

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Transient Thermal Stress in a
 Flat Plate Due to Non-Uniform Heat Transfer Across One Surface

By
N. S. Heaps, B.Sc.

U.D.C.IN3. $533.319: 533.6 .011 .6$

Report ito. Structures 164

Anril, 1954

ROYAS 4 IRCRAFT ESTABLISFIEIH
 Irensaont minmal stress in a liat riate Due to

by

NT S. Heaps, B.SC.

SUMMARI

Trancient tnemal strenscs ane detemuned theoretacally for a long rectanguzir plato wien ajojected to a sudden change an tomperature on Its tor suriaue. On tris surface a heat transfer coefficient is postum lated which varies inversely es the square of the distance from one of tie Ionghtudnal ougos. The solution in terms of Dessel Functions has aprlacetion to the aerodrmanic hoating ul the wings of an auroroft when sudienly secrlerated tu a hagh supersonze specd.

ITSY CH COTTENTN

Page
1 Introduction 4
2 Statoment of the problem 4
3 Basic assumptons 5
4 Bolution of the problen 5
4.1 Nho ucuabion os heat conduction 5
4.2 The temperature dastribution 6 6
4.3 Themal stresses 7
4.i4 Non-dimensiorsel parameters 3
5 Numerical exmplus, nelevant to casos of acrodymac hestang in supcrsonic flaght 3
5. 1 " Bmorical rosuitio 9
6 Conclucions 10
liss ci mybols 11
RuPerences 13
IIST OS APESMICE
Appenciux
Dutcrmanation of tice coeffrequta, AI
Forivation of expressions for
$I\left(n, \frac{1}{2}, p\right), F=\frac{2 J+1}{2}(J=1,2, \ldots, 6)$ II
Ieat tranafor data for a flat plato III
Numerical anaysis IV
TIST OE TABEES
Table
Data for the numerion exampos I.

The plate, showing notation.
In 2×2
$1(a, b)$
Acrodynamic heating of the plate, showing the direction of the supersonzc ans stream over the top surface.
$2(a, b)$ 3

Temperature and stross distributions in the plate at various times for

$$
\frac{1}{103} \cdot \frac{\mathrm{nt}^{2}}{\mathrm{ks}}=\frac{0.012}{\xi^{2}}+0.1774
$$

$$
\text { 4. }(a, b)
$$

Temerature and stress distrabutzons in the plate at various tames fox

$$
\frac{1}{103} \cdot \frac{\mathrm{~ns}}{} \mathrm{ks}^{2}=\frac{0.0 t^{2}}{\varepsilon_{3}^{2}}+2.306
$$

$$
5(a, b)
$$

liaxamum stress in the plato at various times.

The problem solved in this paper is that of a long rectangular plate at uniform temperature which 13 suddenly exposed to a higher temperature in the imnediate proximity of its top curface.* On the exposed surtace a heat transfer coefficient is postulated which varies inversely as the square of the distance fron one of the longitudinal edges. A state of no heat transfer is postulated for the edges of the plate. Under these conditions there is a nonmuniform transference of heat to the plate, giving ruse to transient temperature gradients and thermal stresses within the plate. The temperatures and stresses are derived theoretically with certain simplifying assumptions.

The solution in terms of Bessel Funotions is then used to estimate transient thermal stresses unduced in an aircraft wing when suddenly acquiring a high supersonio velooity. Hoff ${ }^{4}$ calrulated the stresses in a spar web by assuming a uniform heat transfer coefficient on the wing surfaces, and this work was later extended by Parkes ${ }^{2}$. The stresses now considered are those in a wing skin due to chordwise variation of heat transt'er coefficient on the wing surfaces described by Kaye3. The law of variation of heat transier coefficient postulated was chosen to give a convenient onalytioal solution of the heat, conduotion equation, and to be at the same time a reasonable approximation to the actual variation of heat transfer ccefficient in flight.

2 Statement of the problem

Diagrams of the plate under consideration are shown in Fig. 1[(a), (b)]. 0 is a point on one of the longitudinal edges and x, y are distances measured from 0 in lateral and longitudinal directions, respectively. The width of the plate is denoted by L, and its thickness by s. The themal conductivity of the material of the plate is denoted by k.

Initially the piate and its surroundings are at a uniform temperature θ_{0}. The temperature in the inmediate proximity of the top surfeos then changes instantaneously to a constant value θ_{1}. Heat is subsequencly transferred across the surface at a rate governed by a heat transfer coefficient, $h(x)$, which is postulated in the form:

$$
\begin{equation*}
\frac{L^{2} \cdot h(x)}{k s}=\frac{p^{2}-\frac{1}{4}}{(x / L)^{2}}+q \tag{1}
\end{equation*}
$$

where p and 1 are arbitrary non-dimensional constants such that $p>\frac{1}{2}, q>0$. A state of no heat transfer is postulated across the other surfaces of the plate.

Under these conditions transient temperature gradients and hence transient thermal stresses develop in the plate, heat conduction taicing place until the temperature throughout the plate is θ_{1}. Since the thickness of the plate is small in comparison with its lateral and longitulinal dimensions the temperature at any position on the plate is assuned. constant through the thickness and is denoted by $\theta(x, t)$. On this assumption it is required to solve the problem of linear heat conduction parallel to $O x$, thus to determine the temperature distribution $\theta(x, t)$ and thonce the thermal stresses in the plate.

In determining the thermal stresses it is postulated that the plate is free from applied forces, Other stresses due to applied forces may be determined separately, the total stresses being obtained by superposition.

[^0](I) At any position on the plate the temperature is constant through the thrckness.
(ii) The stress system in the plate is entrrely longitudinal and may, thercfore, be determmed on the basis that lateral crosssections remain plane.
(iii) Stress-strain relations are Inneor.
(iv) Voung's modulus and the coefficient of luncar expansion do not vary whth temperature.
(v) Elastic displacoments are small.
(vi) Buckling doos not occur.

4 Sulution of the problem

In this section the problen is analysed and solved, mathematical details being given in Appendices I and II. The equation of linear heat conduction is derived in para. 4.1. Solving this equation, putting in the appropriate boundary and anitial conditiens, the temperature distribution is deduced in para. 4.2. In expression for the subsequent evaluation of the thermal stresses is obtained in para. 4.3. Finally, the nondimensional parameters of the problem are sumarised in para. 4.4, a prolaminary mention being made of some numerical plots.

4.1 The equation of heat conduction

The conditions of heat flow for an element of the plate between x and $x+d x$, of unat length, and bounded by the top and bottom flat surfaces, are now considerca. (see 「ag.1). Between x and $x+d x$, heat is being transferred across the top surface at a rate

$$
\begin{equation*}
d Q=\left(\partial_{1}-\partial\right) h(x) d x . \tag{2}
\end{equation*}
$$

At x, in the paate, heat is bung conducted in the darection of positive x at a rate

$$
\begin{equation*}
Q_{x}=-k s \frac{\partial 0}{\partial x}, \tag{3}
\end{equation*}
$$

while at $x+d x$, the valuo as

$$
\begin{equation*}
Q_{X}+\partial Q_{X}=-k s\left(\frac{\partial \theta}{\partial X}+\frac{\partial^{2} \theta}{\partial x^{2}} \partial x\right) \tag{4}
\end{equation*}
$$

The elemont $(x, x+d x)$ ns, therefore, gainng hoat at a rate

$$
\begin{equation*}
d \theta_{0}-d Q_{x}=\left[\left(\theta_{1}-\theta\right) h(x)+\operatorname{ks} \frac{\partial^{2} \theta}{\partial x^{2}}\right] d x, \tag{5}
\end{equation*}
$$

whzch causes its temperature to rise at a rate

$$
\begin{equation*}
\frac{d \theta}{\partial t}=\frac{d Q-d Q_{x}}{\rho \cos d x} \tag{6}
\end{equation*}
$$

Combaning equaboons (5) mit (6) gaves the oquation of hot conduction

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}=k \frac{\partial^{2} \theta}{\partial x^{2}}-\frac{i(x)}{\rho \cos }\left(0-\theta_{1}\right) \tag{7}
\end{equation*}
$$

Introducing a non-amensional parametur $\xi=\frac{X}{I}$, it may be slow that a solution of equation (7) is

$$
\begin{equation*}
\theta-0_{1}=X\left(\xi_{0}\right) e^{-\left(\beta^{2}+q\right) \frac{\mu^{t}}{L^{2}}} \tag{8}
\end{equation*}
$$

whore X sutinsfies tha equation

$$
\begin{equation*}
\frac{a^{2} x}{a \xi^{2}}+\left(\beta^{2}+q-\frac{L^{2} h(\xi \mathcal{L})}{k s}\right) X=0 \tag{3}
\end{equation*}
$$

and β is a constant.
For the varacion of the heat transfer cuefijcient, h, gaven by equation (1), equation (3) bocomes

$$
\begin{equation*}
\frac{a^{2} x}{d \xi_{0}^{2}}+\left(\beta^{2}-\frac{4 p^{2}-1}{4 \xi^{2}}\right) x=0, \tag{10}
\end{equation*}
$$

whzoh is Dessol's Equation of order p, expressed in the "rormal" form. 4.2 Tno temporature àstribution

A solution of equation (10) which satisfies one boundary condition of the problem - the condution of no heat flow $\left(\frac{\partial \theta}{\partial x}=0\right)$ at $x=0$, is

$$
\begin{equation*}
\bar{x}=A \zeta_{0}^{\frac{1}{2}} J_{p}\left(\beta \xi^{\prime}\right) \tag{11}
\end{equation*}
$$

whero $J_{p}(\beta \xi)$ is a Bossel thanction of the First Kind, and A is an arbitrary constant. Assuming thas Com of solution, the other condition of ro heat plow at $x=i$ Iueds to the cquition

$$
\begin{equation*}
\left(\frac{1}{\alpha}-p\right) J_{p}(\beta)+\beta J_{p-1}(\beta)=0, \tag{12}
\end{equation*}
$$

the routs of mich are denoted, n ascending order mif magntude, by $\beta_{n}(n=1,2, \ldots$.$) .$

It now follows from equations (8) and (11) that a solution of the equation of heat conduction satisfying the boundary condutions of the problen is

$$
\begin{equation*}
\theta-\theta_{1}=\sum_{n=1}^{\infty} A_{n} \xi^{\frac{1}{2}} J_{p}\left(\beta_{n} \xi\right) e^{-\left(\beta_{n}^{2}+q\right) \frac{k t}{L^{2}}} . \tag{13}
\end{equation*}
$$

Hhe constant coefficients $A_{n 1}$ are determined, in Appendux I, to satisry the initial condition, $\theta=\theta_{0}$ at $t=0$. It as subscquently found that

$$
\begin{equation*}
\frac{\theta-0_{1}}{\theta_{0}-\theta_{1}}=\sum_{n=1}^{\infty} \frac{2\left(\beta_{n} \xi\right)^{\frac{1}{2}} J_{p}\left(\beta_{n} \xi\right) I\left(n, \frac{1}{2}, p\right)}{\left(\frac{1}{4}-p^{2}+\beta_{n}^{2}\right)\left[J_{p}\left(\beta_{n}\right)\right]^{2}} e^{-\left(\beta_{n}^{2}+q\right) \frac{\kappa t}{2}} L^{2} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
I\left(n, \frac{1}{2}, p\right)=\int_{0}^{\beta_{n}} r_{1}^{\frac{1}{2}} J_{p}\left(r_{1}\right) d \eta \cdot \tag{15}
\end{equation*}
$$

$\frac{\theta-\theta_{1}}{\theta_{0}-\theta_{1}}$, detemined from equation (14), is a non-damonsional parameter glving the ternperature distribution, $\theta(x, t)$, in the plate.

FCI $p=\frac{2 j+1}{2}(J=1,2, \ldots ., 6)$, expressions are derived in Appendix II whech \&ive $I\left(n, \frac{1}{2}, p\right)$ in terms of powers of $\beta_{n}, J_{p}\left(\beta_{n}\right)$, $\sin) \beta_{n}$, and the sine antegral $S_{i}\left(\beta_{n}\right)$. Tables of $J_{p}(\eta)$ and $S_{i}(\eta)$ arc available for numerical work $9,10,11,12,13,14$.

4.3 Themal stresses

It $2 s$ assumed that the stress system $2 n$ the plate is entirely Iongitudunai. It may, therefore, be determinca on the Dasis that lateral cross-sections reman plane, from which it follows that

$$
\begin{equation*}
f=E\left(-\alpha \theta+e_{1}+a_{1} x\right) \tag{16}
\end{equation*}
$$

where E denotes Young's modulus, α denotes the coefficient of linear expansion, and e_{1}, ay, are constants.

The rlate is considered to be free from applied forces and, therefure,

$$
\begin{align*}
& \int_{0}^{I} f d x=0 \tag{17}\\
& \int_{0}^{I} x f d x=0
\end{align*}
$$

which, whon comined with eguation (16), yleld expressions for ef and ay. Suivstituting these expreswions buck into equation (16) gives

$$
\begin{equation*}
\frac{f}{E_{\alpha}\left(\theta_{1}-\theta_{0}\right)}=\Omega-2(2-3 \xi) \int_{0}^{1} \Omega a \xi+6(1-2 \xi) \int_{0}^{1} \Omega \alpha \xi, \tag{18}
\end{equation*}
$$

where $\Omega\left(=\frac{\theta-\theta_{1}}{\theta_{0}-\theta_{1}}\right)$ Is dewmined from equation (14).

$$
\frac{\rho}{E \alpha\left(\theta_{1}-0_{0}\right)}, \text { detomined fror equatıon }(18) \text {, is a non-ümenelonal. }
$$ parameter givarg the stress distribution in the plate.

i. 4 Non-d rumsioner paraneters

Ar exemination of jaras. $4.1,4.2$ and 4.3 shows that the basic nondimensiona parameters of the zroblon aro

$$
p, q, \frac{\pi}{i}(=\xi), \quad \text { and } \quad \frac{k t}{L^{2}} .
$$

Otner non-dmmensional parameters

$$
\frac{h i^{2}}{k s}, \frac{0-\theta_{1}}{v_{0}-\theta_{1}}(=\Omega), \quad \frac{f}{\operatorname{Ei} a\left(v_{1}-\theta_{0}\right)},
$$

gaving the hout transfor onofsicaent, h, the temperature, 0 , and the stress, f, aru expresseà in tems of F, G, ξ, and $\frac{e^{t}}{L^{2}}$, in equations (1), (14) and (13).
$\operatorname{AO} p=3.5, q=0.1774 \times 10^{3}, \quad \operatorname{and} \quad \mathrm{p}=6.5, q=2.306 \times 10^{3}, \frac{\mathrm{hL}^{2}}{\mathrm{ks}}$ is plotted acainot ξ m $\mathrm{H}=\mathrm{m} \cdot \mathrm{B}$, and $\frac{\theta-\theta_{1}}{\theta_{0}-\theta_{i}}, \frac{f}{\operatorname{Ia}\left(\theta_{1}-0_{0}\right)}$, acainst ξ
 aro piotted agannt $\frac{\mathrm{Kt}^{2}}{\mathrm{~L}^{2}}$ in $P i_{6} \cdot 6$.

5 Ihumical exambes, relevant to casos of aerodynamic heating in Suxursoric plight

The thecry devolcpec an the precoding section is now used to estimate transzunt themal strespes in a plate heated aerodynamically by a supersonce 010 atream suddenty oreated over ats top surface. the strusses outaineu wre taien to be indicatave of stresses set up in a wing skin due to chordrise vaciation of neat transfur couficient on the wing surfaces - followng the sucaen acquaring of a high supersonsc velocity in actian filght.

A plate of mald steel is considcred, heated by an air strem of liach number 3, (Hofi took a hach number of 3.1), sudaenly created an a latorol direction, cvor and parallel to the top suriace of the plate, as shown in Fig. 2(a,b). As an Hofr's example, conditions assoclated with heating at an altituce of 50,000 feet are assumed. It lollows that the strosses obtained correspond to stresses which would be anduced in the wing skans of an aircraft if it suddenly acquired a veiocity of lach number 3 , at an altitude of 50,000 neet.

The dimensions and physical properties of the plate are given in Table I, together with two sets of values of G_{0}, θ_{1}, p, and q, which are chowen to represent, approximately, temperature and heat francfor conditions corresponding to the two different cases of (a) aerodynamic heating wath a laminar boundary layer, and (b) acrodymmic heating wath a turbuient boundary layer. It is postulated that thore as little or no heating vefore the supersorize air strean $2 s$ created, so that θ_{0}, the initial temperaturo of the plate, has bwen equatod to the anbient temperature or the alr ($-70^{\circ} \mathrm{F}$ at 50,000 feet). G1 his been equated to the adiabatic wall temperature of the flow. The asswned hoat transfer coefficients (defined by the chosen values of p and q), and the actunl heat transfer coefincients durivod from Aerodynamics, are plottod together, against ξ, in Fig. 3. Gonerad expressions for the adiabatic wall temperature, and the heat transier coefficuents derived from Acsodynamics, have been gaven by Kaye. - they are summarlsed, for convenience, in Appendix IJI.

An outlino of the numerical analysis used for detommeng the transzent temperature and stress austributions in the plato is given in Appendix IV.

5.1 Numerical results

Inansient temperature and stress distributions, for the tro numerical cases considcred, are plottod, un non-dimensional form, in Figs. $4(a, b)$ and 5(a,b). The curves in Fig. $4(a, b)$ correspond to acrodynamic hoatang with a lampar boundary layer, wilc those in Fig. $5(a, b)$ corrospond to aorodynavic heating witn a turbulent boundary layer.

Whe wam feature of the temporatmo distributions is a gradient near the leading oclge of the plate ($x=0$), which, fron beang infuncte jumediately after the beginning of heat tronsfer, decreases to zero as the time inm creases. The occurrence of this grailient is a result of the anatial builaup of temponature near the leading edge, caused by the stocp rise in hest transfer conefcient as the edge is approched (sec jeg. 3). The themal stress dustrabutions acruss the plate are characterized by two reversals of 51.gn: compressive ctresses develop near the cdges of the plate, whale the midale parts are suibjected to tension.

The naximu stress in the plate at various tanes is plotted, in nondamensional rom, in ing. 6. The stress is located in the region of corpression near the leading eace, except for the higher values of tame, when it is located at the tralling edge $(x=5)$. It assurnes its greatest value mmedtately arter the beginning of heat tronsfor and decroases to zero as the tame ancrenses. The docroasc in value is much roore rapid for heating With a turbulent boundary laver than for heating with a laminar boundary layer - sance the plate takes a shorter time to acquire a uniform temperature, wath twribulence.

The actual values of the maxrmun compressive and tensile stresses, and mimum temperatures, at varkous tames arter the beguning of heatmg are given now, below.
(i) lor hoating with a laman bounary inyor:-

$$
\begin{aligned}
& -55,800 \frac{1 \mathrm{bwt}}{\mathrm{in}^{2}}, \quad+20,400 \frac{10 \mathrm{wt}}{\mathrm{mn}^{2}},-16^{\circ} \mathrm{in} \text {, after } 200 \mathrm{secs} ; \\
& -35,900 \frac{1 b w t}{i n^{2}}, \quad+19,800 \frac{30 w t}{i n^{2}}, \quad 57^{\circ} \mathrm{F}, \text { after } 500 \text { secs; }
\end{aligned}
$$

$$
\begin{aligned}
& -4,300 \frac{\mathrm{lb} \mathrm{wt}}{i n^{2}}, \quad+2,600 \frac{10 \mathrm{wt}}{\mathrm{in}^{2}}, \quad 45^{\circ} \mathrm{m}, \text { after } 3500 \text { secs. }
\end{aligned}
$$

(Whe final tomperature throughout the plate is 530° \%.)
(ii) For heating with a turbulent boundory Iayer:-

$$
\begin{aligned}
& -63,500 \frac{1 \mathrm{~b} w \mathrm{t}}{\mathrm{in}^{2}}, \quad+22,300 \frac{\mathrm{Ib} \mathrm{wt}}{\mathrm{mn}^{2}}, \quad 16^{\circ} \mathrm{F} \text {, after } 25 \mathrm{secs} ; \\
& -48,000 \frac{23 \mathrm{wt}}{\mathrm{in}^{2}}, \quad+20,700 \frac{10 \mathrm{wt}}{\mathrm{in}^{2}}, \quad 91 \mathrm{~F}, \text { after } 50 \text { secs; } \\
& -28,200 \frac{1 \mathrm{bwt}}{\mathrm{in}^{2}}, \quad+16,500 \frac{1 \mathrm{~W}}{\mathrm{Wt}}, \quad 211^{\circ} \mathrm{F} \text {, after } 100 \mathrm{secs} ; \\
& -11.900 \frac{10 \mathrm{wt}}{1 n^{2}}, \quad+9.500 \frac{\mathrm{Ib} \mathrm{Wt}}{1 n^{2}}, \quad 367^{\circ} \mathrm{F}, \text { after } 200 \mathrm{sccs} ; \\
& -2,600 \frac{\mathrm{Ib} \mathrm{wt}}{\mathrm{in}^{2}}, \quad+2,400 \frac{\mathrm{Ib} \mathrm{Wt}}{2 \mathrm{n}^{2}}, \quad 502^{\circ} \mathrm{F}, \text { after } 400 \text { sacs. }
\end{aligned}
$$

(The fincil temperature throughout the plate is $562^{\circ} \mathrm{F} \cdot$)

6 Conciusions

It is concluded that, when an airoraft suadenly acquires a high supersonuc velocity in flight, $二 t$ is likely that high transient thermal stresces wall be midued an the wing skins, due to chordwise variation of heat transfer coefricient on the wing surfaces.

The analysis sinows that:-
(i) Compressive stresses will develop near the leading and trazling edges, whale the midale portions (away from the edges) will be suojected to tension.
(1i) In general, the raximua atress wall occur in the region of compression near the leading eage.
(IIi) For heating wath a turbulent bouncary layur, the stresses will due away to zero vory quickly, but ror heating with a lomar boundary layer, they will pursist for a corsiderable tame af'ter the attainwont of the high supersonic velocaty.

The stresses could be reduced by preverting the high build-up of tomporature near the loadung edge, which it has boen show, accompenies the suddon rise in velocity. This maght be effected by applying surface unsulation to the leading edge, and by operating a cooling cystem on the inside surfaces of the wing.

List of ismbols

Symbol	Description	Unats
x, y	$=$ distances measured fron a point 0 on one of the longztudinal edges, in lateral and longitudunal durections, respectıvely.	ft
L	$=$ wadth of the plate.	$\pm t$
s	$=$ thackness of the plate.	$f t$
k	$=$ therimal conductuvity,	$\frac{B T h U}{f^{2}\left({ }^{2} \mathrm{E} / \mathrm{ft}\right) \mathrm{sec}}$
ρ	$=$ density,	$\frac{\mathrm{Ib}}{\mathrm{ft}^{2}}$
c	$=$ specific ieat, $\quad\left\{\begin{array}{l}\text { for the } \\ \text { material of } \\ \text { the plate. }\end{array}\right.$	$\frac{B \mathrm{Lh} U}{I \mathrm{O}}$
K	$=$ diffusuvity	$\frac{s^{2} t^{2}}{s e c}$
	$=\frac{k}{\rho c},$	
t	$=$ time followng the boginning of heat transfer between the plate and its surroundines.	sec
$h=h(x)$	$=$ heat transfer coefficient on the top surface of the plote.	$\frac{B T h U}{\mathrm{ft}^{2} \mathrm{O}_{\mathrm{F}} \mathrm{sec}}$
Q	$=$ rate of heat transfer across the top surface per undt length of the plate (see equation (2)).	$\frac{B \operatorname{Th} U}{f t \sec }$
Q_{X}	$=$ rate of heat conduction withan the plate, parallel to $O x$, per unit Iength of the plate, at x (see equation (3)).	$\frac{B \operatorname{Th} U}{\text { it } s \in c}$

Symbol	Eescryption	Units
$\theta=\theta(x, t)$	$=$ tempenature in the plate (constent throush the thackness) at a posution x, at time t.	${ }^{\circ} \mathrm{F}$
θ_{0}	$=$ initial tempcrature of the plate and Its zmedzate sumoundangs.	O_{H}
θ_{1}	$=$ temperature in the inmediate proximty of the top surface for $t>0$ (the final temperature of the plate).	O_{F}
$f=f(x, t)$	$=$ longltudinal stress in the plate	$\frac{3 \mathrm{~b}}{\text { in }} \mathrm{wt}^{2}$
E	$=$ Young's modulus.	$\frac{l b w t}{m n^{2}}$
\ldots	$=$ coeffizciont or lanear expansion.	$\frac{i n}{i n}$
p,q	$=$ arbitroxy non-dunensional constants such that $p>\frac{1}{2}, q>0$, introduced in equation (1).	
$\left.\begin{array}{l} \frac{X}{I}(=\xi) \\ \frac{x t}{I^{2}} \end{array}\right\}$	$=$ non-dimonsional parameters involving distance x, and time t.	
$\frac{h I_{1}^{2}}{\text { ms }}$		
$\left.\begin{array}{l} \frac{\theta-\theta_{1}}{\theta_{0}-\theta_{1}}(=\Omega) \\ \frac{f}{\operatorname{E\alpha }\left(\theta_{1}-\theta_{0}\right)} \end{array}\right\}$	$\begin{aligned} = & \text { non-dinensional parameters given by } \\ & \text { equations }(1),(14) \text { and }(18) . \end{aligned}$	
β	$=$ non-dunensional variable of equation (12).	
β_{m}, β_{n}	$=n^{\text {th }}$ and $n^{\text {th }}$ roots (in asconding order of magnitude) of equation (12).	
$\mathrm{X}=\mathrm{X}(\xi)$	$=$ function of ξ satisfying equation (9).	
η	$=$ indepenjent variable.	
$J_{p}(\eta)$	$=$ Bessel Function of the First Kind of order p.	
$J_{p}^{\prime}(n)$	$=\frac{d}{d \eta}\left[J_{p}(\eta)\right] .$	
$I(n, m, p)$	$=\int_{0}^{\beta_{n}} \eta^{m} J_{p}(\eta) d \eta$	

Inst of ingibols (Conta)

Symbol Descrintion
\(\left.\begin{array}{rl}S=(\eta) \& =\int_{0}^{\eta} \frac{\sin n}{\eta} d \eta .

\& =constants in equation (16).

e_{1}

a_{1}\end{array}\right\} \quad\)| A_{1}, A_{m}, A_{n} |
| :--- |
| m, n, J |$\quad=$ constant coefficients in equations (11) and (13).

RYEITRNCDEA

No.	Author(s)	Intle, etc.
1	N.J. Hoff	Structural Problems of Future Aircraft. Anglo-Amcrican Acionautical. Cinference, 1951.
2	E. ${ }^{\text {d }}$ P Partes	Trimsient Thermal Stresses an Wings. Aurcraft Thgineering, Vol.XXV, No.298, Decombur, 1953.
3	Joseph Kaye	The Traiszent Temperature Distribution in a Wing Flyine at Supersonic Speeds. J. Aero. Sca., Vol.17, Decemiber, 1950.
4	E.V. Davics R.J. Monaghan	The Determination of Skn Temperatures Attanned In High Specd Flight. C.E.123. Fobruary, 1952.
5	T. Norwe=Icr	Rate of Heat Tronsfer due to Aerodynamic Heating at Hagh Altitudes. Res Technical Note ilo. Aero 1834, December, 1946. A.R.C. 10,578.
6	S. Goldstein	Modern Develoments in Flund Dynamics, Vol.II,
7	H.S. Cerslav J.C. Jacter	Conduction of Heat un Soliais.
8	A.T.H. Love	A Treailse on the mathomatical mheory of Elastzcity.
9	G.N. Watson	A Ereatisc on the Theory of Sessel Functions.
10	-	Tables of Spherical Besscl Functions, Vol.I. Mathematical Tables Project, National Bureau of Stardards, New York, 1947.
11	-	Tables of Bessel Functions of the First Kind. The Annals of the Computation Laboratory of Harvard university, Vols. III - XIV.

H2HESNCHS (Conta)

No. Author(s)	Title, etc.	
12	-	British Assuclation Liathematical Tables, Vol.I, Carcular and Hyperbolic Functions.
13	\cdots	Tables of Sane and Cosine Integrals. Foderal Forks Agency, Nev York, 1942.
14	E. Jahnke F. Finde	Trables of Functions.

APPEMIXIX

Determanation of the coefficients, A_{n}

Lomel Integrals ${ }^{9}$, deduced from Bessel's Iquation, are

$$
\left.\begin{array}{rl}
\int_{0}^{1} \xi_{p} J_{p}\left(\beta_{n} \xi\right) J_{p}\left(\beta_{m} \xi\right) d \xi_{0} & =\frac{1}{\beta_{n}^{2}-\beta_{m}^{2}}\left[\beta_{m} J_{p}\left(\beta_{n}\right) J_{p}^{\prime}\left(\beta_{m i}\right)-\beta_{n} J_{p}\left(\beta_{m}\right) J_{p}^{1}\left(\beta_{n}\right)\right], \\
\int_{0}^{1} \xi\left[J_{p}\left(\beta_{n} \xi\right)\right]^{2} d \xi & =\frac{1}{2 \beta_{n}^{2}}\left[\beta_{n}^{2}\left[J_{p}^{\prime}\left(\beta_{n}\right)\right]^{2}+\left(\beta_{n}^{2}-p^{2}\right)\left[J_{p}\left(\beta_{n}\right)\right]^{2}\right]
\end{array}\right\} \text { (19) }
$$

Now equation (12) mey be watten in the form

$$
\begin{equation*}
J_{p}(\beta)+2 \beta J_{p}^{1}(\beta)=0, \tag{20}
\end{equation*}
$$

so that if β_{n}, β_{m} are anferent roots of equation (12), then

$$
\left.\begin{array}{l}
J_{p}\left(\beta_{n}\right)+2 \beta_{n} \cdot J_{p}^{\prime}\left(\beta_{n}\right)=0 \tag{21}\\
J_{p}\left(\beta_{m}\right)+2 \beta_{m} J_{p}^{\prime}\left(\beta_{m}\right)=0
\end{array}\right\}
$$

Combining equations (19) and (21) yjelds

$$
\left.\begin{array}{l}
\int_{0}^{1} \xi_{0} J_{p}\left(\beta_{n} \xi\right) J_{p}\left(\beta_{m} \xi\right) d \xi=0, \\
\int_{0}^{1} \xi\left[J_{p}\left(\beta_{n} \xi\right)\right]^{2} d \xi=\frac{1}{2 \beta_{n}^{2}}\left(\frac{1}{4}-x^{2}+\beta_{n}^{2}\right)\left[J_{p}\left(\beta_{n}\right)\right]^{2} \tag{22}
\end{array}\right\}
$$

The constant coefricients Λ_{n} in equation (13) may now be determined. Equation (13) must satisfy the initial condation that $\theta=\theta_{0}$ at $t=0$, and, therefore,

$$
\begin{equation*}
\theta_{0}-\theta_{1}=\sum_{n=1}^{\infty} A_{n} \xi^{\frac{1}{2}} J_{p}\left(\beta_{n} \xi\right) \tag{23}
\end{equation*}
$$

Multiplying both sides of equation (23) by $\xi^{\frac{1}{2}} J_{p}\left(\beta_{n} \xi\right)$ and then integrating betweon 0 and 1 , using equations (22), gives

$$
\begin{align*}
A_{n} & =\left(\theta_{0}-\theta_{1}\right) \frac{\int_{0}^{1} \xi^{\frac{1}{2}} J_{p}\left(\beta_{n} \xi_{5}\right) d \xi}{\int_{0}^{1} \xi\left[J_{p}\left(\beta_{n} \xi\right)\right]^{2} d \xi} \tag{24}\\
& =\frac{2\left(\theta_{0}-\theta_{1}\right) \beta_{n}^{\frac{1}{2}}}{\left(\frac{1}{4}-p^{2}+\beta_{n}^{2}\right)\left[U_{p}\left(\beta_{n}\right)\right]^{2}} \int_{0}^{\beta_{n}} n^{\frac{1}{2}} J_{p}(n) d n
\end{align*}
$$

Substitutang this expressaon for $A_{r 1}$ into equation (13) ylelds equation (14).

AFPETUTX II

Derivation of expressions fox $I\left(n, \frac{1}{2}, 0\right), p=\frac{2 j+1}{2}(j=1,2, \ldots, 6)$

Taking

$$
\begin{equation*}
I(n, r, p)=\int_{0}^{\beta_{n}} \pi_{p}^{m} J_{p}(n) d_{n} \tag{25}
\end{equation*}
$$

integration by parts leads to the recurrence relation

$$
\begin{equation*}
I(n, m, p)=\frac{\beta_{n}^{m+1} J_{p}\left(\beta_{n}\right)}{n-p+1}-\frac{I(n, m+1, p-1)}{m-p+1}, \tag{26}
\end{equation*}
$$

which may be usda providing that $n+p+1>0, m-p+1 \neq 0, n+1 \neq 0$. Using the relation, the integrals $I\left(n, \frac{1}{2}, p\right) p=\frac{2 j+1}{2}(j=2, \ldots, 6)$, may be determined in terms of the integrals

$$
\begin{aligned}
& I\left(n, \frac{3}{2}, \frac{5}{2}\right), \quad I\left(n, \frac{5}{2}, \frac{7}{2}\right), \\
& I\left(n, \frac{3}{2}, \frac{3}{2}\right), \quad I\left(n, \frac{5}{2}, \frac{5}{2}\right), \quad I\left(n, \frac{7}{2}, \frac{7}{2}\right),
\end{aligned}
$$

as follows:

$$
\begin{align*}
& I\left(n, \frac{1}{2}, \frac{5}{2}\right)=-\beta_{n}^{3 / 2} J_{5 / 2}\left(\beta_{n}\right)+I\left(n, \frac{3}{2}, \frac{3}{2}\right), \\
& I\left(n, \frac{1}{2}, \frac{7}{2}\right)=-\frac{1}{2} \beta_{n}^{3 / 2} J_{7 / 2}\left(\beta_{n}\right)+\frac{1}{2} I\left(n, \frac{3}{2}, \frac{5}{2}\right), \\
& I\left(n, \frac{1}{2}, \frac{9}{2}\right)=-\frac{1}{3} \beta_{n}^{3 / 2}\left[J_{9 / 2}\left(\beta_{n}\right)+\beta_{n} J_{7 / 2}\left(\beta_{n}\right)\right]+\frac{1}{3} I\left(n, \frac{5}{2}, \frac{5}{2}\right), \\
& I\left(n, \frac{1}{2}, \frac{11}{2}\right)=-\frac{1}{1} \beta_{n}^{3 / 2}\left[J_{11 / 2}\left(\beta_{n}\right)+\frac{1}{2} \beta_{n} J_{9 / 2}\left(\beta_{n}\right)\right]+\frac{1}{8} I\left(n, \frac{5}{2}, \frac{7}{2}\right), \tag{27}\\
& I^{\prime}\left(1, \frac{1}{2}, \frac{13}{2}\right)=-\frac{1}{5} \beta_{n}^{3 / 2}\left[J_{13 / 2}\left(\beta_{n}\right) \cdot \frac{1}{3} \beta_{n} J_{11 / 2}\left(\beta_{n}\right)+\frac{1}{3} \beta_{n}^{2} J_{9 / 2}\left(\beta_{n}\right)\right] \\
&
\end{align*}
$$

Now starting with the relations

$$
\begin{equation*}
\sqrt{\frac{\pi}{2}} \eta^{\frac{1}{2}} J_{\frac{1}{2}}(\eta)=\sin n, \sqrt{\frac{\pi}{2} \eta^{\frac{1}{2}} J_{-\frac{1}{2}}(n)=\cos n, ~} \tag{28}
\end{equation*}
$$

and using the recurrence relation

$$
\begin{equation*}
J_{p+1}(\eta)=\frac{2 p}{\eta} J_{p}(n)-J_{p-1}(\eta), \tag{29}
\end{equation*}
$$

it may be shown that

$$
\left.\begin{array}{l}
\sqrt{\frac{\pi}{2}} \cdot \eta^{3 / 2} J_{3 / c}(\eta)=\sin \eta \cdots \cos \eta, \\
\sqrt{\frac{\pi}{2}} \cdot n^{5 / 2} J_{5 / 2}(\eta)=\left(3-\eta^{2}\right) \sin n-3 n \cos \eta, \tag{30}\\
\sqrt{-\frac{\pi}{2}} \cdot n^{7 / 2} J_{7 / 2}(\eta)=\left(15-6 \eta^{2}\right) \sin n-\left(15 n-n^{3}\right) \cos \eta \cdot
\end{array}\right\}
$$

By integrating these equations (7J) it may be further shown that

$$
\left.\begin{array}{l}
I\left(n, \frac{1}{2}, \frac{2}{2}\right)=\sqrt{\frac{2}{\pi}}\left[\operatorname{SI}\left(\beta_{n}\right)-\sin \beta_{n}\right], \\
I\left(n, \frac{3}{2}, \frac{5}{2}\right)=\sqrt{\frac{2}{\pi}}\left[3 \operatorname{SI}\left(\beta_{n}\right)-4 \sin \beta_{n}+\beta_{n} \cos \beta_{n}\right], \\
I\left(n, \frac{5}{2}, \frac{7}{2}\right)=\sqrt{\frac{2}{\pi}}\left[15 \operatorname{si}\left(\beta_{n}\right)+\left(\beta_{n}^{2}-23\right) \sin \beta_{n}+8 \beta_{n} \cos \beta_{n}\right], \tag{31}\\
I\left(n, \frac{3}{2} \frac{3}{2}\right)=\sqrt{\frac{2}{\pi}}\left[-\beta_{n} \sin \beta_{n}+2\left(1-\cos \beta_{n}\right)\right], \\
I\left(n, \frac{5}{2}, \frac{5}{2}\right)=\sqrt{\frac{2}{\pi}}\left[-5 \beta_{n} \sin \beta_{n}+\left(\beta_{n}^{2}-8\right) \cos \beta_{n}+8\right], \\
I\left(n, \frac{7}{2}, \frac{7}{2}\right)=\sqrt{\frac{2}{\pi}}\left[\beta_{n}\left(\beta_{n}^{2}-33\right) \sin \beta_{n}+\left(9 \beta_{n}^{2}-46\right) \cos \beta_{n}+48\right] .
\end{array}\right\}
$$

Thus, equations (27) and (31), when taken together, give

$$
I\left(n, \frac{1}{2}, p\right), \quad p=\frac{2 \mu+1}{2}(J=1,<, \ldots, 6),
$$

an terms of powers of

$$
\left.\beta_{n}, J_{p}\left(\beta_{n}\right), \begin{array}{l}
\sin) \\
\cos
\end{array}\right) \beta_{n}, \text { and } S \dot{-}\left(\beta_{n}\right)
$$

APENTEX III

Heat transfer data for a flat plate

Fxpressions giving the adiabatic wall temperature and surface heat transfer coefficients, for supersomc air flow over a flat plate, nave been summarised by Kaye3. They are now presented, with a numerical application relevant to the examples considered in the menn oody of the Report.

The following symbols, denoting physical propertaes of the air, are used:

```
\(\mathrm{V}=\mathrm{velocity}\) of the air stream over the plate,
\(V_{s}=\operatorname{spoc} \mathrm{V}_{\mathrm{s}}\) sound in the free strean conditions,
If \(=\) Wach number of the fiow
    \(=\frac{V}{V_{s}}\),
\(k^{i}=\) thermal conductivity,
\(\rho^{\prime}=\) densıty,
\(c_{\mathrm{s}}^{1}, c_{V}^{1}=\) specific heats at constant pressure and constant volume,
\(\mu=\) viscosity,
\(\sigma=\operatorname{Irand}+1\) number
    \(=\frac{e_{c}^{\prime} \mu}{i^{1}}\),
\(R e_{\mathrm{L}}=\) Reynolds number
    \(=\frac{\rho^{\prime} V L}{\mu^{2}}\)
\(\gamma=\frac{c_{p}^{\prime}}{c_{v}^{!}}\)
\(\theta_{\mathrm{a}}=\) ambient or irce stream temperature ( \({ }^{\circ} \mathrm{FAbs}\). ),
\(\theta_{\mathrm{S}} \quad=\) stagnation temperature ( \({ }^{\mathrm{P}} \mathrm{FAbs}\) ),
\(\theta_{N}=\) adjanatic wall temperature ( \(\mathrm{O}_{\mathrm{F}}\) Aos.) ,
\(r=\) recovery factor
\(=\frac{\theta_{W}-\theta_{2}}{\theta_{S}-\theta_{2}}\).
```

Tre adzabatic wall temperature us given by

$$
\begin{equation*}
\theta_{W}=\theta_{a}\left(1+\frac{1}{2} r(\gamma-1) u^{2}\right), \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
r & =c^{1 / 2}, \text { for } \varepsilon \text { laminer boundary Lurer, } \\
& =\sigma^{1 / 3} \text {, sor a turbulont boundery layor, } \tag{33}
\end{align*}
$$

Heat transfer coefficients are given by

$$
\left.\begin{array}{rl}
\frac{h}{c_{p}^{1} \rho^{1} V} & =\frac{0.330}{\varepsilon^{1 / 2} E e_{\mathrm{L}}^{1 / 2} \sigma^{2 / 3}}, \text { for a lemanar boundary Layen, } \tag{24+}\\
& =\frac{0.030}{\zeta_{0}^{1 / 5} \mathrm{Re}_{\mathrm{L}}^{1 / 5} 0^{2 / 3}}, \text { Iox a turbulent Doundary layer. }
\end{array}\right\}
$$

Usiug cquations (32), (33) and (34), ∂_{W} and $\frac{h}{c_{p}^{i} \rho^{1} V}$ are now
evaluaced for the aerodyname heating of a plate by an air strean of hinon nuriber 3, in conditions comesponding to in altitude of 50,000 iect. Tor ambent air at an altitude of 50,000 feet (at a temperature of
-700) :

$$
\begin{aligned}
& p^{\prime}=0.01169 \frac{7 b}{ \pm t^{3}}, \\
& V_{s}=968 \frac{t^{2} t}{\sec }, \\
& \sigma=0.730, \\
& \gamma=1.40 .
\end{aligned}
$$

Using these values, it follows that, for a larinar boundary layer,

$$
\begin{gathered}
\theta_{W}=530^{\circ} \mathrm{F} \\
\frac{2}{\rho_{V}^{1} \rho^{1} V}=\frac{0.03134 \times 10^{-3}}{\xi^{2}}
\end{gathered}
$$

end los a turioulent Eomdary layer,

$$
\begin{aligned}
\theta_{W} & =562^{\circ} \mathrm{H} \\
\frac{r}{\sigma_{j}^{1} \rho^{t} V} & =\frac{1.226 \times 10^{-3}}{\xi^{1 / 5}}
\end{aligned}
$$

Kaye has pointed out trat the above proceduye of evaluating the pioperties of the anr at ambient condutions, for use in equations (32), (33) and (34), 1.5 opor to some doubt.

APEUEK

Muanzical analysis

 transient toprature and stross alstributacas in the pisito, is nor guven.

The procedure consists of ovaiuating:
(i) tic suret fen roots of equation (12);

(ii) the =ntogral $I\left(n, \frac{1}{2}, r\right)=\int_{0}^{n} \eta^{\frac{1}{2}} J_{p}(n) d n$, for each root;
(112) the a. . on tho farst for terms of the sorlos in equation (14) (each temn comresporing to an ovaluated root), yzeldans an aproximate valuo of $\frac{\theta-0_{1}}{u_{0}-0_{1}}$; for varmous values of ξ and t;
(Iv) the inierals \int_{0}^{1} nd ξ and \int_{0}^{1} grur, irinel facnlutate the evaluation of $\frac{\vec{i}}{\sec \left(\theta_{1}-\theta_{0}\right)}$, usurg equation (18).

The mmeical work is simplafled when p is an arteger or hat antegor, since tubuleted values of Bessel functions $10,11,94$ my thon be used in the ccorutations.

In bue two mitricel casos conzadured (correspondins to $y=35$ and
 F'or $\rho=3.5$, tho antogrols $I\left(r, \frac{1}{2}, \frac{7}{2}\right), n=1,2, \ldots, 13$, were evaiuated.
 $I\left(n, \frac{1}{2}, \frac{j 3}{2}\right), n=1,2, \ldots, 13$, were evaluated usneng numerical mothods of antegration. Valucs of $\frac{\theta-\theta_{1}}{\theta_{0}-\theta_{1}}(=\Omega)$, ootainod by using equation (lia) En mitrie form, were founc to be anascurate for the sinallor valuas of ζ and t. (fre rarges of mascuruc, corrocpond to the dotited parts of the curvos in iifs.it(a) and $5(a)$.) Greater accuracy could hive been obtezned ty taing more rooss of touation (12), but thas was conszdorea unnocessaxy. The mntorons $\int_{0}^{1} \operatorname{ads}$ and \int_{0}^{1} sodz, vere dotcrmined graphzonily from patbea valucs of Ω and $\xi ?$

TABIE I

Data for the Mmerical Exemples

	Symbol	humurical Value	Units
Dunensions of the plave cross.section.	L S	$\begin{gathered} 7 \\ 3 / 8 \end{gathered}$	ft $2 n$
Physiocil constants for the plate.	k ρ c k I α	$\begin{gathered} 7.20 \times 10^{-3} \\ 490 \\ 0.120 \\ 0.1224 \times 10^{-3} \\ 29 \times 10^{6} \\ 6.5 \times 10^{-6} \end{gathered}$	B
Acrodynanio hoatzreg f , th a Lammar boundiary Zaycr on the plate.	$\begin{gathered} \theta_{0} \\ b_{1} \\ p \\ \frac{q}{10} \cdot \frac{L^{2}}{10}=\frac{1}{10}\left(\frac{p^{2}-i}{c_{2}^{2}}+q\right) \end{gathered}$	$\begin{gathered} -70 \\ 530 \\ 3.5 \\ 0.1774 \times 10^{3} \\ \frac{0.012}{\xi^{2}}+0.1774 \end{gathered}$	$\begin{gathered} o_{F} \\ o_{F} \\ - \\ - \\ - \end{gathered}$
\therefore erratantic a. timoulont bcrancary layper on the pleto.	$\begin{gathered} \theta_{0} \\ 0_{1} \\ p \\ q \\ \frac{1}{10^{3}} \cdot \frac{L_{1}^{2}}{1-3}=\frac{1}{10^{3}}\left(\frac{p^{2}-\frac{1}{4}}{3^{2}}+q\right) \end{gathered}$	$\begin{gathered} -70 \\ 562 \\ 6.5 \\ 2.306 \times 10^{3} \\ \frac{0.042}{\varepsilon_{2}^{2}}+2.306 \end{gathered}$	$\begin{gathered} o_{\mathrm{F}} \\ \mathrm{o}_{\mathrm{F}} \\ - \\ - \\ - \end{gathered}$

(a) PLAN

(b) LATERAL CROSS -SECTION.

FIG. I(o\&b) THE PLATE, SHOWING NOTATION.

(a) PLAN

(b) LATERAL CROSS-SECTION

FIG. 2 (asb) AERODYNAMIC HEATING OF THE PLATE, SHOWING THE DIRECTION OF THE SUPERSONIC AIR STREAM OVER THE TOP SURFACE.

FIG.3. HEAT TRANSFER COEFFICIENTS.

FIG.4(a\& b) temperature and stress distributions in the PLATE AT VARIOUS TIMES FOR $\frac{1}{10^{3}} \cdot \frac{h h^{2}}{k 5}=\frac{0 \cdot O 12}{\xi^{2}}+0.1774$ $\left(p=3.5, q=0.1774 \times 10^{3}\right.$).THE NUMBERS ON THE CURVES ARE VALUES OF $K t / L^{2}$ (CORRESPONDING TO $t=200,500,1,500,3,500$ SECS.
FOR THE PLATE TAKEN AS EXAMPLE).THE RESULTS ARE ASSOCIATED WITH AERODYNAMIC HEATING WITH A LAMINAR BOUNDARY LAYER.

FIG. 5 (a\& b) temperature and stress distributions in the PLATE AT VARIOUS TIMES FOR $\frac{1}{10^{3}} \cdot \frac{h L^{2}}{h_{5}}=\frac{0.042}{\xi^{2}}+2.306$ ($p=6.5, q=2.306 \times 10^{3}$). THE NUMBERS ON THE CURVES ARE VALUES OF $\mathrm{Kt} / \mathrm{L}^{2}$ (CORRESPONDING TO $t=25,50,100,200,400$ SECS. FOR THE PLATE TAKEN AS EXAMPLE). THE RESULT'S ARE ASSOCIATED WITH AERODYNAMIC HEATING WITH A TURBULENT BOUNDARY LAYER.

fig. 6 MAXIMUM STRESS IN THE PLATE AT VARIOUS TIMES.

THE CURVES ARE BASED ON VALUES OBTAINED FROM FIG.4.AND FIG. 5,AS SHOWN.

Crown copynght reserved

Published by
Her Majesty's Stationery Ortice
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London W I
P O Box 569, London se 1
I3A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff
39 Kıng Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Birmingham 3
8o Chichester Street, Belfast
or through any bookseller

PRINTED IN GREAT BRITAIN

[^0]: * Tne theory is equally applicable to a cooled plate.

