV 0 1 1 0  
INV 0 1 2 0  
INV 0 1 3 0  
INV 0140  
INV 0150  
I Nv 0160  
INV 0170  
INV 0180  
INV 0190  
INV 0 2 0 0  
INV 0 2 1 0  
INV 0 2 2 0  
INV 0 2 3 0  
INV 0 2 4 0  
INV 0 2 5 0  
INV 0 2 6 0  
INV 0 2 7 0  



9 

200 
111 

DO 5 C O l = l e J 1 ' M A  
J Z = J ? ÷ l  
JS=-MA 
~0 ~ RON=leHA 
J 3 = R ~ N * C O I ' I  
JS=JS+MA 
B=O.O 
]F(ROW-,12.LE.O)( iO¥Oc)  
J4=J~ 
DO 7 M=, I2 ,R~W-1  
f i = B + A ( J 4 ) * A ( C O L + M ' I )  

7 J4=J4+MA 
6 IF (RNW- ,12 )S rR tO  

A ( J ~ ) = - R I A ( R O ~ ÷ , I S )  
GOT05 

8 A ( J 3 ) = I . 0 1 A ( C O L + J 2 - 1 ~  
5 CONTTNUF 

J2=h 
DO ~ C O l = l , J l , M k  
J~=O 
J2=.12+1 
~0 q R O u = I , J I , M A  
J ~ = J 4 + l  
~ = ~ . 0  
T F ( . J 4 - J ? ) 1 1 , 0 , O  
DO 1N M=.I4,HA 

10 B = B * A ( R N N + M - 1 ) * A ( C O L + R - 1 )  
GOTq12 

11 A ( C O I + J 4 - 1 ) = A ( R ( I N + J ~ - I )  
GOT(}O 

12 A ( C ( ~ I + J 4 - 1 ) = R  
9 CONrTNUF 

RFTLJRN 
FND 
~IJR~OUTTNE ~PRITE(AM~IeJ,Dt lMMY) 
nIMFNS[ON A H ( I , J )  
W R I ' r F ( 2 , 2 0 0 )  DUHMY 
FOR~AT( IHO,TH M A T R I X , 2 X , A S )  
F O R ~ A T ( 1 X o 6 ~ E 1 7 . 1 0 , ~ X ) )  
~() 1 K = 1 ,1  
U ~ I T F ( 2 , 1 1 1 )  ( A H ( K I L ) , L  = 1 , J )  
C(}NrlNUF 
RFTIJRN 
FND 

INV 0 2 8 0  
XNV 0 2 9 0  
INV 0300  
INV 0310  
INV 0320  
tNV 0330 
INV 0340  
INV 0350  
INV 0360 
INV 0370 
INV 0380 
INV 0390 
INV 0400 
INV 0410  
INV 0420 
]NV 0430  
INV 0440 
INV 0450 
XNV 0460 
INV 0470 
INV 0480 
]NV 0490 
InV 0500  
INV 0510 
|NV 05ZO 
INV 0530 
INV 0540 
INV 0550 
INV 0560  
INV 0570  
INV 0580 
INV 0590  
INV 0600 
INV 0610 

SUB RI']UT TNE HIILTt, A, ] ,  J , B I K e C )  
D|MFNS[tIN A q I ,  J)  , B ( . ) , K )  ,C. ( I  u K) 
nO I L = I , !  
r)o 1 M = I~K 
C ( L , M )  = 0 . 0  
DO I N = l ~ J  
£ ( I . , M )  • C ( L , M ) + A ( L , N ) * B ( N ~ M )  
CONTTNUF 
PFTttRN 
ENI) 
SUD~tOUTTNE .~CMUI. T(Aa ( , J i S )  
DIMFNS |()N A~' I ' ,  J)  
DO 1 K • 1 ,1  
r)q 1 L • 1 . , I  
A ( K , I . )  = A ( K , L ) * S  
CONTTNUF 
RETURN 
FND 
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SURROUTTNE S U R ( A , ] , J , B , C )  
DIMENSION A ( I , J ) , B ( t , J ) . C ( I , J )  

DO 1 L = 11,1 
~ ( K , I . )  = A ( K , I . ) - B ( K , I . )  
CONTINUF 
RFTURN 
FND 
F I N ] S H  



I I  

Program l isting 

Ang le-p ly - theory  coef f ic ient  

0 0 1 0  
0011  
0 0 1 2  
0 0 1 3  
0 0 1 4  
0 0 1 5  
0 0 1 6  
0 0 1 7  
0 0 1 8  3 
0 0 1 9  
0 0 2 0  
0021  
0 0 2 2  
0 0 2 3  
0024 
0025 
0 0 2 6  
0 0 2 7  
0 0 2 8  
0029  
0030 
0031 
0 0 3 2  
0 0 3 3  
0034 
0 0 3 5  
0O36 
0 0 3 7  
0 0 3 8  
0039 
0040 
0041 
0042 
0 0 4 3  
0044 
0045 
0046 10 
0047 
0048 2 
0049 
0050 1 
0051 

MASTER NON L I N  LAM 
E1 = 0 . 1 6 5  E+12 
E2 = 0 , 9 3  E+ IO 
O =  0 . 3 3  
G = 0 . 4 9  E+IO 
AL = 0 . 7 8 5 3 9 8 1 6 3 3  
T = 0 , 8 7 2 6 6 4 6 2 5 9  E -01  
OT = 0 . 8 7 2 6 6 4 6 2 5 9  E -01  
S = S I N ( T )  
C = COS(T)  
SC = S*C 
CC = C*C 
SS = S*S 
A = E 2 * ( I + Q ) / ( Q * E 2 + E 1 )  
B = ( Q * E 2 + E 1 ) I ( E I * E 2 )  
D = ( I + Q ) / E 1  
AI = ( 2 * S C ) / ( S S + A * C C )  
A2 = C C * ( C C - S S ) / ( 2 * B * S S * S C + 2 * D t C C ~ $ C )  
B1 = 2*SCI(SSIA+CC) 
02 = - S S * ( C C - S S ) I ( 2 * B * S S * S C ~ 2 * O * C C * S C )  
A3 = I / E I * ( A 1 - Q * B 1 )  
A4 = ~ I E I * ( A 2 - Q * B 2 )  
B3 = R 1 / E 2 - Q * A l l E 1  
04 = B 2 / E 2 - Q * A 2 / E 1  
A5 = A 3 * C C + B 3 * S S  
A6 = A4*CC+P,4*SS+SC 
B5 = A 3 * S S ~ B 3 * C C  
B6 = A4*SS+fl4*CC-SC 
SX = &5*G+A6 
R = ( R 5 * G + B 6 ) I S X  
A7 = A I * C C + B I * S S + 2 * S C  
A8 = A 2 * C C + B 2 * S S  
PX = AT*G+A8 
EX = PX/SX 
W R ] T E ( 2 , 1 0 )  SX, R, PX, E X , A S e A 6 a A T w A 8  
WR[TE (2, I0) A1 ,A2, Bq , B2 wA3,A4wB3aB4 
FORMAT(8(IX,E14.6)) 
] F (AL-T) I ,I ,2 
T = T÷DT 
GO TO 3 
STOP 
END 

EN~ OF SEGMENT, LENGTH 2 7 4 ,  NAME NONLINLAM 
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