
C.P. No. 303 
(17.952) 

A.R C Technical Report 

C.P. No. 303 
(17.952) 

A.R C. Techntcal Report 

MINISTRY OF SUPPLY 

AERONAUTICAL RESEARCH COUNCIL 

CURRENT PAPERS 

On the Stability of a Laminar Wake 

C. H. McKoen, BSc., Ph.D. 

LONDON HER MAJESTY’S STATIONERY OFFICE 

I956 

THREE SHILLINGS NET 



. 



C.P. No. 303 

tithe Stability ofaLaminsr~sks 
-By- 

C. H. IloKoen, B.Sa., Ph.D." 

Caunioated by Rr. W. P. Jones 

21st ootober, 1955 

m5AP.x 
I 

A perturbation method of solwng the problem of stability in en 
unlimited field of flow is developed end used to investigate the stabiliiiy 
of the 1amino.r mke fonmdby a flat plate. 

. 
The intisaid problem of the wake formed by a flat plate is 

investigated, and the eigen-value of a for the neutral disturbance is 
found to be as = 4.0. 

A detailed acaount is given of the perturbation method ~+noh is 
develeped. The nmessary and sufficientconditionthatan integral of the 
mall disturbmoe equatmn should satisfy the boundary conditions for the 
w&e is established. This condition is found to lead to a simple 
detenninatian of the (a,R) curve, and this curve is found for the neutral 
disturbanoes. 

The method fails to predict a minimum oritioal Reynolds nwber, 
only because the approximations made in the above oonditions are only 
valid for large Reynolds numbers. 

1. Introductian 

Laminar flar is regarded as stable if all velooiQy disturbanc0s, 
caused accidentally in the fluid, tend ultimately to vanish and as unstable 
if any disturbanoo persists in time or tends to increase. The problem is 
to ascertain whether conditions exist under which any disturbance persists 
or tends to increase end, if so, to determine the oharaoteristics of such 
disturbenoes for qy given regime of flow. 

Lard Reyleighl*2, first propounded the theory of stabili+q based 
on infinitesimal disturbances, solving tie inviscid problem for several 
types of velocity profile in a ckvlnel liith peral. rialls. The modern 
theory w?%* instigated by Heisenberg3, vrho showd t&t the fourth-order 
differential equation &oveming the bsturbances had two sl~~ly-var~mg 
integmls, seneible across the whole chennel and unaffected by viscosity; 
end two rapidly varying integrals sensible only near the wlls and very 
sensitive to the effects of visoosity. The first type are lfflo~m as 
invlsoid integrals, end are functions of the wlcoity profile. The 
second type exe tellned visoous integrals end do not vary appreciably riith 
the velocity profile. 

kthematically/ 

------------------------------------- 

%his paper is en abridged version of the author's thesis at the 
University of London. It has been edited in the Aerodynamics Davision 
of the National Physical Laboratory. 
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Mathematically a basm flov 

u = U(y’), v = 0 

is considered and a small dxdurbance 

u’ = u’(x’,y’,t’), Y’ = v’(x’,y’,t’) 

is unposed on this. 

The equation of' contmuty is 

auf a9 
-me + --- = I), 
axl a~' 

and upon elmunztmg the pressure the iTamer-Stokes equations lead to 

a% aaut aau 9,' aad 
-----a + u *..---- + TJl ---- - ---e-- - TJ ---- 
aytatl aday' ay@ iwatt aX'a 

. ..(I .I) 

. ..(1.2) 

. ..(1.3) 

: Pu’ a3uI a39 a3+ 
= v i ---"-M^ + ---- - ---r 1 - -----me , 

!a@*~ 
. ..(I .4) 

ayf3 ada axfayla j 

Equatmn (1.3) is formally satisfied by expressing II' and v' in terms 
of a stream function *, IIence 

. ..(I .5j 

Assume @ to be of the form 

. ..(I&) 

Substltutmg from (1.5) and (1.6) mto (1.4) 

(u - cf)(Q” - alafl) - U” $4 = ..:- ($“” - 2a'ap + G’“#) . . ..(1.7) 
ia' 

converting to the dimensiorilass co-o~&nates y = yl/f,, tha follow&g 
1s obtamea:- 

I 

(1-r - c)($Y' - a"$) - w"$5 = - ; (qj"" - 2&~ + dy5) , . ..(I.@ 

hare/ 
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1-v = u/u0 , -I 

0 = o’/tJ, , 1 
I 

a = ai6 e I 
/ 

. ..(I .9) 

R = Rg = --, 
v 

J 

Equation (1.8) is the non-dimensional form of the smJ1 distu;-5anoe 
equation. The integralsof (l.B), m conjunctmn mth the bounililsy 
conditions imposed by phys~oal oonsideratxm 2etemine the eigen-values 
of a, R, C. The values of a and R must be BSI., but o nm~ be 
complex. The dsturbanoe is termed mplifred, neutr*l or dmped 
acoord;cng as the mginary part of o 2.s positive, z9ro or negative. 

The inviscd mtegmls Sesorxbed above are so1ut;or.s of the 
equatmn obtamed by ne&eotmg the vlsoous terns on the ri(;ht-had sldt 
of (1 e6). IIence 

( 17 - 0) ($6" - a"$) - w"$ = 0 . . ..(l.lS) 

Equation (1.10) has a sin@itarity at y = y. rihere w - o = 0, .a.r~d 
oan be solved as a peer series in 
The ultegrals obtaLwc2 are 

(y - y,) by the method of Frobeniw. 

. ..(1.11) 
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w. ” i 
--- $5, log (-2) for 2; < 0 
Wo' 

; 
I 

transfon~s into . ..(I .13) 

wo" 
--- #A log z + ni for z > 0 I 

WO( i 

The term 7ii is essentially of posltlve sign because wo* is positive 
for wakes and boundary layers in y > 0. For a jet the term ~5. would 
be of opposite ?A@ because woI 1s negative XI y > 0. Tol.l.m~en's 
transfo,rmation has also been oonsi.Sered by a;tenlat~ve methods by Mek,yn5. 

The methods developeci by Tollmien~ end Heo.senber$ for 
boundary-lqer problems cannot be directly applied to problems in en 
unlxnted field of flow. 

F'lrstly, the occurrence of the rapz~dly varymg viscous integrals 
in the solution of the small disturbance equation is connected very closely 
with the presence of boundaries. Foote and ~ti6 have shov,n that they do 
not enter into the boundary co&&ion equation, but that viscosity 1s 
only effective through the second-order approxtitlons to the "~~-EGxx~' 
integrals. 

Secondly, the velocity profUes all have at least one point of 
mnflexlon. Toll&en-/ has shcwm that, for the invlscxd case, profiles vbTth 
a point of inflexion are unstable. 
zero wave number as, 

Thus there is a tisturbsnce, lnnth nsn- 
that is uuste.ble for lnfinlte Reynolds number. 

Tollnuen has also shown that the neutral soluto.on is that for which the 
wave-veloolty cs is equal to the velocl@ at the point of inflexlon of 
the profile. 

.The in-vxscid problem for the wake formed by a moving body was 
investigated. by Hollmgdale~. Us% various appror,2mations to the 
velocity profile, he obtarned values of a in the reylon a = Ii.0 
when referred to the eff'eoto.ve half-width of the wake as mt. He allso 
investwated e~enmentally the wakes formed by a flat plate and an 
aerof ml se&Ion. He observed a 1anuns.r and an oscillatory wske, and 
made en estiem.tlon of the crltloal Reynolds number belmr wb?ch the wakes 
were always 1amins.r. This ontlcal Reynolds number was 600 for the flat 
plate and 1000 for the aerofo'oil section. 

S3ri.09 solved the lnvlsoid problem for the +zo-Smenslonal jet, 
determina the neutral wave*length and ws.ve-velocity. he obtued gooG? 
agreement betwea his results and experimental measurements on 
e.ooust~oaUy sensitive jets. 

Two attempts have boen made to solve the prob1e.n of stability 
m an unllrated field of flow ws.th the effects of y1scos1ty mcluded, 
by Chiarullz~lO and Lessenll. In each case the ~~A.soo.d mtegsls mere 
expanded in powers of (aR)+. Clmarulli put a = a, and then 
linearleed 2.n (0 - cs) and (u.R)-~. Bythzsmeamthe boundary 
condition equatlonmas put III a form in which it.could be solved for 
(C " cs) and (a)-'. The tedious process of solva tlms equiation 

was not attempted. Lessen evaluated nurnencally the first t+?o terms 
in the series expansion, and then solved the boundary con&.tlon equation 
ly tnalsnd error. 'Phs prcccss bd not give a mirmmu!m cr~~t~al Reynolds 
number, probably because more terms must be retained in the expansions of 
the "-invxisid" integrals when CIR is small. 
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In the present work, stmtmg from the known solutxon 4s of 
the inviscid problem, hs.vin& elgcn-values a, and as, the eastenoe 
of a nelghbowlng viscous solution $% 'is assumed. The neoesxu-y and 
suffio1ent oondltlon that y& +ouM sati- the boundary oondltions 
unposed by pbslos.1 oonsderatlons is obtained as en inftite integral 
to be zero. This con&-Lion deterrmnes the eigen-values (a, c, R). 
Although it is not found possible to do this m the general case, a 
solution valid for large R is obtmed by a linear perturbation about 
the Tim inviscid solution. 

The mthod is applied to the problem of the wake formed by a 
flat plate. No minimwn critical Reynolds number is prehcted, because 
the approldnutions of 1ineari.z~ are not valid at small. enoughReynolds 
numbers. As the method requires the knowledge of the rnviscid solution, 
the lnvlscid problem of the wake of a flat plate is first consdered 
before the general theory is developed. 

2. hnsoid Problem of the Wake Formed h a l?lat Plate 

HollingddLe8 mvestigated thus problem, but a~ error in his 
solution was found durxng the present investlgatlon. As a luwwledge of 
the invlsoid solution is essential, the foIlwring alternative treatment 
is given. 

Goldstein12 gives as the first approximation to the velocity 
profile in the wake foxxed by a flat plate of length 1, 

where 

and 

. ..(2.1) 

. ..(2.2) 

The lnvlscid equation (1.10) cannot oonveniently be solved by 
using (2.1), therefore the velocity proNe must be approxinated. The 
most oonvenxent appro-txn is 

e-Q 4 f(y) = A + 13 cos ky 0 <y < 0.5 

= D(1 - y)' 0.5 < Y < 1 .o ) 

= 0 y > 1.0 1 

where A, B, D and k are such that 

(i) e-p and f(y) have the s=vdue s.t y = 0. 

04 .a? and f(y) have the .wne point of inflexion. 

(~1) f(y) and f'(y) are continuous at y = 0.5 

. ..(2.3) 

f(y) and f'(y) aTe continuous at y = I because of the form of the 
approwtion. With the above conditions 

A/ 
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A = 0.5350 3 

B = 0.4050 1 

k = 4.443 I' ' 

D=l.334 j 
j 

. ..@A+) 

The problem is new to solve the invlscd. equation (l.lO), where N is 
given by (2.1) and (2.3), subject to the boundary oontiticna 

Q an even function of y, ' 

or #l(O) = 0, 1 
i 

. ..(2.5) 

alla $90 as y->o, . ..(2.6) 

Region I 0 < y < 0.5 

By usmg the appro-te expression for w, (1.10) 1s reduced to 

$6” + (k! - a’)$ = 0 . ..(2.7) 

the lntegrrrls ofwhach are 

. ..(2.8) 

where 

u = &a--- - a* , . ..(2.9) 

Reaon II 0.5 (y ( 1.0 

By us- the a?proxinzate expressron for w, (1.10) is rduoed to 

(2' - K) (6" - a"$$) - 26 = 0, l ..(2.10) 

where 

e = I -y and K = c/!3. . ..(2.11) 
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#I$ = cash az + a ea + a 8 . . . -I 
P 4 I 

$8 i = slnh az +a923 +a525 . . . I 
. ..(2.12) 

. ..(2.13) 

Rqyion III y > 1.0 

3y using the approtiato e-ression for w, (1.10) is mduood to 

$6” - nag5 = 0 , . ..(2.14) 

. ..(2.15) 

Thus Q isgivenby 

$1 = A cos q +B sm wy in 0 <y < 0.5 i 

$11 =' c $5;:' + D c$g -ln 0.5 <y < 1 

$111 = Ee-w+FecPr' 
1 l 

. ..(2.16) 

in y>1 I _. 

The arbxtrary ooq~stants are to be ohoscn so tlx?.t the boundary oonditlons 
(2.5) are satxsfied, and $ and $' 
Y = 1.0. 

are continuous at my = 0.5 and 

If (2..5) is to be satia'i'ecd then 

l$d contUlw.ty at 7 = 1.0, i.e., z = 0 

E 0-u = c , ‘I 
- a,lj e-a = -%Ji 

. ..(2.17) 

. ..(2.18) 

ad/ 
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and tlus may be written 

C=D , 
E \ = c ea ._, 

. ..(‘r.lvj 
r  

Then by (2.16), (2.17) ana (2.19) # is given by 

$1 = Acoswy, -I 

$11 = C(ea" + as.9 + a3z? . ..) ) ) . ..(2.20) 

QIII = c .a= . , J 

For contmdty at y = 0.5 

- w A sm w/2 = ($$, 5 , i 
. ..(2.21) 

_, 

or 

w ta-n (42 = -  I #lJ#IIlo,s l . ..(2.22) 

Equation (2.22) defines as, the e&en-value of a for the neutral 
disturticc in the inv-isc~cl case. Substituttig fkom (2.20) 

a/s4 9 
ae 

w tan w/2 = 
+a, + ; aa . . . 

--,;~;-;y-;-yj-,--: 3 . ..(2.23) 

17hel-e w 1s even by (2.9) ana aa, s, etc., by (2.13). mis equation 
can be solved graphically to give as = k.0. Tha $s is given by (2.20), 
ana t-he msult IS &cm m Table I. 

Table I./ 
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Table I. Innscid Solution 

.__ ___ .-----.- .-- -- .._- _.____ _" 

Y F+S ali 
_ - _. _..._._ .-._ ._--If -. . ..__ ___ 

0.0 1 mo 0 .ooo 

0.1 0.981 -0.370 

0.2 0.926 -0.726 

0.3 0.837 -1.056 

0.4 0.716 -I.&5 

0.5 0.569 -1.585 

0.6 0.413 -1.215 

0.7 0.297 -0.906 

0.8 0.209 -0.661 

0.9 0.143 -0 .@o 

1 .o 0.100 -0.362 
_____ _-____ -__- .--_ --- - 

3. StabjJ.i@ jn Unlimited Fxeld of Flow at Ftite Reynolds Number 

The basis of the present method is that of a perturbation of 
the known invisoid solution. Startzng from the lma-m inviscd. integral 
63 with known syen-values as and os, the existence of a viscous 
mtesal &, in the neighbourhood of $s, with eigen-values s and 

in the neighbourhood of as snd og, 
3qGitions satisf5ed by Q 

is assumed. From the 
and $s the necessary and sufficient 

conktion that & shod satisfy the boundary conditions is found. This 
con&.tion determines the eigen-values of 9, 9 and R. 

The cenplete small disturbance equatron is 

In the equation satxsfied by $ ' s&l the tens on the right-hand side 
of (3.1) are retaine'd as pertu&tion teks,e&ept thefourth-order term 

0 11 
# l The influe&e.~of~thix term~a the solution will be accounted for 
when the '~~~~~t~~'f~~~-~~~~r,B~~t~~,,is'~orisidere~~,~ was the rapidly - .: I % &", * < 

i 
va&ng KLSCQW ~~~g~~s-~~~~~~;cnter'in~o~.the probl'em';:this LS a 
reasonable appro%in!atfon to~U.ke. The equation satisfied by #i is 
therefore 

which/ 
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which may be re-vrntten as 

( IV - cl)@; - a:$,j - 

Oi = 0+2la,/R. 

. ..(3.2) 

. ..(3.3) 

If w - c1 = 0 at y = y. then y. is a complex point xn the 
neighbourhood of the point of inflexion but not ooinoidentwithit. 
Thus (3.2) has a singularity at the oritloalpoint y = yo, and SO 
the integldls of the equation will contarn irregular terms whrchwillbe 
mcdified in the region of the ontical point. Thzs modtioaticm utill 
now be discussed. 

Equation (3.2) can be solved as a power series in z = y - y. 
by the Method of Frobanius. The follcwzn& integrals are obtained 

,p = e + a3z? + aa2 .,. 

. ..(3.4) 

,;*' = 1 + b$z + . . . + @:I:, log(- z) 

j 

The problem, as before, is to deterrmne the mcdSioat~on of terms of the 
form .zr log(- z) near the critical point. 

The complete small-dxsturbanoe equation (3.1) ma,y be written 

Define 

Y -Yo = e r7, 

I 

. ..(3.6) 

8 = - (a1 R w;,-+ , 

where y, and therefore v is ocmplex. Transform (3.5) to the new 
vanable n, and retain only terms in 8. Thus 
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. . 
Now equations (3.4) and (3.7) are similar to those obtained in the work of 

-no" 
TolJmienk and Meksyn5, except that --- is replaced by (z + 2) . 

No' 
The det?nr$nation of the ~mnsformaticm through the omtxxl point is 

: therefore exaatly simiLlar to the work of Tollmien ancl Muksyn. Hence 

$i log (- z) for y < R(y,) 

transforms into 

$% ilog z + xi] for y > R(y,) . . ..(J.O) 

4. Conditions Consequent upon Bou@ary Conditions 

In this section the neioessary and sufficient condition that 
# an integral of (3.2), 
a'&dce is established. 

nhou.kl sates@ tho boundary conditions for 
These boundmy oonditions are 

#'(O) = 0 7 

is 
. ..(&.I) 

$%J 0 as y-> w 
., 

It is more convenient, hcwever, to have the oon&tion at 5nfiniig in an 
equivalent form at a finite value of y and then prooeed to the lxnit. 
Takethsvsidthofthemkeas F, sothatfor y> s w = 1 and 
6 = A e-v. If $ and $1 are contmuous at y = O-, then 

#(a) = A e-M 

6’(Q) = - a A e-w 

andhence _--.- --7 

#‘(CT) + a $5(a) = 0 . . ..(4.2) 

(4.2) will be t&$,,as the bou&y c~ndit$on at the edge of the wake. 
Then there exists en lntiscid integral &' with elgen-values as, os, 
satisfy$g . 

* . .$ 

(VI - c,)(& - a;+,, - w"$?5s = 0 , . . .(4.3) 
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andmthbounclaryconditions 

andvr~th boundary conditions 

Then b, - &.I satisfies the equation 

PI” 
(h - $a” - 43($$ - $5) - ----- (tii - &) 

w - cs 

. ..(4.4) 

. ..(4.6) 

s g . ..(4.7) 

Substitute for $i f?mx (4.5); than 

Aci w” i$ & 
6 = ------------_-- . ..(4.8) 

( 
$r + Aa; $% + --- ----- . 

w - o*)(w - 4 R w-oi 

Here 

Aa; = $-CL; 1 

i 
. 

AC, = ci - Cs 
J 

Define the operator 

. ..(4.9) 

. ..(4.10) 

Thsn/ 



Then 

L(& - $6) = g 

I 
. ..(4.11) 

LiSJ = 0 

.*. $s L(t$ - ds) - (& -. hj i($d = &(9$ - 8s)” - (94 - +s)h” 

rntegratm& (4 .I 2) 

Then, ==% (4-J+), (4.6) and (4.11), (4.13) bcc$or.les 

whxh 1s a necessary concl-Ltmn that $I should satxsfy the boundary 
conditions, 

It must now be demonstrated that (4"?4) 1s also a su.rficlent 
condit~cn that $$ should satx.55 the boundary condltmns. Lot 
4, - Qs = f, then (4.7) boccma~ 

. ..(4.16) 

. ..(4.17) 
Now/ 
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Then from (4.22) and (4.23) 

= 0 b (4*4)* . ..(4-24) 

Hence It follws that (4.14) is also a sufficxnt conditxon that 
@'(~I * ai@i((a) = 0. Then by leiting d -> w UI (4.14) 

I 

s 

c3 
gQ,dy = 0. 

0 

. ..(4.25) 

5. Solutipn of Boundary Condition Eglatlon -- 

The detetiatxm of the ewen-values by solutxn of (4.25) is 
as follows. Substitute III (4.25) the express?on (4.8) for 6. Then 

c-3 WI1 

4 
i 

co 2.2 
-----_-_-----_-- $55 $s &,. + A$ @i &! a3r + -;& 

6 

Oh @s ------ 
(w - Ci)(W - OS) J 

dy=o P 
o 0 w - ci 

. ..(5.1) 

Now the integrands of the first and tlllrd integral are lnfsnite at the 
crlt1ce.l pout y = yo, therefore the modif~oat~ons near to tins point 
must be consdered carefully. Conslder an mtegrat~on along the ;Iosltlve 
real axis of y and sphtup the rar~e of mtepatlon mto three parts, 
so that 

s 
lx w” Rbo)-K ---.------------ . ..(5.2) 0 (w - ci 1 (w - 4 0 

The fxrst and third of these integrais are regdar, and so can be 
evaluated. In the second integral make the approxlmatzxs 

w” (y ) = w” (y, j = TV;; 1 
. ..(5.5) 

Then/ 
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Then 

* Rbo)+K 

J 

w" 
- -----me ---e-- 

R(yo)-K 

VI; 
= -- 

% 
- Yo) 1 Rho) +K 

R(Y,)-K l 

. ..(5.4) 

Then, us% the tm.mf'omtion (3.8) of the ~cga~~~tirmi~ ton,ls, (5.4) 
becomes approti~te3y 

Smati the other 'smd~.r' integral of (5.1) may be dealt with, and 
SO (5.1) becomes 

f Rho)-K + /w p.” 
+ ACi 

10 

---------___---- $i#, ay 

JR~~)+K (VI - Ci )(w - CQ) 

F;14s ------ - 
'~ - Oi w 

= 0 , . ..(5.6) 

Equation (5.6) cannot ba solved as it stands. 
obtaancd by tdcmg & = &, 

An approxbate solution is 
and ky linenlzsing in the sal.l qumtltics 

A% and l/R. Hence xf y. = ys + 6y,, then 

% = w(y,) = “(Ys + SY,) 

AC 



Also 

: 
Then (5.6) reduces to 

. ..(5.8) 

+ "4 El + --- E, = 0 
R 

where 

E* = -m-“-w 

l 

But for neutral ctstiurbanOeS 

% = 0+2i%/R 

= or + 2ia./R 

. ..(5.9) 

, (5.10) 

. . . Aci = Ao,+2ia,/k. . ..(5.11) 
,__ 

Substitute &am :(,5_tll)m @to (5:9), and equate real Md imaginary parts 
to zero. 

.- 

using pi and y& as def-in3c.l in Seotion 2 the various terns have been 
evaluated ky numerical inteyat~on for the wilce formd by a flat plate. 
Then solving (5.12) for AC, and Aa:, 
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3 

“Or = 1.901 “5 - o.o4l& 3” 
R R 

i l 
. ..(5.13) 

9 c? / 
a Aa; = - 160.1 -- + 4.423 -5 I 

R R i 
Here "a" is as d.ef$d in (2.2). If, rnstead of eq~~ssmg R in 

terms of 6, R 
6 = -"_- , rt is expressed m terms of the length 1 of 

UC; 
the plate, R, = --- , then the equations (5.13) can easily be written 

V 
as 

a 
e-2 - .-L& = I.270 -5 

3 

R$ 
- 0.0299 -+ . ..(5.1l+) 

RF 
1 1 

o? 
Aa' = - 

9. 107.0 
2 -i, 
& 

+ 
2.95 & 

1 1 

(5.15) is the equation of the (a, R) curve, and msy be written as 

-9 

RL = 
107.0 a, - 2.95 CL; 
--..--------------- i 

a= 1 - 16 J ’ 

. ..(5.15) 

. ..(5.16) 

The (cq, RL) curve @lg. I) gives no indwatlon of a 
rmninnun oxxtical Reynolds number below which alL &sturbances are 
stable, probably because the method of solvxng the boundszy oor&tlon 
equatlon 1s not v&id for small values of RL. The curve is dotted 
below RL 'iy 600, the oritxal Reynolds number obtained experimcntallJ' 
by Hollxngdalo. 

Thus the perturbation method leads to a slirrple deter.UIatlOn 
of the (CL, R) curve, vs.lx.d for large vslues of R. 
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