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Ill-contiitmned flutter equations and their 
improvement for skndator use 

E.G. Broa&ent, i&A., A.F.R.Ae.S. 

If simple arbitrary modes of the form $ are used as coordmates in 
a win2 flutter cakdation, the equations are ill-conditioned and wm.mt be 
solvea satisfactorily on a simulator. This ill-conditioning can be avoided 
by trxmsfoming the flutter matrix so as to m&me the inertw couplings 
between like modes to zero. This tran.%%mation is &scribed with nmm.uxiL 
examples, aad some observo.t~ons are nxdo on the general problem of choice of 
coordinates in a flutter 0LLcdat~on. 
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1 Introduction 

The calculation of flutter speeds is now commonly carried out on 
electronic simulators, of which the R.A.E. flutter simulator in six degrees 
of freedom is a notable exsmple, The simulators have brought about a great 
reduction in the time required to solve the flutter equations, and this 
has led to the adoption of techniques of calculation which were previously 
imRrsotical. The most obvious example of this change is that when the 
solution had to be obtained longhand (i.e. by use of desk caloulating machines) 
it was essential to restrict the number of degrees of freedom to the miniram% 
that could be used without introducing large errors. With a simulator this 
is n, longer so inroortant, and it is often more convenient, ~ticularly in 
the design stage of an aircraft, to use a relatively lsrge number of simple 
srbitrary modes in a calculation, rather than fixst to calculate the normal 
modes of the structure and then to use a smaller selection of these in the 
flutter oalculations, 

Unfortunately, the behaviour of the simulator depends on the type of 
modes chosen, and its behaviour is best when the modes are calculated normal 
modes. The reason for this is that the modes are then well separated from 
each other in frequency, and srs completely uncoupled from each other at 
sero airspeed, This means that the equations sre well conditioned and. the 
numerical accmacy good; that there is notendenoy for prolonged beating to 
occur; that theie is no tendency for a disturbance in one degree of freedom 
to cause overloading in another (as hsppens when the coupling terms are large); 
and there is no tendency for the smplifiers to give an undemped response to 
a high frequency, 

The way to avoid these difficulties with arbitrsry modes is to choose 
modes which possess increasing nunbers of nodes (one for the first overtone, 
two for the second and so on), which, being of the ssme general character 
as normal modes, likewise lead to well conditioned equations. Modes of this 
sort can be chosen by experienoe, but it is often more convetient to choose 
simple srbitrory modes and then to transform the flutter matrix just before 
scaling for the simulator. Detsils of a suitable transformation are given 
in the present pper with numerical examples, It is shown that although 
several figures must be retained in oalculating the flutter matrix for the 
simple arbitrary modes, this does not represent any real hardship. 

2 The use of simple eu-bitrary modes in flutter celculations 

Simple arbitrary modes have often been used in flutter calculations. 
They will not generelly give so accurate a solution as sn equal number of 
norm1 modes, but in the project stage of an aircraft it is more expedient 
to calculate the wing flutter speed from six arbitrary modes, then first 
to work out the normal modes and then to use four or five of these in a 
flutter calculation. That it is more expedient is a result of having a 
flutter simulator available for the solution. Moreover, six simple arbitrsry 
modes may be expected to give at least as good an answer as four or five cal- 
culated normal modes. 

Calculations using six arbitrary modes have recently been made to 
investigate the wing flutter of aircraft which have already flown in the 
clean condition but which have now to be modified to carry heavy external 
stores on the wing, such as fuel tanks or bombs. In such cases as these3 
the ground resonance tests on the clean aircraft have been completed and it 
m.~y seem simpler to use the normal modes of the clesn sircraft for the new 
flutter calculations with allowsnoe for the extra masses in the inertia 
coefficients. The modes would no longer be normal, but the elastic co- 
efficients would be unohanged (the cross-stiffnesses would be zero and the 
direct stiffnesses obtained from the inertia coeffioients and frequenoies 
of the clean aircraft) so that one of the big advsntages of using measured 
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normalmcx3es would be preserved. There are no objections in principle to 
this method of calculation, but experience shows that at least four wing 
modes would be needed to give an adequate prediction of the flutter speed 
end it is unlikely that so many modes will have been obtained from the 
grouml resonance tests of the clean aircraft, especially for a fighter 
aircraft. Even if sufficient modes were available, the overtones would 
probably not be accurate enough. 

The method of using simple arbitrary modes has the diss&antage that, 
the elastic coefficients have to be calculated by integration of the strain 
energy, but some guidance is available to the distribution of GJ and EI from 
the stiffness test results. Perhaps the simplest set of modes to choose is 
the following, involving three bending modes and three torsion modes. 

bending modes 

(4) f4hl = -t-l (11 
(5) f5bll = 7-f torsion modes 
(61 f&d = 2 

where f('f$ represents the displacement at a fraction v of the semi-span, 
divided by the tip displacement, and for modes (I), (2) and (3) the dis- 
placement is linear and vertical, for modes (4), (5) and (6) the displacement 
is a rotation+ 

It is clear that these modes will lead to ill-conditioned equations, 
because modes 1, 2 and 3 ere superficially very similar, snd so ar6 modes 4, 
5 ati 6. As an exax@e, consider an inertia coefficient of the bending modes. 
This will have the form 

1 

where m represents the mass distribution. If, for simplicity, m is 
assumed to be constant the inertia matrix for the first three modes is 

A =m 

(3) 

L J 
and the near equality of the coefficients indicates that ixouble may be 
experienced because of the introduction of small differences. Another way of 
looking at it is that the inertia determinant is very small. When this 
hapoens the highest natural coupled frequency appropriate to the degrees of 
freedom concerned becomes very large. The relation for the natural frequency 
w, is 

- eJ2Aq+Eq = 0 (4) 

where E is the square matrix of elastic coefficients ad q the column of 
generalised coordinates. Equation (4) can be written 

A-' E q = w2 q 
-1 and since the elements of the matrix A are inversely proportional to the 

determine& of A, it follows that the elements of A% are large if (A) is 
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small, and hence at least one solution for co will be large. This resdt 
will be emected for the modes given above because tf?e third coupled beMing 
mode will contain +x0 n&es, ad will appeer as a typicsl high frequenzy 
mode. If three bending modes are to be chosen they must inevitably contain 
a high frequency mode, either explicitly as a high frequency in one of the 
degrees of freedom or though large inertia coupling terms. The difference 
in representation betveIn the explicit high frequency and the lsrge inertia 
coupling is only important when the dfgital aocuracy is restricted; but as 
low digital accuracy is inherent in electronic sjnuiktors it is essential 
in simulator calculations that consideration be given to the coordinates 
chosen It is suggested in the present paper that simple arbitrary mcdes 
can be used with success in simulator flutter calculations, but the coordi- 
nates should be transformed before scaling tk coefficienta. The transfor- 
mation is designed to improve the conditioning of the equations. 

3 Transformation to knprove conditioning 

3.1 General rules for changing coordirmtes 

The flutter equations oan be derived, in Lagrangian form, from the 
expression 

2f = lh] [ul id (61 

~~p&Qy;;,\ A denote a row matrix, an2 the brackets 1 ] .a column 

cients: and 
[u] is the (ccmplex) sqwre matrix of flutter coeffi- 

8 
The rth 

qr represents a emall displacement of the ooordi.nate qr . 
equation is obtained by equating the ooefficient of % to zero 

in ewession (6). If the mat&c u is of order n , then there will be 
n simultaneous equations. 

Suppose that the n modal f'unztions appropriate to expression (6) 
were such that the required displacement, z, is given by 

z = f,q + ..*. frqr t ..*. fnqn = f*q (71 

where f end q are columns, and f1 denotes the transposed of f. 

!Ye may wish to write the flutter equations in terms of a new set of 
functions F, .,. FR where these new fur&ions sre linear oombinations of 
the origins.1 functions f. Thus 

It should be noted that N must be less than, 'cr &ual. to, n . 

Let the quantities Qi be delYned by 

q = aCJ 

Then 

i.e. 
z s f'q = f'a'Q 

z = F'Q 
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ad. Qi sre thus the nm coordinates corresponding to F . 

Finally 

where 

X = tiq'uq = &Q'aua'Q = &Q'UQ (121 

is the new matrix. 

U = mat (13) 

Equation (13) represents the standszd tm.nsf'ormation used, for exmple, 
vrhen a fltiter calculation of loge order is reduced to a binary or ternary 
by gearing some 01 the modes together. In the present paper the transfoma- 
tion is used to -rove the conditioning of the flutter determinant without, 
of oourse, reducing the order. 

3.2 Psrtial orthogmalisation of the inertia matrix 

Equation (13) oan be used to reduce all the cross inertia coefficients 
to zero, when a takes the form of a trianggar matrix, h say. 

Ial = I 0 .,a.*.* . . . . 0 
h12 ’ , . . . I 0 
. 

hln h n-l , n' 1 (14) 

If We now carry out the transformation (<j) on the inertia matrix [a] 
and equate the new cross inertias to zero we obtain the eqmtions 

etc. 

92 .i- %2all 
= 0 

al3 + %3% + h23a,2 = 0 

a23 
+ h,3a,2 + h23a22 = 0 

1 1 
(15) 

J 
which provides sufficient equations to solve fcr the elements of [h]. 

Solution of the equations (15) would be a laborious task for a lsrge 
number of coordinates*, but fortunately on most current flutter simulators 
which provide up to six degzos of freedom it is unnecessary to use more 
than the first three equations. T!z reason for this is that the whole o!' 
the inertia matrix does not need to be treated. 
those given in equation (I). 

Suppose the modes used are 
T!le three torsion modes will be referred to 

the flexural axis, if one exists, which will bc close to the locus of centres 
of gravity so that ars (r = 1,2,3; s = 4,5,6) will be small. If there is no 

* The process of reducing, t'ze cross-inertias to zero is synonymous with 
that of reducing the inertia matrix or sub-matrix to canonical form, for 
which there are several methods available (see, for example, Ref.1). The 
examples considered here, however, are too simple for sny formal process to 
be neoesssry. 
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flexural axis the reference axis should be chosen either as the c.g. axis, 
or as a fixed axis near to this, the half ohord for exsmple. Because of 
this lt is only necessary to reduce to zero the cross martias 
ars C=,s = 1,2,3; r $ S) and ars (r,~ = 4,5,6; r $ s). The matrix [h] 
now becomes 

h= 

v 

1 0 

h12 ' 0 

h13 '23 ' ' 
0 0 Ql 0 

0 0 0 hb5 1 0 

0 0 * h46 '56 ' 

and the equations for the elements of [h] are tne first three equations 
of equation (15) together with a corresponding set for the coefficients h 
h4-6 a-d h56. 45' 

The effect of the matrix (16) used in the transformation is to 
transform the modal functions f ,into functions F, where 

Fl = f, 

F2 
= h,2fl+f2 

F 
3 

= h,3f, + h23f2 + f 
3 (179 

and it is to be expected that if the original functions f ere those given 
in equation (I), thenF2 will give one node within the wing span and F 
will give i~o nodes within the vdng w. 

3 

3.3 knerical examples of the transformation 

A typical inertia matrix for modes of the type given in eqmtion (1) 
is given below in expression (18). The wing is unswept and -ies tip 

and with forward c,g. which explains why the oross 
inertias a s = 4,5,6) are relatively lerge. 

6.12402 -1.53257 -1.47300 
6.42402 5.85636 -1.47300 -1.41490 
5.85636 5.60715 -1.41490 -1~35a73 

-1.47300 -1.41490 0.736961 0.704833 
-1.41490 -1.35a73 0.704833 0.675363 
-1.35873 -1.30461 0.675363 0.647635 (18) 

The matrix is symmetric (in the further exemples only the up er 
triangle will be printed) and in eddition a22 = a , by equations ? 1) 

(2). The ill-oonditionin+ between modes 1, 2 and'; and betweenmodes 
and 

4, 5 and 6 is cwlte obvious and is of the same orde; as that shoe-n by 
equation (3), but is in fact rather worse beoausa of the taper. 

It is to be expected that the aerodynamic coefficients till be ill- 
conditioned in the same way as the inertia coefficients, because they also 
depend upon the disnlacements of the modes. The matrices are given, for 
interest, in equations (19) and (20), where the aerodynamic dsmpings are 
denoted by b and the stiffnesses by c, 
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b= .0.296018 0.278036 -0.0642220 
0.238036 

-0.0505741 
t ; g;z : i .gz;z 

o:u.~619 
-0.0505741 -0.0411556 

0.197535 * t -0.0411556 -0.0343055 

-0.020870 -0.022198 -0.0177957 0.139b9 0.0855822 
-0.0221980 -0.0177957 -0.0146942 0.0855822 o.oW3567 
-0.0177957 -0.01~6942 -o.oiz,.oo~ 0.0583567 0.0436254 
., 

c= 0.0944859 0.07557d6 0.0624528 
0.0755716 

0.381631 0.290883 
0.062&528 0.0528250 

0.062L~528 
0.290883 0.232744 

0.0528250 0.0454534 0.232744 0.192427 
-0.0241943 -0.0173972 -0.0132898 -0.0382347 --0.0276215 
-0.0173972 -0.0132898 -0.0105a6j -0.0276215 -0.0212347 
-0.0132898 -0.0105861 -0.00869208 -0.0212347 -0.0170240 

The matrices b snd c have been mtitioned to illustrate the fact 
that although the mtrices as a whole are not symmetric, each mtitioned 
segment is symmetric. The conditioning is not as bad as in the inertia malx-ix 
because the presence of any large concentrated. mass ten& to worsen the 
conditioning; a point mass always has a zero uxztia deternunant. The elastic 
coeffioients, e, depend on the curvature of the bending modes and on the slope 
of the torsion modes and again are not as btily conditioned as the inertia 
coefficients, The flexural axis was used as a reference sxi.s, so that the 
elastic couplings between the bending and torsion modes are absent; the matrix 
is symctric. 

C?= 
r- 1 

0.294954 0.22940< 0.211839 
0.317759 0.382835 : 

-0.0411556 
-0.0343055 1 -0.0291243 
0.0583567 
0.04262% 

J 
0.0326867 ' 

(191 

0.2327&'+ 

2 ; z$ . 
-0.0212347 
-0.oq70210 
-0.0140554 

@a - 

0.518615 0 

1 0.2$635 0.162189 0.?59679 CL o.G759 0.14.4218 146743 I @II 

If the coefficients are sc&led far the simulator as they stand, the 
results could mean very little even if the simulator responded in a satis- 
factory manner, because only at most thee significmt figures could be 
retained. Apart from this, however, if each degree of freedom 1s scaled 
to a frequency appropriate to its own direct inertia and stiffness coefficients 
(which is the normal pactice) those frequencies are, LII non-dimensional form, 

0.209, aZi8, 0.3@&, 0.575, 0.487, 0.486 @a 

whereas the natural ooupled frequencies, at which the simulator till respond 
when all the degrees of freedom are being used, cover a much wider rsnge, 
The result is that unstable oscillations occur at the highest natural frequency 
and the simulator is unusable. 

The trensformation matrix, h, is of the form (16 i) an3 is found very 
quickly, requiring the solution of only two patis of s ~kmultaneous equations. 

h= I 

-0.9497 I 
0.4413 -1.4488 1 

I 

-0.9564 1 
0.3878 -1.364 1 
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The transformed inertia matrix, at, is now given in equation (24); it is 
still symmetric, but the toR right hand partition is no longer symmetric. 

at = 6.75807 

1 

0.028;3,7 
0 -?.53257 -0.00724277 -0.000554385-i 

0.0006~3624 
-0.0?74727 O.OoO762873 0.000014~729 
-;~;c~;;y75 -o.oo00320136 0.00oCp9775 1 

. 
o.001:5737 

o.ooo&o*576 ' 
I (241 -1 

The transformation sots in a similar way on the aerodynamic coefficients, 
except t&t none of them is reduced to sero. For exemple, the transfomned 
damping matrix for de@-ees of' freedom 1, 2 and 3 becomes 

.- 
bt = 0.2y6018 -0.043101~ -0.00955971 

0.0123995 o.oo149236 
0.000499346 

I 
(25) 

and is%LLl syrnnetric, although the symmetry of cross partitioned segments 
is destroyed and, of course, the whole matrix is unsvetric. 

The elastic matrix is 
(still synrmtric) 

e = t 

L 

0.294954 -0.0507256 
0.148066 

not affected so much as the others, an3 becomes 

0.0165259 0 0 0 

0.0?75406 0 0 
0.0290768 0.24:633 -0.06;8664 

0 1 
0 

-0.00732030 
a.0743842 -0.00363263 

0.008~8287 

md it can be seen that the reduction in the coefficients of the third 

t& 

and sixth degrees of freedom is much less than in the inertia coefficients. 
This has the effect of spreading out the frequencies of the individual 
degrees of freedom, so that the new values (comRa.rable with (22)) are 

0.209, 2.28, 6.63, 0.575, 7.53, 14.2 (27) 

The frequency range here is enormous compared with that of the 
umnodified coefficients, There are no longer any high frequencies masked 
by ill-conditioning, and the coefficients can be scaled directly for the 
R.A.E. flutter simulator, with amropiate choice of time constants. In 
fact this was done and the solution on the simulator presented no difficulty 
at all. In all, five different mass conditions were covered in the problem, 
but only one complete resealing was made; the same transformation was used 
for the first three cases, and a new transformation for the other two. 

It is of interest to determine the new modal shapes appropriate to 
the transformed coefficients. These sre given by the evessions for F, 
etc. in (17) in terms of f, etc. which are the functions given in (1). 
The new modes sre simple cmbinations of the old, and can best be described 
in terns of the nodal points, viz: 

mode 1 is unchanged 

mode 2 has a node at n = 0.95 span 

mcde 3 has nodes at n = 0.46 and 0.96 

mode 4 is unchanged 
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mode 5 has a node at q = 0.96 span 

mode 6 hes nodes at q = 0.40 cad 0.96 span, 

The modes ere also compared inFigs. to 4, 

The effect of the Wansformation is now apparent: it has yielded an 
e.~;nation to the first three uncoupled normal modes in bending ati 

This illustrates the reason for the tide renge of frequencies 
given ii (27) ; in psrticular the large gap between the fundsmental frequencies 
of bending end torsion and their respective overtones is caused by the 
dominating effect of the heavy tin mass. The approximation to the uncoupled 
normal modes is, of oourse, quite orude sinoe only the inertia matrix is 
orthogonal in this respect, but what matters is that the desired effect has 
been achieved, 

In the second exemple the original ohoice of modes was quite different 
and the need for the trsnsformation less certain. In this case the example 
is for illustrative ourposes only and is not t&en from an actual aircraft. 
The wing is divided into three equal spenwise lengths ti each length 
alloxed two degree of freedom (see Ref.2 for example): parabolic bending 
end linear torsion. This choice of erbitrarymodes 1s Rertioulerly valuable 
when a perameter has to be varied which only affects psrt of the wing span. 
If, for exemple, there sas reason to suppose that the most economical way 
of inoreasing the flutter speed would be to stiffen a perticuler section of 
the wing, then that section would be given its own degrees of freedom end 
the veriations in stiffness would only sffect one binary in the whole s&n-ix. 

The modes me 

f, = { (over inner wing) 

fz= $ t 
] Bending 

over middle wing) 
modes 

fJ = (over outer wing) 

f4= T (over inner wing) ) 

I 

torsion 
f5 = % (over middle wing) 

modes 
f6= 3 ( over outer wing) ) W0 

so that over the cuter wing, for exemple, the deflection ia 

end 6 = q& + q5 + T13% (30) ' 

where 4 is the length of a wing section and 3 is the distance along the 
outer section divided by -8, With these coordinates the inertia matrix is 

a = 53.4051 

[ 

flO.;333 2.85 -004a8 -1 -0.5 
. 1*5?667 -0.5 -0.5 -0.25 

o.y5a33 -0.0625 -0.0625 -0.03125 
0.6010196 0.226567 0.0792725 

0.202087 0.0792725 
0.0411377 

I 
(31) 

where those numbers which ere given to less than six significant f+n-es 
are exact, as a result of the simplicity of the assumed wing proRerties. 
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The elastic matrix is diagonal 

e= 

i 

53.4051 
20.6 

I.18333 
1.202039 

0.8OU34.8 
0.329102 

1 
(32) 

In fact the elastic coefficients were chosen to be in a simple ratio to 
the direct inertia coefficients. The frequenoies appropriate to the six 
individual degrees of freedom are, therefore 

1.0, f.2, 2.0, VT?, 2.0, 242 (33) 

To provide a cheek of the behaviour of the flutter simulator with 
the coefficients of equations (31) arrl (JP), they were scaled as they stand 
and combined with I$ critical damping in the directterms and zero aero- 
dynamic meff icients. The simulator was not viole+ly unstable at a basic 
frequency of 10 rad/sec as it had been in the previous example, but it did 
not settle down well snd the equilibrium condition was easily disturbed. 
As there were no aerodynannc coefficients available the flutter speed could 
not be determined and instead it was decided to tr.y to evaluate the SL 
rmtural freque22ies. On the present R.A.E. flutter simulator, this is a 
more severe test of the conditioning of a problem since it is usual to 
work at a mean frequency of 100 rad/sec when the smplif'iers overload much 
more easily, In this ease to prevent overloading the structural dsmping 
had to be increased to such a degree that the oonditions of resonance were 
quite unobtainable, so that no solution to the problem was possible. 

The transformation (13) was again used to see if the conditioning 
would again be improved to a satisfactory level. It was possible, in this 
ease, that the improvement in the inertia matrix would be balanced by a 
wursening of the elastio matrix. As the determinant of the elastic oo- 
effioients is reduced to zero the effect is not to cause violent overloading 
at a high frequency, but to cause static instability. This also renders 
the simulator unusable, but it can be used at smaller velues of the stiffness 
determinant than of the inertia determinant so that the effect is not quite 
so serious. The transformation is 

h= 
-0.403208 1 

-0.227205 1 
1 
-0.376971 I 
0.0276724 -0.423293 1 (34) 

giving A 

at = 53.4051 0 -0.4m -0.a16038 -0.0902111 

or0602372 -0.303235 0.0324389 O.OOC6288y7 0.0175185 -0.Ol58159 0.00388393 
0.6o<o~y6 0 0 

! 0.116678 0.2977587 

(35) 

e = 

t 53.LO5j -21.5333 2.04248 o 0 0 
29.2824 -;.5;w&; cl 0 0 

.3 0 0 0 1 
1.2020!+ -O&53134 0.0332633 

0.979A6% -0.3%708 

- II - 
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Tine frequenoies of the individual degrees of freedom now have the 
values 

l.O* 4.35, 6.21, 1.41, 2.90, 6.97 (37) 

which again show a wider spread than those of (33). In the form of (31) 
snd (32) the coefficients were scaled for the simulator whzch was thsn used 
at a mean frequency of 100 rad/sec to find the natural frequencies with no 
IXOUblfJ. The results were 

0.882, 4.25, 6.87> 1.31, 2.65, 7.26 (38) - 

where the first three numbers represent the frequenoies in ascending order 
of the nredomiiimntly bending modes, and the last three of the predominantly 
torsional modes, the srrangement being for ease of comparison with (37). 
The modes obtained by the transformation are shown in Figs.6 and 8 for 
comparison with the original modes shown in Figs.5 and 7. It will be seen 
that the respeotive overtone modes oontain the ssme number of nodes as the 
corresxmding nomsl modes. 

At the beginning of this example it vfas remsrked that the typs of 
arbitrary modes used here had particular merit where the effect of local 
stiffening was to be investigated. Muoh of the advantage of this will be 
lost if the transformation is such that all the new coefficients depnd on 
the local stiffness concerned. It follows that the variable parsmeter should 
be contsinsd in the (3,6) binary terms if the transformation is to be used 
in the form given by equation (I 6). Thus the srrangement used in the exsmple 
would be suitable for investigating changes in a psrameter confined to the 
tip section; ti the vsriable were in the middle section then the original 
matrix would be resrranged to make the degrees of freedom 3 s.rxl 6 contain 
the distortions of this section, 

3.4 Accuracy of the basic coefficienta 

It will have been noticed that the examples of section 3.3 sxe worked 
to six significant figures, and the reason is simply that figures are lost 
very rapSLy in the transformation, as alwaya when dealing with ill-conditionsd 
equations. In fact seven sigtiicant figures should be kept throughout the 
work where simple srbitrsry modes are used. It may seem that this high 
degree of accut-soy is pointless sinoe the physioal data from which the oo- 
efficients are derived are never known to more than two or three sipifioark 
figures. The reason it is not pointless is that all the coefficients are 
funotions of the ssme physical data and a so&l ohange in the physical data 
would produce small changes in all the coefficients. Moreover when the oon- 
ditioning is poor the functions are all similar to each other and henoe all 
the smell ohanges are similar. Conversely a small isolated ohangs in ens 
coefficient only would represent a very great physical change and in many 
cases would turn the lzroblsm into an unreal one. The physica.l properties 
are shm in the fine balance of the coefficients and a small change in the 
physical properties does not upset that baIance, although it may give rise 
to a smsll change in the overall level of the coefficients. 

The coefficients must therefore be worked out very aocurately, and also 
the physical data must be used in exactly the same way in eaoh oosfficient. 
Thus approximations to ths physical data are psrmissible, but numerical 
approximations in evaluating the cosfficients are not. It is satisfactory, 
for exsmple, to approximate to the true mass distribution by a mathematical 
fun&ion in terms of the spsn, so that the integrations oan be cwried out 
analytically, but it is not satisfactory to use the trus mass distribution 
and evaluate the integrals graphically or by any method thatnnght introduce 
rarhm errors. The standard engineering method of evaluating the integrsls 
by dividing the wing into say ten strips parallel to the line of flight, 
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expressing the function to be integrated by its values at the middle of' 
t'-e sixins, and then suimning these values multiplied by the widths of ths 
strius, i.s again sati.sfactor,y since the true mass distribution (or wing 
chord etch is represented by a series of rectangular steps for which an 
exact station is carried out. The high degree of numerical ~~~u?zWV 
must be retained. until after the transformation has been used.. 

4 The use of more complicated arbitrary mdes 

An alternative to using the tramformation is to try to choose modes 
iR the first place which VC11 not lead to ill-conditioned equations, as 
XuMnnick recommends3 in the choice of modes for nomalmode calculations. 
In practice this 1s not always easy to do on an aircraft wing which may be 
carrying lsrge concentrated masses, and oases have occurred where it has 
been attempted only to find that the final coefficients were still t.00 
ill-conditioned for sa+xsfactory sol&ion on the flutter simulator. But 
even if the choice is satufactory there is no saving iLl num&rical work, 
which is in fact usval~y longer. As an example, consider the three torsion 
mcdeS of equations (I) applied to a uniform beam 

i.e. (391 

wI?ere I is the torsional inertia per unit . The inertia matrix, by 
inspection, is (in non-di.mens+onal ?orm) 

.- -, 

and similarly the elastic matrix is 

e = 

The transfca'mation is 

-3/ 1 

2,; -v3 1 

L 
and the transformed matrices ere 

I- -1 



The transformed modes sre 

F, = f, = -II 

F2 q f&o-4, % = 4 - $71 (node at 0.75) 

F3 = f3 
-4 /3 f2 + 2j5f, = 2 - 4,3~ + 2,5~ (ncdes at 0.45 and 0.89) 

(45) - 

In the alternative method modes are chosen which have the oorrect number of 
nodes in roughly the correct positions, e.g. 

mode 1 9 q mq 

mode 2 e = (?f - 0.7v)q2 (node at 0.7) 

mode 3 0 7 (2 - 1.33 + 0.i+q)q3 (nodes at 0.5 and 0.8) 
I b6) 

In this case the expressions for the inertia coefficients are more 
oomlicated and havfz to be evaluated very carefully beoause they result in 
small differeyes of large quantities. For exsmple 

a23 = 1 bi? - 0,7d b-? - I.33 + 0.4?lbl (47) o 

where it can be seen that three significant fimes are lost in the 
suumation of eqmtion (&8). In faot it appears that if polynomial functions 
sre used at all then small differences cannot be avoided in the calculation 
and the integrsls must all be evaluated tith great numerical accuraoy, For 
comparison with (a) the inertia an3 elastic matrices are 

a Z 

i 

oe3j 0.016i 
0.0135 

L 
and it csn be seen that 

I.0 0.3 
0.423j g:ii96i 

0.0733 1 (49) 
J L J 

they are similar. With a more oomplioated structure, 
however, it is more difficult to ohoose modes as well conditioned as those 
given in (46). 

One refinement suggested by Ninhinnick and not so far considered here 
is to use Duncan function: rather than sixple algebraic modes (see Ref.3). 
The Dunoan fun&ions are polynomials arranged to satisfy the conditions of 
sero moments at the wing tip. This refinement is not, however, thought to 
be of great value iz flutter work when as many as six modes sre chosen. 
Collar has shown4 that in semi-rigid work a failure to satisfy the tip 
condition is ‘3ot im~~ortant. 

5 Gsneral remarks on choice of coordinates 

The availability of flutter simulators of up to six degrees of freedom 
has considerably widened the choioe of ooordinates in flutter problems. 
Without a simulator, or other suitable electronic computer, the overriding 
factor is that the required. aocuracy of representation should be achieved 
with as few coordinates as possible. Fith a simulator the important factors 
are 

(i) the time taken to evaluate the flutter coefficients 
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(ii) The time taken to change the ccefficients in aocordanos with 
the vsriation that may be desired in any parameters. 

(iii) The suitability of the coordinates for solution on a simulator. 

(iv) Ths requirement not to exceed ths number of equations which 
the simulate can solve. 

The time taken in (i) will not always be shortest for the schsme 
which has the fewest coordinates; the form of the modal functions is 
also inprtant, The time tsken in (ii) csn vary vsry greatly depending 
on whether much recalculation is necessary when the variable ia changed. 
As regards (iii) the coeffioients put on the simulator should be suah as 
to avoid serious overloading both at high and low frequencies if possible; 
a transformation as suggested in the Tresent paper may be used. Finally, 
the process of simplifying the assumed modes should not be carried so fe.r 
that the capacity of ths simulator becomes inadequate for satisfactory 
representation of the problem. 

As a brief illustration of the rapidity wiYn which the oalculated 
flutter speed converges with &u-easing numbers of degrees cf freedom, a 
simnle flutter calculation has been oarried out on a rectangular ting 
using strip theory and constant derivatives. The calculation was divided 
into trq parts, of which the first was a binary using what might be tsrmed 
standard arbitrary modes of parabolio bending and linear torsion about the 
flerural aris, which was assumed to be at the half chord and coinoident 
with the inertia axis. In the second psrt of the calculation the modes 
chosen vere pabolio bending and Fabolic and cubio torsion about the 
leading edge. The intention was to compsre the result of the standera 
oalculationwith that of a calculation in which the torsion moae was 
replaced by two admittedly unrealistic torsion modes. It could be, for 
example, that in a ps.rticuZ~ case the assumtion of a linesr torsion mode 
might lead to complications either aerodynsm&lly or struoturally, so 
that the two modes with zero rate of twis? at tine root would be more 
convenient to use than the single lines2 mode. The modes were taken as 
twisting about the leading edge so as to remove still further their 
associationvith the structure (again the leading edge could be a more 
convenient reference axis in some cir.rnnst.ances), 

In the limiting condition as the bendin 
8 

stiffness tends to zero: 
the exact solution is available for this wing , snd can be oompared with 
the solutions obtained on the semi-rigid theory for the different modes. 
This compariscn is made in Table I below, where 

s is the distanoe from root to tip 

c is the chord 

V is the flutter speed 

p is the air densitv (asaumsd small compared with the wing mass) 

GJ is the torsional rigidity 

z is the vertioal displacement of a point 

sQ is the distance of the roint from the root 

and x is the distanoe of the point aft of the leading edge. 

/Table I 
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TABLE I 

Exaot standard quadratic 
solution bimy 

v2 
binsry 

term 2 
s=cqll 

z=c z=c 4 J 

+ b -jh2T + si2? 
+ =I* 
+ xq n 3 

3 
- 

scv $J 
J 

2.48 2.27 3.35 2.39 

6llTOJJ 0.5$ 35.1% 3.% 

Points to note sre 

(i) The standard binary gives a satisfactory answer, and the error is 
on the safe side; 

(ii) The quadratic binexy gives an unsatisfactory answer ad errs on 
the unsafe side. In this particulsr binsry the position of the refererkze 
axis is mterial since both sparmise functions have the same form; 

(iii) The ternary gives a better answer than the standsrd binaryinspite . 
of the fact that both its torsion modes are unrealistic by themselves. 

In Fig.9 the exaot flutter torsion mode (a sine curve) is compered with 
the linear mode of the stardad binary, the quadratic mode and the torsion 
mode obtained from the ternary solution. 

. 

This smle example illustrates the importawe of giving consideration 
in advance to the most economical choice of degrees of freedom, when the 
solution is to be found on a simulator. It is easy to imagine c5rcumstances 
in which the numerical work req-tied to carL-y out the ternsrywould be less than 
that for the standard bizwy (see Table I) ad for which the ternary ~culd 

therefore represent tie better choxe of coordinates. 
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