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Summary.--This report shows that th~ application of classical flutter theory 1 to the determination of wing flexural- 
torsionM flutter speeds is considerably simplified by the omission of a term which is usually the very small difference 
between two small quantities. With this simplification it is possible to derive a formula giving the critical 
speed explicitly in reims of the dynamical coefficients. Numerical examples show that this approximation gives 
practically the same flutter speeds as the complete classical theory, even when the coefficients are given values which do 
not normally occur. A simpler approximate formula is obtained by a combination of the first approximation with 
Pugsley's simplified theory ~ ; this second approximation gives flutter speeds for normal wings which agree with those 
from classical theory. 

i .  I~troductioc4.--Several attempts have been made to simplify the classical theory of flexural- 
torsional wing flutter, perhaps the most notable being Pugsley's simplified theory." In the prac- 
tical application of Pugsley's theory, however, experience has indicated certain disadvantages : - -  

(1) the flutter speed is normally derived gradphically from the intersection of two curves; 
direct solution for the speed requires the use of a calculating machine ; 

(2) it is troublesome to check whether or not the motion is stable at airspeeds below the 
flutter speed ; 

(3) although the theory gives good results for ' normal ' wings, it  becomes inaccurate in 
certain cases, particularly when the separation between the flexural and inertia axes 
is unusually small, and when the aerodynamic torsional damping coefficient, ,[a, is 

varied. 

The present report is concerned with an approximation to classical theory 1 which enables 
wing-flutter speeds to be calculated more quickly than by either classical theory or:Pugsley's 
method, and more accurately than by the latter; moreoveI, for this approximation a slide rule 
gives sufficient accuracy. The stability of the motion at any airspeed can be determined directly 
from terms required for the evaluation of the flutter speed. The approximation is obtained by 
assuming that one of the terms appearing in the classical theory--it  is usually .comparatively 
Small--vanishes. In section 2 below the theoretical justification for this assumption and the 
resulting equation for the flutter speed are given. The corresponding formulae derived from 
classical theory and Pugsley's theory are also given in section 2. Numerical examples to illustrate 
the accuracy of the approximation are given in section 3. 

* R.A.E. Report S.M.E. 3211. 
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The method  of this report  is considered to be an adequate .subst f fute  for the m o r e  elaborate 
classical me thod  in all practical cases, and c a n  be used  where computat ional  difficulties might  
preclude the  use of tt~e classical method.  

2. Methods for  Evaluat ing  W i n g  Flutter Speeds . - -2 .1 .  Classical T h e o r f f . - - F o r  the  usual 
co-ordinates, namely,  displacement  ¢I of the  ftexural centre at some given reference section, and 
wing twist 0 at this section, the equations* of mot ion are . _ 

Alg  + B~4, + C~¢ + PO + J~O + K,o = 0 . . . . . . . . . .  (1) 

- -  o . . . . . . . . . .  ( 9 )  

With  the nota t ion  B, = B ? V  7 

B a =  Ba 'V  [ 

J~ = J~ 'V  

J~ = J ; V  (- 

K1 = K I ' V  ~ | 

*Ka = m o  + Ka 'V  ~ J C~ = 1~ 

(3) 

and 

= A 1G~ - -  p 2  

b = A~Ja' + B~'Ga - -  P ( J ;  + B3') 

c = A~n~o + G~l~ 

d = A~K~' + B~'J, '  - -  B~'J~' - -  PK~ '  

e = Bl'm,o + Ja'l 4, 

f = B I ' K , ' - -  Ba'KI' 
g = l~mo 

k = l~K3' 

( 4 )  

then from classical theory the  flutter speed V~ is given by  the following equat ion : - -  

f(bd --  af) V¢ + {f(bc --  2a.-) --  b(bk --  ed)} V)  + ( b c e  --  ae ~ --  b=g) = 0 ..  (5) 

The motion is s t ab le  up to the flutter speed V~ given by  equat ion (5), if all the quanti t ies  a, b, 
(c + dV~), (e + fV2) ,  (g + k V  ~) and (bce - -  ae ~ - -  b2g) are positive for V < V~. The solution of 
equat ions (1) and (2) can also be obta ined in the form of the  following two simultaneous 
equations : 

a~ ~ - cP ~ + g (A1G~ - -  P") ~ - -  (Al~.o + G~I~) p" + l,mo 
• o dp= - -  t¢ = (A iKa' -I- B~'Js' - -  Ba'J~' - -  P K ~ )  p~ --  Ka' le, . .  (6a) 

p= e + fV/" B~'r~o + J~' I s + (B,'K~' - -  B 'K  '~ _ _  .~ 1 ] V c  2 

- b x , . . . . . .  ( S b )  ,J~ + B~ 'Q  - -  ~ ( j ~ '  + B~') " 

where the flutter f requency is equal to .p/2=. 

* Tile notation throughout this report is mainly that of R. & M's 11551, 18392 and 17823, except that Ka is taken 
as m o +  K a ' V  2 whereas Pugsley 2 uses mo - -  K a ' V  2. 



Unless the lengthier graphical method is adopted it is essential to use a calculating machine 
for the direct solution of equations (5) or (6a) and (6b) for a normal wing without wing engines, 
because of the small differences involved. 

2.2. Pugsley's Simplified Theory'.---This theory ignores the indirect aerodynamical damping 
derivatives Ba and J ,  ; its results can be obtained by putt ing Ba = J ,  - 0 in equations (1) to (6). 
Pugsley gives his results in the form of two simultaneous equations; the first is equation (6b) 
with B~ = J~ = 0 and the second is obtained by eliminating K~ * from the equations found 
by putting Ba = J ,  = 0 in equations (6a) and (6b) ; the resulting equations are 

P K , ' - - B , ' J a '  1 + Bt, p2 1 --p~ A,}  " (7a) 

m o +  Ka'V~ ~ + J, '  B--v & 
ib"- = , . . . . . . . . . . . . . . . .  (7b) 

G~ + J--~-~ A~ 
B 1 ' 

Equation (7) is simp!er than (6) but direct calculation of V~ still requires the use of a calculating 
machine. 

2.3. Pr@osed Approximation to Classical Theory1.--2.3.1. ConsideraEon of quantity f (defined 
by equation (4)).--The-values of the aerodynamic coefficients for a semi-rigid wing are given by 
equation (7) of R. & M. 17823; with these values, if the flexural centres everywhere are at t h e  
same fraction of their respective wing chords behind the leading edge (i.e., h cons tan t ) f  is given by 

f = p=Pcoal= (-- ma -- hl=) { I (rico) f (~)~ d~ × f (c/co) 2 F(,7) 2 dr1 

-- I(c/co) f (~) F(,)  d,~ × ; (C/Co)2 f(~) F(~) d~} . . . . . . . . . .  (8) 

where the integrals are from root to tip. 

Equation (8) shows that  f = 0 when either 

h - - -  ma/l= = i . . . . . . . . . . . .  (9a)  

or f(~) = F(tl) . . . . . . . . . . . . . . . . .  (9b) 

o r  = e/c  . . . . . . . . . . . . . .  ( 9 c )  

Equation (9a) is satisfied when the flexmal centre coincides with the aerodynamic centre at each 
section, and equation (9b) is satisfied when the flexural mode is the same as.the torsional mode. 
In general, none of these conditions is satisfied but  for most wings (without wing engines) the 
flexura! axis is not far behind the aerodynamic centre and the flexural and torsional modes are 
very similar. Thus the expression in the brackets { } of equation (8) will usually be the difference 
of two nearly equal quantities and will be small. The quan t i t y  (-= rrz~ -- h/~) will also be small. 
Thus f will usually be very small. 

For example, for the wing of R. & M. 17823 

f = 1.5 (0.4 -- 0-48) (0. 269 -- 0.262) p~Pc03 

Experiencehas shown that  in the case of a normal wing, f is the only one of the quantities defined 
by equation (4) which is the difference of two nearly equal quantities. . . . .  
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2.3.2. AblSroximation. to classical theory bv, taki~a.g f = 0.--F_om~r equation (8), when f = 0 the 
flutter speed is given explicitly by the equation. .: 

bce - -  ae = - -  b=g 
v )  = b(t,k. - -  ~ , )  . ;  . . . .  ~ . .  . .  . .  0 o )  

Since normaliy there are no small differences involved, this expression can  be evaluated by-the 
use of a slide rule; a calculating machine is unnecessary. Comparison of equations (5) and (10) 
indicates that  the approximation will probably fail when b(bt; - -  ed) becomes small, since the 
flutter speed will then be very high, a larger error will often be p e r m i s s i b l e . .  

The solution in terms of flutter speed and frequency is, from (6) . . . .  

= (A,mo @ Gal~) -t-i~mo . ( l la)  v ?  = a ~  - -  c'+= + g (&G~ - P=) ~ , -  ~= . .. B , ~ ,  , , 
dp ~ - -  k (A ~Ka' + l aa --  Ba J~ - P K / )  p2 __ Ka' l~ (same as (6a)) 

15= = b -- A ' . . .  ( l lb) 1Ja -{- ~ l tG3  - -  r ( J l '  -4- -~8') . . . . . . . . . .  

The expression for V~ directly in terms of the coefficients is from equations ~4). and (10) 

- ~?m0 (J?  + e . ' ) }  + P= (~/,,~0 + J~'z~) = 
! p t ~ - -  

' ~B , r ,  B , r  ,~ (~'~'~o + J~ !,)l " (t9.) 

It  is b e t t e r t o  use equatiofl (10) for routine calculaiions andequa t i 0n  (12) for studying the 
variation of the flutter speed wkh any 0fie Coefficim(t( . . . . . . . .  

A further approximation is obtained by taking Pugsley s assumPtio n of B~ = J ,  --_- 0 with 
dqi~ation (12), giving 

B ' r ' ( A ~ m o  - G=l,) = + P = ( B / r ~ o  + J~'l,) = (13) _ _  , d a  

Vc= - -  (A,Ja'  + B/Ga) { - -  B / K a '  (A~mo - -  Gal,) -v ( P K , '  B 'T'X (B i 'mo .+  , - -  ~ a a . j  J a ' l ~ ) }  

This approximation consists essentially of first taking B/Ka'.  ----- B~'K, '  in classical theory and 
then taking B /  = J / =  0. 

A more consistent approximation is obtained b y  taking 

Ba' = , I /  = B / K s '  = O . . 

4 

This g ive s  

Bl'J~' (&~0 - G31~) ~ + P= (Bl'r~0 + o13!z~) = (14) 
Vc= = ( A a J /  + B/G~) ( P K / - -  B~a~'r ,~, (B /mo  + J./l~) . . . .  , - . . . . .  " "  

3. N u m e r i c a l  A c c u r a c y . - - 3 . 1 .  W i n g  of  R .  & M .  1839=.--F1utter speeds have been calcuhted 
from equations (10) and (la)for the Various conditions of the wing discussed in R. & M. 1839=; 
the results are given in Tables 1 to 4 below. In addition the effectof the ~?ariation of the value 
of Ja '  on fu t te r  speed has been calculated by classical theorys Pugsley's ~theory and the approxi- 
mation of this report. The results are plotted in Fig. 2, in which it is to be rioted th~tt the 
differences b'etween equation (10) and. classical theoryresul ts  are so small that  they cannot be 
shown on the graph. The data used for these calculations are given iia the appendix to this report 
and in Fig~ 1. A considerable amount  of laborious calculation was avoided by taking the wing 
of R. & M. 1839 = for which flutter speeds by classical theory had already been ca!¢ulated. 



T A B L E  1 

Changes of Wing Mass Balance 

P r o d u c t  of 
Inertia 

P 

Corresponding 
gap between 
flexural and 
inertia axes Theory 2 

Flutter Speed ft/sec 

Class.ical 
Theory 1 

Equation (10) 

Calculating 
Machine 

Slide + 
rule 

Equation (13) 

Slide + 
rule 

Equation (14) 

Slide++ 
rule 

23'1 
46"2* 
G9'3 

0.05c 
0.10c 
0.15c 

1520 
1000 
870 

1530 
1010 
870 

1525 
1007 
870 

1530 
1008 
880 

1459 
1012 
881 

2664 
1208 
978 

Relative~ 
Density of 

Wing 

0"5 
1.0" 

O9 

T A B L E  2 

Changes of Wing Density 

Flutter Speed ft/sec 

Simplified Classical 
Theory 2 Theory 1 

Equation (10) 

Calculating 
Machine 

Slide+ + 
Rule 

Equation (13) 

Slide+ 
Rule 

1340 
1000 
840 

1470 
1010 
820 

1453 
1007 
817 

1462 
1008 
816 

1365 
1012 
838 

T A B L E  3 

Changes of Wing Flexural Stiffness 

Relative~ 
Stiffness 
of Wing 

in Flexure 

0 
1.0" 
2-0 
3.0 
4"0 
5 '0  
6.0 
7.0 

10.0 

Flutter Speed It/sec 

Equation ( 1 0 )  Equation (13) 
Simplified 
Theory 2 

1420 
1000 
775 
680 
658 
739 
795 
880 

1558 

Classical 
Theory 1 

1300 
1010 
800 
667 
608 
614 
666 
745 

1031 

Calculating 
Machine 

1299 
1007 
799 
667 
608 
614 
666 
744 

1029 

Slide+ + 
Rule 

1304 
1008 
804 
666 
608 
611 
669 
750 

1039 

Slide + 
Rule 

1330 
1012 
789 
674 
664 
738 
858 
997 

1430 

* standard wing. 
t i.e. relative to standard wing given in the Appendix. 
++ An ordinary 20-in slide rule was used. 

5 
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FlexurM axis 
position 
(Distance 

from-wing 
leading edge) 

0.25c 
0.30c~ 
0.35c 
0.40c 
0.41c 
0.43c 
0.44c 

T A B L E  4 

Changes of Wing Flemtral Axis Position ~ 

([mrtia Axis is at O. 4c) 

Flutter Speed ft/sec 

Equation ( 1 0 )  Equation (13) 
Simplified 
Theory e 

1000 
1000 
1130 

No flutter 
No flutter 
No flutter 
No flutter 

Classical 
Theory 1 

1004 
1010 
1100 
1379 
1481 
1807 
2055 

Calculating Slide 
5{actfine Rule 

1004 1006 
1007 1008 
1099 ' 1097 
1356 1363 
1445 1439 
1695 1692 
1836 ~ 1834 

Slide 
Rule 

999 
1012 
1069 
1181 
1200 
1278 
1328 

standard wing. 

I t  will be seen tha t  the suggested approximat ion  (equation (10)) gives pract ical ly  the same flutter  
speed as classical theory,  except  when the flexural axis is behind  the inert ia  axis (see Table 4) ; 
in this case the approximat ion  gives a f lut ter  speed less t han  tha t  from classical theory.  The 
results show tha t  a slide rule is sufficiently accurate  for calculat ing flutter  speeds by  equat ion  (10). 

Only the flutter  speeds for Table 1 were calculated from equat ion (14), this is a poor approxi-  
m a t i o n w h i c h  should not  be used. Equa t ion  (13) does not  rest on such a sound basis as equat ion 
(1O), nevertheless it gives very good results for the wing condit ions which are likely to occur in 
practice. 

3.2. Effect of varying f . - - T h e  value of f occurring in the calculat ion of the  classical theory  
flutter  speeds of section 3.1 is small. To invest igate  the, change of flutter speed with  f ,  f lut ter  
speeds have been -ca l cu l a t ed  by  classical theory  bu t  wi th  f equal  to BI'K3' (instead of 
BIKe'  -- B/K1'),  thus  increasing f approximate ly  40 times. The results are given in Table 5 
below. 

T A B L E  5 

Flutter Speed ft/sec 

Classical 
Theory 

1010 
1470 
1300 
1481 

Classical 
Theory with 
f : B~' K3' 

1040 
1568 
1422 

No flutter 

Wing Condition 

Standard. 
Standard except wing density 0.5 of Standard (Table 2) 
Standard except flexural stiffness zero (Table 3). 
Standard except flexural axis at 0-41c (Table 4). 

These results show tha t  a large change in the  value o f f  has little effect on the flutter  speed except  
when the  f lexmal  axis is behind  the inert ia  axis. 



3.3. Flutter Speeds for a Number of Aircraft.--The wing flutter speeds of a number of aircraft, 
which had been estimated by classicaI theory, were calculated from equations (10) and (13). 
Classical theory had entailed the use of a calculating machine, slide rule calculations only were 
used for the approximatioiaS. The results (in Table 6) show little difference between the three 
-methodS. . . . . .  

: " "72 _ 

TABLE 6 

Wing Flutter Speeds for Particular Aircraft 

Aircraft 

Flutter Speed m.p.h. 

Classical 
Theory 

Equation (10) Equation (13) 
Slide Rule Slide Rule 

2. 

1 

2 
3 
4 
5 
6 
7 

1390 
971 

1249 
968 
532 
875 
592 

1386 
972 

1250 
968 
533 
874 
592 

1395 
1000 
1249 
949 
559 
877 

"593 

4. Comlusidns.--The approximation (equation (i0)) gives practically the same_ flutter speeds 
as classical theory except when the flexural axis is appreciably behind the inertia axis. The 
approximation leads to a linear equation for the flutter speed Vc which can be evaluated by the 
use of a slide rule, whereas classical theory leads to a quadratic equation in Vc 2 and requires the 
use of a calculating machine throughout if reasonable numerical accuracy is to be ensured. 
It should be possible to use the approximation for simple investigations into the effects of changes 
in various parameters upon wing flutter speeds, investigations which might be extremely laborious 
if the full classical theory were used. 

The approximation given by equation (13) is still more simple than the approximation given by 
equation (10), but does not rest on such asound basis. It  is sufficiently accurate to be used for 
calculating the flutter speed of a present day wing without wing engines (inertia axis about 0. 4c 
from leading edge, flexural axis appreciably ahead of the inertia axis.) 

5. Further Devel@ments.--This approximation will apply equally well to the flexure-torsion 
flutter of tail planes and fins ; it is suggested that a similar approximation may give goodresults 
for other binary flutter cases and possibly for ternary flutter. 

7 



A P P E N D I X  

Data for, the. wing used in numerical examples sections 3.1 and 3 .2 . - -The  s t a n d a r d  wing used  in 
sect ions 3.1 a n d  3.2 is s imilar  to the  wing of R. & Ms. 18392 arid 1782 "~. The  p lan  of the  wing and  
t he  modes  of de fo rma t ion  are shown in Fig.  1. The  flu~ter coefficients {see equa t ions  (1), (2) and  
(3)} for the  s t a n d a r d  wing are 

A1 = 1323 B3' = --  0"904 

A 3 = G 1 - - - - P = 4 6 " 2  J j =  1.31 

G3 -= 15.1 K3' = --  0"0675 

B ~ ' = 5 3 . 2  1 , = 7 . 2 7  × 10 ~ 

J l ' =  i l . 4 6  m o =  0 . 3 7  × 106 

KI '  - -  3" 8 8  

The  s t a n d a r d  wing has  a dens i ty  of 0 . 6  lb/cn,  ft  wi th  the  f lexural  axis at  0 .3c  and  iner t ia  axis 
at  0" 4c f rom the  leading  edge. 

The  var ia t ions  f rom the  s t a n d a r d  wing are 

Table  1 - - P  var ied  

Table  2 - - W i n g  dens i ty  var ied"  this  affects A1, P and  Ga 

Table  3--1 ,  va r ied  

Table  4 - - P o s i t i o n  of f lexural  axis var ied  ; this  affects P, Jl'; B j ,  J~' and  K '  
3 • 

No. Author 
1 R.A. Frazer and W. J. Duncan . . . .  

2 " A. G. Pugsley . . . . . . . .  

3 W.J. Duncan and H: M. Lyon .. 

4 W.J.  Duncan and C. L. T. Griffith 
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'FIG. 1. Plan and Modes for Standard Wing used in Numerical Examples. 
(Sections 3-1 and 3.2). 
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FIG. 2. Variation of Flutter Speed with Torsional Damping for Standard Wing. 
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R. & M. No. zrso. 
R. & M. No. 2250. 

is. 3d. 0s. 5d.) 
is. (is. 2d.) 
IS. (is. IZ.) 
is. 3d. (Is. 4d.) 
Is. 3 d. (zs. 4d.) 

Prices in ~rackets include postage. 

Obtainable from 

H I S  M A J E S T Y ' S  S T A T I O N E R Y  O F F I C E  
York HOUSe, Kingsway, LONDON, W.C.2 429 Oxford Street, LONDON, W.1 

P.O. BOX 569, LONDON, Sin.1 
13a Castle Street, ED~,mURaH, 2 1 St. Andrew's Crescent, CAgDXFF 
39 King Street, MANCHESTER, 2 Tower Lane, BRISTOL, 1 

2 Edmund Street, mmvnNG~M, 3 80 Chichester Street, ~ELFAST 

or through any bookseller. 

S.O. Code No. 23-z6o5 


