

Free-Flight Tests on Kites in the $24-\mathrm{ft}$ Wind Tunnel

By

S. B. Jackson, B.Sc.
Communicated by the Principal Director of Scientific Research (Air) Ministry of Supply

Reports and Memoranda No. 2599^{*}
March, 1942

Summary.-Reasons for Enquiry.-Tests were required to be made on six kites over a greater range of wind speed than for previous large-tunnel tests.

Range of Investigation.-The kites used during the investigation were (A) 3-ft Cody kite Mk. II, (B) 3-ft reversed Cody or Dyco kite, (C) 3 -ft Haldon kite, (D) 2×3-ft Cody storm kite with lateral cross-bracing, (E) 2-ft Cody kite Mk. III with bifurcated inner bridle and (F) 2-ft Cody kite Mk. III with longitudinal bracing.

Tests were made over the whole stable range of the kites and up to the highest safe wind speed. The kites were flown from a pylon and values of lift, drag and incidence of the forward and rear bridles were measured. Attempts were also made on two of the 3 - ft kites (A and C) to improve their stability at higher wind speeds and low incidences.

Conclusions.-The maximum value of $(L-W) / D$ was below 2.5 and values of C_{L}, based on the fabric surface area, excluding the vertical panels, were not greater than 0.9 .

The unmodified kites are unsuitable for high wind speeds. At low incidences, the kites tend to fall away from their flying position at speeds above $70 \mathrm{ft} / \mathrm{sec}$, but this can be temporarily delayed by diagonal cross-bracing to lift the centre of the leading edges of the front lifting panels, and by tying the wing tips together. At high incidences, bending of the bamboos may disrupt the kite and it is recommended that a bifurcated bridle, which picks up at four points on each lower longitudinal, be used to prevent this bending. The parallel-rigged wing canes tend to take up a negative incidence as the lower longitudinals bend under load, and thus cause bending of the transverse bamboos. This can be avoided by using cross-rigging, the wing canes then taking up a slight positive incidence. The flapping of the vertical panels, which limits the usefulness of the kites at higher speeds, can be moderated by stiffening canes sewn in the fabric in a fore and aft direction.

1. Introduction.-At the request of Research Department, Exeter, tests were made on a number of Cody-type kites to obtain data over a range of incidence and at higher speeds than those obtained in previous large wind-tunnel tests. The method of testing in the 24 - ft windtunnel has also been improved so that the kites experience more nearly the actual flight conditions.

2 Description of Kites.-The following kites were used during the tests:-
(A) 3-ft Cody kite Mk. II (Figs. 1, 2). -This is a double-cell box kite with protruding diagonal bamboos supporting wings. Those from the upper surface of the front box are longer than the others.
(B) 3-ft Dyco or reversed Cody kite.-This differs from the Cody kite in that the lengthened wings are carried from the upper surface of the rear box instead of the front box.
(C) 3-ft Haldon kite.-This differs from the Cody kite in having the lengthened wings cut back to the same size as the other wings.

[^0](90130)
(D) 2×3-ft Cody storm kite with lateral cross-bracing as shown in Fig. 3.-This kite is scaled down from the 3 -ft Cody kite, horizontally but not vertically, and, in addition, has a horizontal spar lashed to the two lower longitudinals at the leading edge of the bottom panel of the rear box.
(E) 2-ft Cody kite Mk. III with bifurcated inner bridle (see Fig. 4).-This kite is scaled down from the 3 -ft Cody kite, although the distance between the front and rear boxes is larger than it would be for a true two-third scale model. The bifurcated inner bridle is designed to prevent distortion of the bamboos.
(F) 2-ft Cody kite Mk. III with longitudinal bracing (see Fig. 3). -The longitudinal crossbracing is also intended to prevent distortion of the bamboos and obviate shearing between the upper and lower longitudinals.
3. Experimental Procedure.-The normal kite has 4 attachment points from which two forward and two rear bridles depend. In flight, each forward and rear bridle on each side is attached to an intermediate bridle and the two intermediate bridles are in turn attached to the flying line. The inclination of the bridle introduces transverse stresses into the kite structure with consequent deformation. In previous wind-tunnel tests the suspension has been by parallel wires which did not introduce any transverse strain. The present tests were designed to reproduce as exactly as possible the flight conditions. For this purpose the junctions of the bridle with the intermediates were attached to a tube transverse to the wind direction and mounted on a pylon (see Figs. 1, 2). The two attachment points were spaced to agree with flight conditions. Thus, as long as the kite remained steady, the forces on the kite should be as in flight but if the kite yawed then the flight conditions were upset. With this arrangement the kite took up a flying incidence depending on the length of the forward and rear bridles. These lengths were varied during the test over the stable range of the kites*.

Measurements of incidences were taken with a ' Robot ' camera using 35 mm . film, from which, on projection, bridle angles and the kite incidence could be obtained, the datum line for the latter being taken as the line joining the intersection of the bridles with the lower boom. Measurements of angles of incidence may not be more accurate than $\pm 1 / 2$ deg. From the measurements of bridle angles, the mean tensions in the bridles have been calculated. In these calculations the fact that the bridles are not in vertical planes, but converge below the kite, has been neglected. The maximum error due to this cause is about 4 per cent. and the error arising from the measurement of the bridle angles is about ± 5 per cent.
4. Results.-Numerical results are given in Tables 1 to 7 whilst Figs. 6, 7 show curves of $(L-W) / D$ against C_{L} for various wind speeds and bridle lengths, W being the weight of the kite. The maximum value of $(L-W) / D$ obtained was below $2 \cdot 5$ and values of C_{L}, based on the fabric surface area excluding the vertical panels, were not greater than $0 \cdot 9$.
5. Discussion of Results.-5.1. Distortion Due to Wind.-General observations on the series of kites showed that on increasing the wind speed for constant bridle lengths, the kite incidence tends to decrease whilst the value of ($L-W$)/D \dagger (tangent of the angle of the flying line) increases. The longer the rear bridles, the greater the decrease in C_{L} and the smaller the increase in $(L-W) / D$. If, however, the incidence is decreased to angles between 5 to 10 deg., there is a tendency for the shape of the front box to change radically, resulting in a decrease of lift on the front box so that the kite trims at a smaller incidence, further decreasing the front-box lift. At speeds above $70 \mathrm{ft} / \mathrm{sec}$, with the longer rear bridles the kites may become unstable and swoop

[^1]out of the jet. Using short rear bridles, the kites do not reach this low-incidence region (at moderate wind speeds) but distortion of the bamboos occurs at speeds about $100 \mathrm{ft} / \mathrm{sec}$; at higher speeds the kites were considered unsafe. A cinematograph record was taken both of the unstable condition of the kites at low incidences and of the distortions of the bamboos at high ones.
5.2. Effect of Bifurcated Bridle (Kite E, Fig. 3, Table 5). -Much of the bending was eliminated by the use of a bifurcated inner bridle on one of the 2 - ft kites (kite E). This kite, as well as the 2 -ft kite with normal rigging (kite F) and the 2×3-ft storm kite (kite D), was considered to be quite safe, except at low incidences, at $120 \mathrm{ft} / \mathrm{sec}$. Table 5 gives results obtained with the bifurcated bridle and shows that there was a smaller incidence change with wind speed than with normal bridles of similar lengths and that C_{L} remains almost constant. It would therefore appear that much of the change of incidence with wind speed obtained with normal rigging is due to distortion of the bamboos.
5.3. Effect of Stiffening Canes for Fabric (Kite D, Fig. 3, Table 4). -The 2×3-ft Cody kite (kite D) was also subject to less bending than the 3 -ft kites and the 2 -ft kite Mk. III with normal rigging, and its general behaviour was similar to the $2-\mathrm{ft}$. Mk. III with bifurcated bridle, but had a lower lifting efficiency (see Tables 4, 5, Fig. 7). The side canes in the fabric of the rear box prevented much of the flapping associated with the vertical panels. Additional tests with the 2×3-ft kite were carried out with the wire-bracing shown in Fig. 3, which prevented a tendency for the upper ends of the forward cross spars to bend and close the front box. This wire-bracing also slightly increased the lifting efficiency of the kite (directly proportional to the tangent of the flying line) at higher wind speeds (Fig. 7).
5.4. Use of Longitudinal Cross-bracing (Kite F, Fig. 4. Table 6).-The longitudinal crossbracing on the $2-\mathrm{ft}$ Cody kite Mark III (kite F) served little to reduce the bending of the longitudinals but prevented shear between the upper and lower booms. (It had previously been noted that kite D had considerable shearing of the upper longitudinals with respect to the lower ones.) At the same value of C_{L}, kite F also had a lower lifting efficiency than kite E with bifurcated inner bridle (see Fig. 7).
6. Further Modifications to 3 -ft Kites.-Some further tests (Tables 7a, b, c, Fig. 8) were done with the 3 -ft Haldon and Cody Mk. II (kites C and A respectively) with the object of improving the stability of the kites at low incidence without adversely affecting their lifting efficiency. The most promising results were obtained with a diagonal cord (AGA' in Fig. 5) lashed to the centre cane of the lower panel of the front box, at its leading edge. This was done in order to prevent collapsing of this panel, it having previously been found that before the kites lose height, the shape of the lifting panels of the front box changes, the points F and G (Fig. 5) moving downwards. This alteration in the shape of the lifting surface is usually found in the rear box before any change occurs in the front one but appears not to cause any loss of stability, the lite remaining quite steady after the leading edges (L and M) of the centre canes have moved below KK^{\prime} and PP^{\prime} respectively. It was found advisable, however, to lash a thin vertical spar FG , in the front box, to prevent the top lifting panel collapsing, even when the lower panel is stayed by the cord AGA'.

In the case of the Haldon kite (kite C, Table 7a, Fig. 8) improvement made in the lifting efficiency of the kite was only very slight, but the kite could be made fairly steady at $80 \mathrm{ft} / \mathrm{sec}$ although above this, it had little margin of stability. Experiments to increase the back-box lift with respect to the front-box lift indicated that this instability is associated with a rapid backwards movement of the centre of pressure of the kite on increasing wind speed at low incidence.
Using a 3 -ft Cody kite (Kite A) with 4 -ft front and 8 -ft rear bridles, the rear bridle was just slack (the kite flying only on the front rigging loops), and at speeds above $70 \mathrm{ft} / \mathrm{sec}$ the kite was
unstable, swooping to the side of the jet. A fair improvement in stability was obtained by using a wire or cord AGA' (Fig. 5) and a spar FG, with little change in the lifting efficiency of the kite (Fig. 8, Table 7). It was found here that the wings tend to take up a negative incidence at high wind speeds and thus close the front box. This will occur with parallel rigging of the wing canes ED and $\mathrm{E}^{\prime} \mathrm{D}^{\prime}$ and for high bending moments in the booms, but it is not likely to occur with cross-rigged wing canes. To prevent collapsing of the front box; the wing tips CC^{\prime} were joined by cord (ciné film records were taken of this at $100 \mathrm{ft} / \mathrm{sec}$.).
7. Effect of Tilting the Wing Canes.--Some further tests were carried out with the 3 -ft Cody kite Mk. II (Kite A) using front bridles of 4 ft with rear bridles of 7 ft 6 in . The kite is more stable than with 8 - ft rear bridles, but still has a tendency to swoop out of the jet, provided the wind speed is raised sufficiently (approximately $90 \mathrm{ft} / \mathrm{sec}$.). The wing canes were here given a slight, (approximately 5 deg.), and later a marked, (approximately 20 deg .), positive incidence with respect to the lower booms to prevent bending of the wings due to their having a negative incidence above $80 \mathrm{ft} / \mathrm{sec}$ and taking a down-load which caused both bending of the transverse bamboos and closing of the front box. A marked increase in lift above normal rigging was thus obtained (Table 7c, Fig. 8) at the cost of a correspondingly higher drag at $80 \mathrm{ft} / \mathrm{sec}$ and the kite shuddered violently in flight.
8. Effect of cutting Away Part of the Lifting Surfaces.-Wool tufts placed on the lifting panels of the front box of this kite indicated that the upper panel was stalled. It was later decided to remove this panel, but the kite flew at a much lower incidence and swooped out of the jet below $50 \mathrm{ft} / \mathrm{sec}$. The upper lifting panel of the rear box was then removed and the kite had a greater incidence and was able to be flown at $60 \mathrm{ft} / \mathrm{sec}$. The lifting efficiencies of the kite under these conditions were low (Table 7c, Fig. 8) but in flight, it was extremely steady owing to the high ratio of non-lifting to lifting surfaces.

Conclusions.-The unmodified 3-ft kites can be flown at wind speeds up to $100 \mathrm{ft} / \mathrm{sec}$, but are unsuitable for higher speeds if set at high or low incidences. At low incidences, the fall of incidence with wind speed, which is due, partly to the increase of the aerodynamic forces compared with its weight, and partly to distortion of the kite, results in a reduction of lift on the panels of the front box, which consequently changes their shape, and the kite becomes unstable. At high incidences, the large forces involved at high speeds bend the longitudinal and transverse bamboos and may break them. Flapping of the vertical panels also limits the usefulness of some of the kites at high speeds.

The bending of the bamboos can be prevented by using bifurcated bridles, which pick up at four points on each of the lower longitudinals. To some extent, the distortion of the kites under high loads can also be prevented by longitudinal bracing between the upper and lower bamboos on each side, but this does not prevent the ordinary bending of the bamboos.

The sharp reduction of lift on the front box at low incidence can be delayed by diagonal crossbracing to lift the centre of the leading edges of the lifting panels, and by tying the wing tips together (cords joining AGA^{\prime} and CC^{\prime} and strut from F to G in Fig. 5). Bending of the transverse bamboos can be reduced by using cross rigged wing canes (cords joining HD, $\mathrm{H}^{\prime} \mathrm{D}^{\prime}, \mathrm{EB}, \mathrm{E}^{\prime} \mathrm{B}^{\prime}$ in Fig. 5). The present arrangement of parallel rigging (as shown in Fig. 5) tends to close the front box as the lower longitudinals bend under load. The flapping of the vertical panels can be moderated by stiftening canes sewn in the fabric in a fore and aft direction.

TABLE 1
3-fi Mk. II Cody Kite

Front bridle	Rear bridle	Wind speed (ft/sec)	Lift (lb)	Drag (lb)	$\frac{L-W}{D}$	Nominal incidence (deg.)	Total tensions (lb)		C_{b}	$C^{\text {b }}$
							Front bridle	Rear bridle		
$3 \mathrm{ft} 3 \frac{1}{2} \mathrm{in}$.	4 ft	$\left\{\begin{array}{l}30 \\ 40\end{array}\right.$	88	$56 \cdot 3$	$1 \cdot 16$	$30 \cdot 4$	67	78	$0 \cdot 78$	$0 \cdot 50$
			149	$79 \cdot 1$	1.59	$25 \cdot 0$	120	126	$0 \cdot 74$	$0 \cdot 39$
$3 \mathrm{ft} 3 \frac{1}{2} \mathrm{in}$.	4 ft 6 in.	[50	219	$96 \cdot 1$	$2 \cdot 04$	$21 \cdot 6$	169	152	$0 \cdot 70$	$0 \cdot 31$
		$\{60$	306	$130 \cdot 3$	$2 \cdot 17$	$19 \cdot 7$	238	219	$0 \cdot 68$	$0 \cdot 29$
		80	507	$213 \cdot 1$	$2 \cdot 27$	$19 \cdot 0$	406	345	$0 \cdot 63$	$0 \cdot 26$
$3 \mathrm{ft} 3 \frac{1}{2} \mathrm{in}$.	5 ft 6 in .	[30	80	$34 \cdot 1$	$1 \cdot 67$	$20 \cdot 0$	48	37	0.71	$0 \cdot 30$
		40	123	$45 \cdot 7$	$2 \cdot 19$	$17 \cdot 6$	83	57	$0 \cdot 61$	$0 \cdot 23$
		$\{50$	177	$63 \cdot 0$	$2 \cdot 44$	$15 \cdot 0$	127	83	0.57	$0 \cdot 20$
		60	239	$88 \cdot 6$	$2 \cdot 44$	$14 \cdot 0$	172	124	0.53	$0 \cdot 20$
		80	405	$163 \cdot 4$	$2 \cdot 34$	$14 \cdot 0$	308	217	$0 \cdot 50$	$0 \cdot 20$
$3 \mathrm{ft} 3 \frac{1}{2} \mathrm{in}$.	7 ft	$\left[\begin{array}{l}30 \\ \hline\end{array}\right.$	62	21.5	$1 \cdot 82$	$14 \cdot 0$	36	13	0.55	0.19
		- 40	88	$29 \cdot 4$	$2 \cdot 21$	$10 \cdot 3$	60	18	$0 \cdot 44$	$0 \cdot 15$
		$\{50$	119	$41 \cdot 2$	$2 \cdot 33$	$8 \cdot 2$	89	25	$0 \cdot 38$	$0 \cdot 13$
		60	156	$59 \cdot 3$	$2 \cdot 24$	$8 \cdot 0$	121	39	$0 \cdot 35$	$0 \cdot 13$
		L 80	224	$105 \cdot 9$	$1 \cdot 90$	$6 \cdot 6$	166	95	0.28	$0 \cdot 13$
* 3 ft 9 in .	5 ft 3 in .	100	713	$279 \cdot 5$	$2 \cdot 47$	$23 \cdot 1$	583	263	0.57	0.22
4 ft	5 ft		91	$50 \cdot 0$	$1 \cdot 36$	$28 \cdot 0$	52	62	0.81	$0 \cdot 44$
		- 40	152	$75 \cdot 0$	$1 \cdot 72$	$25 \cdot 7$	98	102	$0 \cdot 76$	$0 \cdot 37$
		$\{50$	229	$102 \cdot 1$	$2 \cdot 02$	$21 \cdot 3$	151	153	0.73	0.33
		60	322	$141 \cdot 5$	$2 \cdot 11$	$21 \cdot 0$	227	201	$0 \cdot 71$	$0 \cdot 31$
		(80	538	$243 \cdot 3$	$2 \cdot 12$	$20 \cdot 4$	375	364	$0 \cdot 67$	$0 \cdot 30$
4 ft	6 ft 6 in	[30	76	$29 \cdot 7$	1.78	$18 \cdot 5$	44	27	0.67	$0 \cdot 26$
		- 40	113	$39 \cdot 7$	$2 \cdot 27$	$15 \cdot 0$	75	37	0.56	$0 \cdot 20$
		$\{50$	159	$56 \cdot 0$	$2 \cdot 43$	$13 \cdot 8$	114	51	0.51	$0 \cdot 18$
		60	216	$79 \cdot 6$	$2 \cdot 43$	$15 \cdot 8$	159	79	0.48	$0 \cdot 18$
		(80	366	$148 \cdot 2$	$2 \cdot 31$	18.5	287	141	0.46	$0 \cdot 18$
4 ft	8 ft	$\left\{\begin{array}{l}30 \\ 40 \\ 50 \\ 60\end{array}\right.$	56	$19 \cdot 1$	$1 \cdot 73$	$12 \cdot 2$	36	4	$0 \cdot 50$	$0 \cdot 17$
			75	$24 \cdot 9$	$2 \cdot 09$	$8 \cdot 0$	54	5	$0 \cdot 37$	$0 \cdot 12$
			98	$36 \cdot 8$	$2 \cdot 04$	$7 \cdot 9$	77	10	$0 \cdot 31$	$0 \cdot 12$
			118	51.9	$1 \cdot 83$	$7 \cdot 5$	90	24	$0 \cdot 26$	$0 \cdot 12$
* 4 ft 3 in .	6 ft 3 in	100	677	$307 \cdot 2$	$2 \cdot 13$	$19 \cdot 1$	549	280	0.54	$0 \cdot 24$
5 ft	6 ft	[30	93	$55 \cdot 1$	$1 \cdot 27$	$29 \cdot 7$	47	59	$0 \cdot 82$	0.49
		- 40	154	$74 \cdot 0$	$1 \cdot 77$	$24 \cdot 5$	91	90	$0 \cdot 76$	$0 \cdot 37$
		$\{50$	233	$106 \cdot 4$	$1 \cdot 97$	$22 \cdot 0$	151	124	$0 \cdot 74$	$0 \cdot 34$
		60	322	$145 \cdot 3$	$2 \cdot 06$	21.5	212	176	$0 \cdot 71$	$0 \cdot 32$
		(80	531	$248 \cdot 1$	$2 \cdot 05$	$23 \cdot 0$	380	276	$0 \cdot 66$	$0 \cdot 31$
5 ft	7 ft 6 in		76	$29 \cdot 4$	1.80	$17 \cdot 0$	39	26	0.67	$0 \cdot 26$
		[40	107	$38 \cdot 4$	$2 \cdot 19$	$13 \cdot 0$	67	35	0.53	0.19
		$\{50$	152	$56 \cdot 8$	$2 \cdot 27$	$13 \cdot 5$	109	45	$0 \cdot 48$	$0 \cdot 18$
		60	209	$79 \cdot 8$	$2 \cdot 33$	$13 \cdot 6$	162	58	$0 \cdot 46$	0.18
		(80	356	$150 \cdot 5$	$2 \cdot 21$	$14 \cdot 6$	278	129	$0 \cdot 44$	$0 \cdot 19$
5 ft	9 ft	$\left\{\begin{array}{l}30 \\ 40 \\ 50 \\ 60\end{array}\right.$	54	$18 \cdot 6$	1.67	$11 \cdot 2$	34	3	$0 \cdot 48$	$0 \cdot 16$
			74	$26 \cdot 2$	1.95	$9 \cdot 2$	57	1	$0 \cdot 37$	$0 \cdot 13$
			97	$38 \cdot 3$	1.93	$8 \cdot 5$	79	7	$0 \cdot 31$	$0 \cdot 12$
			120	$54 \cdot 3$	$1 \cdot 79$	$8 \cdot 0$	102	12	0.27	$0 \cdot 12$
*5 ft 3 in	6 ft 9 in	100	733	$351 \cdot 1$	$2 \cdot 02$	$22 \cdot 0$	568	319	$0 \cdot 58$	$0 \cdot 28$
*5 ft 3 in	7 ft 9 in	100	455	$207 \cdot 8$	$2 \cdot 08$	$14 \cdot 0$	355	168	$0 \cdot 36$	$0 \cdot 17$

$$
\begin{array}{ll}
C_{L}=L / \frac{1}{2} \rho V^{2} S & C_{D}=D / \frac{1}{2} \rho V^{2} S \\
S=105 \cdot 5 \mathrm{sq} . \mathrm{ft} & W=23 \mathrm{lb}
\end{array}
$$

* In view of the higher tension involved, 20 -cwt bridles were used here, the lengths being chosen 3 in . too large in error.

TABLE 2
3-ft. yeversed Cody or Dyco Kite

Front bridle	Rear bridle	Wind speed (ft/sec)	Lift (lb)	Drag (lb)	$\frac{L-W}{D}$	Nominal incidence (deg)	Total tensions (lb)		C_{L}	C_{D}
							Front bridles	Rear bridles		
3 ft 6 in.	5 ft	$\int 30$	64	$24 \cdot 4$	1.56	$13 \cdot 0$	29	36	$0 \cdot 57$	$0 \cdot 22$
		40	95	$33 \cdot 4$	$2 \cdot 07$	$10 \cdot 0$	53	59	0.47	$0 \cdot 17$
		$\{50$	133	$49 \cdot 1$	$2 \cdot 18$	$11 \cdot 0$	83	90	$0 \cdot 42$	$0 \cdot 16$
		60	187	$73 \cdot 2$	$2 \cdot 20$	$11 \cdot 0$	104	133	0.41	$0 \cdot 16$
		(80	321	$143 \cdot 4$	$2 \cdot 06$	$11 \cdot 0$	206	246	$0 \cdot 40$	$0 \cdot 18$
3 ft 6 in .	6 ft 6 in .	$\int 30$	51	$18 \cdot 1$	$1 \cdot 38$	$9 \cdot 3$	19	19	$0 \cdot 45$	$0 \cdot 16$
		40	67	$24 \cdot 7$	$1 \cdot 66$	$7 \cdot 5$	32	27	$0 \cdot 33$	$0 \cdot 12$
		$\left\{\begin{array}{r}50 \\ 60\end{array}\right.$	89	$35 \cdot 8$	1.76	$6 \cdot 0$	49	41	$0 \cdot 28$	0.11
		[60	117	$51 \cdot 6$	1.76	$7 \cdot 0$	69	61	0.26	$0 \cdot 11$
		[80	176		$1 \cdot 52$	$7 \cdot 8$	108	110	0.22	$0 \cdot 12$
3 ft 6 in .	8 ft	$\left[\begin{array}{l}30 \\ 40\end{array}\right.$	41	$14 \cdot 4$	$1 \cdot 04$	$8 \cdot 6$	16	6	$0 \cdot 36$	$0 \cdot 13$
		$\int \begin{aligned} & 40 \\ & 50\end{aligned}$	46	$20 \cdot 0$	$1 \cdot 00$	$6 \cdot 3$	20	11	$0 \cdot 23$	$0 \cdot 10$
		$\left\{\begin{array}{r}50 \\ 60\end{array}\right.$	56	$29 \cdot 7$	1.01	$4 \cdot 8$	29	17	$0 \cdot 18$	$0 \cdot 10$
		析 60	64	$43 \cdot 8$	$0 \cdot 87$	$3 \cdot 6$	32	31	$0 \cdot 14$	$0 \cdot 10$
		80	72	$81 \cdot 5$	$0 \cdot 56$	$3 \cdot 8$	31	69	$0 \cdot 09$	$0 \cdot 10$
3 ft 9 in .	4 ft 9 in .	$\left\{\begin{array}{r} 40 \\ 60 \\ 80 \\ 100 \end{array}\right.$	110	$45 \cdot 6$	1.84	$15 \cdot 7$	63	76	0.55	$0 \cdot 23$
			219	$101 \cdot 4$	$1 \cdot 90$	$16 \cdot 0$	142	168	0.48	$0 \cdot 22$
			378	$192 \cdot 2$	$1 \cdot 83$	$15 \cdot 8$	256	308	$0 \cdot 47$	$0 \cdot 24$
			570	$311 \cdot 0$	$1 \cdot 75$	$16 \cdot 4$	376	477	$0 \cdot 46$	$0 \cdot 25$
3 ft 9 in .	5 ft 3 in .		337	$165 \cdot 5$	$1 \cdot 88$	$14 \cdot 0$	220	248	0.42	0.21
		$\{100$	522	$217 \cdot 4$	$2 \cdot 28$	$14 \cdot 1$	370	344	0.42	$0 \cdot 17$
4 ft .	6 ft .	[$\begin{gathered}30 \\ 40\end{gathered}$		$22 \cdot 0$	1.50	$14 \cdot 9$	22	25	0.52	$0 \cdot 20$
		- 40	86	$30 \cdot 5$	1.97	$12 \cdot 3$	43	36	0.43	$0 \cdot 15$
		$\left\{\begin{array}{r}50 \\ \hline\end{array}\right.$	120	$45 \cdot 5$	$2 \cdot 07$	11.0	70	52	0.38	$0 \cdot 14$
		60	164	$66 \cdot 6$	$2 \cdot 07$	$12 \cdot 6$	102	78	$0 \cdot 36$	$0 \cdot 15$
		[80		$134 \cdot 8$	$1 \cdot 97$	$12 \cdot 5$	187	156	0.36	$0 \cdot 17$
4 ft	7 ft 6 in .	[$\begin{gathered}30 \\ 40\end{gathered}$		$17 \cdot 8$	$1 \cdot 24$	$5 \cdot 6$	15	16	$0 \cdot 42$	$0 \cdot 16$
		$\left\{\begin{array}{l}40 \\ 50\end{array}\right.$	59	$23 \cdot 8$	$1 \cdot 39$	$6 \cdot 0$	26	20	$0 \cdot 29$	$0 \cdot 12$
		$\left\{\begin{array}{l}50 \\ 60\end{array}\right.$	79	$34 \cdot 8$	1.52	$8 \cdot 0$	43	28	0.25	$0 \cdot 11$
		- 60	101	$50 \cdot 1$	1.50	8.8	59	42	$0 \cdot 22$	$0 \cdot 11$
		(74	129	$75 \cdot 6$	$1 \cdot 37$	$5 \cdot 6$	76	65	$0 \cdot 19$	$0 \cdot 11$
4 ft	9 ft		39	$14 \cdot 1$	$0 \cdot 92$	$8 \cdot 8$	16	3	0.35	$0 \cdot 12$
		$\int \begin{aligned} & 40 \\ & 50\end{aligned}$	44	$20 \cdot 7$	$0 \cdot 87$	$5 \cdot 3$	21	8	$0 \cdot 22$	$0 \cdot 10$
		$\left\{\begin{array}{l}50 \\ 60\end{array}\right.$	53	$30 \cdot 4$	$0 \cdot 89$	$5 \cdot 0$	33	10	$0 \cdot 17$	$0 \cdot 10$
		60	61	$43 \cdot 8$	$0 \cdot 80$	$3 \cdot 7$	40	19	$0 \cdot 14$	$0 \cdot 10$
		(80	55	$81 \cdot 5$	$0 \cdot 36$	$4 \cdot 0$	15	74	0.07	$0 \cdot 10$
4 ft 9 in .	6 ft 3 in .	100	533	$283 \cdot 2$	1.79	$16 \cdot 5$	338	341	0.42	$0 \cdot 23$
5 ft 6 in.	6 ft 6 in .	$[30$	72	$29 \cdot 7$	$1 \cdot 55$		25	38	$0 \cdot 64$	$0 \cdot 26$
		$\int \begin{aligned} & 40 \\ & 50\end{aligned}$	110	$42 \cdot 1$	$2 \cdot 00$	$13 \cdot 7$	48	60	0.55	$0 \cdot 21$
		$\left\{\begin{array}{l}50 \\ 60\end{array}\right.$	155	$59 \cdot 6$	$2 \cdot 16$	$14 \cdot 8$	80	84	$0 \cdot 50$	$0 \cdot 19$
		$\left\{\begin{array}{l}60 \\ 80\end{array}\right.$	217	$92 \cdot 9$	2.06	$16 \cdot 4$	121	124	0.48 0.48	$0 \cdot 21$
		- 80	382	$85 \cdot 7$	1.92	17.9	221	238	$0 \cdot 48$	0.23
		100	595	$325 \cdot 5$	$1 \cdot 75$	$20 \cdot 0$	366	372	0.48	$0 \cdot 26$
5 ft 6 in .	7 ft 6 in .		${ }_{60} 86$	$22 \cdot 4$	1.52	$13 \cdot 6$	21	24	0.53	$0 \cdot 20$
		$\left\{\begin{array}{l}40 \\ 50\end{array}\right.$	86 120	$31 \cdot 4$	1.91	$11 \cdot 0$	40	36	$0 \cdot 43$	0.16
		$\left\{\begin{array}{l}50 \\ 60\end{array}\right.$	120	$45 \cdot 1$	$2 \cdot 08$	$10 \cdot 9$	64	51	$0 \cdot 38$	$0 \cdot 14$
		[60	163	$67 \cdot 4$	$2 \cdot 03$	$10 \cdot 3$	94	76	$0 \cdot 36$	$0 \cdot 15$
		80	295	$38 \cdot 6$	1.94	$10 \cdot 5$	179	156	$0 \cdot 37$	0.17
5 ft 6 in .	9 ft			$16 \cdot 5$	$1 \cdot 27$	$10 \cdot 0$	18	11	- $0 \cdot 42$	$0 \cdot 15$
		$\int \begin{aligned} & 40 \\ & 50\end{aligned}$	58	$23 \cdot 2$	1.38	$8 \cdot 0$	27	15	$0 \cdot 29$	0.12
		$\{50$	76	$33 \cdot 5$	$1 \cdot 49$	6.9	40	24	$0 \cdot 24$	$0 \cdot 11$
		-60	99	$49 \cdot 9$	1.46	$6 \cdot 2$	57	37	$0 \cdot 22$	$0 \cdot 11$
		74	120	$71 \cdot 9$	$1 \cdot 31$	$4 \cdot 0$	65	63	$0 \cdot 18$	$0 \cdot 10$

$S=105 \cdot 5$ sq. ft, $\quad W=26 \mathrm{lb}$.

* See end of Table 1

TABLE 3
3-ft Cody Kite, Haldon Modification

Front bridle	Rear biidle	Wind speed (ft $/ \mathrm{sec}$)	Lift (lb)	Drag (lb)	$\frac{L-W}{D}$	Nominal incidence (deg)	Total tensions (Ib)		$C^{\text {J }}$	C_{D}
							Front. bridles	Rear bridles		
3 ft	4 ft	$\left\{\begin{array}{l} \left\{\begin{array}{l} 30 \\ 40 \\ 50 \\ 60 \end{array}\right. \\ \left\{\begin{array}{r} 80 \\ 100 \end{array}\right. \end{array}\right.$	67	$37 \cdot 0$	$1 \cdot 24$	$28 \cdot 0$	56	63	$0 \cdot 70$	$0 \cdot 39$
			111	$55 \cdot 2$	$1 \cdot 63$	$23 \cdot 5$	103	108	$0 \cdot 65$	$0 \cdot 32$
			158	$73 \cdot 0$	$1 \cdot 88$	$22 \cdot 0$	153	158	$0 \cdot 60$	$0 \cdot 28$
			215	$98 \cdot 6$	1.97	$21 \cdot 5$	217	216	$0 \cdot 56$	$0 \cdot 26$
3 ft	5 ft		318	$143 \cdot 2$	$2 \cdot 07$	$19 \cdot 5$	268	215	$0 \cdot 47$	$0 \cdot 21$
			418	$197 \cdot 6$	$2 \cdot 01$	$20 \cdot 8$	360	294	$0 \cdot 39$	$0 \cdot 19$
3 ft	5 ft 6 in .	$\left\{\begin{array}{l}30 \\ 40 \\ 50 \\ 60\end{array}\right.$	57	$27 \cdot 2$	$1 \cdot 32$	$18 \cdot 9$	30	31	$0 \cdot 60$	$0 \cdot 28$
			89	$37 \cdot 7$	$1 \cdot 80$	$15 \cdot 5$	55	48	$0 \cdot 52$	$0 \cdot 22$
			123	$50 \cdot 6$	$2 \cdot 02$	$14 \cdot 4$	82	69	$0 \cdot 46$	$0 \cdot 19$
			165	$70 \cdot 4$	$2 \cdot 04$	$14 \cdot 4$	116	96	0.43	$0 \cdot 18$
3 ft	6 ft 6 in .	$\left\{\begin{array}{l}71 \cdot 6 \\ 30 \\ 40 \\ 50 \\ 60\end{array}\right.$	146	$74 \cdot 4$	1.68	11.7	110	73	0.27	$0 \cdot 14$
3 ft	7 ft		48	$20 \cdot 1$	$1 \cdot 34$	$13 \cdot 8$	26	12	$0 \cdot 50$	0.21
			66	$27 \cdot 4$	1.64	$10 \cdot 0$	42	16	$0 \cdot 39$	$0 \cdot 16$
			93	$39 \cdot 1$	$1 \cdot 84$	$9 \cdot 0$	68	22	$0 \cdot 35$	$0 \cdot 15$
			112	$52 \cdot 7$	1.76	$8 \cdot 0$	84	33	$0 \cdot 29$	$0 \cdot 14$
4 ft	4 ft 6 in .	$\left\{\begin{array}{l}40 \\ 30 \\ 40 \\ 50 \\ 60\end{array}\right.$	117	$62 \cdot 8$	$1 \cdot 53$	$24 \cdot 5$	74	88	$0 \cdot 69$	$0 \cdot 37$
4 ft	5 ft		70	$38 \cdot 5$	$1 \cdot 27$	$25 \cdot 5$	37	46	0.73	$0 \cdot 40$
			109	$54 \cdot 0$	1.63	21.5	64	73	$0 \cdot 64$	$0 \cdot 32$
			158	$73 \cdot 1$	$1 \cdot 88$	$20 \cdot 0$	101	107	$0 \cdot 60$	$0 \cdot 28$
			217	$99 \cdot 0$	1.98	$19 \cdot 5$	146	148	$0 \cdot 57$	$0 \cdot 26$
4 ft	5 ft 6 in .	100	500	$236 \cdot 1$	$2 \cdot 03$	$22 \cdot 0$	390	289	0.47	$0 \cdot 22$
4 ft	6 ft	f 80	303	$137 \cdot 0$	$2 \cdot 06$	$17 \cdot 0$	223	157	$0 \cdot 44$	$0 \cdot 20$
		$\{100$	381	$173 \cdot 4$	$2 \cdot 08$	$16 \cdot 5$	283	205	$0 \cdot 36$	$0 \cdot 16$
4 ft	6 ft 6 in .	$\int 30$	57	$26 \cdot 7$	$1 \cdot 35$	18.5	28	25	$0 \cdot 60$	$0 \cdot 28$
		$\int 40$	85	$34 \cdot 0$	$1 \cdot 88$	$14 \cdot 5$	51	34	$0 \cdot 50$	$0 \cdot 20$
		$\bigcirc 50$	117	$47 \cdot 3$	$2 \cdot 03$	$13 \cdot 5$	77	49	$0 \cdot 44$	$0 \cdot 18$
		(60	157	$66 \cdot 6$	$2 \cdot 04$	$14 \cdot 3$	110	68	0.41	$0 \cdot 18$
4 ft	7 ft 6 in .	[40	66	$25 \cdot 6$	1.76	$11 \cdot 5$	44	12	$0 \cdot 39$	$0 \cdot 15$
		$\{60$	114	$50 \cdot 5$	$1 \cdot 84$	$9 \cdot 6$	87	27	$0 \cdot 30$	$0 \cdot 13$
		\{ $73 \cdot 8$	153	$70 \cdot 9$	$1 \cdot 86$	$10 \cdot 5$	122	41	$0 \cdot 26$	0.12
4 ft	8 ft	[30	45	$18 \cdot 2$	$1 \cdot 32$	$13 \cdot 5$	25	6	$0 \cdot 47$	$0 \cdot 19$
		$\left\{\begin{array}{l}40 \\ 50\end{array}\right.$	60	23.5	$1 \cdot 66$	9.5	40	7	$0 \cdot 35$	$0 \cdot 14$
		$\{50$	82	$33 \cdot 7$	$1 \cdot 81$	$9 \cdot 0$	63	8	$0 \cdot 31$	$0 \cdot 13$
		(60	104	$48 \cdot 5$	$1 \cdot 71$	$9 \cdot 0$	85	14	$0 \cdot 27$	0.13
5 ft	6 ft	[30	70	$40 \cdot 5$	$1 \cdot 21$	$26 \cdot 5$	32	43	$0 \cdot 73$	$0 \cdot 42$
		$\{40$	109	$53 \cdot 4$	$1 \cdot 65$	$21 \cdot 7$	58	64	$0 \cdot 64$	0.31
		$\{50$	157	$71 \cdot 6$	$1 \cdot 90$	$20 \cdot 0$	90	92	0.59	0.27
		60	214	$96 \cdot 0$	$2 \cdot 01$	$19 \cdot 0$	130	128	$0 \cdot 56$	0.25
					$2 \cdot 07$	$15 \cdot 5$	203	131	$0 \cdot 42$	$0 \cdot 19$
5 ft	7 ft	$\{100$	386	164.8	$2 \cdot 22$	$14 \cdot 0$	277	178	$0 \cdot 36$	$0 \cdot 16$
5 ft	7 ft 6 in .	$\left\{\begin{array}{l}30 \\ 40 \\ 50 \\ 60\end{array}\right.$	57	$26 \cdot 6$	$1 \cdot 35$	$19 \cdot 5$	29	21	$0 \cdot 60$	0.28
			81	$32 \cdot 9$	$1 \cdot 82$	$14 \cdot 0$	48	28	$0 \cdot 48$	$0 \cdot 19$
			112	$44 \cdot 2$	$2 \cdot 06$	$12 \cdot 7$	73	39	0.42	$0 \cdot 17$
			149	$63 \cdot 4$	$2 \cdot 02$	$12 \cdot 7$	102	57	$0 \cdot 39$	$0 \cdot 17$
5 ft	8 ft	80	187	$87 \cdot 6$	$1 \cdot 90$	$7 \cdot 5$	134	71	0.28	$0 \cdot 13$
5 ft	8 ft 6 in.	$71 \cdot 6$	130	$63 \cdot 3$	$1 \cdot 72$	$11 \cdot 0$	104	28	$0 \cdot 24$	$0 \cdot 12$
* 5 ft 3 in .	6 ft 9 in .	$\left\{\begin{array}{r} 80 \\ 100 \\ 80 \end{array}\right.$	322	$147 \cdot 3$	$2 \cdot 04$	$16 \cdot 5$	218	161	$0 \cdot 47$	0.22
			487	$226 \cdot 2$	$2 \cdot 06$	$17 \cdot 5$	338	248	0.46	0.21
*5 ft 3 in.	7 ft 3 in .		280	$123 \cdot 1$	$2 \cdot 10$	$15 \cdot 0$	199	118	$0 \cdot 41$	$0 \cdot 18$

[^2]TABLE 4
2×3-ft Storm Kite with Lateral Cross Bracing

Front bridle	Rear bridle	Wind speed (ft $/ \mathrm{sec}$)	Lift (lb)	Drag (lb)	$\frac{L-W}{D}$	Nominal incidence (deg)	Total tensions (lb)		C_{L}	C_{D}
							Front bridles	Rear bridles		
$2 \mathrm{ft} 5 \frac{1}{2} \mathrm{in}$.	$3 \mathrm{ft} 10 \frac{1}{2}$ in.	$\int \begin{aligned} & 40 \\ & 50\end{aligned}$	58	$32 \cdot 1$	$1 \cdot 31$	$22 \cdot 0$	33	31	$0 \cdot 67$	0.37
		50	87	$42 \cdot 5$	$1 \cdot 67$	$17 \cdot 8$	56	43	$0 \cdot 64$	$0 \cdot 31$
		$\left\{\begin{array}{r}60 \\ 80\end{array}\right.$	115	$56 \cdot 5$	$1 \cdot 75$	$16 \cdot 5$	75	66	0.59	$0 \cdot 29$
		80	197	$94 \cdot 3$	$1 \cdot 92$	$15 \cdot 0$	133	109	0.57	0.27
		100	307	$146 \cdot 3$	$1 \cdot 99$	$14 \cdot 6$	214	168	$0 \cdot 57$	$0 \cdot 27$
$2 \mathrm{ft} 5 \frac{1}{2} \mathrm{in}$.	3 ft 11 in.	120	444	$224 \cdot 9$	$1 \cdot 90$	$13 \cdot 5$	316	224	$0 \cdot 57$	$0 \cdot 29$
$2 \mathrm{ft} 5 \frac{1}{2}$ in.	4 ft 11 in .	[30	31	$17 \cdot 1$	$0 \cdot 88$	$20 \cdot 7$	14	11	$0 \cdot 64$	$0 \cdot 35$
		40	44	$22 \cdot 0$.	1.27	$14 \cdot 0$	24	15	$0 \cdot 51$	$0 \cdot 25$
		$\left\{\begin{array}{l}50 \\ 60\end{array}\right.$	59	$29 \cdot 1$	$1 \cdot 48$	$10 \cdot 6$	37	20	0.44	$0 \cdot 22$
		[60	77	$40 \cdot 7$	$1 \cdot 50$	$9 \cdot 7$	52	28	$0 \cdot 40$	$0 \cdot 21$
		80	124	$65 \cdot 3$	$1 \cdot 65$	$8 \cdot 0$	90	47	$9 \cdot 36$	$0 \cdot 19$
		(100	187	$104 \cdot 0$	1.64	$8 \cdot 6$	149	68	$0 \cdot 34$	$0 \cdot 19$
$2 \mathrm{ft} 5 \frac{1}{2} \mathrm{in}$.	5 ft	120	236	$156 \cdot 8$	$1 \cdot 40$	$6 \cdot 2$	179	115	$0 \cdot 30$	$0 \cdot 20$
$2 \mathrm{ft} 5 \frac{1}{2} \mathrm{in}$,	$5 \mathrm{ft} 4 \frac{1}{4} \mathrm{in}$.	$[30$	30	$14 \cdot 9$	0.94	$19 \cdot 0$	17	5	0.62	
		40 50	39	$19 \cdot 7$	$1 \cdot 17$	$11 \cdot 3$	25	7	$0 \cdot 45$	$0 \cdot 23$
		50	50	$26 \cdot 0$	1.31	$8 \cdot 6$	36	8	$0 \cdot 37$	$0 \cdot 19$
		$\left\{\begin{array}{l}60 \\ 80\end{array}\right.$	63	$35 \cdot 0$	$1 \cdot 34$	$7 \cdot 2$	49	12	$0 \cdot 32$	$0 \cdot 18$
		-80	98	$59 \cdot 7$	$1 \cdot 37$	$6 \cdot 0$	80	27	$0 \cdot 28$	$0 \cdot 17$
		100	142	$96 \cdot 2$	$1 \cdot 31$	$5 \cdot 0$	117	51	$0 \cdot 26$	$0 \cdot 18$
		(120	170	$153 \cdot 1$	$1 \cdot 00$	$4 \cdot 9$	124	107	$0 \cdot 22$	$0 \cdot 20$
*2 ft $5 \frac{1}{2} \mathrm{in}$.	*5 ft $4 \frac{1}{4} \mathrm{in}$.	$\left[\begin{array}{l}30 \\ 40\end{array}\right.$	31	$16 \cdot 6$	$0 \cdot 90$	$18 \cdot 9$	18	6	$0 \cdot 64$	$0 \cdot 34$
		40	42	$21 \cdot 0$	$1 \cdot 24$	$10 \cdot 0$	28	7	0.48	$0 \cdot 24$
		50	54	$27 \cdot 8$	$1 \cdot 37$	$8 \cdot 3$	39	10	$0 \cdot 40$	$0 \cdot 20$
		$\left\{\begin{array}{r}60 \\ 80\end{array}\right.$	70	$36 \cdot 8$	1.47	$7 \cdot 6$	57	11	$0 \cdot 36$	$0 \cdot 19$
		8	109	$62 \cdot 9$	$1 \cdot 48$	$5 \cdot 0$	94	24	$0 \cdot 31$	$0 \cdot 18$
		100	159	$104 \cdot 0$	$1 \cdot 38$	$5 \cdot 0$	148	35	$0 \cdot 29$	
		120	219	$173 \cdot 9$	$1 \cdot 17$	$6 \cdot 4$	196	84	$0 \cdot 28$	$0 \cdot 22$
*2 ft $6 \frac{3}{4} \mathrm{in}$.	3 ft 11 in.		337	$172 \cdot 9$				195	$0 \cdot 62$	$0 \cdot 32$
		2120	492	$263 \cdot 6$	$1 \cdot 81$	$15 \cdot 0$	348	294	$0 \cdot 63$	$0 \cdot 34$

$S=45 \cdot 6 \mathrm{sq} . \mathrm{ft}$, and $W=16 \mathrm{lb}$

* Wing bracing wires in front box joined, horizontal upper pair only.

TABLE 5
2-ft Mk. III Cody Kite with Bifurcated Bridles

Inneı bridles				Inter. Bridles		Wind speed (ft/ $\mathrm{sec})$	Lift (lb)	Drag (lb)	$\frac{L-W}{D}$	Nominal incidence (deg.)	Total tensions (lb)		C_{L}	C_{D}	
Forward		Rear				Inter. br					idles				
1	2	1	2	Forward	Rear						Forward	Rear			
1 ft 11 in .	2 ft 0 in .	1 ft 2 in.	2 ft 0 in .	$2 \mathrm{ft} 2 \frac{1}{2} \mathrm{in}$.	$5 \mathrm{ft} 10 \frac{3}{4} \mathrm{in}$.		40	61	$32 \cdot 4$	$1 \cdot 33$	$23 \cdot 5$	39	34	$0 \cdot 70$	$0 \cdot 37$
						50	93	$39 \cdot 9$	1.88	$17 \cdot 6$	66	48	$0 \cdot 69$	$0 \cdot 30$	
						60	121	$49 \cdot 3$	$2 \cdot 09$	$15 \cdot 5$	83	69	$0 \cdot 62$	$0 \cdot 25$	
						80	140	$58 \cdot 3$	$2 \cdot 09$	$6 \cdot 3$	98	94	$0 \cdot 40$	$0 \cdot 17$	
1 ft 11 in .	$1 \mathrm{ft} 6 \frac{1}{2} \mathrm{in}$.	$7 \frac{1}{2} \mathrm{in}$.	2 ft 0 in .	$2 \mathrm{ft} 2 \frac{1}{2} \mathrm{in}$.	$5 \mathrm{ft} 10 \frac{1}{4} \mathrm{in}$.	40	62	$34 \cdot 9$	$1 \cdot 26$	$23 \cdot 3$	43	23	$0 \cdot 71$	$0 \cdot 40$	
			2 tt 0 in .	$2 \mathrm{ft} 2 \frac{1}{2} \mathrm{in}$.	$5 \mathrm{ft} 1{ }_{4}^{\frac{1}{4} \mathrm{n} .}$	50	96	$45 \cdot 9$	$1 \cdot 70$	$20 \cdot 9$	72	36	0.71	$0 \cdot 34$	
						60	134	$61 \cdot 9$	1.88	$18 \cdot 0$	104	58	$0 \cdot 69$	$0 \cdot 32$	
						80	240	$110 \cdot 1$	$2 \cdot 02$	$16 \cdot 3$	195	112	$0 \cdot 69$	$0 \cdot 32$	
						100	384	$179 \cdot 2$	$2 \cdot 04$	$16 \cdot 9$	324	182	$0 \cdot 71$	$0 \cdot 33$	
						120	563	$274 \cdot 9$	1.98	$15 \cdot 7$	474	285	$0 \cdot 72$	$0 \cdot 35$	
$S=45 \cdot 6 \mathrm{ft}$ W $=18 \mathrm{ft}$															

TABLE 6
2-ft Mk. III Longitudinally Braced Cody Kite

Front bridle	Rear bridle	Wind speed (ft/sec)	$\begin{aligned} & \text { Lift } \\ & (\mathrm{lb}) \end{aligned}$	Drag (lb)	$\frac{L-W}{D}$	Nominal incidence (deg.)	Total tensions (lb)		C_{L}	C_{D}
							Front bridle	Rear bridle		
3 ft	5 ft	[40	65	$43 \cdot 3$	$1 \cdot 13$	$27 \cdot 1$	62	72	0.75	$0 \cdot 50$
		$\{50$	100	$59 \cdot 7$	$1 \cdot 41$	$24 \cdot 5$	100	106	$0 \cdot 74$	$0 \cdot 44$
		¢ 60	138	$75 \cdot 3$	$1 \cdot 62$	$20 \cdot 9$	140	149	$0 \cdot 71$	$0 \cdot 39$
		(80	217	$103 \cdot 8$	1.94	$14 \cdot 5$	217	235	$0 \cdot 62$	$0 \cdot 30$
3 ft	6 ft] 30	37	$25 \cdot 5$	$0 \cdot 82$	$29 \cdot 2$	23	28	$0 \cdot 76$	0.52
		40	60	$32 \cdot 5$	$1 \cdot 35$	$21 \cdot 7$	42	42	$0 \cdot 69$	$0 \cdot 37$
		$\} 50$	91	$43 \cdot 1$	$1 \cdot 74$	$16 \cdot 8$	69	63	$0 \cdot 67$	$0 \cdot 32$
		60	119	$56 \cdot 4$	$1 \cdot 82$	$15 \cdot 7$	93	82	$0 \cdot 61$	$0 \cdot 29$
		J 80	186	$85 \cdot 6$	$1 \cdot 99$	$12 \cdot 2$	149	120	$0 \cdot 54$	0.25
3 ft		$\left\{100^{*}\right.$	272	$113 \cdot 1$	$2 \cdot 26$	$14 \cdot 0$	227	123	$0 \cdot 50$	$0 \cdot 21$
3 ft	6 ft 6 in .	$\left\{120^{*}\right.$	359	$156 \cdot 0$	$2 \cdot 20$	$12 \cdot 7$	290	190	$0 \cdot 46$	$0 \cdot 20$
3 ft	8 ft	[30	31	$16 \cdot 9$	$0 \cdot 89$	$18 \cdot 0$	16	10	$0 \cdot 64$	$0 \cdot 35$
		40	45	$22 \cdot 0$	$1 \cdot 32$	$12 \cdot 8$	29	12	$0 \cdot 52$	$0 \cdot 25$
		$\{50$	60	$28 \cdot 3$	$1 \cdot 56$	$10 \cdot 0$	42	16	0.44	$0 \cdot 21$
		60	77	$38 \cdot 2$	1.60	$8 \cdot 7$	56	26	$0 \cdot 40$	$0 \cdot 20$
		80	112	$66 \cdot 3$	$1 \cdot 45$	$9 \cdot 7$	90	43	$0 \cdot 32$	$0 \cdot 19$
4 ft	6 ft	$[40$	65	$44 \cdot 1$	1.11	$27 \cdot 9$	43	48	$0 \cdot 75$	$0 \cdot 51$
		50	100	$58 \cdot 7$	1.43	$23 \cdot 7$	70	70	$0 \cdot 74$	$0 \cdot 43$
		$\{60$	139	$75 \cdot 5$	$1 \cdot 63$	$20 \cdot 3$	100	98	$0 \cdot 71$	$0 \cdot 39$
		$\left\{\begin{array}{l}80 \\ 80\end{array}\right.$	229	$111 \cdot 3$	1.92	$16 \cdot 5$	165	163	0.66	$0 \cdot 32$
		80*	251	$144 \cdot 6$	$1 \cdot 62$	$21 \cdot 6$	195	180	$0 \cdot 72$	$0 \cdot 42$
		(100*	383	$203 \cdot 3$	$1 \cdot 80$	$19 \cdot 5$	306	270	$0 \cdot 71$	$0 \cdot 38$
4 ft	7 ft	120*	403	$172 \cdot 3$	$2 \cdot 25$	$12 \cdot 1$	321	193	$0 \cdot 52$	$0 \cdot 22$
4 ft	7 ft 6 in .		37	$23 \cdot 4$	$0 \cdot 90$	$25 \cdot 0$	19	19	$0 \cdot 76$	$0 \cdot 48$
		- 40	55	$28 \cdot 4$	$1 \cdot 37$	17.8	33	25	$0 \cdot 63$	$0 \cdot 33$
		$\{50$	80	$37 \cdot 0$	$1 \cdot 73$	$14 \cdot 7$	54	34	$0 \cdot 59$	$0 \cdot 27$
		$\{60$	103	$48 \cdot 3$	$1 \cdot 80$	$13 \cdot 4$	70	48	$0 \cdot 53$	$0 \cdot 25$
		80	160	$76 \cdot 9$	$1 \cdot 87$	$13 \cdot 0$	116	78	$0 \cdot 46$	$0 \cdot 22$
		(100	240	$120 \cdot 2$	1.86	$13 \cdot 0$	183	113	$0 \cdot 44$	$0 \cdot 22$
4 ft	9 ft	$\left[\begin{array}{l}30 \\ 40\end{array}\right.$	27	$16 \cdot 4$	$0 \cdot 67$	$17 \cdot 0$	11	10	0.55	$0 \cdot 34$
		- 40	42	$20 \cdot 4$	$1 \cdot 28$	$12 \cdot 9$	28	7	$0 \cdot 48$	$0 \cdot 23$
		$\int 50$	56	$27 \cdot 7$	$1 \cdot 44$	$11 \cdot 0$	44	6	$0 \cdot 41$	$0 \cdot 20$
		$\{60$	75	$38 \cdot 1$	$1 \cdot 55$	$9 \cdot 9$	61	13	$0 \cdot 38$	$0 \cdot 20$
		80	118	$65 \cdot 3$	$1 \cdot 56$	$10 \cdot 0$	110	16	$0 \cdot 34$	$0 \cdot 19$
		100	161	$101 \cdot 0$	$1 \cdot 44$	11.5	149	38	$0 \cdot 30$	$0 \cdot 19$
5 ft	8 ft 6 in .		36	$23 \cdot 2$		$24 \cdot 3$	18	17	$0 \cdot 74$	$0 \cdot 48$
		$\int \begin{aligned} & 40 \\ & 50\end{aligned}$	55	$27 \cdot 6$	$1 \cdot 41$	$15 \cdot 2$	33	21	$0 \cdot 63$	$0 \cdot 32$
		$\{50$	78	$36 \cdot 2$	1.71	$12 \cdot 5$	51	29	0.58	$0 \cdot 27$
		60	99	$47 \cdot 2$	$1 \cdot 76$	$12 \cdot 4$	69	37	0.51	$0 \cdot 24$
		(80	156	$75 \cdot 8$	$1 \cdot 85$	$12 \cdot 0$	117	59	$0 \cdot 45$	$0 \cdot 22$
5 ft	7 ft		68	$45 \cdot 6$	$1 \cdot 14$	$27 \cdot 6$	40	45	$0 \cdot 78$	$0 \cdot 52$
		- 50	101	$60 \cdot 0$	$1 \cdot 42$	$25 \cdot 5$	65	61	0.75	$0 \cdot 44$
		$\{60$	139	$76 \cdot 8$	$1 \cdot 60$	$20 \cdot 5$	88	89	$0 \cdot 71$	$0 \cdot 39$
		80	216	$116 \cdot 4$	$1 \cdot 72$	$18 \cdot 5$	135	140	$0 \cdot 62$	$0 \cdot 34$
		100	320	$150 \cdot 2$	$2 \cdot 02$	$14 \cdot 5$	203	203	0.59	$0 \cdot 28$
5 ft	7 ft 6 in .	120*	434	$185 \cdot 9$	$2 \cdot 25$	$14 \cdot 8$	324	199	$0 \cdot 56$	$0 \cdot 24$
5 ft	8 ft 6 in .	100	231	$119 \cdot 2$	$1 \cdot 80$	$12 \cdot 5$	180	92	$0 \cdot 43$	$0 \cdot 22$
5 ft	10 ft	[30	31	$15 \cdot 8$	0.95	$15 \cdot 1$	18	5	$0 \cdot 64$	$0 \cdot 32$
		- 40	42	$19 \cdot 9$	$1 \cdot 31$	$11 \cdot 3$	29	5	0.48	0.23
		¢ 50	56	$27 \cdot 2$	$1 \cdot 47$	$9 \cdot 0$	44	6	$0 \cdot 41$	$0 \cdot 20$
		, 60	74	$37 \cdot 8$	1.54	$9 \cdot 5$	64	7	$0 \cdot 38$	$0 \cdot 19$
		80	95	$65 \cdot 8$	1.20	$10 \cdot 3$	81	27	$0 \cdot 27$	$0 \cdot 19$
		100	153	$100 \cdot 2$	$1 \cdot 37$	$10 \cdot 0$	146	30	$0 \cdot 28$	$0 \cdot 18$

$S=45 \cdot 6$ sq. ft, $\quad W=16 \mathrm{lb}$

* Owing to flabbiness of the vertical side panels of the 2-ft. Mk. III Cody kite originally used, these tests were carried out with the remaining 2 -ft kite (Table 5) with the bifurcated bridle removed and the lateral bracing replaced.

TABLE 7 (a)
3-ft Haldon Kite with 4-ft Front, 7 ft 6 in. Rear Bridles (Kite C)

Kite rigging (see Fig. 5)	Wind speed $\mathrm{ft} / \mathrm{sec}$	$\underset{\mathrm{lb}}{\mathrm{Lift}}$	$\underset{\mathrm{lb}}{\text { Drag }}$	$\frac{L-W}{D}$	Nominal incidence (deg.)
Normal rigging	$\begin{aligned} & 40 \\ & 60 \\ & 73 \cdot 8 \end{aligned}$	$\begin{array}{r} 66 \\ 114 \\ 153 \end{array}$	$\begin{aligned} & 25 \cdot 6 \\ & 50 \cdot 5 \\ & 70 \cdot 9 \end{aligned}$	$\begin{aligned} & 1 \cdot 76 \\ & 1.84 \\ & 1.86 \end{aligned}$	$\begin{array}{r} 11.5 \\ 9 \cdot 6 \\ 10.5 \end{array}$
Spars at $\mathrm{BB}^{\prime} \mathrm{KK}^{\prime}$ with points G and L lashed to these spars respectively, to prevent distortion of the two panels concerned.	$\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 46 \\ & 53 \\ & 59 \end{aligned}$	$\begin{aligned} & 19 \cdot 7 \\ & 22 \cdot 7 \\ & 30 \cdot 5 \end{aligned}$	$\begin{aligned} & 1 \cdot 17 \\ & 1 \cdot 32 \\ & 1 \cdot 18 \end{aligned}$	$\begin{array}{r} 14 \cdot 7 \\ 10 \cdot 0 \\ 8 \cdot 1 \end{array}$
Spars removed and cord lashed from A to G to A^{\prime} to give bottom panel a slight camber and prevent it from dipping.	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 49 \\ 68 \\ 94 \\ 121 \\ 145 \end{array}$	$\begin{aligned} & 21 \cdot 5 \\ & 27 \cdot 7 \\ & 38 \cdot 7 \\ & 54 \cdot 0 \\ & 81 \cdot 7 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.70 \\ & 1.89 \\ & 1.85 \\ & 1.52 \end{aligned}$	$\begin{array}{r} 14 \cdot 7 \\ 10 \cdot 0 \\ 8 \cdot 9 \\ 8 \cdot 0 \\ 5 \cdot 4 \end{array}$
As above but cord AGA' tightened..	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 49 \\ 72 \\ 100 \\ 130 \\ 201 \end{array}$	$\begin{aligned} & 24 \cdot 0 \\ & 31 \cdot 7 \\ & 42 \cdot 0 \\ & 57 \cdot 1 \\ & 97 \cdot 2 \end{aligned}$	$\begin{aligned} & 1 \cdot 17 \\ & 1.61 \\ & 1.88 \\ & 1.91 \\ & 1.86 \end{aligned}$	$\begin{array}{r} 14 \cdot 8 \\ 11 \cdot 8 \\ 11 \cdot 3 \\ 9 \cdot 2 \\ 9 \cdot 4 \end{array}$
Rear box stayed as for front box (cord KMK') . .	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{r} 48 \\ 71 \\ 93 \\ 115 \end{array}$	$\begin{aligned} & 22 \cdot 4 \\ & 30 \cdot 1 \\ & 37 \cdot 9 \\ & 50 \cdot 6 \end{aligned}$	$\begin{aligned} & 1 \cdot 21 \\ & 1 \cdot 66 \\ & 1 \cdot 90 \\ & 1 \cdot 86 \end{aligned}$	$\begin{array}{r} 14 \cdot 5 \\ 9 \cdot 5 \\ 8 \cdot 2 \\ 7 \cdot 3 \end{array}$
Cords AGA' and KMK' with spars FG, LM lashed to centre canes at F, G, L and M.	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 49 \\ 66 \\ 87 \\ 102 \\ 87 \end{array}$	$\begin{aligned} & 22 \cdot 9 \\ & 27 \cdot 7 \\ & 36 \cdot 0 \\ & 47 \cdot 3 \\ & 75 \cdot 6 \end{aligned}$	$\begin{aligned} & 1 \cdot 14 \\ & 1 \cdot 55 \\ & 1 \cdot 78 \\ & 1 \cdot 67 \\ & 0 \cdot 85 \end{aligned}$	$\begin{array}{r} 14 \cdot 1 \\ 9 \cdot 7 \\ 7.9 \\ 6 \cdot 9 \end{array}$ Crashing
Spar LM and cord KMK' removed . .	$\begin{array}{r} 30 \\ 40 \\ 50 \\ 60 \\ 80 \\ 100 \end{array}$	$\begin{array}{r} 48 \\ 66 \\ 93 \\ 120 \\ 181 \\ 174 \end{array}$	$\begin{array}{r} 23 \cdot 2 \\ 27 \cdot 8 \\ 38 \cdot 2 \\ 53 \cdot 3 \\ 91 \cdot 6 \\ 121 \cdot 1 \end{array}$	$\begin{aligned} & 1 \cdot 12 \\ & 1.58 \\ & 1.86 \\ & 1.84 \\ & 1.74 \\ & 1.26 \end{aligned}$	$\begin{array}{r} 16 \cdot 0 \\ 11.6 \\ 8 \cdot 8 \\ 8.5 \\ 7.9 \\ 6 \cdot 0 \end{array}$

TABLE 7 (b)
3-ft Cody Kite Mk. II with 4-ft Front and 8-ft Rear Bridles (Kite A)

Kite rigging (see Fig. 5)	Wind speed $\mathrm{ft} / \mathrm{sec}$	Lift lb	Drag lb	$\frac{L-W}{D}$	Nominal incidence (deg.)
Normal rigging	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{r} 56 \\ 75 \\ 98 \\ 118 \end{array}$	$\begin{aligned} & 19 \cdot 1 \\ & 24 \cdot 9 \\ & 36 \cdot 8 \\ & 51 \cdot 9 \end{aligned}$	$\begin{aligned} & 1 \cdot 73 \\ & 2 \cdot 09 \\ & 2 \cdot 04 \\ & 1 \cdot 83 \end{aligned}$	$\begin{array}{r} 12 \cdot 2 \\ 8 \cdot 0 \\ 7 \cdot 9 \\ 7 \cdot 5 \end{array}$
Spar FG and 5 -cwt cable AGA' ; spar lashed to central canes at F and G .	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 57 \\ 80 \\ 109 \\ 142 \\ 203 \end{array}$	$\begin{array}{r} 20 \cdot 4 \\ 27 \cdot 4 \\ 40 \cdot 7 \\ 58 \cdot 3 \\ 100 \cdot 7 \end{array}$	$\begin{aligned} & 1 \cdot 62 \\ & 2 \cdot 04 \\ & 2 \cdot 09 \\ & 2 \cdot 02 \\ & 1 \cdot 78 \end{aligned}$	$\begin{array}{r} 12 \cdot 8 \\ 10 \cdot 4 \\ 9 \cdot 9 \\ 7 \cdot 7 \\ 7.8 \end{array}$
As above but cable tightened	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 49 \\ 82 \\ 112 \\ 144 \\ 210 \end{array}$	$\begin{array}{r} 21 \cdot 4 \\ 29 \cdot 5 \\ 41 \cdot 6 \\ 59 \cdot 4 \\ 102 \cdot 4 \end{array}$	$\begin{aligned} & 1 \cdot 17 \\ & 1 \cdot 97 \\ & 2 \cdot 12 \\ & 2 \cdot 02 \\ & 1 \cdot 82 \end{aligned}$	$\begin{array}{r} 13 \cdot 1 \\ 10 \cdot 0 \\ 9 \cdot 7 \\ 8 \cdot 0 \\ 7 \cdot 3 \end{array}$
Wire further tightened and wing tips CC^{\prime} joined by cord.	$\begin{array}{r} 30 \\ 40 \\ 50 \\ 60 \\ 80 \\ 100 \end{array}$	$\begin{array}{r} 50 \\ 86 \\ 117 \\ 154 \\ 231 \\ 243 \end{array}$	$\begin{array}{r} 23 \cdot 4 \\ 31 \cdot 5 \\ 44 \cdot 9 \\ 63 \cdot 2 \\ 109 \cdot 8 \\ 169 \cdot 3 \end{array}$	$\begin{aligned} & 1 \cdot 11 \\ & 1 \cdot 97 \\ & 2 \cdot 07 \\ & 2 \cdot 06 \\ & 1 \cdot 89 \\ & 1 \cdot 29 \end{aligned}$	$\begin{array}{r} 12 \cdot 6 \\ 10 \cdot 2 \\ 9 \cdot 8 \\ 8 \cdot 9 \\ 8 \cdot 5 \\ 8 \cdot 0 \end{array}$
As above but wire AGA' replaced by cord..	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 50 \\ 86 \\ 116 \\ 155 \\ 238 \end{array}$	$\begin{array}{r} 24 \cdot 1 \\ 32 \cdot 3 \\ 45 \cdot 1 \\ 63 \cdot 7 \\ 112 \cdot 0 \end{array}$	$\begin{aligned} & 1 \cdot 08 \\ & 1 \cdot 92 \\ & 2 \cdot 04 \\ & 2 \cdot 06 \\ & 1 \cdot 91 \end{aligned}$	$\begin{array}{r} 13 \cdot 2 \\ 10 \cdot 2 \\ 9 \cdot 0 \\ 8 \cdot 5 \\ 8 \cdot 9 \end{array}$

TABLE 7 (c)
3-ft Cody Kite MF. JI with $\frac{1}{4}$ ft Front, 7 ft. 6 in. Rear Bridles (Kite A)

Kite rigging (see Fig. 5)	Wind speed $\mathrm{ft} / \mathrm{sec}$	$\underset{\mathrm{lb}}{\mathrm{Lift}}$	Drag Ib	$\frac{L .-W}{D}$	Nominal incidence (deg.)
Normal rigging ..	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 64 \\ 92 \\ 125 \\ 167 \\ 273 \end{array}$	$\begin{array}{r} 20 \cdot 2 \\ 28 \cdot 1 \\ 41 \cdot 6 \\ 62 \cdot 4 \\ 116 \cdot 2 \end{array}$	$\begin{aligned} & 2 \cdot 03 \\ & 2 \cdot 46 \\ & 2 \cdot 45 \\ & 2 \cdot 31 \\ & 2 \cdot 15 \end{aligned}$	$\begin{array}{r} 15 \cdot 0 \\ 11 \cdot 3 \\ 10 \cdot 3 \\ 10 \cdot 6 \\ 9 \cdot 5 \end{array}$
Spar FG and cord $A G A^{\prime}$, spar lashed to centre canes at F and G . Wing tips CC^{\prime} joined by cord.	$\begin{array}{r} 30 \\ 40 \\ 50 \\ 60 \\ 80 \\ 100 \end{array}$	$\begin{array}{r} 66 \\ 95 \\ 133 \\ 181 \\ 297 \\ 312 \end{array}$	$\begin{array}{r} 27 \cdot 2 \\ 34 \cdot 9 \\ 50 \cdot 3 \\ 71 \cdot 1 \\ 129 \cdot 4 \\ 175 \cdot 7 \end{array}$	$\begin{aligned} & 1 \cdot 54 \\ & 2 \cdot 04 \\ & 2 \cdot 17 \\ & 2 \cdot 21 \\ & 2 \cdot 11 \\ & 1 \cdot 64 \end{aligned}$	$\begin{array}{r} 11 \cdot 5 \\ 11 \cdot 2 \\ 10 \cdot 0 \\ 10 \cdot 8 \\ 10 \cdot 6 \\ 9 \cdot 8 \end{array}$
Wing cord CC^{\prime} and vertical spar FG removed ..	$\begin{array}{r} 30 \\ 40 \\ 50 \\ 60 \\ 80 \\ 100 \end{array}$	$\begin{array}{r} 65 \\ 94 \\ 130 \\ 177 \\ 281 \\ 310 \end{array}$	$\begin{array}{r} 25 \cdot 9 \\ 32 \cdot 7 \\ 46 \cdot 1 \\ 67 \cdot 0 \\ 119 \cdot 4 \end{array}$	$\begin{aligned} & 1 \cdot 62 \\ & 2 \cdot 17 \\ & 2 \cdot 32 \\ & 2 \cdot 30 \\ & 2 \cdot 16 \end{aligned}$	$\begin{array}{r} 15 \cdot 0 \\ 10 \cdot 7 \\ 10 \cdot 7 \\ 10 \cdot 9 \\ 9 \cdot 4 \end{array}$
Spars $\mathrm{BB}^{\prime}, \mathrm{FG}$ and cord AGA^{\prime}.	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \\ & 98 \end{aligned}$	$\begin{array}{r} 61 \\ 85 \\ 113 \\ 148 \\ 236 \\ 278 \end{array}$	$\begin{array}{r} 23 \cdot 8 \\ 30 \cdot 7 \\ 44 \cdot 0 \\ 61 \cdot 1 \\ 113 \cdot 7 \\ 165 \cdot 4 \end{array}$	$\begin{aligned} & 1 \cdot 47 \\ & 1 \cdot 92 \\ & 1 \cdot 98 \\ & 2 \cdot 00 \\ & 1 \cdot 85 \\ & 1 \cdot 52 \end{aligned}$	$\begin{array}{r} 14 \cdot 7 \\ 10 \cdot 8 \\ 8 \cdot 5 \\ 9 \cdot 5 \\ 8 \cdot 5 \\ 9 \cdot 0 \end{array}$
Spar BB^{\prime} removed and wing canes $\mathrm{DE}, \mathrm{D}^{\prime} \mathrm{E}^{\prime}$ given slight camber by tightening cords $\mathrm{EH}, \mathrm{E}^{\prime} \mathrm{H}^{\prime}$ and slacking off $\mathrm{DB}, \mathrm{D}^{\prime} \mathrm{B}^{\prime}$.	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \\ & 98 \end{aligned}$	$\begin{array}{r} 68 \\ 98 \\ 137 \\ 188 \\ 302 \\ 374 \end{array}$	$\begin{array}{r} 27 \cdot 9 \\ 36 \cdot 6 \\ 52 \cdot 4 \\ 74 \cdot 8 \\ 132 \cdot 5 \\ 183 \cdot 8 \end{array}$	$\begin{aligned} & 1 \cdot 58 \\ & 2 \cdot 02 \\ & 2 \cdot 16 \\ & 2 \cdot 19 \\ & 2 \cdot 10 \\ & 1 \cdot 90 \end{aligned}$	$\begin{array}{r} 15 \cdot 0 \\ 12 \cdot 5 \\ 9 \cdot 9 \\ 9 \cdot 4 \\ 9 \cdot 5 \\ 10 \cdot 0 \end{array}$
Spar FG removed but cord bracing retained ..	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 71 \\ 101 \\ 139 \\ 190 \\ 303 \end{array}$	$\begin{array}{r} 28 \cdot 1 \\ 37 \cdot 3 \\ 52 \cdot 7 \\ 73 \cdot 9 \\ 132 \cdot 3 \end{array}$	$\begin{aligned} & 1 \cdot 71 \\ & 2 \cdot 09 \\ & 2 \cdot 20 \\ & 2 \cdot 26 \\ & 2 \cdot 12 \end{aligned}$	$\begin{array}{r} 15 \cdot 2 \\ 12 \cdot 0 \\ 9 \cdot 9 \\ 9 \cdot 8 \\ 9 \cdot 1 \end{array}$
Spar HNH' and trailing edge of centre cane GN lashed to it at N . Cord bracings removed.	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 72 \\ 103 \\ 143 \\ 193 \\ 306 \end{array}$	$\begin{array}{r} 30 \cdot 3 \\ 39 \cdot 8 \\ 57 \cdot 0 \\ 78 \cdot 7 \\ 137 \cdot 5 \end{array}$	$\begin{aligned} & 1 \cdot 58 \\ & 1 \cdot 99 \\ & 2 \cdot 09 \\ & 2 \cdot 15 \\ & 2 \cdot 05 \end{aligned}$	$\begin{aligned} & 14 \cdot 0 \\ & 11 \cdot 8 \\ & 11 \cdot 3 \\ & 12 \cdot 0 \\ & 13 \cdot 3 \end{aligned}$
As above with high camber on wings by tightening EH $\mathrm{E}^{\prime} \mathrm{H}^{\prime}$.	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 80 \end{aligned}$	$\begin{array}{r} 79 \\ 122 \\ 190 \\ 256 \\ 430 \end{array}$	$\begin{array}{r} 48 \cdot 1 \\ 68 \cdot 3 \\ 99 \cdot 1 \\ 136 \cdot 3 \\ 230 \cdot 3 \end{array}$	$\begin{aligned} & 1.14 \\ & 1.44 \\ & 1.68 \\ & 1.70 \\ & 1.76 \end{aligned}$	$\begin{aligned} & 15 \cdot 6 \\ & 17 \cdot 0 \\ & 15 \cdot 2 \\ & 14 \cdot 0 \\ & 12 \cdot 0 \end{aligned}$
Top lifting panel of front box cut out, centre cane and webbing retained.	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 61 \end{aligned}$	$\begin{aligned} & 19 \cdot 5 \\ & 24 \cdot 8 \end{aligned}$	$\begin{aligned} & 1 \cdot 38 \\ & 1 \cdot 53 \end{aligned}$	$\begin{aligned} & 8 \cdot 2 \\ & 8 \cdot 6 \end{aligned}$
Top lifting panel of rear box also removed, in similar fashion to above.	$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{array}{r} 55 \\ 72 \\ 96 \\ 139 \end{array}$	$\begin{aligned} & 22 \cdot 7 \\ & 28 \cdot 6 \\ & 46 \cdot 0 \\ & 65 \cdot 3 \end{aligned}$	$\begin{aligned} & 1 \cdot 41 \\ & 1 \cdot 71 \\ & 1.59 \\ & 1.78 \end{aligned}$	$\begin{array}{r} 15.8 \\ 9 \cdot 8 \\ 10 \cdot 5 \\ 7.1 \\ \hline \end{array}$

Fig. 1. 3-ft. Cody Kite Mk. II in Large Tunnel.

Fig. 2. General Arrangement of 3-ft Cody Kite in Large Tunnel.

WING BRACING WIRE
(ADDED FOR SPECIAL
TEST)

STIFFENING CANES

LOOKING IN DIRECTION DF ARROW 'A'
Fig. 3. Front and Side Elevation of 2×3-ft Storm Kite. (Kite D)

FOR KITE F, LONGITUDINAL BRACING (REMOVED FOR BIFURCATED BRIDLE)

Fig. 5. Key Diagram for Table 7a, b, c. 3-ft Cody Kite Mk. II.

Fig. 4. Front and Side Elevation of a 2-ft Cody Kite Mk. III showing Alternate Arrangements of
E. Bifurcated Bridle.
F. Longitudinal Bracing.

Fig. 6. Effect of Bridle Lengths and Wind Speed on Kite Efficiency-3-ft Kites.

Fig. 7. Effect of Bridle Lengths and Wind Speed on Kite Efficiency-2-ft Kites.

Publications of the Aeronautical Research Committee

TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

1934-35 Vol. I. Aerodynamics. 40s. (40s. 8d.)
Vol. II. Seaplanes, Structures, Engines, Materials, etc. 40s. (405. 8d.)
1935-36 Vol. I. Aerodynamics. 3os. (30s. 7d.)
Vol. II. Structures, Flutter, Engines, Seaplanes; etc. 30s. (305. 7d.)
1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 9d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. rod.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 4os. (40s. 9 d .)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 6os. (6is.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews, 50s. (5 Is.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 305. (30s.9d.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (50s. II d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63 s. (64s. 2d.)
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COMMITTEE-

INDEXES TO THE TECHNICAL REPORTS OF THE ADVISORY COMMITTEE ON AERONAUTICS-

December I, 1936 - June 30, 1939. R. \& M. No. 1850.
July I, 1939 - June 30, 1945.
July I, 1945 - June 30 , 1946.
July i, 1946 - December 3 1, 1946.
R. $\&$ M. No. 1950.
R. $\&$ M. No. 2050.
R. \& M. No. 2150.
R. 8 M. No. 2250.

1s. $3^{\text {d. (}}$ (s. 5 d.)
1s. (1s. 2d.)
Is. (I s. Id.)
1s. 3 d. (1 s. 4 d.)
1s. 3 d. (1 s. 4 d.)

Prices in brackets include postage.
Obtainable from
His Majesty's Stationery Office
York House, Kingsway, london, w.c. 2.429 Oxford Street, london, w. 1 P.O. Box 569, LONDON, S.E. 1

13a Castle Street, Edinburgh, 2 1 St. Andrew's Crescent, CARDiff
39 King Street, Manchester, 2 . Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 . 80 Chichester Street, belfast
or through any bookseller.

[^0]: * R.A.E. Report Aero. 1737.

[^1]: * In order to safeguard the wind-tunnel fan on possible destruction of the kite at the higher wind speeds, a wire net 18 ft square, of $14 \mathrm{~s} . \mathrm{w} . \mathrm{g}$., $1 \frac{3}{4}-\mathrm{in}$. mesh was prepared and suspended behind the pylon. Lengths of 5 cwt steel cable were lashed to the four longitudinals of each of the 3-ft kites, as an additional safety device in case of disruption of the bamboos.
 \dagger The ratio $(L-W) / D$ is an important factor in kite design and in this report it will be referred to as the lifting efficiency of the kite.

[^2]: $S=89 \cdot 2$ sq. ft, $\quad W \doteq 21 \mathrm{lb}$

 * See end of Table 1

