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SUMMARY 

The interference potentials for lift, solid blockage and wake blockage 

have previously been presented in the form of integral expressions. In this 

Report the expression for wake blockage, which has been in error, is corrected, 

and the integral expressions are converted into power series. The series for 

wake blockage do not appear to have been given before, and the series for 

slotted walls also appear to be new. The motivation was to provide far-field 

boundary conditions, especially at large distances downstream, for computations 

of transonic flows within wind tunnels. Additionally these power series facili- 

tate the calculation of the interference in the neighbourhood of the model. As 

an aid to the user the effects of parametric variations of wall porosity and 

slot geometry are demonstrated. Lift and blockage interference velocities, 

their streamwise gradients, and wall conditions for zero solid blockage are 

presented in both tabular and graphical form. 

*Replaces RAE Technical Report 76134 - ARC 37409 
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| INTRODUCTION 

When a model is placed in a wind tunnel, and measurements are made of the 

pressures and forces on it, these measured quantities differ from those which 

would be obtained if the model were tested under similar conditions, for example 

the same angle of incidence and Mach number, in free air, because the tunnel walls 

interfere with the flow. It is usual to make 'corrections' to the measured 

quantities and to the incidence and Mach number, so that the 'corrected' results 

might correspond to what would be obtained if the model were tested in free air 

at the 'corrected' Mach number and incidence. For subsonic flow, linear theory 

is usually considered adequate for the calculation of these corrections (see, 

for example, Ref.1). 

The need for the present work arose during the development of an extension 

of a transonic small-perturbation method for the computation of the flow around 

an aerofoil to include the effects of the wall constraint in a tunnel 2'3. This 

method requires a knowledge of the flow far upstream and downstream of the model, 

and, since the non-linear term in the transonic small-perturbation equation 

becomes increasingly small compared to the other terms at large distances from the 

model, the linear equation as used in subsonic linear theory becomes applicable. 

In subsonic linear theory the interference is due to the reaction of the 

boundaries of the test section to the effect of three characteristics of the 

test model. These characteristics are its lift, its displacement and the dis- 

placement due to the wake. The interference reaction is usually estimated by 

representing these by respectively a vortex, a doublet and a source. The 

corresponding modes of interference are referred to respectively as lift inter- 

ference, solid blockage and wake blockage. If the velocity potential is obtained 

for these three singularities within the tunnel then the values of this potential 

far upstream and downstream will provide the relevant far-fleld conditions for 

the computational method. Interference is represented by an interference poten- 

tial, which is the difference between the potentials in the tunnel and in free 

air° The interference potential in the neighbourhood of the model may be used to 

estimate the interference corrections to be made to measured quantities. 

Integral expressions for the interference potential due to a doublet have 

been obtained, using a Fourier transform method, by Baldwin et al. 4 who introduce 

the widely used homogeneous wall boundary condition. Wright 5 uses the same method 

to obtain integral expressions for a vortex and a source, although in Ref.5 there 

is a misprint in the former and an error in the latter affecting the results when 



the tunnel wall is slotted. These errors have been repeated in later literature 

(see for example, Ref.6) and are indicated in section 2.2 below. The integral 

expressions cannot be used directly to provide results either far from the model 

or close to the model, although in the latter instance they have been evaluated 

for some special cases such as solid or perforated walls. Murman 7 has obtained 

asymptotic expansions of the integral expressions for lift interference and solid 

blockage far from the model, applicable only when the tunnel walls are not 

slotted. He did not treat wake blockage. 

In this Report the integral expressions for lift interference, solid block- 

age and wake blockage are converted into power series convergent at large stream- 

wise distances from the model, including the slotted wall case as well as the 

simpler special cases. These power series provide directly the required far- 

field boundary conditions for the computational method referred to above, and 

can be converted into power series convergent at the model position for the 

calculation of interference corrections. 

The Report begins with a statement of the basic equations and boundary 

conditions (section 2.1) and a list of the integral expressions for the inter- 

ference potential (section 2.2). These are converted into power series convergent 

at large streamwise distances from the model in section 3. To obtain interference 

corrections these power series are evaluated at the model position (sections 4 and 

5). In section 6 a new procedure is given for deriving conditions for zero solid 

blockage. These are slightly different from the approximate ones given by 

Baldwin et al. 4 and reproduced in other literature I . A brief resume on the 

application of the interference corrections is given in section 7 and some tables 

and graphs of the interference parameters are supplied as practical aids. 

2 THE INTERFERENCE POTENTIAL 

2.1 Subsonic linear theorz 

The linearised equation for two-dimensional subsonic compressible flow is 

B2 __~2~ + ~2~ - 0 

~x 2 ~z 2 
(1) 

where ~ is the perturbation velocity potential of the flowo A single homo- 

geneous boundary condition for ventilated walls has been derived by Baldwin et alJ 

in the form 



(~ ~2~ )z = 0 , ~x + !F h + l ~ 
- ~ x ~ z  - F ~-z =+½h 

(2) 

where P is a porosity parameter and F is a slot parameter given by 

2s In cosec ~-~ 

with a = slot width and s = distance between slot centres. 

Equation (2) contains the special cases 

(i) solid wall: P = 0 

(ii) perforated wall: F = 0 

(iii) ideal slotted wall: I/P = 0 

(iv) free jet: F = 0, I/P = 0 . 

It should be noted here that equation (2) is not universally accepted as a 

valid wall boundary condition (see, for example, Ref 8) although it is still 

widely used in the absence of an agreed alternative, especially since alternative 

forms are usually non-linear and therefore more difficult to apply. 

As explained in the Introduction, the model is represented by a vortex, 

a doublet and a source, and thus boundary conditions on the model itself are not 

included in the analysis. We write ~ = ~I + ~* where ~1 is the perturbation 

velocity potential of the flow about each singularity in turn in free air, and 

~* is the interference potential. In the next section we use the Fourier trans- 

form method of Baldwin et a~. 4 to obtain integral expressions for ~* . 

2.2 The interference potential in integral form 

2.2.1 Lift interference 

In free air the potential due to a two-dimensional vortex at the origin is 

F tan- 1 
~| = - 2--~ 

and the interference potential may be written 

~*(~,n) = - rl; 27 ~F sinh (qN) cos (q~) d qq 

0 

+ 7- sinh (qn) sin (q~) dq + 
q 

0 
21+F ' 

(3) 
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wher e I G = [(I - Fq)(sinh q + Fq cosh q) - (B/P) 2 cosh q] e -q , 

I F = (sinh q + Fq cosh q)2 + (B/p)2 cosh2q , 

with ~ = 2x/Bh , 

q = 2z/h 

and J = I when 1/P = 0 (ideal slotted wall or free jet) 

and J = 0 otherwise. 

The last term in equation (3) is in itself a solution of the differential 

equation (I) and the tunnel wall boundary condition (2), when I/P = 0 , and is 

added merely to make the interference potential vanish far upstream, as may be 

seen in section 3. In Refo5 the first integrand was given as 

[sinh q + Fq cos q + (l - Fq) cosh q] e -q sinh (qq) cos (q~) 
IFq 

whereas the 

expression 

cos q should have read cosh q . With this correction the 

[sinh q + Fq cosh q + (I - Fq) cosh q] e -q 

reduces to unity. 

2°2°2 Solid blockase 

In free air the potential due to a doublet of strength d is 

+1 = 2--~ x 2 
The interference potential may be written 

~* = ~8hd IpB__ f -AI - ~ cosh  

0 

(qn) cos (q~)dq 

+ ~ cosh  (qn) s i n  ( q ~ ) d q - - f f  

0 

(4) 



where I C = [(I - Fq)(cosh q + Fq sinh q) - (B/P) 2 sinh q] e -q 

I A = (cosh q + Fq sinh q)2 + (B/p)2 sinh2q , 

and, to make ¢* vanish far upstream, B = I when P = 0 (solid wall) and 

B = 0 otherwise. 

2.2.3 Wake blockage 

For a two-dimensional source of strength m 

m In (x 2 + B2z2) ~ ; 
~I = 2~---~ 

m 4 # ~  = - 

2~8 18 f I [cosh (qn) sin - sin dq 
0 ~A (q~) q] q 

I C 
- / ~AA [cosh (qn) 

0 

COS (qO - cos q] dq _ ~_ B(~ + I) 
q 2 ] 

J 
The corresponding expression given in Ref.5 is 

(5) 

¢* 

with 

m I~ flD f IC ~} 2'~B I~A cosh (q~) sin (q~)d_~_ cosh (qn) cos (q~) 

0 0 

I D = (sinh q + cosh q + Fq sinh q) e -q . 

The expression for I D is incorrect, and, when corrected, reduces to unity. 

This error has been repeated in later literature I~6. 

The expression for ~* given in equation (5) above has had two extra 

terms included in the integrands. The second of these makes the second integrand 

exist at q = 0 ; the first one merely simplifies the analysis, and the effect of 

these additions is merely to add a constant to ~* . 

3 CONVERSION OF INTEGRAL S INTO POWER SERIES 

We follow here the technique used by Murman 7 when he evaluated the inte- 

grals in (3) and (4) for the case F = 0 . A fuller account is given in 
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Appendix A° Consider first equation (3). This may be written as 

~* = - 27F I~ Re(L I) + Jm(L 2) + -~2 1 +Jn F~ 

ff IG • 
I eiq~ dq . L 2 = sinh dq where L 1 = T~ F sinh (qn) q ' ~F (qn)elq~ q 

0 0 

I F has zeros where sinh q + Fq cosh q = ik cosh q (k = ±E/P) or 

2q 1 - Fq + ik 
e = 1 + Fq - ik 

Now if we write q = a + ib where a and b are both real we find 

2a 
e 

= ~ (I - Fa) 2 + (k - Fb) 

~(I + Fa)2 + (k Fb) 

Since, for a ~ 0 (and F > 0), the right hand side of this expression is 51 

while the left hand side is ~I it follows that a = 0 and so all the zeros 

of I F lie on the imaginary axis. The integrals may thus be evaluated for 

> 0 by replacing q by q + ip and integrating round a contour (see Fig.l) 

which consists of the real axis from 0 to R , the quarter circle Re iD 

(0 ~ e ~ ~/2) and the imaginary axis from iR to 0 indented at the points 

i~r (the roots of I F = 0). We then let R + ~ . For ~ < 0 the quarter 

circle Re ie (3~/2 ~ ~ ~ 2~) and the imaginary axis from -iR to 0 (again 

indented) are used. The ~ satisfy 
r 

tan ~ = B/P - F~ . (6) 
r r 

I F is also zero at the points i~ where tan ~ = -B/P - F~ ; and it is shown 
r r r 

in Appendix A that the sum of all the residues at these points is zero. When 

1/P = 0 ( i d e a l  s l o t t e d  w a l l  or  f r e e  j e t )  I F a l s o  has  a z e r o  a t  t h e  o r i g i n .  

For the solid wall case (P = 0) all the ~r are odd multiples of ~/2 . 

For the evaluation of the i n t e g r a l s  (4) and (5) s i m i l a r  c o n t o u r s  a r e  u s e d ,  

except that the indentations are at the points iY where the Y are the roots 
r r 

of 



cot Y = FY - B/P • r r (7) 

For the solid wall case there is a pole at the origin and the other roots are 

multiples of ~ . 

When the integrals have been evaluated in this way the resulting power 

series expansions for equations (3), (4) and (5) are as follows: 

For lift interference 

~* = F I~-]I"~} ~ sin + Fcos-~r" ~ tan + ~ (~rn)e-~r~ It (~ < O) 

<0 ~r (1 ) 
r 

= _ _ r  ~.1,.¢ (~ > o )  2 tan-I I + F 

>0 ~r (l c°S2er)] 
=r J 

P 

i 
where J = l when I/P = 0 (ideal slotted wall or free jet), and J = 0 

otherwise. 

For solid blockage 

~* d f 1 ~ ~ c°s (Yrq)e-Yr~ 1 

Bh ~ g2 + D2 Yr <0 1 + 

I  cos } ~, = d | ~ + B + (Yrq)e-Yr~ ($ > O) 

8h z ~2 + q Yr >0 ! + 
$ 

where B = ! when P = 0 (solid wall), and B = 0 otherwise. 

( 8 )  

( 9 )  
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For wake blockage 

c°s 1 1 2--~( --~ in (~2 + n + r (~ < 0 
<0 Yr (1 + F s in2y r)  

r 

f 
m I- I In (~2 + n2)~ + B~ - (I - B) ~- 

~* = 2"-8 ~- 

L 

cos (Yr n)e -Yr~ 1 

Y >0 Yr(l ) 
r 

. . . . . .  (i0) 

where B = 1 when P = 0 (solid wall), and B = 0 otherwise. A constant term 

m__ v~ > e -Yr 

2~ Yr(l + F sin2Yr ) 
0 

r 

has been omitted from both expressions for ~* in (10) above (see Appendix A). 

Expressions for the perturbation potential # may be obtained by adding 

the appropriate free-air potential ~I to the above expressions for the inter- 

ference potential ~* . These provide far-field boundary conditions for use with 

computational methods 2'3~7. Murman 7 performs a computation in the neighbourhood 

of the model and matches this with an asymptotic expansion for large ($), whereas 

in Catherall~s 2'3 method values of the perturbation potential are required only 

at I~I = ~ • In either case equations (8) to (i0), with the appropriate 

expressions for #! added, provide the necessary conditions. 

Interference velocity components are obtained by differentiating 

equations (8) to (10) and are given in Appendix B. 

4 INTERFERENCE FOR SOLID OR PERFORATED WALLS~ OR FREE JET~ F = 0 

The evaluation of interference corrections requires the knowledge of the 

interference velocity components u* and w* and their streamwise derivatives 

at the origin. When F = 0 the power series given in section 3 may be summed 

quite easily~ and then ~ and N set to zero. 
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4.1 Lift interference 

The general expressions for u* and w* are given in Appendix B. With 

the substitution F = 0 and 

-l 
m r = tan (B/P) + rx (r = 0, I,...) 

equations (B-5) and (B-6) simplify to give 

l 

~x - -Sh Jm(IL) 

w* = 8~* = F Re(iL) 
~z h ' 

(11) 

wi th 

I L = 

-0~ 
1 e 

~r 1 - e -~ ' 
(12) 

where ~ = ~ + iD = 2(x/B + iz)/h and 8 - tan -I(8/P) . 

At the origin both u[ and 8u[/Sx are zero while 

w L = ~ - , 

8x Bh 2 ~ " 

(13) 

Equations (13) are the general results for a perforated wall and include 

the free jet (8 = 0) and solid wall (8 = ~/2) as special cases. 

4.2 Solid blocka~_e 

Similarly from equations (B-7) and (B-8) there results 

u* - 2d 
Re(I S ) 

82h 2 

_ 2d_d__ jm(is) 
Bh 2 

(14) 
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with 

I S = 
1 e (2-0)~ ¢2 [ °+~+ 7r ] 

w e w~ 1 2 ~ ' - e - I 

(~5) 

and again 0 = tan-l(B/P) • At the origin w and aw*/~x 
S S 

are zero while 

s = 82h2 

~x 383h3 

The second of equations (16) appears to be a new result. 

4o 3 Wake blockag e 

Similarly from equations (B-10) and (B-II) 

(]6) 

with 

U* = ~Re(l w) 
B2h 

w* = _ m Jm(lw) 
Bh 

t e (-~-O) ~ 
I = ---+ +B 
W 

e ~ ~ - I 

(17) 

(18) 

At the origin both w* and ~w*/3x are zero while 

m / 0  '~ 
w B2h 

W -- 7[m 

~x B3h2 

(19)  

Equations (19) with B = 0 are the general results for a perforated wall 

and include the free jet (8 = O) as a special case; for the solid wall, however, 

it is necessary to substitute B = I and 8 = ~/2 . 
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is not so simple as when F = 0 . The series are convergent only for large 

and must be modified to make them convergent at the origin. Details of this 

procedure are given in Appendix C. We write ~ and 7 from equations (6) 
r r 

and (7) in the form 

INTERFERENCE FOR SLOTTED TUNNELS~ F % 0 

When F % 0 the evaluation at the origin of the power series in section 3 

r = (r - ½)z + ~r 

Y = r~ + 1 r r 

(20) 

where, for any integer r, ~r and I r lie between 0 and ~ . By means of the 

analysis of Appendix C the following expressions are obtained for the interfer- 

ence velocities and their streamwise derivatives at the origin. 

For lift interference 

. F I- ~, F sin2~r 1 
w L = ~ 1 + ] (21) 

0 1 + F s--~n2]ar 

and 

~x 
2F I l i t  1 Z Fg(r - ½) sin2~r - 
8h 2 24 F~ 0 I + F sin 2 

~r 

(22) 

For solid blockage 

U* 
S 

and 

I~2 ~ Fzr sin21 - I 1 2d ] + r r 

B2h2 + F-~ 0 I + F sin21r 

~u ~ 
s I~_~ Z 2~rI 4d 1 _ B/P + r 

B3h3 F2~ 0 

F2 2 - 12 1 r sin21 I/F + - sin21 
r r rl " 

] + F sin21r 

(23) 

(24) 
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For wake blockage 

and 

1 ~ F sin2% 1 , m r u = -- ( - (25) 
w 132h 0 1 + F s in2%r  

Bx B3h2 + ~ + 0 I + F sin2% r 
(26) 

The above power series converge rapidly (except when F is close to zero) 

and in general only a few terms need be taken, as may be seen in the next sec- 

tion. Note the similar expressions in equations (23) and (26) for the solid 

blockage velocity and the wake blockage gradient; there is a similar correspond- 

ence between the first of equations (16) and the second of equations (19) when 

F = 0 . 

CONDITIONS FOR ZERO SOLID BLOCKAGE 

In Fig.2 of Ref°4 a graph is given which relates the slot and porosity 

parameters for zero solid blockage. This graph is reproduced in Ref.1 also. 

The major part of this graph consists of interpolated points of doubtful accuracy. 

In this section we use the results of equation (23) to correct this graph. If 

we write 

r-~R F~r sin2% - % 
+ l + ~ r r (27) 

U (R) - 12 F--~ L_J sin2 %r 0 1 + F  

where from equations (7) and (20) % is given by 
r 

cot % = F~r - B/P + F% , 
r r 

then, from equation (23), the solid blockage is zero when U(~) is zero. 

For each pair of values of F and B/P 

iteratively. If ~ is an approximation to 

the % are calculated 
r 

then a better a p p r o x i m a t i o n  i s  
r 

+ (cot ~ - F~r + B/P - F~)/(cosec2~ + F) . 

A good initial guess is I/(F~r) for r > 0 and 1 for r = 0 . 
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For each value of B/P , U(~) must be evaluated for various values of 

until that value of F which makes U(~) zero is found. It is easy to show 

that the truncation error U(~) - U(R) can be expanded as a power series in 

;/R and that a better approximation to U(=) may be obtained by calculating 

F 

V(R) = ½R2U(R) - (R - I)2U(R - I) + ½(R - 2)2U(R - 2) . 

V(R) tends to U(~) much faster than does U(R) , in fact the truncation error 

is of order (|/R3). It has been found that usually only about 10 terms of the 

series (27) need be used to obtain U(=) to within an accuracy of 10 -5 . 

The relationship between F and B/P for zero solid blockage as obtained 

by the above procedure is tabulated in Table 1, and Fig.2 shows the comparison 

with Baldwin's 4 approximate curve. 

7 APPLICATION OF INTERFERENCE CORRECTIONS 

The strengths of the various singularities introduced in section 2.2 are 

determined from physical quantities via the relations 

F = ½UcC L , d = AU/B and m = ½UcC D 

where A is the 'equivalent' cross-sectional area of the model (see Ref.l, 

section 6.3.2). 

The following formulae for the interference corrections are taken from 

Ref.l and are included here for convenience. 

7.1 Blockage corrections 

'Corrections' need to be made to the Mach number and drag coefficient: 

AM = (I + 0.2M2)M(~ + ~ ) 
s w (28) 

pU2c + 

2A I~Ss ~Cw~ ~s 
c ~-x-- + -~-x / 2A s = c ~x CDCs (29) 

where Ps and Pw are the interference pressures due to solid and wake blockage. 
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In terms of their ratios ~ and 
S 

U 
S = 

s U 

for the solid wall case 
W 

~A 

683h2 s 
(30) 

U*w cOD 
= -- 

~w U 4B2h w 
(31) 

A 'non-dimensional' pressure gradient parameter ~ is introduced, where 
S 

84h3 ~Ps B4h 3 ~s 

s pU2A ~x A ~x 
(32) 

s' flw and ~s are tabulated in Tables 2, 3 and 4 and are plotted in Figs.3, 4 

and 5 for various values of the porosity. Fig.3 may be compared with Fig.6.2 of 

Ref.! where the impression is given that the porosity has little effect on the 

solid blockage. It may be seen from Fig.3 that this is far from true unless F 

is very large. Concerning Fig°4 it should be noted that, as regards wake block- 

age, the solid wall cannot be taken as the limit of a perforated wall as B/P 

tends to infinity, since in this case ~ ÷ -| , whereas, by definition, ~ = l 
W W 

for the solid wallo 

In Ref.l, ~w is plotted only for F = 0 (Fig.6.26 of Ref.l); although 

this is correct, the numerator in the integrand in equations (6-23) and (6-24) 

of Ref.l should be unity, and any calculations based on these equations (derived 

from Ref.5) would be incorrect if F t 0 . Fig.6.7 of Ref.! gives the blockage 

gradient parameter, here defined as ~ , only for B/P = 0°6 . The results in 
S 

Fig.5 show a large dependence on B/P • Incidently the largest value of 

= ~2/9~3 = 0.633 occurs when F = 0 and B/P = tan (~//12) = ] 278 , the 
s 

extreme condition for zero solid blockage (Table I). 

7°2 Lift corrections 

The lift coefficient, quarter-chord moment coefficient and incidence have 

the following corrections to be applied to them: 

2 

ACL = 2 ~ CL~I (33) 

ACm = - ¼AC L (34) 
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cC L 2 
A~ = h L 60 + --c--c 61(¼C L + Cm) 

Bh 2 
(35) 

where 60 h , = h , 
= UcC----~ WL 2--r WL (36) 

Bh 2 ~w L Bh 2 ~w~ 
61 = UcC L 6x = 2F ~x (37) 

60 and ~I are tabulated in Tables 5 and 6 and are plotted in Figs.6 and 

7 for various values of the porosity. Fig.6 for 60 is comparable to Fig.6.14 

of Ref.l, but for 61 (Fig.7) Ref.l gives curves only for B/P = 0 , the ideal 

slotted wall case (Fig.6.15 of Ref.l) and for F = 0 , the perforated wall case 

(Fig.6.29 of Ref. l). It may be noted that 60 only vanishes for the closed 

tunnel (B/P = ~), but that, provided B/P < 0.7824 , F can be chosen to 

eliminate 6 . 
1 

8 CONCLUDING REMARKS 

The motivation for the present work was to obtain the far-field (large It]) 

solution for the interference potential for application in numerical flow-field 

calculations within two-dimensional wind tunnels. However the general solutions 

given in equations (8), (9) and (I0) may be used to calculate the interference 

potential close to the model also. In particular, when F = 0 (solid or 

perforated walls or free jet) explicit expressions are obtainable for the inter- 

ference velocities and their streamwise gradients at the model position 

(section 4). 

More general expressions for the interference at the model position for 

slotted tunnels are given in section 5. Most of the tabulated numerical results 

supplement existing data; for example, those of Ref.l are, on the whole, for 

special cases. However, the formulation of wake blockage in Ref.5 is incorrect, 

and the present values for ~w are based on a corrected expression for the 

interference potential. 

Section 7, with the aid of the tables and graphs, should enable interference 

corrections to be readily calculated for general slotted wall cases as well as 

for the special cases. Alternatively corrections may be calculated using the 

power series given in section 5 and the computational method of section 6. 
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A.I 

Appendix A 

CONVERSION OF INTEGRALS INTO POWER SERIES 

Equation (3) 

As described in section 3, equation (3) is equivalent to 

= - Re(LI~ +¢m(L 2) ~ J ~  
2 I +F (A-l) 

l eiq$ dq . where L 1 = ~-_ sinh (qN) q , 
F 0 

fi G 
L2 = I~F sinh (qN)e lq$ dqq 

0 

and I G = [(I - Fq)(sinh q + Fq cosh q) - (B/P) 2 cosh q] e -q , 

I F = (sinh q + Fq cosh q)2 + (8/p)2 cosh2q . 

The integrals may be evaluated for ~ > 0 by replacing q by q + ip 

integrating round the contour shown in Fig.la. This has indentations at the 

points ia and i~ r where m and E are the positive roots of r r r 

and 

and 

tan a r = B/P - Fa r (A-2) 

tan m r = - 8/P - Fa r (A-3) 

respectively. For I/P = 0 (for which we write J = | ; otherwise J = 0) there 

is also an indentation at the origin. Hence, letting R tend to infinity and 

the radii of the indentations tend to zero, we have 

0 = L 

CO 

0 

sin (pn) e-P~dp 

p[- (sin p + Fp cos p)2 + (8/p)2 cos2p] 

i sin (~rn)e -are 

- ~i iarl](imr)F - ~i 
a >0 g >0 
r r 

i sin (Nr~)e-Er~ 

(A-4) 
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There will also be a contribution to L from the pole at the origin when 
l 

I/P = 0 ; however, the contribution to ¢* in equation (A-l) is zero when 

I/P = 0 and so this term may be ignored. 

From equations (A-2) and (A-3) it is easy to show that 

and 

l~(ie r) = 2iB/P(I + F cos2~ r) 

2- 
l~(i~r) = - 2iB/P(I + F cos ~r ) 

Hence from equation (A-4) we have 

Re(L I ) 
--~ P Z --sin (~rn)e 2r 

2 B ~ >0 ~r (I + F cos ~r) 
r 

_ ~[ ~ __.sin (~rn)e-gr ~ 

2 B ~r(l + F cos 2- 
>0 ~r ) 

r 

• (A-5) 

For L 2 we have 

= L2_ f IG(ip)i sin (pn)e-P~dp 

pl F (ip) 
0 

J~i q 
2 I +F 

ilG(i~ r) sin (~rn)e -~rg Z 
- ~i i~ l_'(i~ ) -- ~i 

r F r >0 ~ >0 r r 

ilG(i~ r) sin (Erq)e -~r$ 

l~rlF (i~) r 

the third term arising from the pole at the origin when I/P = 0 , and so 

5m(L2) = _ f sin (P~)e-P$dP~ + J ~ p  2 I + F~ + ~ ~ sin, (~r~)e -~rE+ F 2 

0 a >0 ~r ~1 cos ~r ) " 
r 

sin (Nrq) e-Er ~ 

>0 ~r (I + F cos 2- ) 
~r 

r 

(A-6) 
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Since 

f sin (pD)e-PE/pdp = tan -I(~/$) 

0 

the second of equations (8), for ~ > 0 , results from substituting equations 

(A-5) and (A-6) into equation (A-I). 

For ~ < 0 the contour shown in Fig.lb is used. The expressions for 

Re(L]) and Jm(L2) given in equations (A-5) and (A-6) above apply, except that 

each term has the opposite sign, the negative roots of equations (A-2) and (A-3) 

are taken, and e -p~ is replaced by e p~ in the first term in equation (A-6). 

Thus the first of equations (8), for ~ < 0 , results. 

A°2 E~uation (4) 

Equation (4) is equivalent to 

~Bh Re(L3) + Jm(L4) - B (A-7) 

where 

and 

f I 
L3 = ~A cosh (qD)elq~dq ; 

0 

f IC 
L4 = ~A cosh (qB)eiq$dq 

0 

I C = [(I - Fq)(cosh q + Fq sinh q) - (B/P) 2 sinh q] e -q , (A-8) 

I A = (cosh q + Fq sinh q)2 + (B/p)2 sinh2q . (A-9) 

The same contours are used as in section A. 1 except that the indentations are 
m 

now at iy r and i~ r where Yr and Yr are the roots of 

and 

cot Yr = FY r - B/P (A-IO) 

= F~ + B/p (A-If) cot Yr r 

respectively. For P = 0 (for which we write B = I ; otherwise B = 0) there 

is also an indentation at the origin. Thus for $ > 0 
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= L3-i f 
0 

cos (p)e-PEdp 

(cos p - Fp sin p)2 _ (8/p)2 • 2 sln p 

cos (Yrq) e -Yr~ 

-~i ~ i~(iYr ) - ~i _~ 
Y >0 Y >0 

r r 

cos (Y ~)e -~rE 
r 

r) 

where, from (A-lO) and (A-l l) 

and 

l~(iY r) = - 2i8/P(I + F sin2yr ) 

li(i~ r) = 2iB/P(i + F sin2~ r) 

Hence 

~P 
Re<L3Jt ~ _ 2 8 

cos (yrn) e -Yr~ 

Y >0 r 
! + F sin2y 

r 

m 

p cos (~rn) e -Yr~ 

+ ~ Z I + F s in2~ 
T>O r 
r 

(A-l 2) 

For L 4 we have 

= f Ic(iP) L 4 - cos (p~)e -p~ idp + B w_~i 
IA(iP) 2 

0 

Z Ic(iY r) cos (Yrn)e -Yr~ 

- ~i i ~ ( i Y r  ) 
Y >0 

r 

-~i ~ Ic(i~ r) cos (qrq)e -~r~ 
.... 

7 >0 
r 

and so 

Jm(L4) = i c°s (Pn)e-P~dP - B~/2 - v-- Z .  2 

0 7 >0 
r 

2 
>0 

r 

cos [Yrn)e -Yr~ 

] + F sin2y 
r 

m 

COS (~ N)e -Yr~ 
r 

1 + F sin2y - 
r 

(A-I 3) 
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Since 

f cos (pq)e-PEdp = E/($2 + n2) 

0 

the second of equations (9), for ~ > 0 , results from substituting equations 

(A-12) and (A-13) into equation (A-7). 

For E < 0 the contour shown in Fig.lb is used with indentation at iY 
r 

and iT . The expressions in equations (A-J2) and (A-13) apply, except that 
r 

each term has the opposite sign, the negative roots of equations (A-IO) and 

(A-ll) are taken, and e -p$ is replaced by e p~ in the first term in equa- 

tion (A-13). Thus the first of equations (9), for ~ < 0 , results. 

A.3 Equation (5) 

Equation (5) is equivalent to 

q~* = 2~flm {p8__ Jm(Ls) - Re(L6) - ~Tr B(~ + 1) + ~r(1 _ B) pB_..} ( A - 1 4 )  

where, for $ > 0 

f ] <cosh (qn)e iqE - eiq) dq ; L 5 = q q 

0 

L 6 
IC (cosh (qn)e iq~ - e iq) dq q 

0 

and I C and I A are given above in equations (A-8) and (A-9). The same 

contours as in section A.2 are used and, for $ > 0 , 

= y f (cos (pn)e-P ~ - e-P)dp 
L 5 

0 p[(c°s p - Fp sin p)2 _ (8/p)2 sin2p] 

~, cos (Yrn)e -Yr$ - e -Yr Z 

- ~i iYrl'(iYr~A'" - ~i 
Y >0 T >0 
r r 

COS (~r~)e-~r $ _ e-~r 

igrl~(i~ r) 
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Hence 

m(L5) - ~ P 
28 

Z cos (Trq)e -Yr$ - e -Yr Z _~_i 

Y >0 Yr (| + F sin2yr ) 2 8 Y >0 
r r 

cos (~ n)e -Tr~ - e -Yr 
r 

~r (| + F sin2~r ) 

. . . . . .  (A-~ 5) 

For L 6 we have 

Ic(iP) 
0 = L 6 - iA(iP) (cos (pq)e -p$ - e -p) dp_ ~i (i - i~)B p 2 

0 

and so 

- ~i Z Ic(iTr)(cos (yrq)e-Yr~ - e-Yr) 

iYrI~(i7 r) 
Tr>O 

u 

- zi ~ Ic(i~r)<cos (~rq)e -Tr~ - e -~r) 

~r > 0 
i~rI~<i %) 

Re (L 6) (cos (pq)e -p~ 

0 

_ e-p) dp + ~_ (~ _ ])B 
p 2 

2 
Y >0 
r 

2 
Yr>0 

cos (Trq)e -Yr~ - e -Yr 

Yr (I + F sin2y r) 

cos (~rq)e -TrE - e -Tr 

~r(] + F sin2~ r) 
(A- | 6) 

Since 

(cos (pq)e -p~ - e-P)/pdp 

0 

= - In (~2 + q2) I 



Appendix A 25 

we have 

~ = - ra ll2~ in (~2 + 2) cos (Yrn)e -Yr~ - e-Yr D 
~+ ~ - ~-- 

, 
Yr>0 r J 

which reduces to the form given in the second of equations (10) for $ > 0 when 

the constant term 

m__ ~ +e-YrF 

2B sin2r ) Y >0 Yr (I 
r 

has been subtracted. This term will also be subtracted from the expression for 

~* for $ < 0 to be derived in equation (A-19). 

When ~ < 0 we replace L 5 and L 6 in equation (A-14) by 

= f I (cosh (q~)e iq~ + e -iq) ~ " 
L7 I~A q ' 

0 

IC (cosh (qD)e iq~ - -iq) dq 
L8 = ~A e q 

0 

and, using the usual contour for $ < 0 , and noting that for L 7 there is now 

a pole at the origin provided P % 0 , we find that 

oo 

[ (cos (p~)e p~ + e-P)dp ~i 0 L 7 
0 J p[(cos p - Fp sin p)'2 _ (B/p)2 sin2p] + ~ 2(I - B) 

(cos (yr~)e -YrE + e Yr) ~ cos (~r~)e -~r~ + e ~r 

+ zi iYrl~(iYr) + ~i .... 
<0 ~ <0 ~rIA(~r) 

r r 
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Hence 

m(L 7) 
= - ~(I - B) -! P Z cos (Yrn)e -YrE + e Yr 

2 B Yr (I + F s i n 2 y r  ) 
Y <0 

r 

28 
7 <0 
r 

cos (~rn)e -Yr~ + e Yr 

~r(1  + F sin2~r) 
(A-I 7) 

For L 8 we have 

= f IC(- ip) (cos (p~)e p~ -e -p) d__p_ 
L8 - IA(- ip) p 

0 

+ ~ (- i~ - i)B 

+ ~i ~ Ic(iYr)(cos (yrn)e-Yr~ - e Yr) 

Y <0 
r 

iYrI ~ (iY r) 

+ ~i _~ Ic(i~r)(cos (~rr l )e  -Yr~ - e Yr) 

<0 
r 

i~rl~ (i~ r ) 

and so 

Re (L 8 ) 

Thus 

i (COS (p~)e p~ - e -p) dp _ g P ~-(~ + I)B 
0 

cos (Yr~)e -Yr~ - e Yr 
+i +~ 

Y <0 Yr (l + F sin2Yr ) ~r<0 
r 

cos (~r~)e -Tr~ - e ~r 

~r (I + F sin2~r ) 
• (A- 18) 

4" 
= -2-7 

In (~2 + q2)½ _ ~ cos (Yrn)e -Yr~ 

Yr<0 Yr(l + F sin2Yr) 

+ 
ey r 

~r<0 ~r (I + F sin2~r ) ' 

. . . . . .  (A-I 9) 
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Since ~-r = - Yr (from equations (A-10) and (A-If)) the last term in equation 

(A-19) is equal to 

m E e-Yr 

28 Yr >0 Yr (I + F sin2yr ) 

and when it has been subtracted from ~* , as was done for E > 0 , the first of 

equations (I0) for ~ < 0 results. 
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Appendix B 

INTERFERENCE VELOCITY COMPONENTS 

Interference velocity components u* and w* are related to ~* by 

u* ~* 2 ~* . . . . .  ; w* - ~* - 2 ~* 
~x 8h ~ ~z h ~n (B-I) 

Expressions for u* and w* derived from equations (8), (9) and (]0) are 

obtained below. 

B.] Lift interference 

U* 
F I__ n ~ sin (~rn)e -~r~} 

Bh ~( 2 + n2) + 2 for ~ > 0 , 
>0 I + F cos 

er r 

W* I el0 h t~2 n2, | + F 2 
| + F cos ~r 

r 

for ~ > 0 , 

with corresponding expressions for ~ < 0 . 

An examination of the roots of equation (6) reveals that 

(B-2) 

(B-3) 

and 
= (r + ½)7 

r 

(r - ½)7 ~< er < (r + ½)~ 

for 

for 

P = 0 

P% 0 

(B-4) 

and so equations (B-2) and (B-3) may be written 

F n + u* 

~($2 + 2) ] + F cos2 
r=0 r 

1 h (~2 + n2) | + F cos2 
r=0 er 

for 

for 

$>0 

~>0 

, (B-5) 

• (B-6) 
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For E < 0 the summations run from r = -I to -~ . It may be noted that for 

I/P = 0 s 0 = 0 and so the constant term in equation (B-3) may be absorbed into 

the summation as in (B-6). 

B.2 Solid blockage 

u* = 2d f ~2 _ 2 
B2h2 In(~2 + 2)2 

Yr 

I r=0 

cos (Yrn) e-Yr ~ 1 

+ F s~nn2Yr 
for ~ > 0 , (B-7) 

w, 2d I 25~ Z Yr sin (Yrns--~n)2e~Yr~ J = - 1 for ~ > 0 . (B-8) 
Bh 2 (~2 + 2)2 I + F 

r=O 

For ~ < 0 the summations run from r = -I to -~ . From equation (7) we 

find that 

Y 
r 

rz < Y 
r 

= r~ for P = 0 L 

(B-9) 

< (r + I)~ for P ~ 0 

B.3 Wake blockage 

u* = m ~ + (Yr~)e-Yr~ for ~ > 0 , (B-t0) 

B2h ~(~2 + 2) r=0 I + 

w* = m ~ + for E > 0 . (B-11) 

~(~2 + 2) r=O I + ~in-~Y r J 

For ~ < 0 the summations run from r = -! 

equation (B-9) and the constant term is u* 

the summation. 

to -= . Y is defined as in 
r 

for P = 0 has been absorbed into 
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Appendix C 

INTERFERENCE AT THE ORIGIN WHEN F # 0 

The power series expansions given in section 3 and in Appendix B are only 

convergent for large E and must be modified before they can be made convergent 

at the origin. We note first that ~r and Y may be written 
r 

r = (r - ½)~ + Ur (C-I) 

Yr r~ + %r (C-2) 

where ~r and ~ lie between 0 and ~ for finite B/P For large r 
F % 0 it is easy to show that 

r and 

~r = F~-'~ r F~r F~r • 

These properties of 
r 

C.! Lift interference 

and Y will be utilised in the following analysis r 

The components u* and ~u*/~x are both zero at the origin, while w* 

and ~w*/~x at the origin are to be obtained. From equation (B-6) we may write 

h 

~÷0 r=0 l + F cos ~r 

= limit- ~ e-~(r-½)¢ + Z ~ + 0  

r=0 r=0 

e 
(I + F sin 2 - e-~r¢)| 

~r 

+ F sin2~r I 

from equation (C-l). The second term is equal to -e½~¢/(l - e -~) and when 

expanded near ~ = 0 provides a term to cancel the term I/~$ . Thus 

h E D~(rm½)~ F sin2~ ~ eD~r~) 
T WE = - ! + lim e r -~(r-½)$ (I - 

¢÷0 1 + F sin 2 + lim e 
r=0 ~r ¢+0 I + F sin 2 r=0 ~r 
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The first summation tends to 
F sin2~r 

r=0 1 + F sin2~r 

(C-3), the r + Ith term in the second summation is: 

large r . Thus the series is convergent, since 

large r , and tends to zero as $ ÷ 0 . 

Hence 

as ~ ÷ 0 and, from equation 

- ~(r-½ ) 

e 0(~) for 
| + F sin2~ r 

Z e-~r$ is convergent for 
r 

h ~ F sin2~ r 

TwE = - l + r=0 1 + F sin2~ r 

The other quantity that is required at the origin is the streamline curvature 

term 8w~/~x . From equation (B-6) we obtain 

~x Bh 2 ( + 2)2 + r 
r=0 

cos (~r~!i~r~ 1 

+ F cos2C~r f 

Thus, by the same procedure as above 

8h 2 8w L ~ e 
2F ~x = lim ] + r ~2 2 

~-~0 ~ r=0 I + F cos ~r 

l 
= lim 2- 1 

~÷0 ~ ~2 
- -  + e-~(r-½)~(~(r - ½) - F ~) 

r=0 

-~(r-½) ~ 
- e 

r=0 

(F~(r !) sin 2 -Br $) 
- 2 ~r - ~r e 

I + F sin2~r 

+ 
e_Z (r_½) ~ 

r=0 1 + F sin2~r 
~(r - ½)(e -~r$ - I) + F ~ (I + F sin2~r)) I. 
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As above the third summation tends to zero as ~ ÷ 0 . The first summation is 

equal to 

½~{( ~e-~ 

1 - e -~) 2 

(w/2 + ~/F)l 
- ; 

and, when expanded near ~ = 0 , gives a contribution 

1 11 1 
~2 24 ~ F~ + 0(~) 

which cancels the singularity and provides the first two terms of equation (22). 

The second summation tends to 

F~ (r ½) sin 2 E - ]Jr - Hr 

r=0 1 + F sin2~ r 

as ~ ÷ 0 and provides the remaining terms of equation (22). 

C.2 Solid blockage 

The components w* and ~w*/3x are both zero at the origin while u* and 

~u*/3x at the origin may be obtained from equation (B-7) using the ~echniques of 

section C.I° 

82h2 u* = 

2d s 
0ml  rerl 

r=0 + F sin2Yr 

lim~÷0 ~2 - e r - ~ + 

r=0 r=0 

OO 

I + F sin2X F 
r = O  r 

(F~r sin2% - ~ e -XrE) 
r r 

1 + F sin2% 
r 

sin2%r - ~re-%r~)l 

which reduces to equation (23). From equation (B-7) 
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~u* 
"~x 

4d f2E(3n 2 - E2) 

~2i3 r=0 

2 
Y 

r 
cos (~r N) e-Yr~[ 

for ~ > 0 . Thus 

83h3 ~u~ 
4d ~x 

I- E3 
= lim ~ + 

E÷O r=O 

= lim ~ + 

~÷0 ~3 r=O 

y2e-~r~ } 
r 

I + F sin2Yr 

r I r~ _ ES/P] e-r~ 2 2 + F _ F F 2 

+ e -r~ (2r~%re-%rE _ F 2r2 sin2l _ I 
r F r=0 I + F sin2%r 

- sin2%r + %r2e -ERE) 

r=O 

-r~$ [r - + E / 8/P \ e 2~2(e-lr$ I) ~- ~r~ ÷ F 

I + F sin2% 1 

(I + F sin2E r 

The first summation is equal to 

2-~ (I + e -~) 1 e + 
-~) 3 (I - e F(I - e -~) F 

e 

(I - e -~) 2 
_ ~8/P 

F2(I - e-~) 

which, when expanded near ~ = 0 

summation tends to zero as $ + 0 

is equal to 2 + 1 B/P 
~3 2F F2 

and equation (24) results. 

--+ 0(~) . The third 

C.3 Wake blockase 

The components 

equation (B-10) 

U = 
m W 

w* and ~/~x are both zero at the origin while, from 

r=0 

lim 1 + e-~rE -~rE 
$+0 ~-~ - e 

r=0 r=0 

F sin2% r + ~ )I e-~r$(e -%r~ - I 

1 + F sin2% r r=0 1 + F sin2%r 
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which reduces to equation (25). From (B-]0) 

~u* 2m ~2 2 Y cos (Yrn)e -Yr~ 
_ - n _ r 

~x 83h2 (~2 + n2)2 
r=0 ] +F 

for ~ > 0 . Thus 

83h2 ~u* 82h2 w _ u* 
2m ~x 2d s 

and equation (26) results from section Co2 above. 
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Table I 

CONDITIONS FOR ZERO SOLID BLOCKAGE 

8/P F 

= 

0 
0.1 
0 .2  
0 .3  
0 .4  
0 .5  
0 .6  
0 .7  
0 . 8  
0 .9  
1,0 
1.1 
1.2 
1.278 

t a n  

1.1844 
1.1799 
1.1662 
1.1432 
1.1106 
1.0681 
1.0149 
0.9501 
0 ,8724 
0 ,7795 
0 ,6676  
0 .5287 
0 ,3409 
0 

Note: Blanks 
series 

0 
0,1 
0 .2  
0 .3  
0 . 4  
0 .5  
0 .75  
1.0 
1.5 

2 
3 
4 
5 

10 
20 
50 

150 
CO 

in the following tables indicate very 
of section 5 for these values of F . 

Table 2 

SOLID BLOCKAGE (a s) 

slow convergence of the power 

0 

-0.5 
-0.4126 
-0.3432 
-0. 2858 
-0. 2369 
-0.1945 
-0.1082 
-0.0412 
0.0589 
0.1317 
0.2340 
0.3046 
0.3573 
0. 5066 
0.6299 
0.7533 
0. 8520 
1.0 

0.3 

- 0 .  4484 
- 0 .  3738 
- 0 . 3 1 2 9  
-0 .2611  
- 0 . 2 1 6 2  
- 0 . 1 7 6 7  
-0. 0954 
-0.0313 
0.0654 
0. 1365 
0.2370 
0.3066 
0.3589 
0.5072 
0.6301 
0.7533 
0.8520 
1.0 

0 .6  

-0.3225 
-0.2761 
-0.2335 
-0.1948 
-0.1596 
-0.1277 
-0.0592 
-0.0030 
0.0844 
0.1505 
0 .2457 
0.3127 
0 .3635 
O,5O9O 
0.6308 
0 .7535 
0 8520 

r l . 0  

1 

-0.125 
-0.1096 
-0.0911 
-0.0713 
-0.0512 
-0.0315 
0.0148 
0. 0561 
0.1256 
0.1812  
0 .2653 
0 .3266  
0.3740 
0.5132 
0.6324 
0.7539 
0.8521 
1.0 

0.2452 

0.2314 
0. 2284 
0.2273 
0.2277 
0. 2333 
0.2429 
0.2673 
0.2933 
0.3416 
0.3829 
0.4176 
0.5316 
0.6396 
0.7559 
0.8525 
1.0 

0.6467 

0.6326 
0.6285 
0.6245 
0.6158 
0.6085 
0.5976 
0.5907 
0.5849 
0.5854 
0.5893 
0.6226 
0.6809 
0.7683 
0.8551 
1.0 



36 

0 
O.l 
0 .2  
0 .3  
0 .4  
0 .5  
0 .75  
1.0 
1.5 

2 
3 
4 
5 

lO 
20 
50 

150 
c O  

O 
. 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 3 

WAKE BLOCKAGE (f~w) 

0 .3  

- 0 o l 8 5 5  
-0 .1709  
-0 .1595  
- 0 . 1 5 0 2  
- 0 . 1 4 2 6  
- 0 . 1 3 6 0  

0.6 

-0.3440 
-0.3214 
-0.3029 
-0.2874 
-0.2742 
-0.2627 

- 0 . 5  
- 0 .  4765 
- 0 .  4559 
- 0 . 4 3 7 6  
-0 .4213  
- 0 .  4067 

- 0 . 1 2 3 1  - 0 .  
- 0 . 1 1 3 4  - 0 .  
- 0 . 0 9 9 5  -0 .  
- 0 . 0898  - 0 .  
- 0 . 0 7 6 8  - 0 .  
- 0 .  0683 - 0 .  
-0 .0621  - 0 .  
-0. 0455 -0. 
-0.0328 
- 0 . 0 2 1 0  
-0 .0122  

0 . 0  

2395 
2217 
1957 
1772 
1522 
1355 
1234 
0907 

- 0 . 0 6 5 5  
- 0 . 0 4 2 0  
- 0 . 0 2 4 4  

0 

-0.3759 
- 0 . 3 5 1 3  
- 0 . 3 1 3 9  
-0.2864 
-0.2480 
- 0 . 2 2 1 9  
- 0 . 2 0 2 7  
- 0 . 1 5 0 0  
-0 .1087  
- 0 . 0 6 9 9  
- 0 . 0 4 0 7  

0 

2 

-0.7048 
-0.6908 
-0 .6771 
-0.6639 
-0 .6511 
-0.6388 
- 0 . 6 1 0 4  
-0.5849 
-0.5416 
-0.5063 
-0.4520 
-0.4120 
-0.3809 
-0.2899 
-0.2136 
- 0 . 1 3 8 8  
-0 .0811 

0 

5 

-0.8743 

-0.8674 
-0.8639 
-0.8603 
-0.8567 
-0.8476 
-0.8383 
-0.8197 
- 0 . 8 0 1 5  
-0 .7669  
- 0 . 7 3 5 5  
-0.7070 
-0.5996 
-0.4785 
-0.3304 
-0.1994 
0 

Table 4 

PRESSURE GRADIENT Ors) 

0 
0.1 
0 .2  
0 .3  
0 .4  
0 .5  
0 .75  
l .O 
1.5 

2 
3 
4 
5 

10 
20 
50 

150 
O 0  

0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.3 

0.2947 

0.1899 
0.1607 
0.1389 
0.1221 
0 .0930  
O. 0744 
0.0523 
0.0396 
0.0260 
0.0188  
0 .0145 
O. 0062 
O. 0025 
O. 0007 
O. 0001 
0 

0.6 

0.4989 

0,3429 
0 .2952 
0 .2584 
0.2291 
0.1771 
0.1431 
0.1017 
0 .0776 
0 .0512 
0 .0373 
0.0288 
0.0123 
0.0050 
0.0014 
0 .0003 
0 

0 .6169 

0 .4672 
0 .4137 
0 .3700  
0 .3337 
0 .2658  
0 .2190  
0 .1592 
0 .1232 
0 .0825 
0.0605 
0.0471 
0.0203 
0.0082 
0.0023 
0.0005 
0 

2 

0.5834 

0.5145 
0.4822 
0.4523 
0.4248 
0.3659 
0.3188 
0.2497 
0.2024 
0.1433 
0.1086 
0.0861 
0.0389 
0.0161 
0 .0046 
0 .0010  
0 

5 

0.3388 

0.3148 
0,3006 
0.2864 
0.2589 
0.2341 
0.1932 
0.1623 
0.1386 
0.0753 
0.0351 
0 .0110 
0.0024 
0 
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Table 5 

INTERFERENCE (~ 0 ) 
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0 
0.1 
0 .2  
0 .3  
0 .4  
0 .5  
0 .75  

1 
1.5 

2 
3 
4 
5 

I0 
20 
50 

150 
co  

0 

- 0 . 2 5  
-0 .2 2 7 3  
-0 .2 0 8 3  
-0 .1 9 2 3  
-0 .1 7 8 6  
-0 .1667  
-0 .1429  
- 0 . 1 2 5  
- 0 . 1 0 0 0  
- 0 . 0 8 3 3  
- 0 . 0 6 2 5  
- 0 . 0 5 0 0  
-0 .0417  
-0.O227 
- 0 . 0 1 1 9  
-0 .0049  
-0 .0 0 1 7  

0 

0 .3  

-0 .2 0 3 6  
-0 .1 8 6 7  
-0 .1 7 2 7  
- 0 . 1 6 0 9  
- 0 . 1 5 0 6  
- 0 . 1 4 1 7  
- 0 . 1 2 3 5  
-0 .1 0 9 6  
- 0 . 0 8 9 6  
-0 .0 7 5 8  
-0 .0581 
-0 .0471 
- 0 . 0 3 9 6  
-0 .0221 
- 0 . 0 1 1 7  
- 0 . 0 0 4 9  
-0 .0 0 1 7  

0 

0 .6  

- 0 . 1 6 4 0  
- 0 . 1 5 2 9  
- 0 . 1 4 3 3  
- 0 . 1 3 5 0  
- 0 . 1 2 7 6  
-0 .1211 
-0 .1075  
-0 .0967  
-0 .0807  
- 0 . 0 6 9 3  
-0 .0541 
-0.0445 
-0.0377 
-0.0215 
-0.0115 
-0. 0048 
- 0 , 0 0 1 6  

0 

- 0 . 1 2 5  
- 0 . 1 1 9 0  
- 0 . 1 1 3 5  
- 0 . 1 0 8 4  
- 0 . 1 0 3 8  
- 0 . 0 9 9 5  
- 0 . 0 9 0 3  
-0 .0827  
- 0 . 0 7 0 8  
- 0 . 0 6 1 9  
-0 .0495  
-0 .0413  
-0.0354 
-0.0207 
- 0 . 0 1 1 3  
-0. 0048 
-0.0016 
0 

2 

- 0 . 0 7 3 8  
-0 .0723  
-0 .0707  
-0 .0691  
-0 .0676  
- 0 . 0 6 6 0  
-0 .0623  
- 0 . 0 5 8 9  
- 0 . 0 5 2 9  
-0.0480 
-0.0404 
-0.0348 
-0.0306 
- 0 . 0 1 9 0  
- 0 . 0 1 0 8  
-0 .0047 
- 0 . 0 0 1 6  

0 

-0 .0314  

-0o0312 
- 0 . 0 3 1 0  
- 0 . 0 3 0 8  
- 0 . 0 3 0 6  
-0 .0301 
- 0 . 0 2 9 6  
-0.0284 
-0.0272 
-0.0249 
-0.0229 
-0 .0211 
- 0 . 0 1 5 0  
- 0 . 0 0 9 4  
-0 .0044  
- 0 . 0 0 1 6  

0 

Table 6 

STREAMWISE CURVATURE CORRECTION (~ I ) 

BIP 

0.5 
0.75 

..1 

1.5 
2 
3 
4 
5 
I0 
2O 
5O 
150 

co 

0 

-0 .2 6 1 8  
- 0 . 2 1 6 1  
-0 .1 8 0 6  
-0 .1519  
-0 .1 2 8 3  
- 0 . 1 0 8 3  
- 0 . 0 7 0 0  
-0.0423 
-0 .0051  

0.0189 
0.0481 
0 .0652  
0 .0765  
0 .1016 
0 .1156 
0 .1246 
0 .1288 
0.1309 

0.3 0.6 

- 0 . 1 2 9 6  
- 0 . 1 0 8 0  
- 0 . 0 9 0 0  
- 0 . 0 7 4 8  
-0 .0 6 1 6  
-0 .0501 
- 0 . 0 2 6 8  
- 0 . 0 0 9 0  

0 .0166 
0 .0342  
0.0569 
0.0709 
0.0804 
0.1028 
0.1160 
0.1247 
0 .1288  
0.1309 

-0 .0381 
-0 .0319  
-0 .0253  
- 0 . 0 1 8 8  
- 0 . 0 1 2 5  
-0 .0067  

0 .0063 
0 .0172 
0.0343 
0.0470 
0.0645 
0.0759 
0.0840 
0.1039 
0.1163 
0.1248 
0.1288 
0.1309 

0.0327 
0 .0306 
0 .0302 
0.0309 
0.0321 
0.0337 
0.0385 
0.0436 
0 .0530 

0.0967 

0.0904 
0.0882 
0.0865 
0.0851 
0.0832 
0.0824 
0.0830 

5 

0.1247 

0.1212  
0 .1204 
0.1187 
0,1173 
0.1151 

0.0609 
0.0731 
0.0819 
0 .0883  
0 .1053 
0.1167 
0 .1248 
0 .1288 
0.1309 

O. 0848 
0 .0892  
0 .0934 
0 .0970 
O. 1085 
0 . I 1 7 7  
O. 1250 
O. 1288 
O. 1309 

0,1137 
0 .1122  
0.1119 
0.1122 
0.1153 
0.1201 
0 .1255  
0 .1289 
0 .1309 
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SYMBOLS 

width of slots 

Vequivalent' cross-sectional area of model 

I for a solid wall, zero otherwise 

aerofoil chord 

drag coefficient 

lift coefficient 

quarter chord moment coefficient 

strength of doublet (= AU/B) 

slot parameter = (2s/~h) In cosec (~a/2s) 

tunnel height 

expressions in integrals, defined in sections 2.1 and 2.2 

I for an ideal slotted wall or free jet, zero otherwise 

strength of source (= ~UcC D) 

Mach number far upstream 

pressure 

porosity parameter 

distance between slot centres 

velocity far upstream 

interference velocity components along and perpendicular to free-stream 
direction 

interference velocity components at model position due to lift 
interference 

interference velocity components at model position due to solid blockage 

interference velocity components at model position due to wake blockage 

coordinates along and perpendicular to free-stream direction 

incidence 

roots of the equation tan ~r B/P - Fa r 

~| - M 2 

roots of the equation cot Yr = FYr B/P 

strength of vortex (= ½UcC L) 

(h/UcCL)W ~ 

(Bh2/UCCL)~W~/~x 

interference correction to be made to 

solid blockage factor (= u~/U) 

C L etc. 
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g 
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SYMBOLS (concluded) 

wake blockage factor (= uS/U) 

+ in 

2z/h 

tan -I (B/P) 

- r~ 
r 

- (r - ~)~ 
r 

2x/Bh 

pressure-gradient parameter = -(B4h3/pU2A)~Ps/~X 

density 

perturbation velocity potential 

perturbation velocity potential due to model in free air 

interference potential 

ratio of E to solid blockage factor for closed tunnel 
s 

ratio of ~ to wake blockage factor for closed tunnel 
w 
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