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STMMARY
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If simple arbitrary modes of the form m® are used as coordinates in
a wing flutter calcalation, the egquations erc ili-conditioned and cannct be
solved satisfactorily on a simulator. This ili-conditioning can be avolded
by trensforming the flutter matrix sc as to raduce the inertia couplings
vetween like modes to zero, This transformation is dcscribed with mmerical
examples, and some cbservabions are made on the general problem of choice of
coordinates in a flutter czleculation,
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1 Introducstion

The caleculation of flutter speeds is now commonly carried out on
electronic simulators, of which the R,A.E. flutter simulator in six degrees
of freedom is a noteble example. The simulators have brought about a great
reduction in the time required to solve the flutter equations, and thas
hag led to the adoption of techniques of calculation which were previously
imoracticel, The most obvious example of this change d4s that when the
solution had to be obtained longhand (i.e. by use of desk caloulating mechines)
it was essential to restrict the number of degrees of freedom to the minimum
that could be used without introducing large errors, With a simulator this
is n~ longer so imoortant, and it is often more convenient, particularly in
the design stage of an alrcraft, to use a relatively large number of simple
arbitrary modes in a calculation, rather than first to calculate the normal
modes of the structure and then to use a smaller selection of these in the
flutter calculations,

Unfortunately, the behaviour of the simulator depends on the type of
modes choazen, and its behaviour is best when the modes are calculated normal
modes, The reason for this is that the modes are then well separated from
each other in frequency, and are completely uncoupled from each other at
zero airspeed, This means that the equations are well conditioned and the
numerical accuracy good; that there is no tendency for prolonged beating to
occur; that there is no tendency for a disturbance in one degree of fresdom
to cause overloading in another (as happens when the coupling terms ere large);
and there 1g no tendenecy for the amplifiers to give an undamped response to
a high freguency.

The way to avoid these difficulties with arbitrary modes ls to choose
modes which possess iucreasing nusbers of nodes (one for the first overtone,
two for the second and so on), which, being of the same general character
as normel modes, likewise lead to well conditioned equations., Modes of this
sort can be chosen by experience, but it is of'ten more convenient to choose
simple arbitrary modes and then to transform the flutter matrix just before
scaling for the simwlator., Detalls of a suitable transformation are given
in the present paper with numerical examples. It is shown that although
several figures mugt be retaired in calculating the flutter matrix for the
simple avbitrary modes, this does not represent any real hardship.

2 The uge of gimwle srbitrary modes in flutter caleulations

Simple srbitrary modes have often been used in flutter caleculations,
They will not generally give so accurate a solution as an egual number of
normal modes, but in the project stage of an aircraft it is more expedient
to calculate the wing flutter speed from six arbitrary modes, than first
to work out the normal modes and then to use four or five of these in a
flutter caleulation, That it is more expedient is a result of having a
flutter simulator available for the solution. Moreover, six simple arblitrary
modes may be expected to give at least as good an angwer as four or five cal-
culated normal modes,

Caleulations using six arbitrary modes have recently been made to
investigate the wing flutter of aircraft which have already flown in the
clean condition but which have now to be modified to carry heavy external
stores on the wing, such as fuel tanks or bombsg, In such cases as these,
the ground resonance tests on the clean aircraft have been completed and it
may seem simpler to use the normsl modes of the clean aireraft for the new
flutter calewlations with allowance for the extra masses in the inertia
coefficlents. The modes would no longer be normsl, but the elastic co-
efficients would be unchanged (the cross-stiffnesses would be zero and the
direct stiffnesses obtained from the inertia coefficients and frequencies
of the clean aircraft) so thot one of the big advantages of using measured
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normal modes would be preserved., There are no objections in principle to
this method of calculation, but experience shows that at least four wing
modes would be needed to give an adequate prediction of the flutter speed
and 1t is unlikely that so many modes will have been obtained from the
grourd resonance tests of the clean aireraft, especially for a fighter
aircraft, Even if sufficient modes were available, the overtones would
probably not be accurate enough,

The method of using simple arbitrary modes has the disadvantage that
the elastic coefficients have to be calculated by integration of the strain
energy, but some guidance is available to the distribution of GJ and EI from
the stiffness test results. Perhaps the simplest set of modes to choose is
the following, involving three bending modeg and three torsion modes,

(1) £,(n) = 1

(2) £, = o bending modes

(3) fj('n) = ot

(&) fzp(“) = m (1)
2

(5} fs(Tﬂ = n torsion modes

(6) £ (m) =

where f{m) represents the displacement at & fraction M of the semi-span,
divided by the tip displacement, and for modes (1), {2) and (3) the dis-
placement is linear and vertical, for modes (4), (5) and (6) the displacement
is a rotation,

It is clear that these modes will lead to ill-conditioned equations,
because modes 1, 2 and 3 are superficially very similar, and so are modes L,
5 and 6. As an example, consider an inertia coefficient of the bending modes.
This will have the form 1

A = f mf, £ an (2)

0

where m represents the mass distribution. If, for simplicity, m is
assumed to be constant the inertia matrix for the first three modes is

— -

A = m 1/5 1/6 1/7
Ve V7 s (3)
1/7 1/8 1/9

and the near equality of the ccefficients indicates that trouble may be
experienced because of the introduction of amall differences, Another way of
looking at it is that the inertia determinent is very small, When this
hapnens the highest natural coupled frequency appropriate to the degrees of
freedom concerned becomes very large. The relation for the natural frequency
w, is

- m2Aq+Eq=o (&)

where E is the square matrix of elastic coefficients and g the column of
genereslised coordinates. Equation (4) can be written

2 'rq = £ q (5)

and since the elements of the matrix Af1 are inversely proportional to the
determinant of A, it follows that the elements of A™'E are large if (A) is
-4 -



small, and hence at least one solution for ® will be large. This result
will be expected for the modes given above because tne third coupled bending
mode will contain two nodes, and will appear as a typical high frequency
mode, If three bending modes are to be chosen they must inevitably contain
a high frequency mode, either explicitly as a high frequency in one of the
degrees of freedom or through large inertis coupling terms., The difference
in representation betwe.n the explicit high frequency and the large inertia
coupling is only important when the digital accuracy is restricted; but as
low digital accuracy is inherent in electronic simulators it is essential
in sinmilator caleulstions that consideration be given to the coordinates
chosen. It is suggested in the present paper that simple arbitrary modes
can be used with success in simulator flutter calculations, but the coordi-
nates should be transformed before secaling the coeffigients, The transfor-
mation is designed to improve the conditioning of the equations.

3 Transformation to improve conditioning

3.1 Ceneral rules for changing ccordinates

The flutter equations can be derived, in Lagrangien form, from the
expression

x= [sa] [4] fal (6)

where the brackets denote a row matrix, and the brackets § ! & column
matrix, as in Ref,1% ~[u] is the (complex) square matrix of flutter coeffi-
cients, and 6qr represents a amall displacement of the coordinate 9.

The :r'qbh equation is obtained by equating the coefficient of qu to zero

in expression (6), If the matrix w is of order n , then thore will be
n simultaneous equations.

Suppose that the n model functions appropriate to expression (6)
were such that the requircd displacement, =z, is given by

5 = f1q1 + esae frqr t sess fnq_n = f'q_ (7)

where f and q are columns, and f' denotes the transposed of f.

e may wish to write the flutter equations in terms of a new set of
functions F‘I e FN where these new functions are linear combinations of

the original functions £, Thus

By Ty ovee Xp £y
Ll | J L ] 2
: = | : : e af (8)
FN “N'i ﬂ'Nn fn

Tt should be noted that N must be less than, or equel to, n .

Let the quantities Qi be defined by

q = «'Q (9)

Then
n = ftq = flalQ (10}

i, e,
z = F'Q (11)



and Q1 are thus the new coordinates corresponding to F .

Finally

i

X = 8q'uwg &Qtauaty = &' (12}

where
U = ouat (13)
is the new matrix.

Equation (13) represents the standard transformation used, for example,
when a flutter calculation of large order is reduced to a binary or ternary
by gearing some of the modes togetlher. In the present paper the transformas~
tion is used to irvrove the condationing of the flutter determinant without,

of course, reducing the order.

3.2 Partial orthogonalisation of the inertia matrix

Equa*tion {13) can be used to reduce all tle cross incrtia coefficients
to zero, when @ takes the form of a triangular matrix, h say.

[a] = 1 O easseransae O
h12 1 )
: 1 0 (14)
h1n h:1-—1,1'11

If we now carry out the transformation (413) on the inertis matrix [a]
and equate the new cross inertias to zero we obtain the equations

a12 + 1112a11 = 0
85 * h13311 + h23a12 = 0 l $ (15)
8oz + hﬂjaﬂz + h23a22 = 0 J

eta,
which provides sufficient equations to solve for the elements of [h].

Solution of the equations (15) would be a laborious task for a large
mriber of cocrdinates-, but fortunately on most current flutter simulators
which provide up to six degrecs of freedom it is unnecessary to use more
than the first tlwree equations. The reason for this is that the whole of
the inertis matrix does not meed to be treated. BSurpose tihe modes used are
those given in equation (1), The three torsion medes will be referred to
the flexural axis, if one exists, which will be close to the locus of centres
of gravity so that a__ (r =1,2,3; s = 4,5,6) will be small. If there is no

N
rd

The process of reducing the cross-inertias to zero is synonymous with
that of reducing the inertia ratrix or sub-matrix to cenonical form, for
which there are several methods available (see, for example, Ref.1). The
exomples considered here, however, are too simple for sny formal process to
be necessary.



flexural axis the reference axis should be choszen either as the c,g. axis,
or as a fixed axis near to this, the half chord for example, Because of
this 1t iz only necessary to reduce to zero the cross inertias

Bg (rys =1,2,3; r % 9) and & (rys = 4,5,6; r # &), The matrix [h]

now becomes

B 7
h = 1 0
kHz 1 0
h13 h23 1 0
0 0 0 1 0
0 0 0 hhS 1 0
0 0 0 hhﬁ h56 1_J (16)

and the eguations for the elements of [h] are tne first three equations
of equation (15) together with a corresponding set for the coefficients hla-5’
hl+6 and h56'

The effect of the matrix (16) used in the transformation is to
transform the modal functions £ _into functions F, where

Fy = 1

Fp = Bty + 1, (

Fy o= hof, 4 hf (17)
J

and it is to be expected that if the original functions f are those given
in equation (1}, then F, will give one node within the wing span and F

3
will give two nodes within the wing span.

3.3 IMumericsl examples of the transformation

A typical inertia matrix for modes of the type given in equation (1)
is given below in expression (18). The wing is unswept and carries tip
fuel tanks full of fuel, and with forward c.g. which explains why the cross
inertias a (r = 1,2,3; s = 4,5,6) are relatively large.

=

a = 6.75807 6.418%) 6.124,02 -1, 53257 -1.47300 ~-1. 41480
6.4483h  6,12402  5,85636 ~1,47300 -1,41490  -1,35873
6.12502  5,85636  5.60715 =1,44490 ~1,35873 =1, 30461
-1,53257 =1.47300 ~1,41490 0.736961  0Q,704833  0.675363
~1.47300 -1,44490 -1,35873 0,704833 0,675363  0,647635
-1 41590 ~1,35873 -1.30461  0,675363  0,647635 0.621292 | (48)

The matrix is gsymmetric (in the further examples only the upper
triangle will be printed) amd in addition B % Byzs by eguaticns (1) and

(2). The 1ll-conditioning between modes 1, 2 and 3, and between modes
4, 5 and 6 is guite obvious and is of the same order as thet shown by
equation (3), but is in fact rather worse because of the taper.

Tt is to be expected that the aerodynsmic coefficients will be ill~
conditioned an the same way as the inertia coefficients, because they also
depend upon the disnlacements of the modes, The matrices are given, for
interest, in equations (49) and (20), where the aerodynamic dampings are
denoted by b and the stifvnesses by c.
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[ 0.296018
0. 238036

0, 238036
0,197535
0,197535  0.167632

-0,028870 -0,022198
-0, 0221980 ~0,0177957
-0,0177957 -0,011 6942

—t

-

0,0%44859 0©,0755716
0.0755716 0,062,528
0.0621.528 0, 0528250

=-0. 0173972 -0,0132898
-0.0132898 -0, 0105861

-0, 0244943 -0,0173972

0.197535
0. 167632

0. 144619

-0.0177957
-0, 46942
-0, 0124009

0. 0624528
0, 0528250
0. 0454530

-0, 0105861
-0, 00869208

-0, 0642220

| =0, 0411556

0,139419
0. 0855822
0. 0583567

0, 381631
0,290883
0, 23274,

-0, 0382347
-0. 0276215

-0, 0212347

-0, 0505741
-0, 0411556
-0, 0343055

0, 0855822
0. 0583567
0.043625)

0, 250883
0. 23274L
0, 192427

-0, 0276215
0. 021237
-0, 0170210

ﬂ
-0, Ok11556
~0,0291243

0, 0583567
0. 0426254,
0. 0326867

(19) ~

O.232?4&.m
0.192427
0,162838

-0, 0212347
~0.0170210
-0, 0140554

(20) ~

The matrices b and c have been pertitioned to illustrate the fact
that although the matrices as a whole are not symmetric, each partitioned

segment is symmetriec,

The conditioning is not as bad as in the inertia matrix

because the pressnce of any large concentrated mass itends to worsen the
conditioning; a point mass always has a zero inertia determinant.
coefficients, e, depend on the curvature of the bending modes and on the slope
of the torsion modes and asgain are not as badly conditioned as the inertia

The elastic

The flexural axis was used as a reference axis, so that the

elastic couplings between the bending and torsion modes are absent; the metrix

coefficients,

is sy@petric.

e = 0.29495,  0,229,01
0.317759

0,211839 0 0 0
0. 382835 0 0 0
0,518615 0 0 0

0.242633  0.162189  0,119759

0.159679  0.144218

0. 146743

-y

(21)

e

If the coefficients are scaled far the simulator as they stand, the
results could mean very little even if the simulator responded in a satis-
factory mammer, because only at most three significant figures could be

retained.

Apart from this, however, if each degree of freedom 1s scaled

to & frequency appropriate to its own direct inertia snd stiffness coefficients
(which is the normal practice) those frequencies are, 1n non-dimensional form,

0,209, 0,228,

0' 3015-,

0.575,

Oo }.|.8? ’

0. 486

(22)

whereag the natural coupled frequencies, at which the simulator will respond
when all the degrees of freedom are being used, cover a much wider range,

The result is that unstable cscillations occur at the highest natural frequency
and the gimulator is unusable,

The transformation matrix, h, is of the form (16) and is found very
quickly, requiring the solution of only two pairs of similtaneous equations.

s

h={ 1
"'Oo 9}4-97 1
0,413 -1.4188 1

1

=0, 9564 1
0.3878

—8-—

1. 364 1

(23)



The transformed inertia metrix, a,, is now given in equation (24); it is

still symmetric, but the top right hand partition is no longer symmetric,

a, = 6,75807 0 0 -1,53257 =0, 00724277  =-0.000551385
0,0283317 0 ~0,017L727  0.000762873  0.0000145729
0, 000663624 ~0,00132775 =0, 0000320136 0, 0000249775
0. 736961 0 0
0. 00125737 0
0. 0000L025T76
- (24) .

The transfarmation acts in a similar way on the aerodynamic coefficients,
except that none of them is reduced to zero, For example, the transformed
damping matrix for degrees of freedom 1, 2 and 3 becomes

0, 296018 ~0, 0431074 ~0. 00955971
0,01239595 0. 00149236
0, 000499346 (25)

Py

b __
and is still symmetric, although the symmetry of cross partitioned segments
is destroyed amd, of course, the whole matrix is unsymmetric,

The elastic matrix is not affected so much as the others, and becomes
(still symmetrac)

ey = i 0.294954 -0,0507266 0, 0165259 0 0 0
0.148066 0, 0175406 0 0 0
0, 0290768 0 0

0
0,242633  -0,069866L ~0,00732030
0,0713812 -0,00363263
0. 00818287

- (26)~

and it can be seen that the reduction in the coefficients of the third

and sixth degrees of freedom is much less than in the inertia coefficients.
This has the effect of spreading out the frequencies of the individual
degrees of freedom, so that the new values (comperable with {22)} are

0,209, 2.28, 6,63, 0.575, 7,53, T2 (27)

The frequency range here is enormous compared with that of the
wmodified coefficients, There are no longer any high frequencies masked
by ill-conditioning, and the coefficients can be scaled directly for the
R.A B, flutter simulator, with appropriate choice of time constants, In
fact this was done and the solution on the simulator presented no difficulty
at all. In all, five different mass conditions were covered in the problem,
but only one complete rescaling was made; the same transformation was used
for the first three cases, and a new transformation for the other two.

It is of interest to determine the new modal ghapes appropriate to
the transformed coefficlients, These are given by the expressions for F ’
ete, in (17) in terms of £, ete, which are the functions giver in (1)}.

The new modes are simple combinations of the old, and can best be described
in terms of the nodal points, viz:

mode 1 is unchanged

mode 2 has a node at i = .95 span

il

mode 3 has nodes at 1M = 0,46 and 0,96

mode L. is unchanged
-0 -




mode 5 has A node at = 0,96 span
mode & has nodes at m = 0,40 and 0,96 span,
The modes are also compared in Figs.q1 to 4.

The effect of the transformation is now apparent: it has yielded an
approximation to the first three uncoupled normal modes in bending and
torsion., This illustrates the reason for the wide range of frequencies
given in (27); in particular the large gep between the fundsmental frequencies
of bending and torsion and their respective overtones is caused by the
dominating effect of the heavy tin mass, The approximation to the uncoupled
normal modes is, of course, quite cruds since only the inertia matrix is
orthogonal in thig regpect, but what matters is that the desgired effect has
been achieved,

In the second exsmple the original choice of modes was quite different
and the need for the transformation less certain., In this case the example
is for illustrative purpcses only and is not taken from an actual aircraft,
The wing is divided into three equal sparwise lengths and each length
allowed two degree of freedom (see Ref.? for example): parabolic bending
and linear torsion. This choice of arbitrary modes i1s particularly waluable
when a parameter has to be varied which only affects paxrt of the wing span.
If', for example, there was reason to suppose that the most economicel way
of increasing the flutter speed would be to stiffen a particular section of
the wing, then that section would be given its own degrees of freedom and
the variations in stiffness would only affect one binary in the whole matrix.

The modes are

£,= M, (over inner wing) )
} Bending

£, = Tg (over middle wing) §

modes
:f‘3 = T§ (over outer wing)
s (over inmer wing) }
b k torsion
f5 = (over middle wing)

modes
fo= T (over outer wing) ) (28)

g0 that over the outer wing, for example, the deflection is
2
z = {(3% +4y) + 2(qy + ) g+ ,qu} (29)

and o = +oq + (30)
% " %5 T MY

where 4 is the length of a wing section and 113 is the distance along the

outer section divided by 4, With these coordinates the inertia matrix is

e = | 53,L081 24,5333 2,85 -0, 188 -1 «0, 5
1003 1.51667 -0;5 "0-5 ""0025
0, 795833 ~0,0625 -0, 0625 -0, 03125
0.6010196 0,226567 0,0792725
0.202087 0,0792725
0. 0411377 (31)

where those mumbers which are given to less than six significant figures
are exact, as a rcsult of the simplicity of the assumed wing properties.
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The elastic matrix is diagonal
- -
e = 5344051
20,6
118333
1.202039
0, 808348

(32)

In fact the elastic coefficients were chogen to be in a simpie ratio to
the direct inertia coefficlents. The frequencies appropriate to the six
individual degrees of freedom are, therefore

Jz,

To provide a check of the behaviowr of the flutter simulator with
the coefficients of equations (31) armd (32), they were sceled as they stand
and combined vwith 1% eritizal damping in the direct terms and zero aero-
dynamic coefficients, The simulator was not violen*ly unstable at a basic
freguency of 10 rad/sec as it had been in the previous example, but it did
not settle down well and the equilibrium condition was easily disturbed.
As there were no aerodynamic coefficients available the flutter speed could
not be determined and instead it was decided to try to evaluate the six
netural frequeacies. On the present R.A.E, flubter simulator, this is a
mere severe test of the conditioning of a problem since it 18 usual to
work at a mean frequency of 100 rad/sec when the amplifiers overload much
more easily, In this case to prevent overloading the structural damping
had to be increased to such a degree that the conditions of resonance were
quite unobtainable, so that no solution to the problem was possible.

0.329102

1.0, ¥2, 2.0, 2,0, 2¢2 (33)

The transformation (13) was again used to see if the conditioning
would again be improved to a satisfactory level. It was possible, in this
case, that the improvement in the inertia matrix would be balanced by a
worsening of the elastic matrix, As the determinant of the elastic co-
efficients is reduced to zero the effect is not to cause violent overloading
at a high frequency, but to cause static instability. This also renders
the simulator unusable, but it can be used at smaller values of the stiffness
determinant than of the inertia determinant so that the effect is not quite

g0 serious.

The transformation is

-

-
h= 1
~0,403208 1
0,0382L51  -0,227205 4
4
-0.376971 1
0,0276724 -0,,2329% 1 (34)
. _
giving
a, = 53, 1,051 0 0 -0,488 -0, 816038 -0.0902111
1.,61759 0 -0.303235 0, 0175185 -0, 0158159
0.0602372  0.0324,389 0,000628897  0,00188393
0,6010196 0 0
0. 116678 o
0, 00977587
L (35) -
9 = R3,L051 -21.5333 2,04248 0 0 0
29,2824 ~5,50397 0] 0 0
2.%24L86 0 0 0
1.20204 ~0,L5313L  0,0332633
0. 979168 ~0, 354,708
1 0. 474860 (36)




The frequencies of the individual degrees of freedom now have the
values

1.0, 4.35, 6,21, 1.41, 2.90, 6.97 (37)

which again show a wider spread than those of (33), In the form of (31)
and (32) the coefficients were scaled for the simulator which was then used
at a mean frequency of 100 rad/sec to find the natural frequencies with no
trouble, The results were

0,882, 1,25, 6,87, 1.31, 2,65, 7,26 (38)

where the firsgt three numbers represent the frequencies in ascending order
of the mredominantly bending modes, and the last three of the predominantly
torsional modes, the arrangement being for ease of comparison with (37).
The modes obtained by the transformation are shown in Figs.6 and 8 for
comparison with the original modes shown in Figs,5 and 7. It will be seen
that the respective overtone modes contain the same number of nodes as the
corresphonding normal modes.

At the beginning of this example it was remarked that the type of
arbitrary modes used here had particular merit where the effect of local
stiffening was to be investigated. Much of the advantage of this will be
lost if the transformation is such that all the new coefficients depend on
the locel stiffness concerned, It follows that the variable parsmeber should
be contained in the (3,6) binary terms if the trensformation is to be used
in the form given by equation (16). Thus the arrangement used in the example
would be suitable for investigating changes in a parameter confined to the
tip section; if the variable were in the middle section then the original
matrix would be rearranged to make the degrees of freedom 3 and 6 contain
the distortions of this section,

Ze4  Accurascy of the basic coefficients

It will have been noticed that the examples of section 3.3 are worked
to six significant figures, and the reason is simply that figures are lost
very rap:dly in the transformation, as always when dealing with ill-conditioned
equations. In fact seven significant figures should be lept throughout the
work where simple arbitrary modes are used, It may seem that this high
degree of accuracy is pointless since the physical data from which the co-
efficients are derived are never known to more then two or three significant
figures, The reagon it is not pointless is that all the coefficients are
funotions of the same physical data and a small change in the physical data
would produce small changes in all the coefficients., Moreover when the con-
ditioning is poor the functions are all similar to each other and hence all
the smell changes are gimilar, Conversely a small isclated change in one
coefficient only would represent a very great physical change and in many
cazes would turn the problem inbo an unreal one, The physicsl properties
are ghowvn in the fine balance of the coefficients and a small change in the
vhysical properties does not upset that balance, although it may give rise
t0 a small change in the overall level of the coefficients.

The coefficients must therefore be worked out very accurately, and also
the physical data must be used in exactly the same way in each coefficient.
Thus approximations to the physical data are permissible, but numerical
approximations in eveluating the coefficients are not., It is satisfactory,
for example, to approximate to the true mass distribution by a mathematical
fuanction in terms of the span, so that the integrations can be carried out
analytically, but it is not satisfactory to use the trus mass distribution
and evaluate the integrals graphically or by any method thatmight introduce
random errors., The standard engineering method of evaluating the integrals
by dividing the wing into say ten strips parallel to the line of flight,
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expressing the function to be integrated by its values at the middle of
tre gtrips, and then summing these values multiplied by the widths of the
strios, is again satisfactory since the true mass distribution (or wing
chord etc) is represented by a series of rectangular steps for which an
exact sumnation is carried out. The high degree of numerical accuracy
must be retained until after the transformation has been used,

A The use of more complicated arbitrary modes

An alternmative to using the transformation is to try to choose modes
in the first place which will not lead to ill-conditioned equations, as
Minhinnick recormendsd in the choice of modes for normal mode calculations.
In practice this 1s not always easy to do on an alrcraft wing which may be
carrving large concentrated messes, and cases have occurred where it has
been attempted only to find that the final coefficients were still too
ill-conditioned for satisfactory solution on the flutter simulator. But
even if the choice is satisfactory there is no saving i, numerical work,
which is in fact usually longer. As an example, consider the three torsion
modes of equations (1) epplied to a uniform beam

i.e. 6 = nd, + TIQQQ + 113(13 (39)
The kinetic energy, T, is given by
1
L . r .
o f 18 dn = f 1(ng, + n2q2+ 'ﬂ3q3)2d'ﬂ (0}
o

where 1 1is the torsional inertia per unit m . The inertia matrix, by
inspection, is {(in non-dimensional form)

a = ‘"1/3 1/1* 1/5 !
|
| (1)

’ I
e = 1 1 1
4 6
/5 /s
’/
] 5 (42)
The transfomation is -
h =, 1
-3 1
2/4 iy
- 1
/s /5 | (43)
and the 'l:ra.;sfomed matrices are _. —
e, = 1 0 0 e = |1 1 1
o 1 19 13
/ 1575 ! / 48 /. 180
. B 43 /
675 (44
N .




The transformed modes are

F1=f E I

Fz = f2 - %f = 112 - %T} (nOde at 0075)

F3 = £y - 4/3 f2 + 2/5f1 = TP - AVBTF + 2/5n (nodes at 0,45 and 0,89)
(45)

In the alternative method modes are chosen which have the correct mmber of
nodes in roughly the correct positions, e.g.

mode 1 ® = mg,
mode 2 8 (2 - 0.770q2 {node at 0.7)

(TP - 1.37? + O.hTﬁqj (nodes at 0.5 and 0.8) (46)

mode 3 o

1

In this case the excressions for the inertia coefficients are more
commlicated and have to be evaluated very carefully because they result in
small differences of large quantities., For example

P23 * f (f - 0.7 (P - 1,37 + o.uman (17)
(o]
=Yg - g+ B2 -2 o 0,000953 (48)

where it ocan be seen that three significant figures are lost in the
sumation of equation (48)., In fact it appears that if polynomial functions
are used at all then small differences camnot be avoided in the calculation
and the integrals must all be evaluated with great numerical accuracy. For
comparison with (44) the irertia and elastic matrices are

-

a = | 035 0,0166 000833, |e = | 1.0 0.3 , 01 ,
0.013%5  0,000933 0.4233  0,0966
0, 0008574 0.0733 (49)

and it can be seen that they are similar, With a more complicated structure,
however, it is more difficult %o choose modes as well conditioned as those
given in (46),

One refinement suggested by Vinhinnick and not sc far considered here
is to use Duncan functions rsther then simple algebraic modes (see Ref.3).
The Duncan functions sre nolynomials arranged to satisfy the conditions of
zero moments at the wing tip, This refinement is not, however, thought to
be of great value in flutter work when as many as six modes are chosen.
Collar has shownl that in semi-rigid work a failure to satisfy the tip
condition is not immortant.

5 General remarks on choice of coordinates

The availability of flutter simulators of up to six degrees of freedom
has congiderably widened the choice of coordinates in flutter problems,
Without a simulator, or other suitable electronic computor, the overriding
factor is that the required accuracy of representation should be achieved
with as few coordinates as pogsible, With a simulator the important factors
are

(i)} the time taken to eveluate the flutter coefficients
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(41} The time %taken to change the coefficients in accordance with
the variation that may be desired in any parameters.

(1i1) ‘The suitebility of the coordinates for solution on a simulator,

(iv} The requirement not to exceed the rumber of equations which
the simulatar can solve.

The time teken in (i) will not always be shortest for the scheme
which has the fewest coordinates; the form of the modal functions is
also important, The time teken in (ii) cen vary very greatly depending
on whether much recalculation is necessary when the varisble is changed.
As regards (iii) the coefficients put on the simulstor should be such as
to avoid serious overloading both at high end low frequencies if possible;
a transformation as suggested in the vresent paper wray be used. Finally,
the process of simplifying the assumed modes should not be carried so far
that the capacity of the simuletor becomes imadequate for satisfactory
representation of the problem,

As a brief illustration of the rapidity with which the calculated
flutter speed converges with increasing mumbers of degrees cf freedom, a
simnle flutter calculation has been carried out on & rectangular wing
using strip theory and constant derivatives., The calculation was divaded
into trn parts, of which the first was a binary using what might be termed
standard arbitrary modes of parabolic bending and linear torsion about the
flexural aris, which was assumed to be at the half chord and coiucident
with the inertia axis, In the second part of the calculation the modes
chosen were parabolic bending and parabolic and cubic torsion about the
leading edge. The intention was to compare the result of the standard
calculation with that of a calculation in which the torsion mode was
replaced by two admitiedly unrealistic torsion meodes. It could be, for
example, that in a particular case the assumption of a linear torsion mode
might lead to complications either aerodynamically or structwrally, so
that the two modes with zero rate of twis% at the root would be more
convenient to use than the single lineas mode. The modes were taken as
twisting about the leading edge so as to remove still further their
association with the structurs {again the leading edge could be a mere
convznient reference axis in some circumstances),

In the limiting condition =s the bending stiffness tends to zero,
the exect sclution is available for this wing<, and can be compared with
the solutionsg obtained on the semi-rigid theory for the different modes.
This comparisen is made in Table T below, where

8 is the distance from root to tip

¢ is the chord

V is the flutter speed

p is the air density (assumed small compared with the wing mass)

GJ is the torsional rigidity
z is the vertical displacemsnt of a point

8M is the distance of the noint from the root

and x is the distance of the point aft of the leading edge.
/Table I
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TABLE T

Exaot standard quadratic | ternary 2
solution bimary 2 binary TF z=09.1M
z = cqqﬂ Z = cq; + xqzﬁ%
£ 3
+ (x - Q)QZH + xqzﬂ + xq3n
T 2.8 2,27 3.35 2.39
acV -G-_-J
error - 8. 5% 354 1% 3. 6%

Points to note are

(i) The standard binary gives a satisfactory answer, and the error is
on the safe side;

{ii) The quedratic binary gives an unsatisfactory answer and errs on
the unsafe sgide. In thisg particular binsry the position of the reference
axis is immaterial since both sparwise functions have the same form;

(iii) The ternary gives a better answer than the standard binary in spite
of the fact that both its torsion modes are wnrealistic by themselves.

In Fig.9 the exact flutter torsion mode (a sine curve) is compared with
the linear mode of the standard binary, the quadratic mode and the torsion
mode obtained from the ternary solution.

This simmle example illustrates the importance of giving consideration
in advance to the mecst economical choice of degrees of freedom, when the
solution is to be found on a simulator. It is easy to imagine circumstances
in which the numerical work required to carcy out the ternary would be less than
that for the standard binary (see Table I) and for which the termary would
therefore represent the better choice of coordinates.
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