C.P. No. 303

(17.952)
A.RC Technical Report
C.P. No. 303
$(17,952)$
A.RC. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

On the Stability of a Laminar Wake

By
C. H. McKoen, B.Sc., Ph.D.

On the Stability of a Laminar Wake
 - By -
 C. H. MoKoen, B.Sc., Ph.D.*
 Communieated by Dr. W. P. Jones

21st Ootober, 1955

SUMAARY

A perturbation method of solving the problem of stability in an unlimited field of flow is developed and used to investigate the stability of the laminar trake formod by a flat plate.

The invisozd problem of the make formed by a flat plate is investigated, and the eigen-value of a for the neutral disturbance is found to be $a_{s}=4.0$.

A detailed account is given of the perturbation method vhich is developed. The necessary and sufficient condition that an integral of the snall disturbance equation should satisfy the boundary conditions for the vake is establishod. This condition is found to lead to a simple determination of the (α, R) curve, and this curve is found for the neutral disturbanoes.

The method fails to predict a minimum critical Reynolds nuwber, oniy because the approximations made in the above conditions are only valid for large Reynolds numbers.

1. Introduction

Launinar flar is regarded as stable if all velooity disturbances, caused accidentally in the fluid, tend ultinately to vanish and as unstable if any disturbanco persists in time or tends to increase. The problem is to ascertain whether conditions exist under which any disturbance persists or tends to increase and, if so, to determine the characteristics of such disturbances for any given regime of flow.

Lord Rayleigh ${ }^{1,2}$, furst propounded the theory of stability based on infinitesimal disturbances, solving the inviscid problom for several types of velocity profile in a channel with parallel walls. The modern theory vias instigated by Heisenberg3, who showed that the fourth-order differentiol equation governing the alsturbances had two slowly-varyang integrals, sensible across the whole channel and unaffected by viscosity; and two rapidly varying integials sensible only near the walls and very sensitive to the effects of viscosity. The first type are lnom as inviscid integrals, and are functions of the velooity profile. The second type are terned viscous integrals and do not vary appreciably with the velocity profile.

Mathematically/

*This paper is an abridged version of the author's thesis at the University of London. It has been edited in the Aerodynamics Division of the National Physical Laburatory.

Mathematically a basic flow

$$
\begin{equation*}
u=U\left(y^{p}\right), v=0 \tag{1.1}
\end{equation*}
$$

is considered and a small dusturbance

$$
\begin{equation*}
u^{\prime}=u^{\prime}\left(x^{\prime}, y^{\prime}, t^{\prime}\right), v^{\prime}=v^{\prime}\left(x^{\prime}, y^{\prime}, t^{\prime}\right) \tag{1.2}
\end{equation*}
$$

is mposed on this.
The equation of continuaty is

$$
\begin{equation*}
\frac{\partial u^{\prime}}{\partial x^{\prime}}+\frac{\partial v^{\prime}}{\partial y^{\prime}}=0, \tag{1.3}
\end{equation*}
$$

and upon elimanating the pressure the Navier-Stokes equations lead to

$$
\left.\begin{array}{rl}
\frac{\partial^{2} u^{\prime}}{\partial y^{\prime} \partial t^{\prime}} & +U \frac{\partial^{2} u^{\prime}}{\partial x^{\prime} \partial y^{\prime}}+v^{\prime} \frac{\partial^{2} U}{\partial y^{\prime 2}}-\frac{\partial^{2} v^{1}}{\partial x^{\prime} \partial t^{\prime}}-U \frac{\partial^{2} v^{1}}{\partial x^{12}} \\
& =v\left\{\frac{\partial^{3} u^{\prime}}{\partial x^{\prime 2} \partial y^{\prime}}+\frac{\partial^{3} u^{\prime}}{\partial y^{3}}-\frac{\partial^{3} v^{\prime}}{\partial x^{\prime 3}}-\frac{\partial^{3} v^{\prime}}{\partial x^{1} \partial y^{\prime 2}}\right\} \tag{1.4}
\end{array}\right\} .
$$

Equation (1.3) is formalily satisfied by expressing u^{\prime} and v^{\prime} in terms of a stream function ψ. Hence

$$
\begin{equation*}
u^{\prime}=\frac{\partial \psi}{\partial y^{\prime}}, \quad v^{t}=-\frac{\partial \psi}{\partial x^{\prime}} \tag{1.5}
\end{equation*}
$$

Assume ψ to be of the form

$$
\begin{equation*}
\psi=\phi\left(y^{i}\right) e^{i c^{\prime}\left(x^{i}-c^{i} t^{1}\right)} \tag{1.6}
\end{equation*}
$$

Substatuting fron (1.5) and (1.6) anto (1.4)

$$
\left(U-c^{\prime}\right)\left(\phi^{\prime \prime}-a^{1^{9}} \phi\right)-U^{\prime \prime} \phi={\underset{i \alpha}{ }}_{v}^{i \alpha^{\prime}}\left(\phi^{\prime \prime \prime}-2 \alpha^{1^{2}} \phi^{\prime \prime}+\alpha^{\prime^{4}} \phi\right) \cdot \quad \ldots(1.7)
$$

Converting to the dimensionless co-ordinates $y=y^{i / \delta}$, the following Is obtained:-

$$
(w-c)\left(\phi^{\prime \prime}-a^{2} \phi\right)-w^{\prime \prime} \phi=-\frac{i}{a \mathbb{a}}\left(\phi^{\prime \prime \prime}-2 a^{2} \phi^{\prime \prime}+a^{4} \phi\right), \quad \underset{\text { where/ }}{\ldots(1.8)}
$$

-3-
where

$$
\left.\begin{array}{l}
W=U / U_{0} \tag{1.9}\\
c=0^{\prime} / U_{0} \\
a=a, \delta,
\end{array}\right\}
$$

Equation (1,8) is the non-dimensional form of the small disturbance equation. The integrals of (1.8), an conjunction 77 th the boundary conditions imposed by physical consideratzons determine the eigen-values of a, R, c. The values of a and R must be real., but o may be complex. The disturbance is termed amplifıed, neutral on damped according as the umaginary part of c as positive, zero or negative.

The invisozd integrals described above are solutions of the equation obtainod by neglecting the viscous terms on the righthand side of (1.8). Hence

$$
(w-c)\left(\phi^{\prime \prime}-\alpha^{2} \phi\right)-w^{\prime \prime} \phi=0
$$

$$
\because(1.10)
$$

Equation (1.10) has a singularity at $y=y_{0}$ where $w-0=0$, and can be solved as a power series in $\left(y-y_{0}\right)$ by the method of Frobenius. The integrals obtainod are

$$
\left.\begin{array}{l}
\phi_{1}=z+a_{2} z^{2}+a_{3} z^{3} \ldots \\
\phi_{2}=1+b_{1} z+b_{8} z^{2} \ldots+\frac{W_{0}^{\prime \prime}}{W_{0}} \phi_{1} \log (-z)
\end{array}\right\}
$$

where

$$
\begin{equation*}
z=y-y_{0}<0 \tag{1,12}
\end{equation*}
$$

Near to $y:=\sim$ the term $(N-c)\left(\phi^{\prime \prime}-a^{2} \phi\right)$ us of the same order of magnitude as triektems noglectedron the rightmand side of equation (1.8) o and the abote expanchon are not waid insthis regore The complete

 has show by approximate methods that the tienm whon equals

$$
\frac{W_{0} "}{w_{0}}
$$

$$
\begin{align*}
& \text { - } 4 \text { - } \\
& { }_{W_{0}}^{W_{0}^{\prime \prime}} \phi_{1} \log (-z) \quad \text { for } \quad z<0 \\
& \text { trangforns into } \tag{1.13}\\
& {\underset{w}{0}}_{w_{0}^{\prime \prime}}^{w_{0}} \phi_{1} \text { log } z+\pi i \text { for } z>0
\end{align*}
$$

The term πi is essentially of positive shg because $W_{0}{ }^{\prime}$ is positive for wakes and boundary layers in $y>0$. For a jet the term πi would be of opposite sign because w_{0} ' is negatuve in $y>0$. Tollmen's transformation has also been considered by aitemative methods by Meksyn ${ }^{5}$.

The methods developed by Tollmien 4 and Helsenberg 3 for boundary-layer problems cannot be directly applied to problems in an unlumted field ot flow.

Firstly, the occurrence of the rapadly varyang vascous integral. in the solution of the small disturbance equarion is connected very closely with the presence of boundaries. Foote and Lin6 have shown that they do not enter into the boundary condation equation, but that viscosity is only effective through the second-order approximatzons to the "Inviscia" integrals。

Secondly, the velocity profiles all have at least one point of inflexion. Tollmien 7 has shown that, for the inviscad case, profiles with a point of inflexion are unstable. Thus there is a disturbance, whth nonzero wave number a_{s}, that is unstable for infinite Reynolds number. Tollmion has also shown that the neutrat solution is that for which the wave-velocity c_{s} is equal to the velocity at the point of inflexion of the profile.

The inviscid problem for the wake formed by a moving body was investzgated by Hollıngdale ${ }^{8}$. Using various apuroxmations to the velocity profile, he obtamed values of a in the region $a=4.0$ when referred to the effectuve half-width of the wake as unit. He also investigated expemmentally the wakes formed by a flat plate and an aerofozl section. He observed a lamnar and an oscillatory wake, and made an estimation of the cmitical Reynolds number below which the wakes were always laminar. This cmitical Reynolds number was 600 for the flat plate and 1000 for the aeroforl section.

Savic9 solved the anviscid problem for the tro-dimensional jet, determining the neutral waverlength and wave-velocity. He obtained good. agreement between his results and experimental measurenents on acoustically sensituve jets.

Two attempts have voen made to solve the problea of stability in an unlumited faeld of flow whith the effects of viscosity included, by Chiarulla 10 and Lessen ${ }^{11}$. In each case the anviscid integrals were expanded in powers of $(a R)^{-1}$. Chzarulli put $a=a_{s}$ and then linearized in $\left(0-c_{s}\right)$ and $(a R)^{-1}$. By this means the boundary condition equation was put in a form in which it.could be solved for $\left(c-c_{s}\right)$ and $(a R)^{-1}$. The tedious process of solving this equation was not attempted. Lessen evaluated numencally the first two terms in the series expansion, and then solved the boundary condztion equation by trial and error. This process did not give a minimum critical Peynolds number, probably because more terms must be retained in the expansions of the "invisoid" intograls when $\alpha \mathbb{R}$ is small.

In the present work, starting from the known solution ϕ_{S} of the inviscid problem, having elgen-values a_{s} and o_{s}, the existence of a nelghbouring viscous solution ϕ_{1} is assumed. The necessary and sufficient condation that ϕ_{1} should satisfy the boundary conditions amposed by physucal considerations is obtained as an infinite integral to be zero. This condation determines the eigen-values (α, c, R). Although it is not found possable to do this in the general case, a solution valid for large R is obtarned by a linear perturbation about the known inviscid solution.

The method is applied to the problem of the wake formed by a flat plate. No minimum critical Reynolds number is predicted, because the approximations of linearizang are not valid at small enough Reynolds numbers. As the method requires the knowledge of the anviscid solution, the $\operatorname{mviscid}$ problem of the wake of a flat plate is first consudered before the general theory is developed.

2. Inviscid Problem of the Wake Formed by a Flat Plate

Hollingdale ${ }^{8}$ investigated this problem, but an error in his solution was found durang the present investigation. As a knowledge of the inviscid solution is essential, the following altemative treatment is given.

Goldstein ${ }^{12}$ gives as the first approxamation to the velocity profile in the wake formed by a flat plate of length l,

$$
\left.\begin{array}{l}
w=1-a e^{-L y^{2}} \\
y=y^{i / \delta} \\
\delta=\left\{8 v x^{i} / U_{0}\right\}^{\frac{1}{2}} \\
a=\frac{2 \beta}{\sqrt{\pi}}\binom{x^{i}}{l}^{-\frac{1}{2}}
\end{array}\right\} \quad \ldots(2.1)
$$

The inviscid equation (1.10) cannot conveniently be solved by using (2.1), therefore the velocity profile must be approximated. The most conventent approxamation is

$$
\left.\begin{array}{rlrl}
e^{-4 y^{2}} \sim f(y) & =A+B \cos k y & 0<y<0.5 \\
& =D(1-y)^{2} & 0.5<y<1.0 \\
& =0 & y>1.0
\end{array}\right\}
$$

where A, B, D and k are such that
(i) $e^{-4 y^{2}}$ and $f(y)$ have the same value at $y=0$.
(ii) $e^{-4 y^{2}}$ and $f(y)$ have the same point of inflexion.
(1工工) $f(y)$ and $f^{\prime}(y)$ are continuous at $y=0.5$
$f(y)$ and $f^{\prime}(y)$ are continuous at $y=1$ because of the form of the approximation. With the above conditions

A	$=0.5950$
B	$=0.4050$
k	$=4.1433$
D	$=1.334$

The problem is now to solve the inviscad equation (1.10), where w is given by (2.1) and (2.3), subject to the boundary condztions

and

$$
\begin{equation*}
\phi \rightarrow 0 \text { as } y \rightarrow \infty . \tag{2.6}
\end{equation*}
$$

Region I $0<y<0 . j$
By using the approxamate expression for w, (1.10) is reduced to

$$
\begin{equation*}
\phi^{\prime \prime}+\left(k^{n}-\alpha^{2}\right) \phi=0 \tag{2.7}
\end{equation*}
$$

the antegrals of which are

$$
\left.\begin{array}{l}
\phi \frac{(1)}{(1)}=\cos \omega y \\
\phi(8)=\sin \omega y
\end{array}\right\}
$$

$$
\ldots(2.8)
$$

where

$$
\begin{equation*}
\omega=\sqrt{\mathrm{k}^{2}}=a^{9} . \tag{2.9}
\end{equation*}
$$

Regron II $0.5<y<1.0$
By using the approximate expression for $w,(1.10)$ is reduced to

$$
\begin{equation*}
\left(z^{2}-K\right)\left(\phi^{\prime \prime}-\alpha^{2} \phi\right)-2 \phi=0, \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
z=1-y \text { and } K=c / D \tag{2.11}
\end{equation*}
$$

By solving (5.12) by Frobonius: Mothod the followng integruls are obtamod:-

$$
\left.\begin{array}{l}
\phi_{\text {II }}^{I I}=\cosh a z+a_{z} z^{2}+a_{4} z^{4} \cdots \tag{2.12}\\
\phi_{\text {II }}=\sinh a z+a_{8} z^{3}+a_{5} z^{5} \ldots
\end{array}\right\}
$$

where

$$
\left.\begin{array}{l}
a_{2}=-1 / K \tag{2.13}\\
a_{4}=-a^{2} / 6 \mathrm{~K} \\
a_{3}=-a / 3 \mathrm{~K} \\
a_{5}=-a / 15 \mathrm{~K}^{a}-a^{3} / 30 \mathrm{~K}
\end{array}\right\}
$$

Region III $y>1.0$
By using the approxinate expression for $w,(1.10)$ is reduced to

$$
\begin{equation*}
\phi^{\prime \prime}-\alpha^{3} \phi=0 \tag{4}
\end{equation*}
$$

which has antegrals

$$
\left.\begin{array}{l}
\phi_{I I I}^{(1)}=e^{-\alpha y} \tag{2.15}\\
\phi_{I I I}^{(a)} \\
=
\end{array}\right\}
$$

Thus ϕ is given by

The arbitrary constants are to be choson so that the boundary conditions (2.5) are satcisfied, and ϕ and ϕ^{\prime} are continuous at $y=0.5$ and $\mathrm{y}=1.0$.

If (2.5) is to be satisficd then

$$
\begin{equation*}
B^{2}=F=0^{-} \tag{2.17}
\end{equation*}
$$

By contmuaty at $y=1.0$, i.e., $z=0$

$$
\left.\begin{array}{rl}
E e^{-\alpha} & =0, \tag{2.18}\\
-a E e^{-a} & =-\alpha D,
\end{array}\right\}
$$

and this may be written

$$
\left.\begin{array}{l}
C=D \tag{2.19}\\
E=C e^{\alpha}
\end{array}\right\}
$$

Then by (2.16), (2.17) and (2.19) ϕ is given by

$$
5
$$

Table I. Inviscid Solution

y	ϕ_{S}	ϕ_{S}^{\prime}
0.0	1.000	0.000
0.1	0.981	-0.370
0.2	0.926	-0.726
0.3	0.837	-1.056
0.4	0.716	-1. 345
0.5	0.569	-1.585
0.6	0.413	-1.215
0.7	0.297	-0.906
0.8	0.209	-0.661
0.9	0.143	-0.4.80
1.0	0.100	-0.362

3. Stability in Unlimited Field of Flow at Finite Reynolds Number

The basis of the present method is that of a perturbation of the known inviscid solution. Startang from the know inviscid integral ϕ_{S} with known eqgen-values a_{s} and o_{s}, the existence of a viscous integral ϕ_{1}, in the neighbourhood of ϕ_{S}, with eigen-values a_{1} and c_{1}, in the neighbourhood of a_{s} and o_{s}, is assumed. From the equations satisfied by ϕ_{1} and ϕ_{S} the necessary and sufficient condution that ϕ_{1} should satisfy the boundary conditions is found. This condution determines the eigen-values of a_{1}, c_{1} and R.

The complete small disturbance equation is

$$
(w-c)\left(\phi^{\prime \prime}-a^{2} \phi\right)-w^{\prime \prime} \phi=-\frac{i}{a R}\left(\phi^{\prime \prime \prime}-2 a^{2} \phi^{\prime \prime}+\alpha^{4} \phi\right) \ldots \quad \ldots(3.1)
$$

In the equation satz sfied by ϕ_{1}^{*} all the terms on the right-hand side of (3.1) are retained as perturbation tems except the fourth-order term $\phi^{\prime \prime \prime}$. The influence of this term on the solution will be accounted for when the "compete forth-r"der equation"is"considered: As the rapidy varying vascous integrals do not enter into the problem this is a reasonable approximation to nede. The equation satisfied by ϕ_{1} is therefore

$$
(w-o)\left(\phi_{1}^{\prime \prime}-a_{1}^{2} \phi_{1}\right)-w " \phi_{1}=-\frac{1}{a_{1} R}\left(-2 a_{1}^{2} \phi_{1}^{\prime \prime}+a_{1}^{d} \phi_{1}\right),
$$

which may be re-wmitten as

$$
\begin{equation*}
\left(w-c_{1}\right)\left(\phi_{1}^{\prime \prime}-a_{1}^{2} \phi_{1}\right)-\left(w^{\prime \prime}+\frac{1 a_{1}^{3}}{R}\right) \phi_{1}=0, \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
o_{1}=c+21 a_{1} / R \tag{3.3}
\end{equation*}
$$

If $w-c_{1}=0$ at $y=y_{0}$ then y_{0} is a complex point in the neighbourhood of the pount of inflexion but not coincident with it. Thus (3.2) has a singularity at the critical point $y=y_{0}$, and so the integrals of the equation will contain irregular terms which will be modified in the region of the critical point. Thas modification will now be discussed.

Equation (3.2) can be solved as a power sermes in $z=y-y_{0}$ by the Method of Frobenius. The followang integrals are obtained.

$$
\left.\begin{array}{l}
\phi_{1}^{(1)}=z+a_{2} z^{2}+a_{3} z^{3} \ldots \\
\phi_{1}^{(a)}=1+b_{1} z+\ldots+\left\{\begin{array}{c}
w_{0}^{\prime \prime} i a_{1}^{3} \\
\hdashline w_{0}^{\prime}+\frac{-w_{0}^{\prime}}{j}
\end{array}\right\} \phi_{1}^{(t)} \log (-z)
\end{array}\right\} \cdot \ldots(3.4)
$$

The problem, as before, is to determane the modafication of terms of the form $z^{r} \log (-z)$ near the critical point.

The complete small-d_sturbance equation (3.1) may be written

$$
\left(w-c_{1}\right)\left(\phi_{1}^{\prime \prime}-a_{1}^{2} \phi_{1}\right)-\left(w^{\prime \prime}+\frac{i a_{1}^{3}}{R}\right) \phi_{1}=-\frac{i}{a_{1} R} \phi_{1}^{\prime \prime \prime} . \quad \ldots(3.5)
$$

Define

$$
\left.\begin{array}{rl}
y-y_{0} & =\epsilon \eta \tag{3.6}\\
\varepsilon & =-\left(\alpha_{1} R w_{0}^{1}\right)^{-\frac{1}{3}},
\end{array}\right\}
$$

where y_{0} and therefore η is complex. Transform (3.5) to the nevr variable η, and retain only terms in ϵ. Thus

$$
\begin{equation*}
\phi_{1}^{\prime \prime \prime}+i \eta \phi_{1}^{\prime \prime}=I \epsilon\left(\frac{w_{0}^{\prime \prime}}{-\frac{i a_{1}^{3}}{w_{0}^{!}}+\frac{R_{1}^{1}}{\mathrm{Rw}_{0}^{1}}}\right) \phi_{1} . \tag{3.7}
\end{equation*}
$$

Now equations (3.4) and (3.7) are similar to those obtained in the work of Tollmien ${ }^{4}$ and Meksyn5, except that $\frac{w_{0}^{\prime \prime}}{w_{0}^{\prime \prime}}$ is replaced by $\left(\begin{array}{l}w_{0}^{\prime \prime} \\ \cdots \\ w_{0}^{\prime} \\ w_{0} \\ i a_{1}^{3} \\ 0\end{array}\right)$. The detemination of the transformation through the critical point is therefore exactly similar to the work of I'ollmien and Meksyn. Hence

$$
\left(\frac{w_{0}^{\prime \prime}}{w_{0}^{\prime}}+\frac{z a_{1}^{3}}{R w_{0}^{\prime}}\right) \phi_{1} \log (-z) \text { for } y<R\left(y_{0}\right)
$$

transforms into

$$
\begin{equation*}
\left(\frac{w_{0}^{\prime \prime}}{\frac{i c_{1}^{a}}{w_{0}^{1}}}+\frac{-1}{R t_{0}^{\prime}}\right) \phi_{1}\{\log z+\pi i\} \text { for } y>R\left(y_{0}\right) \tag{3.8}
\end{equation*}
$$

4. Conditions Consequent upon Boundary Conditions

In this section the necessary and sufficient condition that ϕ_{1}, an integral of (3.2), should satisfy the boundary condations for a wake is established. These boundary conditions are

$$
\phi \rightarrow 0 \text { as } y \rightarrow \infty\}
$$

It is more convenient, however, to have the condztion at infinity in an equivalent form at a finite value of y and then proceed to the limit. Take the width of the rake as σ, so that for $\mathrm{y}>\sigma \mathrm{w}=1$ and $\phi=A \theta^{-\alpha y}$. If ϕ and ϕ^{\prime} are continuous at $y=\sigma$, then

$$
\begin{aligned}
\phi(\sigma) & =\mathrm{A} \theta^{-\alpha \sigma} \\
\phi^{\prime}(\sigma) & =-\alpha \mathrm{A} \theta^{-\alpha \sigma}
\end{aligned}
$$

and hence

$$
\phi^{\prime}(\sigma)+a \phi(\sigma)=0 . \quad \ldots(4.2)
$$

(4.2) will be taken as the boundary condition at the edge of the wake. Then there exists an n nuiscid integral ${ }_{s} ;{ }^{\prime}$ with eigen-values a_{s}, o_{s}, sati.sfying

$$
\left(w-c_{s}\right)\left(\phi_{s}^{\prime \prime}-a_{s}^{2} \phi_{s}\right)-w^{\prime \prime} \phi_{\mathrm{s}}=0,
$$

and with boundary conditions

Assume the existence of a neighbouring viscous integral ϕ_{1} satisfying

$$
\left(w-c_{1}\right)\left(\phi_{1}^{\prime \prime}-a_{1}^{a} \phi_{1}\right)-\left(w^{\prime \prime}+\frac{i \alpha_{1}^{3}}{R}\right) \phi_{1}=0
$$

and with boundary conditions

$$
\left.\begin{array}{c}
\phi_{1}^{\prime}(0)=0 \tag{4.6}\\
\phi_{1}^{\prime}(\sigma)+\alpha_{1} \phi_{1}(\sigma)=0
\end{array}\right\}
$$

Then $\left(\phi_{1}-\phi_{S}\right)$ satisfies the equation

$$
\left(\phi_{1}-\phi_{S}\right)^{\prime \prime}-a_{S}^{2}\left(\phi_{1}-\phi_{S}\right)--\mathbb{W}^{\prime \prime} \underset{W}{ }-c_{S}\left(\phi_{1}-\phi_{S}\right)=g
$$

where

$$
g=\phi_{1}^{\prime \prime}-a_{s}^{2} \phi_{1}-\frac{w^{\prime \prime}}{v-o_{s}} \phi_{1} .
$$

Substitute for $\phi_{1}^{\prime \prime}$ from (4.5); then

$$
\begin{equation*}
g=\frac{\Delta c_{1} w^{\prime \prime}}{\left(w-c_{1}\right)\left(w-c_{s}\right)} \phi_{1}+\Delta a_{1}^{a} \phi_{1}+\frac{i \alpha_{1}^{3}}{R} \frac{\phi_{1}}{w-c_{1}} \tag{4.8}
\end{equation*}
$$

Here

$$
\left.\begin{array}{c}
\Delta a_{1}^{2}=a_{1}^{2}-a_{s}^{2} \\
\Delta c_{1}=c_{1}-c_{s}
\end{array}\right\}
$$

Define the operator

$$
\begin{equation*}
L \cong \frac{d^{2}}{d y^{2}}-a_{S}^{2}-\frac{w^{\prime \prime}}{w-c_{S}} \tag{4.10}
\end{equation*}
$$

Then

$$
\left.\begin{array}{rl}
L\left(\phi_{1}-\phi_{S}\right) & =g \tag{4.11}\\
L\left(\phi_{S}\right) & =0
\end{array}\right\}
$$

$\therefore \phi_{S} L\left(\phi_{1}-\phi_{S}\right)-\left(\phi_{1} \cdots \phi_{S}\right) \dot{L}\left(\phi_{S}\right)=\phi_{S}\left(\phi_{1}-\phi_{S}\right)^{\prime \prime}-\left(\phi_{1}-\phi_{S}\right) \phi_{S}{ }^{\prime \prime}$

$$
\begin{align*}
& =\frac{\mathrm{d}}{\mathrm{dy}}\left\{\phi_{\mathrm{S}}\left(\phi_{1}-\phi_{\mathrm{S}}\right):-\left(\phi_{1}-\phi_{\mathrm{S}}\right) \phi_{\mathrm{S}}\right\} \\
& =\frac{\mathrm{d}}{-\mathrm{dv}}\left\{\phi_{\mathrm{S}} \phi_{1}^{\mathrm{l}}-\phi_{1} \phi_{\mathrm{S}}^{\mathrm{S}}\right\} . \tag{1,12}
\end{align*}
$$

Integratans (4.12)

$$
\int_{0}^{\sigma}\left\{\phi_{S} L\left(\phi_{1}-\phi_{S}\right)-\left(\phi_{1}-\phi_{S}\right) L\left(\phi_{S}\right)\right\} d y=\left[\phi_{S} \phi_{1}^{2}-\phi_{2} \phi_{1}^{1}\right]_{0}^{\sigma} \cdot \ldots(4.13)
$$

Then, using (4.4), (4.6) and (4.11), (4.13) beoomes

$$
\begin{equation*}
\int_{0}^{\sigma} g \phi_{\mathrm{S}} d y=\left(\alpha_{\mathrm{S}}-a_{1}\right) \phi_{1}(\sigma) \phi_{\mathrm{S}}(\sigma), \tag{4}
\end{equation*}
$$

which is a necessary condition that ϕ_{1} should satisfy the boundary conditions.

It must now be demonstrated that (4.14) is also a sufficient condition that ϕ_{1} should satisfy the boundary conditions. Let $\phi_{1}-\phi_{s}=f_{g}$ then (4.7) becomes

$$
\begin{equation*}
f^{\prime \prime}-\left(a_{S}^{2}+-w^{W^{\prime \prime}}-o_{S}\right) f=g \tag{2.15}
\end{equation*}
$$

But ϕ_{S} and say $\bar{\psi}$ are two complementary functions of (4.15). Ilence it follows that

$$
\begin{equation*}
f=\phi_{\mathrm{S}} \int_{0}^{y_{2} \mathrm{~g}_{,} \bar{\phi}} \frac{-\bar{\phi}}{\Delta} d y-\frac{g \phi_{\mathrm{S}}}{\Delta} d y, \tag{4.16}
\end{equation*}
$$

where

$$
\Delta=\phi_{S}^{\prime} \bar{\phi}-\bar{\phi}^{:} \phi_{S} \cdot
$$

Then from (4.22) and (4.23)

$$
\begin{align*}
\left(\phi_{1}^{\prime}+a_{1} \phi_{1}\right)_{\sigma} & =\left(\phi_{\mathrm{s}}^{\prime}+a_{\mathrm{s}} \phi_{\mathrm{s}}\right)_{\sigma}\left\{1+\frac{1}{\Delta} \int_{0}^{\sigma} \mathrm{g} \bar{\phi} d y+\frac{a_{1}-\alpha_{\mathrm{s}}}{\Delta}\left(\phi_{1} \bar{\phi}\right)_{\sigma}\right\} \\
& =0 \text { by (4.4). } \tag{4.24}
\end{align*}
$$

Hence It follors that (4×14) is also a sufficient condition that $\phi^{\prime}(\sigma)+\alpha_{1} \phi_{1}(\sigma)=0$. Then by leiting $\sigma \rightarrow \infty$ in (4.14)

$$
\begin{equation*}
\int_{0}^{\infty} g \phi_{S} d y=0 . \tag{4.25}
\end{equation*}
$$

5. Solution of Boundary Condition Equation

The determination of the exgen-values by solutzon of (4.25) is as follows. Substitute in (4.25) the expression (4.8) for s. Then

Now the integrands of the first and thard integral are infinite at the cmitical point $y=y_{0}$, therefore the modifications near to this point must be considered carefully. Consider an antegration along the positive real axis of y and split up the range of integration into three paris, so that

$$
\int_{0}^{\infty} \frac{w^{\prime \prime}}{\left(w-c_{1}\right)\left(w-c_{s}\right)} \phi_{1} \phi_{s} d y=\int_{0}^{R\left(y_{0}\right)-K}+\int_{R\left(y_{0}\right)-K}^{R\left(y_{0}\right)+K}+\int_{R\left(y_{0}\right)+K}^{\infty} \ldots(5.2)
$$

The first and third of these integrals are regular, and so can be evaluated. In the second integral make the approximations

Then

$$
\begin{align*}
& \left.\int_{R\left(y_{0}\right)-K}^{R\left(y_{0}\right)+K-w^{\prime \prime}}-\cdots-c_{s}\right)\left(w-c_{1}\right) \quad \phi_{1} \phi_{s} d y=\frac{w_{0}^{\prime \prime}\left(\phi_{1} \phi_{s}\right)_{0}}{w_{0}}-\frac{\Delta c_{1}}{R\left(y_{0}\right)+K d y} \int_{R\left(y_{0}\right)-K-y_{0}}^{y-y_{0}} \\
& =\frac{\mathrm{w}_{0}^{\prime \prime}\left(\phi_{1} \phi_{\mathrm{s}}\right)_{0}}{\mathrm{w}_{0}^{\prime}}-\Delta_{c_{1}}\left[\log \left(y-\mathrm{y}_{0}\right)\right]_{\mathrm{R}\left(y_{0}\right)-\mathrm{K}}^{\mathrm{R}\left(y_{0}\right)+\mathrm{K}} . \tag{504}
\end{align*}
$$

Then, using the transformation (3.8) of the logarnthmic torms, (5.4) becomes approximately

$$
\begin{equation*}
\int_{R\left(y_{0}\right)-K}^{R\left(y_{0}+K\right)} \frac{w^{\prime \prime}}{\left(w-c_{s}\right)\left(w-c_{1}\right)} \phi_{1} \phi_{s} d y=\frac{w_{0}^{\prime \prime}}{w_{0}^{\prime}} \frac{\left(\phi_{1} \phi_{s}\right)_{0}}{\Delta c_{1}} \pi i . \tag{5.5}
\end{equation*}
$$

Sinnlarly the other 'sangular' integral of (5.1) may be dealt with, and so (5.1) becomes

$$
\begin{align*}
\frac{w_{0}^{\prime \prime}}{w_{0}^{\prime}} \pi\left(\phi_{1} \phi_{S}\right)_{0} & -\frac{a_{1}^{3} \pi}{R w!}\left(\phi_{1} \phi_{S}\right)+\Delta a_{1}^{2} \int_{0}^{\infty} \phi_{1} \phi_{S} d y \\
& +\Delta c_{1}\left\{\int_{0}^{R\left(y_{0}\right)-K}+\int_{R\left(y_{0}\right)+K}^{\infty} \frac{w^{\prime \prime}}{\left(w-c_{1}\right)\left(w-c_{S}\right)} \phi_{1} \phi_{S} d y\right\} \\
& +\frac{i a_{1}^{3}}{R}\left\{\int_{0}^{R\left(y_{0}\right)-K}+\int_{R\left(y_{0}\right)+K}^{\infty} \frac{\phi_{1} \phi_{S}}{w-o_{1}} d y=0 .\right. \tag{5.6}
\end{align*}
$$

Equation (5.6) cannot be solved as it stands An approximate solution is obtainod by taking $\phi_{1}=\phi_{S}$, and by linearasing in the smill quantitics Δc_{1} and $1 / R$. Hence if $y_{0}=y_{S}+\delta y_{S}$, then

$$
\begin{align*}
c_{1}=w\left(y_{0}\right) & =w\left(y_{S}+\delta y_{s}\right) \\
& =w\left(y_{S}\right)+\delta y_{s} w_{S}^{1} \\
& =o_{S}+\delta y_{s} w_{S}^{!} \\
\text {or } \delta y_{S} & =\frac{\Delta c_{1}}{w_{S}^{\prime}}
\end{align*}
$$

A.lso
and

$$
\left.\begin{array}{l}
w_{o}^{\prime \prime}=w^{\prime \prime}\left(y_{s}+\delta y_{s}\right) \bumpeq \frac{L c_{1}}{w_{s}^{\prime}} w_{s}^{\prime \prime \prime} \tag{5.8}\\
w_{o}^{\prime}=w^{\prime}\left(y_{s}+\delta y_{s}\right) \approx w_{s}^{\prime}
\end{array}\right\}
$$

Then (5.6) reduces to

$$
\begin{gather*}
\Delta{o_{1}}_{\frac{w_{s}^{\prime \prime}}{1 I^{\prime}}}^{w_{s}^{!}} \pi i-\frac{a_{1}^{3} \pi}{R w_{s}^{1}}+\frac{\Delta a_{1}^{2}}{\left(\phi_{S}^{2}\right)_{s}} \int_{0}^{\infty} \phi_{S}^{2} d y \\
\quad+\Delta o_{1} E_{1}+\frac{i a^{3}}{R} E_{a}=0 \tag{5.9}
\end{gather*}
$$

where

$$
\begin{align*}
& E_{2}=\frac{1}{\left(\phi_{S}^{2}\right)_{s}}\left\{\int_{0}^{y_{s}-\mathrm{K}-\phi_{\mathrm{S}}^{2}} \frac{w-c_{s}}{} d y+\int_{y_{s}+K}^{\infty} \frac{\phi_{s}^{2}}{w-c_{s}} d y\right\} . \tag{5.10}
\end{align*}
$$

But for neutril dzsturbances

$$
\begin{align*}
c_{1} & =0+2 i a_{1} / R \\
& =o_{r}+2 i a_{1} / R \\
\therefore \Delta c_{1} & =\Delta o_{r}+2 i a_{1} / R . \tag{5.11}
\end{align*}
$$

Substitute from (5.11) into (5.9), and equate real and inaginery parts to zero.

Using w and ϕ_{s} as defined in Section 2 the various terms have been evaluated by numerical integration for the wake formed by a flat plate. Then solving (5.12) for Δc_{r} and Δa_{1}^{2},

$$
\Delta c_{r} /
$$

$$
\left.\begin{array}{c}
\Delta a_{r}=1.901 \frac{a_{1}}{R}-0.04486 \frac{a_{1}^{3}}{R} \\
\text { a } \Delta a_{1}^{2}=-160.1 \frac{a_{1}}{R}+4.423 \frac{a_{1}^{3}}{\frac{1}{R}} \tag{5.13}
\end{array}\right\}
$$

Here " a " is as defined in (2.2). If, unstead of expressing R in terms of $\delta, R_{\delta}=\frac{U_{0} \delta}{\nu}$, It is expressed in terms of the length l of the plate, $R_{e}=\frac{U_{0} l}{\nu}$, then the equations (5.13) can easily be written as

$$
\begin{align*}
& e^{-\frac{1}{2}}-e^{-4 y_{0}^{2}}=1.270 \frac{a_{1}}{-\frac{1}{\frac{1}{2}}}-0.0299 \frac{a^{3}}{\frac{1}{2}} \frac{-\frac{1}{2}}{l} \tag{5.14}\\
& \Delta a_{1}^{2}=-107.0 \frac{a_{1}}{\frac{R^{\frac{1}{2}}}{l}}+2.95 \frac{a_{1}^{3}}{\frac{1}{R^{\frac{1}{2}}}} \tag{5.15}
\end{align*}
$$

(5.15) is the equation of the (a, R) curve, and may be written as

$$
\begin{equation*}
R_{l}=\left\{\frac{107.0 a_{1}-2.95 a_{1}^{3}}{a_{1}^{2}-16}\right\}^{2} \tag{5.16}
\end{equation*}
$$

The (α_{1}, R_{l}) curve (F_{1}. 1) gives no inducation of a minjmum critical Reynolds number below which all disturbances are stable, probably because the method of solving the boundary condztion equation is not valid for small values of R_{l}. The curve is dotted below $R_{l} \approx 600$, the critical Reynolds number obtained experimentally by Hollingdale.

Thus the perturbation method leads to a simple deternination of the (α, R) ourve, valid for large values of R.

Acknowledgements
The author vould like to thank Dr. D. Meksyn of the Mathematics Department, Imperzal College of Sclence and Technology, for many helpful sugestions durang the writing of the Thesis of which this paper is an abridged verszon. The author would also lake to acknowledge the help of Dr. N. Curle of the Aerodynamics Division of the National Fhysical Laboratory, in preparing this paper from the author's original Thesis.

References

1. Raylezgh, Lord	(1880)	Proc. Lond. Math. Soc., 11, 57.
2. Raylezgh, Lord	(1887)	Froc. Lond. Math. Soc., 19, 67
3. Heisenberg, W.	(1924)	Ann. Plys. Lbz., 74, 577. Translation, N.A.C.A., T.M. 1291.
4. Tollmzen, W.	(1929)	Nachr. Ges., Wiss., Göttingen, 21. Translation, N.A.C.A., T.M. 609.
5. Meksyn, D.	(1947)	Proc. Lond. Math. Soc., 49, 436.
6. Foote, J. R., and Lan, C. C.	(1950)	Quart. App. Maths., 8, 265.
7. Tollmzen, W.	(1935)	Nachr. Ges., Wiss., Göttingen, 79. Translation, N.A.C.A., T.M. 792.
8. Hollingdale, S. H.	(1940)	Phzl. Mag. (7), 29, 209.
9. Savze, P.	(1941)	Thil. Mag. (7), 32, 245.
10. Charulli, P.	(1949)	H. Z . Air Materiel Command, Tech. Report No. F-TS-1228-1A.
11. Lessen, M.	(1949)	N.A.C.A. T.N. 1929.
12. Goldstein, S.	(1933)	Proc. Roy. Soc., A, 142, 542.

Fig. 1.

Crown copynght reserved
Printed and publshed by Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w c 2 423 Oxford Street, London w.I
P.O Box 569 , London s.e. 1
13A Castle Street, Edınburgh 2
${ }_{109}$ St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller

